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Estimating Producer's Surplus
with the Censored Regression Model:

An Application to Producers Affected by
Columbia River Basin Salmon Recovery

Michael R. Moore, Noel R. Gollehon,
and Daniel M. Hellerstein

Application of the tobit model to estimate economic welfare is transferred from the
consumer side to the producer side. Supply functions are estimated for multioutput
irrigators in the Pacific Northwest. Empirical procedures are then developed for
computing expected producer's surplus from the output supply functions. Confidence
intervals for the surplus measures are generated using the Krinsky-Robb method. An
experiment predicts decreases in surplus given increases in water pumping cost. The
experiment replicates possible increases in hydroelectric prices due to the salmon
recovery program in the Columbia-Snake River Basin. Output substitution explains
producers' ability to mitigate the effect of the price increases on producer's surplus.

Key words: Endangered Species Act, multioutput supply, Pacific Northwest, producer's
surplus, salmon, tobit regression, water price

Introduction

Recently developed tools of applied benefit-cost analysis emphasize measuring the unmar-
keted benefits of public goods. The use of limited dependent variable regression models
with the travel cost method (e.g., Bockstael et al.; Hellerstein) and the dichotomous
choice approach to the contingent valuation method (Bishop and Heberlein; Arrow et al.)
improve the quality of estimates of consumer demand for environmental goods and
services. For the travel cost method in particular, a censored regression model may
produce econometrically consistent parameter estimates of recreation demand functions
and, as well, may generate estimates of consumer's surplus that differ greatly from those
generated with the ordinary least squares (OLS) regression model (Bockstael et al.).

These same techniques can be applied to improve estimates of changes in producer's
surplus from environmental programs or policies.1 For example, a censored regression

Moore is associate professor, School of Natural Resources and Environment, University of Michigan, Ann Arbor; Gollehon
and Hellerstein are natural resource economists, Resource Economics Division, Economic Research Service, USDA,
Washington, DC. The authors gratefully acknowledge Marcel Aillery, who provided information on the impact of the
Columbia-Snake River Basin salmon recovery program on hydroelectric rates in the Pacific Northwest. We also thank two
anonymous journal reviewers for helpful comments on earlier drafts, and the National Agricultural Statistics Service of the
U.S. Department ofAgriculture, and the Agricultural Division, Bureau of the Census, U.S. Department of Commerce for their
cooperation in providing data and assistance in this research. The views expressed are the authors' and do not necessarily
represent policies or views of their respective institutions.

On the producer side, dichotomous choice contingent valuation was recently applied to estimate producers' willingness
to accept incentive payments to adopt best management practices (BMPs) under the U.S. Department of Agriculture's
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model, or the tobit model, can be fruitfully applied to estimate producer's surplus under
certain behavioral conditions. Consider the following example of estimating crop supply
functions of multioutput producers. Two conditions combine to make a censored model
appropriate. First, producers choose from a set of crops commonly grown in a region,
implying that producers operate with a common multioutput technology. Second, every
producer does not grow every crop, i.e., producers can be segregated into those at a
threshold of zero and those above the threshold in production of a given crop. The ability
to identify an agent as either at or above a threshold in any economic activity implies
that the censored regression model will be a superior estimator (Maddala). With data
available on individual multioutput producers, the censored regression model offers
improvements over linear regression models, both for estimating crop supply functions
and calculating producer's surplus with these functions.

We develop an approach for estimating producer's surplus for the multioutput
producer. Two distinctions arise when estimating surplus on the producer side relative
to the consumer side. The first concerns the number of markets that are analyzed to
estimate economic welfare. In the case of the consumer, an individual's recreational
demand and consumer's surplus typically is isolated from demand for other goods by
assuming a weakly separable utility function (Phlips). By contrast, in the case of the
multioutput producer, we calculate producer's surplus for each crop and then sum across
crops as a measure of an individual's total producer's surplus. We later describe the
assumption on production technology that permits this. The second distinction relates
to selecting a choke price.2 An important issue in applying the censored regression
model to compute consumer's surplus is that the analyst must choose a consumer's
choke price; yet this choice markedly affects estimates of surplus (Hellerstein). As
we describe, choosing a producer's choke price for a supply function when computing
producer's surplus raises similar, although distinct, issues.

The empirical application involves estimation of expected producer's surplus for
irrigators in the Pacific Northwest. The tobit estimator is used to estimate crop supply
functions. Expected producer's surplus is then computed from the unconditional expected
supply functions. In addition, the Krinsky-Robb method (Krinsky and Robb) is used to
generate confidence intervals for these surplus measures. We also conduct an experi-
ment of predicting changes in expected producer's surplus given a change in water
prices (measured as pumping cost for water). The experiment relates directly to
consequences of the salmon recovery program in the Columbia-Snake River Basin under
the Endangered Species Act (Northwest Power Planning Council; U.S. Department of
Commerce 1995, 2000). Operations of several federal hydroelectric facilities in the basin
may be altered to improve conditions for salmon survival. These facilities generate much
of the electricity for water pumping in the Northwest. The experiment is designed to
replicate the range and geographic pattern of possible increases in hydroelectricity
prices-and thus pumping costs-within the region [Columbia River System Operation
Review (SOR) Interagency Team 1994b].

2 For the consumer, "choke price" is the price at which quantity demanded equals zero.
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Expected Producer's Surplus in the
Censored Linear Model

We apply the basic concept of calculating producer's surplus3 from output supply
functions (Just, Hueth, and Schmitz, chapter 4) to the case of a multioutput producer.
A competitive firm's supply curve coincides with its marginal cost curve when marginal
cost is upward sloping. Thus, by estimating supply functions for the multioutput
producer, one measure of the firm's profitability can be computed without more basic
information on its underlying technology or cost structure.

The tobit regression model handles the threshold/nonthreshold behavior that char-
acterizes multioutput choices. This behavior is commonly observed with agricultural
production: individual data from the Pacific Northwest (described later) reveal that many
multicrop producers choose to grow only a subset of a common set of five field crops.
With the tobit model, producers with zero supply of a crop remain in the econometric
analysis to avoid the problem of inconsistent parameter estimates (Maddala).4 Compu-
tation of the expected value of consumer's surplus from demand functions estimated
with the tobit model raises issues not posed in application of the OLS model (or other
linear regression models). Previous research on outdoor recreation has developed
techniques to address these issues (Bockstael et al.; Hellerstein). Following this line
of research, we compute the expected value of producer's surplus (expected producer's
surplus) using crop supply functions estimated with the tobit regression model.

