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ABSTRACT 

 

Research background: Despite the growing social recognition of the positive role played by organic farming in the 

conservation of natural resources and the reduction or elimination of the negative externalities of modern agriculture, 

the economic competitiveness of organic versus conventional agriculture is a contentious issue. Studies on scale 

efficiency in the agricultural economics literature, in general, did not address the differences in production practices 

such as organic and conventional production. 

Purpose of the article: We estimated scale efficiency of organic and conventional production, tested for differences 

between organic and conventional agriculture scale efficiency, and explored the sources of inefficiencies.  

Methods: This was accomplished using cross-sectional data on 658 organic and conventional cocoa farmers, for the 

2012/13 production season in the Eastern Region of Ghana. The analysis accounted for selection bias and recognised 

the fractional property of the scale efficiency measure. 

Findings & Value added: Organic agriculture is less scale efficient than conventional agriculture. Whilst we 

recommend that both producer groups improve scale efficiency, organic producers require greater work to do to make 

up for the almost 50% scale inefficiency. We also found farmer-based organisations to significantly influence scale 

efficiency. This calls for the need to strengthen farmer-based organisations to increase participation, among other 

reasons. We departed from the existing scale efficiency literature in a three of ways. We accounted for selection-bias 

using propensity score matching in the organic and conventional samples in analysing scale efficiency, modelled scale 

inefficiency using fractional regression and empirically selected the appropriate link function using a battery of tests. 

Finally, we accounted for an important policy variable; farmer-based organisation. We employed propensity score 

matching that accounted from observable biases. Further research may consider other methods that account for both 

observed and unobserved variations. 

 

Key words: conventional cocoa; organic cocoa; fractional regression; scale efficiency; selection-bias  

JEL: C21; D24; Q12; Q29 

 

INTRODUCTION 

 

In food production, the fertilisation and accomplishment 

of other agronomic practices, using chemicals has become 

conventional practice around the world. However, a move 

towards organic agriculture (OA) has emerged. This 

involves maximum reliance on self-regulating ecological 

or biological processes and renewable resources. OA 

makes systematic efforts to reduce reliance on external 

inputs partly to create a sustainable agricultural production 

system (Paull, 2013; Beltrán-Esteve and Reig-

Martínez, 2014). Despite the growing social recognition 

of the positive role played by this type of farming in the 

conservation of natural resources and the reduction or 

elimination of the negative externalities of modern 

agriculture, the economic competitiveness of organic 

versus conventional agriculture is a contentious issue 

(Beltrán-Esteve and Reig-Martínez, 2014; 2016). 

Whilst the dimension on efficiency holds that; OA is more 

technically efficient than conventional agriculture (CA) 

(Oude Lansink et al., 2002; Poudel et al., 2015), there is 

counter-evidence, that, OA is more technically inefficient 

than CA (Madau, 2007; Tiedemann and Latacz-

Lohmann, 2013). The latter has been attributed to 

restrictions on resources and technology, emanating from 

regulations and guidelines governing OA (IFOAM, 2008, 

2014; Mayen et al., 2010; Beltran-Esteve and Reig-

Martinez, 2014; Lakner and Breustedt, 2016).  

Productivity (efficiency) change depends partly on 

scale of operation (Ray, 1998; Rasmussen, 2010), the 

effectiveness of which is measured by scale efficiency and 

how close an observed firm or farm unit is, to the optimal 

scale (Ray, 1998; Karagiannis and Sarris, 2004). In the 

light of the contention regarding organic and conventional 

technical efficiency, would OA be more scale inefficient 

than CA or otherwise?  

We address this research question by estimating scale 

efficiency (SE) of organic and conventional agriculture, 

https://orcid.org/0000-0002-2159-2944
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test for differences between organic and conventional 

agriculture, and explore the sources of inefficiencies, 

using data on organic and conventional cocoa production 

in Ghana.  

