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ABSTRACT

Research background: Despite the growing social recognition of the positive role played by organic farming in the
conservation of natural resources and the reduction or elimination of the negative externalities of modern agriculture,
the economic competitiveness of organic versus conventional agriculture is a contentious issue. Studies on scale
efficiency in the agricultural economics literature, in general, did not address the differences in production practices
such as organic and conventional production.

Purpose of the article: We estimated scale efficiency of organic and conventional production, tested for differences
between organic and conventional agriculture scale efficiency, and explored the sources of inefficiencies.

Methods: This was accomplished using cross-sectional data on 658 organic and conventional cocoa farmers, for the
2012/13 production season in the Eastern Region of Ghana. The analysis accounted for selection bias and recognised
the fractional property of the scale efficiency measure.

Findings & Value added: Organic agriculture is less scale efficient than conventional agriculture. Whilst we
recommend that both producer groups improve scale efficiency, organic producers require greater work to do to make
up for the almost 50% scale inefficiency. We also found farmer-based organisations to significantly influence scale
efficiency. This calls for the need to strengthen farmer-based organisations to increase participation, among other
reasons. We departed from the existing scale efficiency literature in a three of ways. We accounted for selection-bias
using propensity score matching in the organic and conventional samples in analysing scale efficiency, modelled scale
inefficiency using fractional regression and empirically selected the appropriate link function using a battery of tests.
Finally, we accounted for an important policy variable; farmer-based organisation. We employed propensity score
matching that accounted from observable biases. Further research may consider other methods that account for both
observed and unobserved variations.

Key words: conventional cocoa; organic cocoa; fractional regression; scale efficiency; selection-bias
JEL: C21; D24; Q12; Q29

INTRODUCTION

In food production, the fertilisation and accomplishment
of other agronomic practices, using chemicals has become
conventional practice around the world. However, a move
towards organic agriculture (OA) has emerged. This
involves maximum reliance on self-regulating ecological
or biological processes and renewable resources. OA
makes systematic efforts to reduce reliance on external
inputs partly to create a sustainable agricultural production
system (Paull, 2013; Beltran-Esteve and Reig-
Martinez, 2014). Despite the growing social recognition
of the positive role played by this type of farming in the
conservation of natural resources and the reduction or
elimination of the negative externalities of modern
agriculture, the economic competitiveness of organic
versus conventional agriculture is a contentious issue
(Beltran-Esteve and Reig-Martinez, 2014; 2016).
Whilst the dimension on efficiency holds that; OA is more

technically efficient than conventional agriculture (CA)
(Oude Lansink et al., 2002; Poudel et al., 2015), there is
counter-evidence, that, OA is more technically inefficient
than CA (Madau, 2007; Tiedemann and Latacz-
Lohmann, 2013). The latter has been attributed to
restrictions on resources and technology, emanating from
regulations and guidelines governing OA (IFOAM, 2008,
2014; Mayen et al., 2010; Beltran-Esteve and Reig-
Martinez, 2014; Lakner and Breustedt, 2016).

Productivity (efficiency) change depends partly on
scale of operation (Ray, 1998; Rasmussen, 2010), the
effectiveness of which is measured by scale efficiency and
how close an observed firm or farm unit is, to the optimal
scale (Ray, 1998; Karagiannis and Sarris, 2004). In the
light of the contention regarding organic and conventional
technical efficiency, would OA be more scale inefficient
than CA or otherwise?

We address this research question by estimating scale
efficiency (SE) of organic and conventional agriculture,
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test for differences between organic and conventional
agriculture, and explore the sources of inefficiencies,
using data on organic and conventional cocoa production
in Ghana.

Studies on SE in the agricultural economics literature,
in general, did not address the differences in production
practices; organic and conventional production
(Bremmer et al.,, 2008; Madau, 2011; Mgeni and
Henningsen, 2012; Kelly et al., 2013; Watkins et al.,
2014). Only, Karagiannias et al. (2012) did. However,
they failed to account for selection bias. While some
studies did not model SE at all (Pantzios et al., 2002;
Karagiannis and Sarris, 2004; Hussiani and Abayomi,
2010; Karagianni et al, 2012; Baran, 2013;
Karagiannis and Melfou, 2015), others that modelled
SE, did not appropriately account for the fractional
property of SE estimates (Paul et al., 2004; Sengupta and
Kundu, 2006; Bremmer et al., 2008; Madau, 2011,
2015; Kelly et al., 2013). Rahman and Awerije (2015)
is an exception, yet they specified logit a priori and did
not empirically select the appropriate link function.