Again, two distinctions emerge when computing expected producer's surplus, rather
than expected consumer's surplus, with this approach. One distinction involves computa-
tion of surplus across markets in which the agent is active. By assuming weak separability
of utility functions, evaluation of a consumer's recreational demand function-without
analysis of demand for other goods-generates a complete measure of consumer's
surplus from recreation. In the case of the multioutput producer, we follow three steps
to obtain a complete measure of producer's surplus: (a) estimate individual crop supply
functions for a set of crops, (b) compute expected producer's surplus for each crop, and
(c) sum over the crops to generate multioutput producer's surplus. Here the traditional
assumption of input nonjointness is adopted (Chambers and Just; Just, Zilberman, and
Hochman). Input nonjointness implies that the multioutput profit (cost) function is the
sum of output-specific profit (cost) functions (Chambers, p. 293). It ensures that, for an
individual producer, crop-level estimates of producer's surplus can simply be summed
to generate a multicrop measure.

A second distinction on the producer side involves selection of a choke price, that is,
the price at which output supply equals zero. When computing expected consumer's sur-
plus from a linear demand function that is censored at zero, the analyst must choose a
choke price (from a reasonable set of alternatives) when integrating under the expected
value of the demand function between observed price and choke price to obtain the sur-
plus measure (Hellerstein). If censoring were ignored (say, the expected value of demand

3Producer's surplus is equivalent to quasi-rent (Just, Hueth, and Schmitz, p. 54). Algebraically, it is equal to total revenue
minus total variable cost. Graphically, it is the area above the supply curve and below the price line of a firm or industry.4 Multioutput production raises an econometric issue of efficiency in addition to consistency. Efficiency likely requires esti-
mation of a system of supply equations. However, estimating tobit regressions in a system framework is computationally
difficult with current techniques.

Moore, Gollehon, and Hellerstein
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is set equal to the nonstochastic component of a linear function), a choke price can easily
be computed. However, when censoring is properly accounted for, the expected value of
demand becomes a nonlinear function dependent on the assumed distribution of the
stochastic component. In contrast to the case of linear expected value, this nonlinear
function approaches the price axis asymptotically. The choice of choke price can greatly
influence the results. Hellerstein (p. 88) reported estimates of aggregate consumer's
surplus that deviated from true aggregate surplus between 10% and 67% depending on
the level of choke price. We address the topic of the supply-side choke price after first
introducing the model.

Model Elements

Crop supply functions for the multioutput producer follow directly from standard duality
results. We apply the same model of multicrop irrigated agricultural production as
developed in Moore, Gollehon, and Carey. The supply functions for a given producer are
specified as:

(1) Yi = Yi(p,w, N), i=,...,m,

where y, is the output of crop i (i = 1,..., m); p is a vector of crop prices; w is a vector of
variable input prices; and N is the farm-level land endowment.5 The empirical specifi-
cation of the supply functions is linear in the independent variables. Linearity follows
from application of the normalized quadratic functional form for the crop-specific profit
functions (Moore, Gollehon, and Carey, p. 861).

For a particular crop, some producers choose to grow the crop while others choose not
to grow. Output data of this form generate a censored dependent variable on supply
(Maddala, pp. 149-51). Application of the tobit model to a crop assumes that observed
supply follows the rule:

(2) Y= {Xp + e if RHS >0,
0 otherwise,

where X, is the inner product of independent variables and coefficients and e is the error
term, assumed independently and normally distributed, with mean zero and variance
a2. Unconditional expected supply of a crop (the average quantity produced by a random
individual) equals:

(3) E[y] = ( *X + o),

where a is the standard deviation of e, and (D and ( are, respectively, the distribution
function and density function of the standard normal, both evaluated at (Xp/a) [equation
(6.37) in Maddala]. Expected supply with censoring contrasts with the familiar expected
supply from ordinary least squares, E[y] = XP.

5 This specification of the supply functions uses the result that Yi(p, w, N) = yi(i,, w, ni) (Chambers and Just, p. 982). In
this relationship, crop-specific land allocations (ni) sum to total acreage on the farm (N).
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We estimate expected producer's surplus,6 rather than producer's surplus, because of
the water-price experiment conducted later.7 Following Hellerstein's (pp. 85-86) devel-
opment of expected consumer's surplus, expected producer's surplus from crop i for an
individual producer facing observed output price Pob and choke price Pc is written as:

(4) E[PS] = (p, w, NIe) dp, i= 1,...,m.

Using the notation of XP, expected producer's surplus in the tobit model is:

(5) E[PS] ='PIb ( *XP + ao)i dpi, i =1,...,m.

This is the formula applied empirically.
We now turn to defining the choke price to be applied in calculating E[PS]. In the

case of the producer, an upward-sloping linear supply function intersects the price axis
(although the intersection may occur where price is negative). However, when censoring
is accounted for and an unconditional expected value is used, the supply function
approaches the price axis asymptotically in the range of negative price. Unconditional
expected supply is always positive, even when price is negative (figure 1).

Three methods of choosing a choke price seem sensible given this context. First, the
horizontal axis, representing the line at which price equals zero (labeled P, = 0 in figure
1), establishes a lower bound for a choke price. This rule precludes a producer from
supplying output at a negative price. As the lowest choke price, Pc = 0 establishes the
upper bound onE[PS] (the areaA +B + C + D in figure 1). Further, P, = 0 has the attrac-
tive feature of placing a ceiling on E[PS] in an objective manner, without resorting to
the analyst's judgment. This contrasts distinctly with the case of expected consumer's
surplus, which has no upper bound in the censored linear model unless the analyst
imposes a choke price.

Second, one can turn to the interpretation of the supply function as equivalent to the
short-run marginal cost function. With the supply functions estimated here, the mar-
ginal cost function is everywhere upward sloping. On intuitive grounds, however, it can
be argued that the short-run marginal cost function is constant at relatively low levels
of output, then begins to increase (Varian, p. 25): prior to reaching capacity constraints
on fixed inputs, marginal cost is constant because of a region of constant returns to
scale; marginal cost increases upon reaching the capacity constraints.

The choke price for this regime would correspond to the flat portion of the marginal
cost function; it is labeled P, = CMCA to represent the "constant marginal cost assump-
tion." As depicted in figure 1, E[PS] equals A + B + C for this regime.

In the empirical study, econometric estimation of a kinked supply function-to repre-
sent the marginal cost function described above-is inhibited by the range of the data
on production and output price. Instead, approximations of constant marginal cost are

6In particular, we compute unconditional expected producer's surplus. "Unconditional" assumes that information does not
exist on whether a producer chooses to grow a particular crop. In contrast, conditional expected producer's surplus refers to
producers who are known to be participants. Since conditional expected surplus assumes production is strictly positive, it
always meets or exceeds unconditional unexpected producer's surplus.

7 Bockstael et al. (p. 44) emphasize that the appropriate comparison when evaluating an experimental change in an exoge-
nous variable is to compare expected surplus before and after the change. This is done for consistency in evaluation, relative
to the alternative of comparing actual surplus before the change to expected surplus after the change.