Studies on SE in the agricultural economics literature, 

in general, did not address the differences in production 

practices; organic and conventional production 

(Bremmer et al., 2008; Madau, 2011; Mgeni and 

Henningsen, 2012; Kelly et al., 2013; Watkins et al., 

2014). Only, Karagiannias et al. (2012) did. However, 

they failed to account for selection bias. While some 

studies did not model SE at all (Pantzios et al., 2002; 

Karagiannis and Sarris, 2004; Hussiani and Abayomi, 

2010; Karagianni et al., 2012; Baran, 2013; 

Karagiannis and Melfou, 2015), others that modelled 

SE, did not appropriately account for the fractional 

property of SE estimates (Paul et al., 2004; Sengupta and 

Kundu, 2006; Bremmer et al., 2008; Madau, 2011, 

2015; Kelly et al., 2013). Rahman and Awerije (2015) 

is an exception, yet they specified logit a priori and did 

not empirically select the appropriate link function. 

This article departs from other SE studies in three 

ways. First, it takes account of selection bias in the organic 

and conventional samples. Second, SE is parametrically 

modelled, using fractional regression with an empirical 

selection of the appropriate link function of the fractional 

regression model. Finally, we accounted for an important 

policy variable; farmer-based organisations. 

Conventional cocoa production involves the use of 

inorganic fertilisers, chemical weed control as well as 

chemical pest and disease control. On the contrary, 

organic production bars the use of these. Alternatives may 

involve manual and operations that could limit the size of 

a farm operation to be undertaken by organic cocoa 

farmers (Paull, 2013; Beltrán-Esteve and Reig-

Martínez, 2014). Thus, scale efficiency has implications 

for input use, revenue, cost and ultimately the profitability 

of farm operations. For organic farmers who have adopted 

new production technology with associated management 

practices that could affect optimal farm size, which may 

differ from conventional farmers, it is important to 

compare the scale efficiency of organic and conventional 

cocoa farms. Results of this study will establish what the 

scale efficiency of organic farms is, how it differs from 

conventional cocoa farms and what policy 

recommendations will be apt. 

 

DATA AND METHODS 

 

Data 

Cocoa farmers were sampled from Suhum-Craboa-Coalter 

(SCC) district in the Eastern Region of Ghana, because at 

the time of data collection in 2014, only farmers in this 

area had practised organic cocoa production in Ghana, for 

a decade after certification. The district falls within the 

semi-equatorial forest zone and experiences a major 

(March to June) and a minor (September to October) rainy 

season. The temperature varies between 24 and 29 0C, and 

the annual rainfall is between 1270 and 1650 mm (Abekoe 

et al., 2002; Ayenor et al., 2004). SCC has a total land 

area of about 850km2, with 20% of this area under cocoa 

cultivation, contributing more than 500 metric tonnes of 

beans (YGL, 2008).  

Two populations were defined; growers of 

conventional cocoa and growers of organic cocoa. Ten 

thousand organic cocoa farmers were operating in the SCC 

District as of 2014, according to the Yayra Glover Limited 

(YGL), the firm that facilitates organic cocoa production 

in the study area. The Cocoa Health and Extension 

Division (CHED) of COCOBOD, responsible for 

extension services to cocoa farmers, put the number of 

conventional cocoa farmers in the district at 18,425. From 

these populations, the sample size of organic and 

conventional farms was determined to be 278 and 378 

respectively.   

Twenty-six and 37 communities respectively, in 

which organic and conventional cocoa farmers resided 

were selected. For the organic cocoa community, 26 

farmers were selected whilst 12 farmers were selected for 

conventional cocoa based on the number of communities 

in the sampling frame. The total respondent targeted for 

each production technology was approximately 10% 

above the determined sample size, to make room for non-

response. A pre-tested questionnaire was administered 

with the assistance of Agricultural Extension staff from 

CHED. Returned and usable questionnaires for organic 

and conventional cocoa producers were 280 and 378 

respectively.  

The specific conventional communities were same as 

those of the organic, where possible, or closest to organic 

cocoa communities, to control for environmental 

differences and have analogous sample composition 

(Tzouvelekas et al., 2002; Madau, 2007; Guesmi et al., 

2012). A cocoa farm was operationalised as a crop farm 

that has more cocoa plants than any other cultivated plant 

in the field. For organic farms, these were certified as 

organic and organic practices were applied to the other 

plants in the same field, with the cocoa plants.  