This article departs from other SE studies in three
ways. First, it takes account of selection bias in the organic
and conventional samples. Second, SE is parametrically
modelled, using fractional regression with an empirical
selection of the appropriate link function of the fractional
regression model. Finally, we accounted for an important
policy variable; farmer-based organisations.

Conventional cocoa production involves the use of
inorganic fertilisers, chemical weed control as well as
chemical pest and disease control. On the contrary,
organic production bars the use of these. Alternatives may
involve manual and operations that could limit the size of
a farm operation to be undertaken by organic cocoa
farmers (Paull, 2013; Beltran-Esteve and Reig-
Martinez, 2014). Thus, scale efficiency has implications
for input use, revenue, cost and ultimately the profitability
of farm operations. For organic farmers who have adopted
new production technology with associated management
practices that could affect optimal farm size, which may
differ from conventional farmers, it is important to
compare the scale efficiency of organic and conventional
cocoa farms. Results of this study will establish what the
scale efficiency of organic farms is, how it differs from
conventional cocoa farms and what policy
recommendations will be apt.

DATA AND METHODS

Data

Cocoa farmers were sampled from Suhum-Craboa-Coalter
(SCCQ) district in the Eastern Region of Ghana, because at
the time of data collection in 2014, only farmers in this
area had practised organic cocoa production in Ghana, for
a decade after certification. The district falls within the
semi-equatorial forest zone and experiences a major
(March to June) and a minor (September to October) rainy
season. The temperature varies between 24 and 29 0C, and
the annual rainfall is between 1270 and 1650 mm (Abekoe
et al., 2002; Ayenor et al., 2004). SCC has a total land
area of about 850km?, with 20% of this area under cocoa

cultivation, contributing more than 500 metric tonnes of
beans (YGL, 2008).

Two populations were defined; growers of
conventional cocoa and growers of organic cocoa. Ten
thousand organic cocoa farmers were operating in the SCC
District as of 2014, according to the Yayra Glover Limited
(YGL), the firm that facilitates organic cocoa production
in the study area. The Cocoa Health and Extension
Division (CHED) of COCOBOD, responsible for
extension services to cocoa farmers, put the number of
conventional cocoa farmers in the district at 18,425. From
these populations, the sample size of organic and
conventional farms was determined to be 278 and 378
respectively.

Twenty-six and 37 communities respectively, in
which organic and conventional cocoa farmers resided
were selected. For the organic cocoa community, 26
farmers were selected whilst 12 farmers were selected for
conventional cocoa based on the number of communities
in the sampling frame. The total respondent targeted for
each production technology was approximately 10%
above the determined sample size, to make room for non-
response. A pre-tested questionnaire was administered
with the assistance of Agricultural Extension staff from
CHED. Returned and usable questionnaires for organic
and conventional cocoa producers were 280 and 378
respectively.

The specific conventional communities were same as
those of the organic, where possible, or closest to organic
cocoa communities, to control for environmental
differences and have analogous sample composition
(Tzouvelekas et al., 2002; Madau, 2007; Guesmi et al.,
2012). A cocoa farm was operationalised as a crop farm
that has more cocoa plants than any other cultivated plant
in the field. For organic farms, these were certified as
organic and organic practices were applied to the other
plants in the same field, with the cocoa plants.

Methods

Production function

The production functions were estimated by Stochastic
Frontier Analysis (SFA), owing to the inherent
stochasticity in the model, which is akin to stochasticity in
agricultural production (Kumbhakar and Lovell, 2000,
Mayen et al., 2010; Djokoto, 2016), with a composed
error term (Aigner etal., 1977 and Meeusen and van den
Broeck, 1977). The production function was specified as
Eq. 1.

y=fXBe"™ 1)

Where: y represents output, measured in kilogrammes; X
is a vector of production inputs. In our case, farm size (ha)
is FARMSIZE, labour (man-days) is LABOUR and tree age
(years) is FARMAGE, as in Table 1. Possible omitted
variable bias is addressed later.

p is a vector of parameters we estimated, v and u are
error terms. The frontier production function is a measure
of the maximum potential output attainable given the
production inputs. Both v and u cause actual production to
deviate from this frontier. The random variable in the
production that cannot be influenced by producers and
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captures omitted variables such as weather and
represented by v, is identically and independently
distributed (iid) as N (0, 6,). The non-negative error term
u represents the deviation from the maximum potential
output, attributable to technical inefficiency, which is
independent of v. The stochastic terms v and u are assumed
to be uncorrelated. We assumed the half-normal
distribution of the errors.