Moore, Gollehon, and Hellerstein
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Price (p)

Pobs

P,= RPA

P,= CMCA

Pc = o

Quantity (yi)

Figure 1. Expected producer's surplus under alternative
choke-price regimes

developed from crop budget data from Idaho, Oregon, and Washington. We emphasize
that, while P, = CMCA has conceptual merit as a choke price, our application is imperfect
because of data limitations in the econometric application.

Third, following the literature on consumer's surplus, we use the choke price of the
"representative" producer;8 this is labeled P = RPA in figure 1 for the "representative
producer assumption." The regime PC = RPA is identical in concept to Hellerstein's (p. 87)
TOB_Jip method. This choke price is computed as if the price intercept for a non-
censored, nonstochastic linear supply function were being calculated (figure 1). That is,
if the supply function equals

(6) y = k + P[p,

where P, is the estimated coefficient on the own-crop price variable and k equals the
sum of the product of estimated coefficients and independent variables for every
variable but the own-crop price, then the choke price equals -k/, 1 . (Note that P, and the
estimated coefficients underlying k are derived from the tobit model.) Measurement of
E[PS] equals A +B in figure 1.

Two points are relevant. First, the figure's depiction ofE[PS] as larger under P, = CMCA
relative to PC = RPA is arbitrary; in principle, the reverse could be true. Second, none of

8 The "representative" producer, identified as the producer with e = 0, can be described as the median producer: ceteris
paribus, half of the producers will produce more and half will produce less than the representative producer.
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the three regimes for setting choke price is conceptually superior to the others. In com-
bination, though, they define a reasonable first approach to apply in estimating expected
producer's surplus with the censored regression model.

Empirical Estimation

Data and Variables

Crop-level and farm-level producer's surplus are estimated from supply functions for
five irrigated field crops: alfalfa hay, barley, corn for grain, dry beans, and wheat. This
is a common set of crops grown in the Northwest (Idaho, Oregon, and Washington).
Farms included in the sample grow at least two of the five common field crops and do
not grow specialty crops (orchards, berries, and vegetables).

The primary data are cross-sectional data from the 1984 and 1988 Farm and Ranch
Irrigation Survey (FRIS), a survey of operators of irrigated farms (U.S. Department of
Commerce 1986, 1990). The survey includes questions on output, cropland use, and irri-
gation water use by crop, as well as questions on irrigation technology, water sources,
and water management practices. Several variables are formed from these data, and are
described in table 1. (For interested readers, additional description of the data and vari-
ables is provided in earlier research by Moore, Gollehon, and Carey).

Producers in the sample irrigate with water that requires pumping, either ground-
water or surface water that requires lifting, conveyance, and/or pressurization. Ground-
water is assumed to be the marginal source when both sources are used. An engineering
formula translates pumping lift and pressure into marginal pumping cost in dollars per
acre-foot;9 this cost serves as the measure of water price (as in Caswell and Zilberman;
Moore, Gollehon, and Carey).

Secondary data sources are used to create variables to merge with the FRIS-based
variables. Three categories of variables are defined: output and input prices, climate,
and soil quality. Crop price variables are constructed as expected 1984 and 1988 prices,
based on econometric-based predictions using state-level time-series data from the
USDA. Variable input prices are current-year prices. They include farm-level water
prices computed from FRIS data, and state-level wages and regional-level bulk-purchased
gasoline prices from the USDA. Two climate variables represent expected weather con-
ditions for a season: county-level growing season precipitation and cooling degree-days,
both based on 30-year averages from National Oceanic and Atmospheric Administration
(NOAA) weather stations. Soil variables represent cropland quality, including soil
texture and land class. They are average county cropland values from the USDA/Natural
Resource Conservation Service's 1982 National Resources Inventory.

Representative farm crop budgets from various states' Cooperative Extension Services
are used to compute average variable cost on a dollar per unit output basis (Bolz, Rimbey,

9 To compute a water price for each farm observation, energy cost for each fuel source is computed from farm-level FRIS
data on groundwater pumping depth and pumping pressure by applying the formula (Gilley and Supalla, p. 1785):
C = P * (1.3716/0.885) *(L + 2.31 *PSI), where C = pumping cost in $/acre-foot, P = electric price in $/kwh, L = distance in feet
that water is lifted, PSI = pumping pressure in pounds per square inch, 0.885 is a fuel-efficiency adjustment for electricity,
and 1.3716 and 2.31 are constants. For farms with groundwater, pumping lift is reported on the FRIS as depth to water table.
For farms pumping surface water, pumping lift is computed from FRIS data on on-farm pumping costs, electricity prices, and
pressure needs of the water delivery system. Variation in pumping lift and pressure translate into variation in the water price
variable.

Moore, Gollehon, and Hellerstein
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Table 1. Descriptive Information for Selected Variables

State
Pacific St

Variable Unit NW ID OR WA

FARM-LEVEL VARIABLES:
Number of Farms

Farm Area
Mean
Standard Deviation

Water Applied
Mean
Standard Deviation

Base Normalized Water Price
Mean
Standard Deviation

Cooling Degree-Days
Mean
Standard Deviation

Growing Season Precipitation
Mean
Standard Deviation

Normalized Wage Rates
Mean
Standard Deviation

Bulk Gasoline b
Mean
Standard Deviation

Water Source
Ground water only
Surface and ground water
Surface water only

529 252 117 160

acres
1,297 1,461 1,156 1,140
1,445 1,337 1,383 1,626

acre-feet

$/acre-foot/NP a

2,281 2,456 2,266 2,019
3,002 2,715 3,581 2,970

17.18 18.82 14.04 16.91
9.30 9.23 6.66 10.44

degree-days
3,806 3,615 3,499 4,331

826 766 953 524

inches
4.45 4.93 4.23 3.88
1.43 0.83 2.41 0.87

$/hour/NP

$/gallon

% of farms
% of farms
% of farms

4.03 3.67 4.22 4.46
0.74 0.68 0.37 0.75

1.05 1.07 1.02 1.05
0.11 0.10 0.10 0.13

44
41
15

48
43
9

29
56
15

48
26
26

Pressure Irrig. Technologies Avail. % of farms

Water Mgmt. Method on Farm
Advanced methods used % of farms
Fixed-time methods used % of farms

CROP-LEVEL VARIABLES (means only):
Normalized Output Prices
Alfalfa
Barley
Corn
Dry Beans
Wheat

Mean Acresc
Alfalfa
Barley
Corn
Dry Beans
Wheat

95 92 95 99

25 29 26
22 19 25

__________________________-

19
26

$/ton/NP 61.05 55.52 70.65 60.76
$/bushel/NP 2.25 2.32 2.23 2.06
$/bushel/NP 2.67 2.58 3.07 2.61
$/cwt/NP 15.71 15.67 15.81 15.75
$/bushel/NP 2.95 2.79 3.21 3.02

acres/farm
acres/farm
acres/farm
acres/farm
acres/farm

319
322
359
212
483

374 336 211
387 255 189
119 539 473
262 180 130
490 231 626

(continued)
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Table 1. Continued