 

Methods 

Production function  

The production functions were estimated by Stochastic 

Frontier Analysis (SFA), owing to the inherent 

stochasticity in the model, which is akin to stochasticity in 

agricultural production (Kumbhakar and Lovell, 2000, 

Mayen et al., 2010; Djokoto, 2016), with a composed 

error term (Aigner et al., 1977 and Meeusen and van den 

Broeck, 1977). The production function was specified as 

Eq. 1. 

 

𝑦 = 𝑓(𝑋, 𝛽)𝑒𝑣−𝑢 (1) 

 

Where: y represents output, measured in kilogrammes; X 

is a vector of production inputs. In our case, farm size (ha) 

is FARMSIZE, labour (man-days) is LABOUR and tree age 

(years) is FARMAGE, as in Table 1. Possible omitted 

variable bias is addressed later.   

β is a vector of parameters we estimated, v and u are 

error terms. The frontier production function is a measure 

of the maximum potential output attainable given the 

production inputs. Both v and u cause actual production to 

deviate from this frontier. The random variable in the 

production that cannot be influenced by producers and 
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captures omitted variables such as weather and 

represented by v, is identically and independently 

distributed (iid) as N (0, σ2
v). The non-negative error term 

u represents the deviation from the maximum potential 

output, attributable to technical inefficiency, which is 

independent of v. The stochastic terms v and u are assumed 

to be uncorrelated. We assumed the half-normal 

distribution of the errors.   

We estimated both the Ordinary Least Squares (OLS) 

and SFA forms of the Cobb-Douglas (CD) and translog 

functional forms and selected the SFA translog form based 

on the loglikelihood ratio test. Important variables; 

fertiliser and pesticides were omitted from the variable 

list. In the case of the former, the series was collinear with 

the land. This is because the governments' fertiliser 

programme supplied fertiliser to farmers based on the size 

of the plot a farmer reported. Also, farmers who followed 

the recommended fertiliser application regimen related the 

fertiliser requirements to the size of the plot. For the latter, 

pesticide, the data for conventional was unreliable whilst 

organic farmers did not formally apply pesticides. These 

may lead to omitted variable bias (OVB) which we tested. 

Square and cubic powers of the prediction of output were 

included as additional explanatory variables in the 

production function. The joint significance of the 

parameters of the additional terms was performed 

(Ramsey, 1996). 

 

Selection-bias 

A three-step procedure was used in accomplishing PSM 

(Rosenbaum and Rubi, 1983; Imbens, 2004). In the first 

step, a probability model for the adoption of organic 

production standards was estimated and used to calculate 

the probability or propensity score of being organic, for 

each observation. In the second step, the required 

estimation of the stochastic frontier model on the 

unmatched sample was performed. In the third step, 

matching of the organic and conventional subsamples was 

performed. The reverse of step two and three was 

necessary to ensure that matching of the subsamples that 

could lead to data attrition does not negatively impact the 

frontier estimates (Mayen et al., 2010; Rao et al., 2012).  

 

Scale efficiency  

Following the specification of the production function in 

(1), we adopted the Ray (1998) approach to estimating the 

SE. 

  

𝑆𝐸𝑖 = 𝐸𝑥𝑝 [
(1−𝐸𝑖)2

2𝛽
]  (2) 

 

Where: the elasticity of scale (Ei) was computed as the 

sum of the first-order partial derivatives of the explanatory 

variables of the production function, evaluated at their 

mean values and β is the sum of the coefficients of the 

cross terms.  