We estimated both the Ordinary Least Squares (OLS)
and SFA forms of the Cobb-Douglas (CD) and translog
functional forms and selected the SFA translog form based
on the loglikelihood ratio test. Important variables;
fertiliser and pesticides were omitted from the variable
list. In the case of the former, the series was collinear with
the land. This is because the governments' fertiliser
programme supplied fertiliser to farmers based on the size
of the plot a farmer reported. Also, farmers who followed
the recommended fertiliser application regimen related the
fertiliser requirements to the size of the plot. For the latter,
pesticide, the data for conventional was unreliable whilst
organic farmers did not formally apply pesticides. These
may lead to omitted variable bias (OVB) which we tested.
Square and cubic powers of the prediction of output were
included as additional explanatory variables in the
production function. The joint significance of the
parameters of the additional terms was performed
(Ramsey, 1996).

Selection-bias

A three-step procedure was used in accomplishing PSM
(Rosenbaum and Rubi, 1983; Imbens, 2004). In the first
step, a probability model for the adoption of organic
production standards was estimated and used to calculate
the probability or propensity score of being organic, for
each observation. In the second step, the required
estimation of the stochastic frontier model on the
unmatched sample was performed. In the third step,
matching of the organic and conventional subsamples was
performed. The reverse of step two and three was
necessary to ensure that matching of the subsamples that
could lead to data attrition does not negatively impact the
frontier estimates (Mayen et al., 2010; Rao et al., 2012).

Scale efficiency
Following the specification of the production function in
(1), we adopted the Ray (1998) approach to estimating the
SE.

Ep?

SE; = Exp [(1_2—!? )

Where: the elasticity of scale (Ei) was computed as the
sum of the first-order partial derivatives of the explanatory
variables of the production function, evaluated at their
mean values and f is the sum of the coefficients of the
Cross terms.

S was hypothesised to be negative definite, to be sure
that 0 < SE;i < 1. Although negative definiteness of 8 was
sufficient condition, it was not a necessary condition
(Ray, 1998). E and S are both equal to one, only at the
most productive scale size (MPSS); the point where there
are constant returns to scale (Ray, 1998). Indeed, when X},

the input bundle itself is MPSS, then E (x) = 1 and In SE;
(x') = 1. With increasing returns to scale, E; > 1 and SE (x')
rise with a rise in output. On the other hand, a farm that
exhibits decreasing returns to scale or supra-optimal scale
(Ei< 1), there should be a contraction in output for optimal
scale to be achieved.

Conventional and organic scale inefficiency effects
Socio-economic variables; specifically farm and farmer
characteristics offer an important avenue to identifying
drivers of scale inefficiency (SIE). Since SIE is defined
within the unit interval, we employed fractional regression
modelling (Papke and Wooldridge, 1996), and selected
the appropriate link function, from a set of plausible link
functions.

Let the conditional expectation of SIE given x, be E(SIE|x),
then

E(SIE|x) = G(x6) 3

where G(®), which is some nonlinear function satisfying
0 < G(e) <1, could be any cumulative distribution
function, such as logit, probit, loglog, complementary
loglog (cloglog) and cauchit (Papke and Wooldridge,
1996; Ramalho et al., 2010). SIE is 1 — SE and x are farm
and farmer characteristics. The link functions are specified
in Eq. 4- Eq. 8.

Logit,
exG

Gx0) = 5 (4)
Probit,

G(x8) = &(x0) ()
Loglog,

G(x0) = e~ (6)
Cloglog,

G(x0) =1 —e™ @)
Cauchit

G(x0) = % + %arctan( x0) (8)

The various link functions were estimated using frm
(Ramalho, 2013, 2014).

Following Ramalho et al. (2010; 2014), three groups
of tests were employed to select the appropriate link
function; Ramsey RESET test (Ramsey, 1969),
generalised goodness of functional form test (GGOFF)
(Ramalho et al, 2014) and P test (David and
MacKinnon, 1981). The RESET test examined the
presence of misspecification in the model, specifically, the
presence or otherwise of power terms in the model.
Although the RESET test was originally developed for use
with linear functions, Pagan and Vella (1989), Ramalho
et al. (2010, 2011) and Cameron and Trivedi (2013, p.
52) have shown that it is also applicable to any type of
index models.

The GGOFF, tests for how well the data fit the link
function specified. More than one link function could be
selected by the RESET and GGOFF tests. Therefore, the
P test provided an opportunity for one-on-one (pairwise)
test using the selected link function(s) from the first two
stages, as alternative hypotheses. Interpretation of the P
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test followed that of the usual hypothesis test, unlike the
other two tests, for which the rejection of the Ho was
evidence of absence of misspecification. Statistical
methods of selection offer a viable alternative, in the
absence of a priori theoretical formulation of the
appropriate functional form for the FRM.