State
Pacifictate

Variable Unit NW ID OR WA

CROP-LEVEL VARIABLES (means only), cont'd:
Mean Water Applied

Alfalfa acre-feet/farm 680 727 768 515
Barley acre-feet/farm 447 551 336 242
Corn acre-feet/farm 936 259 1,625 1,206
Dry Beans acre-feet/farm 415 533 307 221
Wheat acre-feet/farm 664 688 357 818

Base P =CMCA
Alfalfa $/ton/NP 36.98 43.39 38.28 25.11
Barley $/bushel/NP 1.65 1.74 1.47 1.61
Corn $/bushel/NP 1.95 2.01 2.02 1.88
Dry Beans $/cwt/NP 11.03 10.43 11.29 12.02
Wheat $/bushel/NP 1.78 2.10 1.61 1.44

Note: Statistics are for farms growing at least two of five field crops with no specialty crop acreage.
Descriptive statistics for farm-level soil variables and crop-level weather variables are not reported due to
space constraints (but are available from the authors on request).
a NP represents the input price used as the numeraire price, bulk gasoline.
b Bulk gasoline is used as the numeraire price.
c Crop-level means apply only to the farms growing that particular crop. Farms not growing the crop are
excluded from these calculations.

and Smathers; Boswell et al.; Hinman et al.).10 Variable costs for each crop are computed
using preplant, planting, growing, and harvesting costs. These variable costs enter
directly as crop supply choke prices in the regime P = CMCA. An underlying assumption
is that, for a given crop, its average variable cost equals marginal cost in the horizontal
segment of the marginal cost function; thus, average cost can be used to represent
P, = CMCA. The final data on average variable cost reflect differences in irrigation appli-
cation technology, in addition to any geographic distinctions contained in the Cooperative
Extension Service budgets.

Estimates of Expected Producer's Surplus

Output supply functions for alfalfa, barley, corn, dry beans, and wheat are estimated
using the tobit regression model. The supply functions are not discussed extensively
because of their similarity to results in the literature (Moore, Gollehon, and Carey).
(Appendix table A2 reports the supply function estimates.) Instead, we only note the
performance of two variables in each equation, own-crop price and water price. The own-
crop price determines the slope of the supply functions, while the coefficient on water
price determines whether the supply curve shifts in or out in response to the experi-
ments conducted later with water price. Each estimated coefficient on own-crop price

0The three crop budgets referenced are representative of 26 crop budgets from which information was taken for this study.The large number of budgets was needed to reflect differences across crops and states. A citation list for the entire set of bud-gets is available upon request from the authors.

Moore, Gollehon, and Hellerstein
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is positive; three of five are significant at the 0.10 level in a one-tailed test. The estimated
coefficients on water price are negative with alfalfa and corn, indicating that producers
substitute away from these crops in response to higher water prices. The estimated coef-
ficients are positive with barley, dry beans, and wheat. The estimates are statistically
significant at the 0.10 level for alfalfa, barley, and dry beans.1 1

Using equation (5), estimates of expected producer's surplus for each crop are calcu-
lated for the three choke-price regimes. In addition to obtaining point estimates from
regression coefficients, statistical properties of the surplus measures are computed using
the Krinsky-Robb (K-R) method (Krinsky and Robb). The K-R method involves taking
random draws on the parameter estimates, conditioned by the estimated mean and
covariance matrix of the parameter vector. In this application, expected producer's
surplus is computed for each draw, thereby producing a confidence interval for the
surplus measure when combined across draws. While the K-R method can generate a
confidence interval, and thus a median, it should not be used to generate moments of
the distribution (Shonkwiler and Maddala).

Developing a confidence interval for E[PS] contributes to the analysis in two ways.
First, it accurately depicts the framework as a stochastic process. That is, the central
tendency may be the expected value of producer's surplus, yet the probabilistic
dispersion of producer's surplus also conveys important information. For example, the
variability of E[PS] could be incorporated into a benefit-cost analysis under uncertainty
(Adamowicz, Fletcher, and Graham-Tomasi). Second, it helps to evaluatethe measure
of surplus generated from the regression coefficients, which is the conventional measure.
If this measure is similar to the K-R median E [PS], then the conventional measure can
be used with more confidence.

For the sample of multicrop producers, summing across crops provides an estimate
of expected producer's surplus from multicrop production. This is the farm-level, as
opposed to a crop-specific, perspective. The choke-price regime P = 0 yields the highest
estimate, $72.87 million, for an average of $123 per acre (table 2).12 The other two
regimes are closer in magnitude: the aggregate estimate is $49.58 million ($84 per acre)
forP, =RPA, and $43.02 million ($73 per acre) forP, = CMCA.13 Similar disparities across
choke-price regimes were found in the case of estimating expected consumer's surplus
(Hellerstein, p. 88).

Several general patterns emerge from the set of crop-specific results. (Note that the
initial three comments abstract from evidence on the statistical dispersion ofE[PS] gen-
erated by the K-R method.) First, the relative magnitude of expected producer's surplus
is consistent across crops regardless of choke-price regime (figure 2). From largest to
smallest, the ordering of wheat, alfalfa, corn, barley, and dry beans remains intact.14

"The estimated coefficient on water price is significant at the 0.20 level in the wheat supply equation.
12 These numbers are estimates of E[PS] calculated from the regression coefficients, not those calculated with the K-R

method. The K-R median yields similar estimates when summed across crops. For the choke-price regime PC = 0, for example,
the multicrop sum equals $70.83 million for the K-R median.

13 For comparative purposes, average cash rents per acre for irrigated cropland in 1988 were: $91.20 in Idaho, $81.50 in
Oregon, and $89.70 in Washington (USDA/ERS). These figures are quite close to the estimates of E[PS] per acre for two
choke-price regimes (P, = CMCA and P, = RPA), while P, = 0 is notably higher at $123 per acre. The higher figure is similar
to cash rents in 1993, which were $100.50 in Idaho, $124.70 in Oregon, and $124.20 in Washington (USDA/ERS).

14 The difference in E[PS] across crops raises the question: Why not produce more of the high-value crops? This apparent
anomaly of different values for E[PS] across crops can be explained as the difference between an average and a marginal.
The measures ofE [PS] and E [PS] per acre represent an average return, not a marginal return. Thus, marginal net benefits
may well be set equal across crops even though E[PS] and E[PS] per acre vary markedly across crops.
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Table 2. Expected Producer's Surplus for the Sample, by Choke-Price Regime

CROP
Farm-

Dry Level
Description Alfalfa Barley Corn Beans Wheat Total

AGGREGATE: --------------------- ($ millions)---------------------
Choke Price P, = 0 25.25 4.90 9.94 0.91 31.87 72.87
Choke Price P, = CMCA 14.45 3.79 4.03 0.83 19.91 43.02
Choke Price P, = RPA 15.58 3.17 4.44 0.06 26.32 49.58

PERACRE: ------------------ -- ($ per acre) ---------------------
Choke Price P, = 0 171 37 266 44 126 123
Choke Price P, = CMCA 98 28 108 40 79 73
Choke Price P, = RPA 105 24 119 3 104 84

Notes: This table uses estimates of expected producer's surplus that are calculated from the regression
coefficients, not those calculated with the Krinsky-Robb method. Levels of acreage are from predicted, rather
than actual, crop acreage to conform with the predictive basis on which producer's surplus is calculated.