β was hypothesised to be negative definite, to be sure 

that 0 ≤ 𝑆𝐸i ≤ 1. Although negative definiteness of 𝛽 was 

sufficient condition, it was not a necessary condition 

(Ray, 1998). E and β are both equal to one, only at the 

most productive scale size (MPSS); the point where there 

are constant returns to scale (Ray, 1998). Indeed, when xi, 

the input bundle itself is MPSS, then E (xi) = 1 and ln SEi 

(xi) = 1. With increasing returns to scale, 𝐸𝑖 > 1 and 𝑆𝐸 (xi) 

rise with a rise in output. On the other hand, a farm that 

exhibits decreasing returns to scale or supra-optimal scale 

(𝐸𝑖 < 1), there should be a contraction in output for optimal 

scale to be achieved.   

 

Conventional and organic scale inefficiency effects 

Socio-economic variables; specifically farm and farmer 

characteristics offer an important avenue to identifying 

drivers of scale inefficiency (SIE). Since SIE is defined 

within the unit interval, we employed fractional regression 

modelling (Papke and Wooldridge, 1996), and selected 

the appropriate link function, from a set of plausible link 

functions. 

Let the conditional expectation of SIE given x, be E(SIE|x), 

then  

 

𝐸(𝑆𝐼𝐸|𝑥) = 𝐺(𝑥𝜃)  (3) 

 

where G(  ), which is some nonlinear function satisfying 

0 ≤ G(  ) ≤ 1, could be any cumulative distribution 

function, such as logit, probit, loglog, complementary 

loglog (cloglog) and cauchit (Papke and Wooldridge, 

1996; Ramalho et al., 2010). SIE is 1 – SE and x are farm 

and farmer characteristics. The link functions are specified 

in Eq. 4- Eq. 8. 

 

Logit, 

𝐺(𝑥𝜃) =
𝑒𝑥𝜃

1+𝑒𝑥𝜃 (4) 

Probit, 

𝐺(𝑥𝜃) = 𝛷(𝑥𝜃) (5) 

Loglog, 

𝐺(𝑥𝜃) = 𝑒−𝑒−𝑥𝜃
  (6) 

Cloglog, 

𝐺(𝑥𝜃) = 1 − 𝑒𝑒𝑥𝜃
 (7) 

Cauchit 

𝐺(𝑥𝜃) =
1

2
+

1

𝜋
𝑎𝑟𝑐𝑡𝑎𝑛( 𝑥𝜃)   (8) 

 

The various link functions were estimated using frm 

(Ramalho, 2013, 2014).  

Following Ramalho et al. (2010; 2014), three groups 

of tests were employed to select the appropriate link 

function; Ramsey RESET test (Ramsey, 1969), 

generalised goodness of functional form test (GGOFF) 

(Ramalho et al., 2014) and P test (David and 

MacKinnon, 1981). The RESET test examined the 

presence of misspecification in the model, specifically, the 

presence or otherwise of power terms in the model. 

Although the RESET test was originally developed for use 

with linear functions, Pagan and Vella (1989), Ramalho 

et al. (2010, 2011) and Cameron and Trivedi (2013, p. 

52) have shown that it is also applicable to any type of 

index models.   

The GGOFF, tests for how well the data fit the link 

function specified. More than one link function could be 

selected by the RESET and GGOFF tests. Therefore, the 

P test provided an opportunity for one-on-one (pairwise) 

test using the selected link function(s) from the first two 

stages, as alternative hypotheses. Interpretation of the P 
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test followed that of the usual hypothesis test, unlike the 

other two tests, for which the rejection of the H0 was 

evidence of absence of misspecification. Statistical 

methods of selection offer a viable alternative, in the 

absence of a priori theoretical formulation of the 

appropriate functional form for the FRM. 

 

RESULTS AND DISCUSSION 

 

Background of data  

The difference in years of education of 0.04 years and 0.02 

members of household between conventional and organic 

cocoa farmers were so small to be statistically significant 

(Table 1). The strongest statistically significant 

differences related to farm age (FARMAGE), access to 

credit (CREDIACC), cocoa farming experience 

(FARMEXP), the incidence of CSSVD attack (CSSVD) 

and access to extension services (EXTNACCESS). On the 

contrary, the weakest statistically significant differences 

were participation in a farmer-based organisation 

(FBOPARTICIPATION), plot size (FARMSIZE), labour 

use (LABOUR), gender (GENDER) and age of farmer 

(FARMERAGE). Whilst the average age of organic cocoa 

farms was 29 years that for conventional farms was 18 

years. Fewer conventional cocoa farmers had access to 

credit (19%) than organic cocoa farmers (49%). This is to 

be expected as credit is a determinant of organic cocoa 

technology adoption (Djokoto, Owusu and Awunyo-

Vitor, 2016). Organic cocoa farmers have been farming 

on average for about 20 years whilst conventional cocoa 

farmers registered an average of 16 years. 