RESULTS AND DISCUSSION

Background of data

The difference in years of education of 0.04 years and 0.02
members of household between conventional and organic
cocoa farmers were so small to be statistically significant

(Table 1). The strongest statistically significant
differences related to farm age (FARMAGE), access to
credit (CREDIACC), cocoa farming experience

(FARMEXP), the incidence of CSSVD attack (CSSVD)
and access to extension services (EXTNACCESS). On the
contrary, the weakest statistically significant differences
were participation in a farmer-based organisation
(FBOPARTICIPATION), plot size (FARMSIZE), labour
use (LABOUR), gender (GENDER) and age of farmer
(FARMERAGE). Whilst the average age of organic cocoa
farms was 29 years that for conventional farms was 18

Table 1: Variables definitions and descriptive statistics

years. Fewer conventional cocoa farmers had access to
credit (19%) than organic cocoa farmers (49%). This is to
be expected as credit is a determinant of organic cocoa
technology adoption (Djokoto, Owusu and Awunyo-
Vitor, 2016). Organic cocoa farmers have been farming
on average for about 20 years whilst conventional cocoa
farmers registered an average of 16 years.

Omitted variables test

Following the non-use of fertiliser and pesticide from the
model, due to reasons adduced earlier, a test of omitted
variables was performed (Table 2). The null hypothesis
that power terms (other terms) in the test model were
jointly significant, could not be rejected in the case of the
organic sample. By implication, there are no omitted
variables in the organic model, thus the exclusion of the
fertiliser and pesticide variables did not have a discernible
effect on the model. In the case of the conventional sample
however, the ¥ test statistic is significant at the 1% level
of significance. Impliedly, there is an omitted variable in
the conventional model. The solution to omitted variables
in the agricultural production function literature is to use
financial variables (Apergis, 2007).

Variable Variable name Definition Conventional Organic t-test
Mean (Standard Mean (Standard
Error) Error)
CREDIACC Access to credit Yes=1,0 0.19 0.49 -8.411***
otherwise (0.020) (0.029)
CSSVD CSSVD attack Incidence of 0.19 0.32 -3.751***
CSSVD=1and 0 (0.020) (0.027)
otherwise.
EDUCATION Education Number of years 8.58 8.62 -0.157
of schooling (0.176) (0.187)
EXTNACCESS Access to Yes=1,0 0.84 0.93 3.512%**
Extension otherwise (0.018) (0.015)
FARMAGE Farm Age Years since the 18.09 29.34 -10.442***
cocoa farm was (0.506) (0.951)
planted until 2014
FARMERAGE Age of farmer Years 48.28 49.29 -1.063**
(0.582) (0.751)
FARMEXP Farming How long farmer 16.26 19.83 -4, 115%**
Experience cultivated cocoa (0.47) (0.897)
(years)
FARMSIZE Farm Size Area of land area 2.03 2.32 -2.180**
(Ha) (0.096) (0.100)
FBOPARTICIPATION Participation in Participation=1, 0.86 0.92 2.841**
Farmer-based 0 =otherwise (0.017) (0.015)
organization
GENDER Gender Male =1 and 0 0.82 0.88 -2.046**
otherwise (0.020) (0.019)
HHS Size of Household Number of 6.40 6.42 -0.101
persons living in (0.181) (0.174)
the household
LABOUR Number of man- Quantity of 1.54 1.92 -2.166**
days labour/day (0.091) (0.049)
N 378 280!

Note: ! Provision for invalid questionnaires resulted in 280 questionnaires, two more than the 278-sample size estimated.
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Beyond this, is to include the omitted variable (Greene,
2012; Asteriou and Hall, 2015). The approach of
Apergis (2007) could not be followed because data on
financial variables were not reliable. Due to the reasons
adduced above, data on fertiliser and pesticides could not
be included in the production function. Considering the
omitted variable problem as part of the general
misspecification problem, the power terms included in the
test production function were considered as control
variables for the misspecification (Ramsey, 1969;
Asteriou and Hall, 2015). This raised another challenge;
the sufficient condition that the sum of the coefficients of
the cross terms in the translog production function, should
be negative semi-definite, in the Ray (1998) SE formula
(Equation 2), could not be met. Thus, for purposes of
calculating the SE based on Ray (1998), the omitted
variables problem is accommodated for the conventional
model. It must be noted that Sherlund et al. (2002) and
Rahman and Hasan (2008) have argued that omitted
variables can inflate individual technical -efficiency
estimates. However, the random error, v, capture the errors
including omitted variables (Aigner et al, 1977; Mussa,
2014; Mujawariya et al., 2017; Njikam and Alhadji,
2017). Further, the use of farm age (age of trees) is a
capital variable. Thus, we accommodate the omitted
variables error on two grounds; the capture of the omitted
variable error within the random error term and the fact
the technical efficiency measure is not an ingredient in the
calculation of scale efficiency. And finally, the role of
FARMAGE as capital.