This ordering follows land use to a degree; predicted baseline land use (in thousands of
acres) for the sample is as follows: wheat = 253, alfalfa = 148, barley = 134, corn = 37,
and dry beans = 21. Corn leapfrogs barley in the ordering of E[PS] relative to the order-
ing of acreage. Corn generates the largestE[PS] per acre, while barley's E[PS] per acre
is relatively small (table 2).

Second, comparison across choke-price regimes establishes the upper and lower bounds
for estimates of E[PS] by crop. The regime of P, = 0 sets the upper bound, as described
above. The regimes of P, = CMCA and P = RPA, whichever is lower for a given crop,
provide a reasonable estimate of the lower bound. Relatively large absolute differences
between lower and upper bounds occur with wheat, alfalfa, and corn. For the case of
estimating E [PS] from the regression coefficients (table 2), differences in bounds for
these crops equal roughly $12, $11, and $6 million, respectively.

Third, the regimes of P = CMCA and P = RPA generate comparable estimates for
alfalfa, barley, and corn. This is a consequence of the particular data rather than reflec-
tive of an underlying relationship.

Fourth, estimates of E[PS] derived from the regression coefficients are very similar
to estimates of medianE[PS] derived using the K-R method (figure 2). Thus, estimates
from the regression coefficients provide acceptable measures of the midpoint of the
distribution.

Fifth, the dispersion of estimates of E[PS], as generated by the K-R method, varies
systematically by choke-price regime. For example, the range of the 90% confidence
interval for E[PS], by crop, generally falls in the descending order of P = 0, P = RPA,
and P = CMCA (figure 2). Moreover, most of the disparity across regimes occurs in
the upper tails, not the lower tails, of the distributions. Two points explain this
pattern. One, P, = CMCA generates the smallest surplus because it sets the choke
price, instead of letting choke price vary with each random draw. This preempts
large values of E[PS]. Two, for a given (hypothetical) draw, P,=RPA will generate
a smaller estimate of E[PS] than P, = 0 whenever its choke price exceeds zero. Again,
this tends to extend the upper tail of estimates for the regime P = 0.

An overriding conclusion from the exercise concerns the importance of choke price in
estimating expected producer's surplus with a tobit regression model. As with expected
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Note: Expected producer's surplus is calculated using equation (5) in the text, with three alternative regimes
for setting the supply function's choke price (PC).
aStatistical properties of aggregate expected producer's surplus were developed from 100 random draws on the
tobit regression parameter estimates.

Figure 2. Aggregate expected producer's surplus for the sample, by
choke-price regime
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consumer's surplus, estimates of E[PS] can vary significantly depending on choke price.
The analysis produces three defensible estimates of the central tendency of producer's
surplus, in addition to deriving a confidence interval for each estimate. This raises a
question as to the proper course of action when developing an estimate of producer's
surplus for a benefit-cost analysis. The question has a straightforward answer if one
adopts the perspective that benefit-cost analysis is an exercise in collecting and
organizing information and analysis (as opposed to producing a single number for a
bottom-line benefit-cost ratio). From this perspective, the appropriate action would be
to present the full set of results developed above.

Policy Experiment: The Columbia-Snake River Basin
Salmon Recovery Program

Background

Salmon populations in the Columbia River Basin have declined severely as a result of
river development and fish harvesting. Populations of salmon and steelhead have fallen
to roughly 20% of their peak historic level of 10-16 million spawning adults per year;
wild and naturally spawning salmon are at 2% of historic levels (Blumm and Simrin).
Since 1991, three Snake River salmon stocks and four Columbia and Snake River steel-
head populations have been listed as threatened or endangered under the federal
Endangered Species Act (U.S. Department of Commerce 1995, 2000). Another 47 salmonid
stocks may be at moderate to high risk of extinction in the Basin (Nehlsen, Williams,
and Lichatowich).

Federal, state, and tribal governments are developing a multifaceted program to restore
the Columbia River Basin salmon fishery (Columbia River SOR Interagency Team
1994a,b,c; Northwest Power Planning Council; U.S. Department of Commerce 1995,
2000).15 A key component of the program involves improving conditions for in-river
migration of salmon. One method of accomplishing this is to alter the timing and level
of river flows through the lower Snake and lower Columbia Rivers. A range in the pos-
sible recovery measures needs to be assessed because decision makers have made only
temporary decisions on river-flow management in the basin (Aillery et al. 1999; Blumm
et al.).

Our analysis focuses on the effect of proposed river management alternatives on
hydroelectricity prices. Bonneville Power Administration (BPA) supplies a large share
of the Northwest's energy through its marketing of power from the region's federal hydro-
electric facilities.16 River management for salmon migration would decrease power

1
5 The salmon recovery program is being developed under three related authorities. Under the Pacific Northwest Electric

Power Planning and Conservation Act (1980), the Northwest Power Planning Council must design and implement a program
that balances fish and wildlife with traditional uses of the Columbia River and related land resources. The Columbia River
System Operation Review is considering river management options for the federal agencies with responsibility for managing
the Columbia and lower Snake Rivers (Bonneville Power Administration, U.S. Army Corps of Engineers, and U.S. Bureau
of Reclamation). And the National Marine Fisheries Service is responsible for leading the effort to recover the salmon runs
listed under the Endangered Species Act.

16 According to the Columbia River System Operation Review Draft Environmental Impact Statement: "The hydroelectric
dams on the Columbia and Snake Rivers are the foundation ofthe Northwest's power supply.... Hydropower supplies approxi-
mately 74% of the generating capacity in the Pacific Northwest, and approximately 61% of the firm energy supply.... Today,
BPA markets the power from 30 Federal dams and one nuclear plant in the Pacific Northwest and has built one of the largest
and most reliable transmission systems in the United States.... The projects under review in this EIS account for over 95%
of the Federal system's hydroelectric capability and 65% of the region's hydroelectric capability" (Columbia River SOR Inter-
agency Team 1994b, p. 2-5).
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generation at eight major federal facilities, causing increases in BPA wholesale power
rates. We analyze three rate increases to reflect a range of possible increases in BPA
wholesale rates: 3.2%, 11.6%, and 21.1%. These rate increases come directly from river
management alternatives evaluated by the Columbia River SOR (1994b). 17

For our purposes, the wholesale rates are converted to retail rates at a geographic
level defined by sub-state agricultural production areas within the region. The con-
version applies information on wholesale-retail conversion factors and the share of
irrigation power use reliant on BPA power within the area, using procedures found
in Aillery et al. (1996, appendix A). The geographic detail reflects the varied reliance
by retail supply companies on BPA-provided power. For example, the three levels of
BPA wholesale rate increases translate into retail irrigation rate increases in north-
central Oregon of 1.8%, 6.6%, and 12%.18 In southern Idaho, where BPA power provides
a small share of retail supply, retail rates increase by much smaller amounts: 0.5%,
1.7%, and 3.1%. In general, farmers in Oregon would experience the largest retail
rate increases, followed by Washington and then Idaho. A relevant aspect of the
analysis, consequently, concerns quantifying the disparate impact on farmers across
states.