Table 2: Omitted variables test

Production function

The estimations that generated results for technical
efficiency of conventional and organic cocoa farms,
required the testing of some hypotheses. First, the use of
OLS is a better representation of the data than SFA.
Second, that CD production function is preferred to the
translog function. Third, that inefficiency is absent in the
models. The results of the hypotheses tests are provided in
Table 3. The rejection of the null hypotheses for both
organic and conventional functions shows that there is
technical inefficiency based on CD production function.
Similarly, the rejection of the null hypotheses that there is
no technical inefficiency in the translog production
function is desirable. Comparing the CD to translog, the
latter is preferred to the former. Further, the sigma squared
values showed the existence of technical inefficiency in
both the conventional and organic models. Aside from the
empirical suitability of the translog SFA production
function, estimating the SE by the Ray (1998) approach is
conditioned on a translog functional form and existence of
technical inefficiency. The marginal products (Table 5)
generated from the selected production functions (Table
4) are positive in line with theoretical expectations. Both
production practices show increasing returns to scale. Due
to space limitations, technical inefficiency effects are not
presented and discussed.

The production practices of organic and conventional
cocoa production differ as noted earlier. Moreover, the
computation of the scale efficiency measure relies on
production function parameters which necessitate the
estimation of separate production functions. The a priori
estimation of the separate production functions hinges on
these.

Conventional Organic

Description 2 statistic 2 statistic
Ho Power terms are not jointly significant 11.53*** 1.77
H: Power terms are jointly significant
Degrees of freedom 2 2
Decision Reject Accept
Note: *** denotes statistical significance at 1%.
Table 3: Functional form selection test
Conventional Organic
Ho: There is no technical inefficiency OLS (Restricted) -418.83696 -231.04506
Hi: There is technical inefficiency -407.80759 -213.53219
SFA- Cobb-Douglas
(Unrestricted)
Loglikelihood ratio 22.05874** 35.02654***
Decision Reject Reject
Ho: There is no technical inefficiency OLS (Restricted) -376.22986 -219.74919
Hi: There is technical inefficiency -367.43498 -202.78204
SFA- Translog (Unrestricted)
Loglikelihood ratio 17.58976* 33.9343***
Decision Reject Reject
Ho: Cobb-Douglas is a better representation of the SFA- Cobb-Douglas (Restricted)  -407.80759 -213.53219
data -367.43498 -2002.78204
H1. Cobb-Douglas is not a better representation of the SFA- Translog (Unrestricted)
data Loglikelihood ratio 80.74522***  21.5003**
Decision Reject Reject

Note: ***, *** denotes statistical significance at 1%, 5% and 10% respectively.
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Table 4: Estimation of production function and inefficiency effects

Variables Conventional  Organic
FARMAGE 1.5082*** 0.0950
(0.5578)  (0.5332)
FARMSIZE 0.9900***  0.9760**
(0.3519)  (0.4533)
LABOUR 2.2659%** 1.1243***
(0.4463)  (0.3447)
FARMAGE? -0.2126*** -0.0405
(0.0786)  (0.0651)
FARMSIZE? 0.0455*** -0.0220
(0.0051)  (0.0782)
LABOUR? -0.2053*** -0.1188***
(0.0415)  (0.0356)
FARMAGE*FARMSIZE 0.0405 0.1933
(0.08830  (0.2331)
FARMAGE*LABOUR -0.1142 0.0871
(0.1474)  (0.12580
FARMSSIZE*LABOUR -0.2386* -0.3263**
(0.1312)  (0.1286)
CONSTANT -2.4015* 1.9335
(1.4084)  (1.2380)
Sigma squared 0.4291***  0.4650***
N 378 280
Wald 168.21***  85.4***
Loglikelihood -367.4350 -202.7820

*Hk xx ok are 1%, 5% and 10% levels of significance respectively. Figures in parenthesis are standard errors

Table 5: Elasticities and returns to scale
Conventional Organic

Land 1.3994 0.0025
Labour 0.9147 0.6578
Farm Age 0.4448 0.4721
Returns to scale 1.2994 1.1324

Selection-bias

The generation of the propensity scores from the binary
choice model, and matching these for organic to
conventional farms, resulted in new sub-samples of 161
organic and 161 conventional farms. The binary model
estimation is reported and discussed in Djokoto et al.
(2016). All other farms from the 658 were discarded.
Matching after estimation of technical efficiency was
performed following Rao et al. (2012), to avoid the
influence of data attrition on technical efficiency
estimation. For the discussion of the technical efficiency
model, see Djokoto et al. (2017).

Scale efficiency

The mean SE for organic cocoa production is 0.5332,
corrected for selection bias, whilst a slightly higher value
of 0.5351 was obtained with selection biased sample
(Table 6). In the case of the conventional cocoa sample,
the values are respectively 0.6601 and 0.6681. In both
cases, the mean values are less than 1, indicating a sub-
optimal scale of operation. Indeed, the inspection of the
individual farms showed that in both production practices,
most farms operate at sub-optimal scale; 153 for organic
and 151 for conventional (Table 7). The SE values less
than 1, in the presence of increasing returns to scale imply,

117

the farms analysed failed to take advantage of the
increasing returns-to-scale to increase their inputs for
increased output (Karagiannis and Sarris, 2004). Our
findings show a marked lower scale efficiency, indeed,
quite pronounced SIE unlike studies on Africa (maize
farms in Nigeria, 0.880 -Karimov et al., 2014) and rice in
Ghana, 0.8200 (Anang and Rezitis, 2016). Since our
findings relate to cocoa, we cautiously conclude that cocoa
production is less scale efficient than other agricultural
products. As scale economies are usually a consequence
of the better and more efficient use of production factors,
an increase in firm size first leads to higher marginal
returns and lower marginal costs. Beyond a certain size,
however, marginal returns will decrease, and marginal
costs will rise although not contemporaneously. Optimal
size is reached when marginal returns equal marginal
costs.

Comparing organic and conventional SIE values, both
production practices posted the same extreme values; 0.00
and 1.00. The mean for organic cocoa is 0.5332,
significantly lower than that of conventional; 0.6601. This
finding does not depart from that of Karagiannis et al.
(2012) for dairy in Austria. This is irrespective of whether
the complete sample is corrected for selection bias or not.
Restrictions on types of resources and technology may be
responsible for the higher scale inefficiency in organic
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production (IFOAM, 2008, 2014; Mayen et al., 2010;
Beltran-Esteve and Reig-Martinez, 2014).

Scale inefficiency effects

Aside from the differences in SIE for the production
practices, there exists variability within the SIE of each
production practice (Table 7). We, therefore, investigated
the drivers of this variability using fractional regression
modelling. For conventional cocoa production (first panel
of Table 8), the statistical significance of the RESET test
statistic for logit, probit, loglog and cloglog suggest these
functional forms are misspecified. Since the cauchit link
function is the only well-specified link function, the next
two tests for selecting the appropriate link function have
become redundant. Therefore, the cauchit link function is
selected. The second part of Table 8 on organic cocoa,
presents an interesting situation. By the RESET test, all

Table 6: Scale efficiency

link functions are well specified except cloglog. Thus, the
cloglog function is out of contention. By the GGOFF, all
link functions are appropriate. For the one-to-one P-test,
the null hypotheses that the loglog is preferred to logit,
probit and cauchit link functions are rejected. Therefore,
loglog link function is also out of consideration. Logit,
probit, and cauchit link functions are indifferent to one
another, based on the alternative hypothesis tests, thus any
of these could be selected for discussion. However, only
one of these could be used, thus we proceed to choose one.
A close examination of the magnitudes of the test statistics
for each of the link functions, as null hypotheses, shows
that those of cauchit is the lowest. Thus, whilst all are
indifferent, cauchit test statistics demonstrate ‘strongest
indifference’ or non-rejection of the null hypothesis. Thus,
the decision is in favour of the cauchit link function, for
the organic SIE model.

Conventional Organic Conventional-
Organic

N SD Mean N SD Mean Difference
Selection biased 378 0.3106 0.6688 280 0.3690 0.5351 1.3519***
Non-selection biased 161 0.3020 0.6601 161 0.3632 0.5332 0.1269***
Min 0.00 0.00
Max 1.00 1.00
*** implies 1% level of significance of the student’s t test. S.D.- standard deviation
Table 7: Optimality of scale efficiency
Category Organic Conventional
Supra-optimal 0 0
Optimal 8 10
Sub-optimal 153 151
N 161 161
Table 8: Hypothesis tests for model selection for conventional and organic cocoa