Policy Experiment

The policy experiment involves evaluating the effect of water price increases on expected
producer's surplus. 19 The three higher BPA power rates-after conversion to a set of
retail price increases-feed directly into the formula for water pumping costs (contained
in footnote 9). Every irrigator in the sample faces a higher water price (pumping cost)
based on this adjustment. The average water prices (in $/acre-foot/numeraire price) for
irrigators in the sample are as follows: baseline = 17.18, Experiment 1 = 17.32, Experi-
ment 2 = 17.70, and Experiment 3 = 18.13.

To compute the change in expected producer's surplus, we apply the result that the
effect of an input price change on producer's surplus can be evaluated with output supply
functions (Just, Hueth, and Schmitz, p. 59). In this case, a water-price increase may
either shift in or shift out a crop supply function, depending on whether the estimated
coefficient on the water price variable is negative or positive in the function. Alfalfa and
corn supply shift in, while barley, dry beans, and wheat supply shift out. Accordingly,

17 From its draft environmental impact statement, the Columbia River SOR Interagency Team (1994b) reports that a 3.2%
increase corresponds to a scenario of "Current Operations," which "reflects operation of the Columbia River System with
interim flow improvement measures in response to ESA listings of Snake River salmon" (p. 4-4). An 11.6% increase corres-
ponds to a scenario of "Flow Augmentation," which "would provide more water to move fish down the river by setting flow
targets for every month" (p. 4-4). In particular, the high spring and summer flows required under this scenario would decrease
the generating efficiency of the hydropower system. The 21.1% increase corresponds to a scenario of "Natural River Opera-
tion," which "would draw down the four lower Snake River projects to near the original river elevation for 2 months" (p. 4-5).
Power generation at these projects would be eliminated during the drawdown period. Notably, the power appendix for the
final environmental impact statement, which was issued in November 1995, did not contain estimates of BPA wholesale rate
increases.

18 The study undertaken for the Columbia River System Operation Review also found sizable differences, in percentage
terms, between wholesale and retail rates (Columbia River SOR Interagency Team 1994b, p. 4-63).

19 Measurement of the change in producer's surplus may provide a reasonably accurate gauge of long-run producer welfare.
The analysis holds constant only farm-level land and irrigation technology. To the extent that the water-price increases would
primarily change cropping pattern, rather than total acres or technology, producer's surplus as measured here approaches
long-run welfare. Empirical evidence indicates that irrigation technology adoption, at least, is quite insensitive to ground-
water pumping cost (Negri and Brooks).
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Table 3. Farm-Level Expected Producer's Surplus for the Sample: Krinsky-

Robb Simulations and Water-Price Experiments

90% Confidence Interval

Description Median Lower Upper

-------------- ($ thousands) --------------

Choke Price P, = 0:
Baseline 74,784 54,918 105,458

Deviations from Baseline
Experiment 1 -33 42 -110

· Experiment 2 -116 150 -392

· Experiment 3 -208 277 - 706

Choke Price P, = CMCA:
Baseline 43,326 35,846 52,206

Deviations from Baseline
Experiment 1 -85 -46 -128

Experiment 2 -304 -166 -460

· Experiment 3 -553 -301 -831

Choke Price P, = RPA:
Baseline 52,701 36,071 81,689

Deviations from Baseline
Experiment 1 -36 40 -125

* Experiment 2 -126 144 -441

Experiment 3 -225 266 -795

Notes: Information on the median and 90% confidence interval is developed from 1,500 random draws on
the parameter estimates from the tobit regressions that-estimate crop supply functions. The three water-
price experiments involve increases in wholesale power rates charged by Bonneville Power Administration
of 3.2%, 11.6%, and 21.1%, respectively, by experiment. The wholesale rates are then converted to retail
prices faced by producers for electricity used in water pumping, and are finally translated into higher water
prices. The average normalized water prices (in $/acre-foot/numeraire price) for irrigators in the sample
are: Baseline = 17.18, Experiment 1 = 17.32, Experiment 2 = 17.70, and Experiment 3 = 18.13.

following a water-price increase, crop-level E[PS] decreases for alfalfa and corn and

increases for barley, dry beans, and wheat.2 0

One distinctive element, relative to the standard analysis, arises with the choke-price

regime of PC = CMCA. Typically, a shift in (shift out) of a supply curve causes a decrease

(increase) in expected surplus. In this regime, the assumption that the marginal cost

function is constant over a range of production creates a second effect. An increase in

water price shifts up the marginal cost function in its constant range, prior to where the

upward-sloping supply function shifts. This causes a decrease in surplus for a range of

production regardless of whether supply shifts in or out. In the case of the supply function

shifting out, this influence can generate a net decrease in expected producer's surplus.

As in the baseline, the water-price experiments are evaluated using the K-R method

(table 3). The water-price increases generate decreases in median farm-level (multicrop)

aggregate expected producer's surplus ranging from $33,000 to $553,000 for the sample,

20A table of crop-level adjustments in E [PS] in response to the water-price experiments is available from the authors. We
focus on farm-level E[PS] in the reported analysis.

Moore, Gollehon, and Hellerstein



Journal ofAgricultural and Resource Economics

depending on experiment and choke price. The summation across crops thus produces
an anticipated result for the median values: while E[PS] for some crops increases, the
relationship of multicrop producer's surplus declining in water price describes the net
effect at the farm level.

The water-price experiments can be summarized in general terms. (Note first that,
because water pumping cost depends linearly on energy price, a percentage increase in
energy price translates into an identical percentage increase in water pumping cost.
Thus, percentage changes in retail energy prices and water prices can be used inter-
changeably.)

Experiment 1 involves retail price increases between 0.5% and 1.8%, depending
on location in the Northwest; it produces decreases in median aggregate expected
surplus equal to 0.04% (P, = 0), 0.20% (P, = CMCA), and 0.07% (P, = RPA). Experiment
2 involves retail price increases between 1.7% and 6.6%, and produces decreases in
median aggregate expected producer's surplus equal to 0.16% (PC = 0), 0.70% (P, =
CMCA), and 0.24% (P, =RPA). Experiment 3 involves retail price increases between
3.1% and 12%, and produces decreases in median aggregate expected producer's
surplus equal to 0.28% (P, = 0), 1.28% (P, = CMCA), and 0.43% (P, = RPA). One conclu-
sion surfaces: at the median value, farm-level expected producer's surplus responds
inelastically to water price.