Logit Probit Loglog Cloglog Cauchit

Conventional cocoa production
Ramsey test
RESET 9.442%** 8.961*** 8.407*** 9.461*** 2474
Goodness-of-functional form tests
GGOFF 10.823*** 11.678*** 8.207*** 9.946*** 3.803
P-test
Hi ogit - 7.206*** 9.902*** 8.456*** 0.755
H 1probit 6.478*** - 10.144*** 7.254%** 0.747
Hi1Loglog 6.063*** 7.099*** - 5.056** 0.778
Hicloglog 12.227*** 11.568*** 12.533*** - 0.820
H 1 cauchit 13.982*** 15.644*** 18.626*** 11.035*** -
Organic cocoa production
Ramsey test
RESET 2.291 2.217 1.586 2.795* 2.281
Goodness-of-functional-form tests
GGOFF 2.352 2.417 1.601 2.563 2.033
P-test
H 1L ogit - 0.062 3.142* 0.611 0.024
H 1probit 0.029 - 3.029* 0.216 0.004
H1l oglog 1.029 0.987 - 0.815 0.281
Hicioglog 4.251** 4.596** 5.445%* - 1.901
H 1 cauchit 0.569 0.534 2.955* 0.064 -

Note: *** ** * denotes statistical significance at 1%, 5% and 10% respectively.
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Table 9: Hypothesis tests for model selection for the combined sample

Logit Probit Loglog Cloglog Cauchit
Ramsey test
RESET 2.916* 3.277* 4.307* 2.583 1.854
Goodness-of-functional-form tests
GGOFF
P-test 3.788 3.968 4.398 2.384 3.498
H 1L ogit - 4.129** 5.279** 1/188 1.108
H 1probit 3.572* - 4.,941** 1.517 0.926
H]_Loglog 2495 2682 - 1031 0442
Hicioglog 3.348* 4.330** 5.976** - 0.223
Hicauchit 6.086** 6.376** 7.285*** 3.829* -
Note: *** ** * denotes statistical significance at 1%, 5% and 10% respectively.
Table 10: Scale inefficiency effects
Conventional Organic Pooled sample
Cauchit Cauchit Cauchit
ME ME ME
(6-method SE) (6-method SE) (6-method SE)
ADOPTION - - 0.0989**
) ) (0.0384)
CREDIACC 0.0355 -0.0303 -0.0199
(0.0641) (0.0627) (0.0415)
CSSVD -0.0748 -0.2164%** -0.1433***
(0.0718) (0.0735) (0.0513)
EDUCATION -0.0054 0.0188* 0.0020
(0.0054) (0.0089) (0.0057)
EXTNACCESS 0.2862*** 0.0591 0.1887***
(0.0821) (0.0949) (0.0609)
FARMAGE -0.0140 0.0845 0.0271
(0.0706) (0.0670) (0.0389)
FARMERAGE 0.0046** 0.0054 0.0043***
(0.0022) (0.0035) (0.0020)
FARMEXP -0.0098 -0.0075** -0.0080**
(0.0082) (0.0032) (0.0035)
FBOPARTICIPATION -0.0925*** -0.0225 -0.0461***
(0.0180) (0.0151) (0.0123)
GENDER 0.0167 -0.0823 -0.0592
(0.0474) (0.0836) (0.0453)
HHS -0.0337** 0.0123 -0.0020
(0.0166) (0.0113) (0.0050)
Model properties
N 161 161 322
R2-type measure 0.2662 0.1082 0.1191
Log pseudolikelihood -74.6410 -88.0993 -168.5314

Note: ***, ** * denotes statistical significance at 1%, 5% and 10% respectively. SE- standard errors. ME- Marginal effects

For the combined sample (Table 9), the RESET test
statistics for logit, probit and loglog are statistically
significant. This implies these link functions are
misspecified whilst the other two; cloglog and cauchit are
not. The earlier three link functions are therefore
eliminated from consideration. Using the cloglog as a null
hypothesis with cauchit as the alternative hypothesis, the
cloglog is rejected in favour of the cauchit link function.
Consequently, the marginal effects for conventional,
organic and combined sample for the cauchit link function
are presented in Table 10.

The R? measures appear low. However, these are the
highest among the five link functions and the best
attainable, as the OLS estimates; the default posted values
lower than these. Moreover, as the R squared-type
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measure is a relative measure unlike the standard R-
squared value, the absolute value is less important, rather
how this compares to those of competing functional forms
(Ricci, 2010; Ricci and Martinez, 2008; Wei Shi, 2018).
The positive marginal effect of ADOPTION, 0.0989
indicates organic cocoa producers are less scale efficient
than conventional cocoa producers. This finding from a
multivariate analysis confirms the outcomes of the
univariate analysis of the previous section. The existence
of CSSVD enhances scale efficiency. CREDIACC should
allow farmers to acquire resources to increase input levels
thereby increasing the scale of operation. This may appear
to be the case for the conventional cocoa producers.
However, the marginal effect of CREDIACC for both
organic and the combined sample showed negative signs.
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Since in all three models, the magnitude for the
CREDIACC is statistically insignificant, CREDIACC
does not have any discernible effect on scale efficiency.
Wongnaa and Awunyo-Vitor (2019) however found a
positive effect of credit on scale efficiency.