Two points are relevant across choke-price regimes. First, the experiments generate
quite similar results for PC = 0 and P, = RPA. These two regimes generated markedly dif-
ferent estimates of aggregate surplus, yet surprisingly similar estimates of the change
in aggregate surplus for the median value and the 90% confidence interval. Second, the
decline in surplus under P, = CMCA is much greater than in the other regimes. To a
degree, this can be attributed to the effect (described above) of the shift up in constant
marginal cost. Because of this effect, negative lower bounds of the 90% confidence inter-
val occur with P, = CMCA; with the other choke-price regimes, the lower bounds move
into the positive range despite the water-price increase.

Output substitution plays an important role in mitigating the effect of the price
increases. In response to higher water prices, irrigators produce lower quantities of
crops with relatively high water requirements and higher quantities of crops with rela-
tively low water requirements.21 In the case with the largest effect (PC = CMCA), the three
water-price increases reduce median expected producer's surplus by $85,000, $304,000,
and $553,000 (table 3).

Compare this to the naive situation of no response, in which producers make no
substitutions. This situation is assessed by computing water costs-that is, predict-
ing water quantity on each farm in the sample, then multiplying by the farm-level
water prices. Relative to the baseline, the three water-price increases result in
incremental water costs of $174,000, $622,000, and $1,134,000. Substitutions thus
reduce the effect of higher water prices by about 50% in the case of P, = CMCA. The
dampening effect of crop substitution is significantly greater in the other choke-price
regimes.

Note also that these incremental water costs for the case of no substitutions exceed
the upper bound of the 90% confidence interval in every choke-price regime (table 3).

21 Land reallocation is the basis for the observed output substitution. Producers reallocate total cropland, with increases
in barley, dry beans, and wheat acreage substituting for decreases in alfalfa and corn acreage (appendix table Al).
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Table 4. Average Per Farm Decrease in Farm-Level Expected Producer's
Surplus for the Sample, by State: Water-Price Experiments

STATE

Idaho Oregon Washington
Description (252 farms) (117 farms) (160 farms)

-------------- ($ per farm) --------------
Choke Price Po = 0:

Experiment 1 24 188 88
· Experiment 2 75 667 319
· Experiment 3 131 1,197 569

Choke Price P, = CMCA:
Experiment 1 87 256 206

· Experiment 2 298 940 762
- Experiment 3 544 1,701 1,388

Choke Price P, = RPA:
Experiment 1 32 214 56

· Experiment 2 107 769 212
Experiment 3 190 1,385 375

Notes: The three water-price experiments involve increases in wholesale power rates charged by Bonne-
ville Power Administration of 3.2%, 11.6%, and 21.1%, respectively, by experiment. The wholesale rates
are then converted to retail prices faced by producers for electricity used in water pumping, and are finally
translated into higher water prices. The state average normalized water prices (in $/acre-foot/numeraire
price) follow for the sample of irrigators within each state. For Experiment 1: Idaho = 18.91, Oregon =
14.22, and Washington = 17.11. For Experiment 2: Idaho = 19.13, Oregon= 14.68, and Washington = 17.65.
For Experiment 3: Idaho = 19.40, Oregon = 15.20, and Washington = 18.26.

Consequently, the naive case of no substitutions can be dismissed as empirically
irrelevant.22

Little comparison can be made between this study and the analysis conducted under
the Columbia River System Operation Review (Columbia River SOR Interagency Team
1994a,b,c) because the SOR study does not report sector-specific estimates of the
effect of higher retail power rates on the agricultural sector. Procedurally, the appli-
cation of microdata in our study is a relative strength. The SOR applies average
elasticities for each sector in estimating surplus. Average elasticities can generate
inaccuracies relative to observation-specific calculations. 23 At the same time, we
develop estimates of aggregate producer's surplus only for the sample, while the SOR
provides estimates for the entire Northwest region. This is a relative strength of the
SOR analysis.

22This finding on the irrelevance of the naive case of no substitutions has implications for the quality of one of the economic
studies conducted under the Columbia River System Operation Review. Reservoir drawdown along the lower Snake River
would increase pump lifts for irrigators pumping water directly from the reservoirs to irrigate alfalfa hay, apples, corn,
potatoes, and wheat. In estimating the impact of increases in pump lifts, the federal agencies assumed that pumping-cost
increases would not affect crop output or cropping pattern (Columbia River SOR Interagency Team 1994a, p. 3-4). The
estimates reported there must be regarded as inaccurately high in light of our empirical results.

2 3 Another study of irrigated agriculture (Connor, Glyer, and Adams) reinforces this idea in two empirical results: (a) differ-
ences in groundwater pumping depths translate into differences in irrigation electricity demand and price elasticities, and
(b) elasticities computed at the mean do not equal more disaggregate elasticities.
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One revealing perspective comes from computation of average expected producer's
surplus per farm, by state (table 4).24 Irrigators' heavy reliance on BPA power in Oregon
and (to a lesser extent) Washington translates into much greater per farm impacts. For
the choke-price regime of P = 0, for example, decreases in per farm producer's surplus
across experiments are roughly eight times greater in Oregon and four times greater in
Washington than in Idaho.

This comparison explains part of the economics underlying Idaho's political strategy
for salmon recovery. In the early 1990s, the state of Idaho-especially in the form of
then-Governor Cecil Andrus-strongly advocated a single salmon recovery measure, draw-
down of the four reservoirs along the lower Snake River in southeastern Washington
(Burtraw and Frederick; Stuebner). Reservoir drawdown would reduce mortality rates
of juvenile salmon in migration to the Pacific Ocean. Experiment 3 of the water-price
experiments represents the effect of a two-month drawdown of the four lower Snake
reservoirs to natural river conditions. Recall that BPA retail power rates are predicted
to increase 21.1% under this scenario. Expected producer's surplus of Oregon irrigators
in the sample would decrease by roughly $1,200 to $1,700 per farm, depending on choke-
price regime. Idaho irrigators, in contrast, would absorb losses ranging from about $130
to $550 per farm (table 4).25

Summary

This study transfers an empirical technique for estimating economic welfare from the
consumer side to the producer side of the market. The common circumstance of a
behavioral decision-namely, that both a consumer and producer may either choose a
positive quantity, or be at a threshold of zero, in their respective markets-establishes
an essential similarity in behavior. Using this similarity, we develop empirical proce-
dures for estimating expected producer's surplus from output supply functions estimated
with the tobit regression model.

The empirical application involved estimation of expected producer's surplus for
multioutput producers of irrigated crops in the Pacific Northwest. The sample of produ-
cers in this region grow at least two of five field crops (alfalfa hay, barley, corn, dry beans,
and wheat). Expected surplus is estimated for each crop, then summed across crops to
obtain farm-level, or multicrop, producer's surplus. Wheat and alfalfa generate a large
share of multicrop producer's surplus when aggregated for the sample.