The role of CSSVD on SE is rather interesting. CHED,
the Ghana Cocoa Board agency that addresses issues of
the disease, undertakes disease control programmes
involving cutting and burning of diseased trees. This does
not reduce land area but number trees, lower labour use
for husbandry practices as well as output. By this, the
levels of input, for example, a lower level of labour leads
to reduced output. This then culminates in the appropriate
scale of operation. Formal education had no discernible
effect on SIE for conventional cocoa and the combined
sample, consistent with the conclusions of Paul et al.
(2004) and Rahman and Awerije (2015). However,
formal education increased SIE for organic cocoa
producers. Formally educated farmers may be motivated
to cultivate larger farms, however, they engage in other
livelihoods, which compete with organic cocoa
production, may lead to less attention given to the organic
cocoa farm. Thus, the input and output results may be
inappropriate for the chosen farm size. The findings of
Wongnaa and Awunyo-Vitor (2019) for conventional
maize in Ghana, concurs with the findings of this study.

EXTNACCESS strongly reduced SE. This finding is
surprising, as access to extension should improve farm
management skills and capacity of farmers. This
notwithstanding, Madau (2015) and Paul et al. (2004)
reported a neutral effect whilst Anang et al. (2016) and
Wongnaa and Awunyo-Vitor (2019) reported a positive
effect. The age of the farm (FARMAGE) has no
discernible effect on scale inefficiency for all three
models. Gimbol et al. (1994) and Currey et al. (2007)
acknowledged the parabolic distribution of the output of
cocoa over time. Thus, with the relatively aged farms
noted in Table 1, the output will decline irrespective of
increased input use. This explains the positive sign of the
coefficient of the FARMAGE. However, the effect is not
strong enough to result in a statistically significant value
of the marginal effect. Farmer age (FARMERAGE)
exacerbates SIE for the conventional and combined
sample. As cocoa farmers age, their inability to pay
attention to the cocoa farms result in absenteeism and
sometimes, turning the farm over to caretakers, who may
not provide adequate attention, thereby failing to ensure
the appropriate scale of operation. The conclusions of
Wongnaa and Awunyo-Vitor (2019) for maize confirms
these findings.

The coefficient of FARMEXP has a negative sign for
all three models. Increased experience in cocoa farming
should lead to accumulation of knowledge resulting in a
better combination of input and their levels relative to
farm size. Therefore, farm experience enhances scale
efficiency. The effect was however significant for the
organic sample and the combined sample but not so for the
conventional sample. For Rahman and Awerije (2015)
and Wongnaa and Awunyo-Vitor (2019), farmer
experience enhanced scale efficiency. Membership and
participation in FBO, whilst providing the platform to
receive knowledge and acquire skills from subject matter

specialists, it also provides opportunities to network, share
ideas and communicate at the level of peers. This creates
the platform to deliberate on common problems to find
solutions. This is useful in enhancing scale efficiency
(Wongnaa and Awunyo-Vitor, 2017), thus, it is no
wonder that FBOPARTICIPATION enhances SE. Gender
does not distinguish SIE of OA and CA, in all three cases,
whilst HHS promotes SE for conventional cocoa.
Increased HHS provides opportunity for more labour that
can be combined with land, to maintain an appropriate
farm scale. This finding agrees with the recent findings of
Wongnaa and Awunyo-Vitor (2019).

CONCLUSIONS

In this study, we departed from the existing SE literature
in three ways: We accounted for selection-bias in the
organic and conventional samples. We modelled
parametrically estimated SE, using fractional regression
and empirically selected the appropriate link function and
considered an institutional variable, participation in
farmer-based organisations.

Both organic and conventional producers are scale
inefficient. However, organic producers’ mean SE of
0.5332 is significantly less than 0.6601, for conventional
producers, thus OA is not more scale efficient than CA.
Although it is recommended that both producer groups
improve SE, organic producers require greater work to do
to make up for the almost 50% SIE. Until the organic
regulators increase the latitude for resources to be used in
production, organic agriculture researchers must come up
with quality inputs whilst organic producers need to
improve their capacity in farm management, to improve
input allocation on the farm. SE in organic cocoa can be
further increased through increased efforts by CHED to
control CSSVD. Younger persons should be encouraged
to go into and remain in cocoa production. Revenue side
factors such as increased producer price as well as cost
side factors including availability of cost-effective
production inputs, leading to improved profitability, could
be useful. Organic cocoa producers should increase farm
hectares to reduce SIE. Farmer-based organisations should
be further strengthened, particularly focusing on activities
that will increase participation.
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