As in the case of expected consumer's surplus, the choke-price regime applied in the
computation significantly affects estimates of expected producer's surplus. Three distinct
choke-price regimes are applied, with the resulting estimates providing an upper and
lower bound to expected producer's surplus. Moreover, the statistical properties of each
estimate of producer's surplus are developed using the Krinsky-Robb (K-R) method for
deriving confidence intervals of nonlinear functions of parameter estimates. For a given

24Per farm estimates of farm-level expected producer's surplus, by state, are derived by disaggregating the aggregate esti-
mates into state-specific estimates, then dividing by the number of observations in the sample for the state.

25 A final comparison can be made to the effect of BPA wholesale rate increases on the residential sector. A 9% increase
in BPA rates would increase the average residential electricity bill by $36 per year (Kenworthy). This is comparable to
Experiment 2, in which BPA wholesale rates increase by 11.6% (table 4). Not surprisingly, the average irrigated farm would
experience a much greater absolute loss than the average household.
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choke-price regime, expected producer's surplus computed from the coefficient estimates
is similar in magnitude to the median expected producer's surplus computed using the
K-R method. The dispersion of estimates generated by this method varies systematically
by choke-price regime.

A policy experiment investigated the effect of higher pumping costs for water on
crop-level and farm-level producer's surplus. Proposed measures to improve in-river
salmon migration in the Snake and Columbia Rivers would increase hydroelectric
prices-and thus pumping costs-in the Pacific Northwest. Three increases in whole-
sale power rates charged by the Bonneville Power Administration (BPA) are analyzed:
3.2%, 11.6%, and 21.1%. In every choke-price regime and price scenario, the median
value of aggregate expected producer's surplus responded inelastically to the higher
water prices.

The role of substitution opportunities provides an important connection between this
study and the recreational demand literature. In this study, output substitution-
expanding production of crops with relatively low water requirements and contracting
production of crops with relatively high water requirements-explains the producers'
ability to mitigate the effect of the price increases on producer's surplus. In particular,
increases in water cost from the hypothetical case of not responding to the water-price
increases fall outside the 90% confidence interval of producer's surplus adjustments. In
effect, not responding is an empirically irrelevant case. This parallels the general finding
in the recreation literature that estimates of consumer's surplus are significantly inflated
when the analysis does not consider observed substitutes (e.g., Bockstael; Morey, Rowe,
and Watson). Random utility models that explain the choice among recreation sites have
been developed to capture these substitution possibilities. On the producer side, the
multioutput production model offers a ready-made framework to account for the substi-
tution opportunities faced by the producer.

[Received March 1998; final revision received August 2000.]
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Appendix

Table Al. Predicted Output and Resource Use for the Sample: Water-Price Experi-
ments

CROP

Dry
Description Alfalfa Barley Corn Beans Wheat

OUTPUT: (000 tons) (000 bu.) (000 bu.) (000 cwt) (000 bu.)
Baseline 713.9 11,859 6,211 438.3 22,653
Experiment 1 712.3 11,886 6,199 439.8 22,673
Experiment 2 708.2 11,955 6,165 443.6 22,724
Experiment 3 703.5 12,036 6,127 448.0 22,783

LAND: ---------------- (000 acres)---------------------
Baseline 147.9 133.8 37.4 20.7 252.7
Experiment 1 147.5 134.1 37.3 20.8 252.8
Experiment 2 146.6 134.8 37.1 21.0 253.1
Experiment 3 145.5 135.6 36.9 21.2 253.3

IRRIGATION WATER: -------------------- (000 acre-feet) --------------------
Baseline 271.9 160.8 77.7 37.3 285.6
Experiment 1 271.6 160.9 77.8 37.3 285.9
Experiment 2 270.9 161.0 78.0 37.2 286.6
Experiment 3 270.0 161.2 78.2 37.0 287.4
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Table A2. Definitions of Variables and Tobit Model Estimates of Crop Supply Functions

CROP

Independent Dry
Variable a Definition Alfalfa Barley Corn Beans Wheat

OUTPUT AND INPUT PRICES:

ALFPRC Alfalfa hay price 41.14* 371.47 -4,587.06* -566.16**

BARPRC Barley price 5,046.71** 82,399.95* -238,939.20 -16,594.78

CRNPRC Grain corn price -288.58 -16,643.43 39,000.52 - -44,653.37*

DBNPRC Dry beans price - - - 2,244.47 -43,850.37*

WHTPRC Wheat price - - - - 39,854.27

WTRPRC Water price calculated as the farm- -36.13** 656.41** -1,103.33 120.56* 381.39
level energy for water pumping

WAGE Farm labor wage rate 874.21** -7,848.38 -27,451.46 -6,442.91** 17,609.31**

FARM-LEVEL LAND CONSTRAINT:

TOTACR Total farm area in crop production 0.59** 11.54** 37.15** 1.23** 37.80**

OTHER EXOGENOUS VARIABLES:

CLMCDD Long-run base 55 cooling degree-days 0.18 -13.80** 265.21** 8.03** 12.94**

CLMPCP Long-run precipitation 70.76 -1,467.22 3,584.64 536.00 -2,857.30*

DMSRWT Surface water used on the farm 213.51 -9,497.31 -19,744.93 2,290.87 -8,220.13
(binary variable)

SWBOTH Both surface and ground water 38.68 -978.40 24,810.71 30.34 -9,347.77*
availability (binary variable)

DMPRES Pressurized irrigation technology 565.26 4,409.55 -76,256.81* -5,518.88* 10,914.27
on farm (binary variable)

ITBOTH Both gravity and pressurized 413.15 -1,126.81 58,903.32* 1,743.58 -21,767.85*
irrigation technology on farm
(binary variable)

SAND Relatively sandy soil (binary 424.71 23,129.05* -6,955.57 1,970.52 643.48
variable)

GOODSL Soil w/relatively few use
restrictions (binary variable)

BADSL Soil w/relatively many use
restrictions (binary variable)

-737.25** -2,668.77 -26,461.04 461.91 24,589.31**

-35.65 -15,773.42* -4,433.26 -1,964.04 -11,704.96

INTERCEPT -17,365.20 -89,279.33 -458,785.20 18,052.67 547,545.50

SEEb Standard error of the estimate 2,112.86 36,015.47 104,307.33 7,696.10 47,276.08

LLF Log likelihood function value -695.65 -617.59 -249.06 -313.71 -509.87

Notes: Dependent variable is CROP OUTPUT. Single and double asterisks (*) denote significance at the 0.10 and 0.01 levels,
respectively.
a All prices for variables are normalized by the price of bulk gasoline. Refer to text table 1 for units.
b Dividing the estimated regression coefficients by the SEE produces normalized coefficients for the latent dependent variable
model of the tobit.
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