 

Omitted variables test 

Following the non-use of fertiliser and pesticide from the 

model, due to reasons adduced earlier, a test of omitted 

variables was performed (Table 2). The null hypothesis 

that power terms (other terms) in the test model were 

jointly significant, could not be rejected in the case of the 

organic sample. By implication, there are no omitted 

variables in the organic model, thus the exclusion of the 

fertiliser and pesticide variables did not have a discernible 

effect on the model. In the case of the conventional sample 

however, the χ2 test statistic is significant at the 1% level 

of significance. Impliedly, there is an omitted variable in 

the conventional model. The solution to omitted variables 

in the agricultural production function literature is to use 

financial variables (Apergis, 2007). 

 

Table 1: Variables definitions and descriptive statistics 

Variable  Variable name Definition Conventional 

Mean (Standard 

Error) 

Organic 

Mean (Standard 

Error) 

t-test 

CREDIACC Access to credit Yes = 1, 0 

otherwise 

0.19 

(0.020) 

0.49 

(0.029) 

-8.411*** 

CSSVD CSSVD attack Incidence of 

CSSVD=1 and 0 

otherwise. 

0.19 

(0.020) 

0.32 

(0.027) 

-3.751*** 

EDUCATION Education Number of years 

of schooling 

8.58 

(0.176) 

8.62 

(0.187) 

-0.157 

EXTNACCESS Access to 

Extension  

Yes=1, 0 

otherwise 

0.84 

(0.018) 

0.93 

(0.015) 

3.512*** 

FARMAGE Farm Age Years since the 

cocoa farm was 

planted until 2014 

18.09 

(0.506) 

29.34 

(0.951) 

-10.442*** 

FARMERAGE Age of farmer Years 48.28 

(0.582) 

49.29 

(0.751) 

-1.063** 

FARMEXP Farming 

Experience 

How long farmer 

cultivated cocoa 

(years) 

16.26 

(0.47) 

19.83 

(0.897) 

-4.115*** 

FARMSIZE Farm Size  Area of land area 

(Ha) 

2.03 

(0.096) 

2.32 

(0.100) 

-2.180** 

FBOPARTICIPATION Participation in 

Farmer-based 

organization   

Participation=1, 

0 =otherwise 

0.86 

(0.017) 

0.92 

(0.015) 

2.841** 

GENDER Gender Male =1 and 0 

otherwise 

0.82 

(0.020) 

0.88 

(0.019) 

-2.046** 

HHS Size of Household  Number of 

persons living in 

the household 

6.40 

(0.181) 

6.42 

(0.174) 

-0.101 

LABOUR Number of man-

days   

Quantity of 

labour/day 

1.54 

(0.091) 

 

1.92 

(0.049) 

 

-2.166** 

N   378 280 1  
Note: 1 Provision for invalid questionnaires resulted in 280 questionnaires, two more than the 278-sample size estimated.  
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Beyond this, is to include the omitted variable (Greene, 

2012; Asteriou and Hall, 2015). The approach of 

Apergis (2007) could not be followed because data on 

financial variables were not reliable. Due to the reasons 

adduced above, data on fertiliser and pesticides could not 

be included in the production function. Considering the 

omitted variable problem as part of the general 

misspecification problem, the power terms included in the 

test production function were considered as control 

variables for the misspecification (Ramsey, 1969; 

Asteriou and Hall, 2015). This raised another challenge; 

the sufficient condition that the sum of the coefficients of 

the cross terms in the translog production function, should 

be negative semi-definite, in the Ray (1998) SE formula 

(Equation 2), could not be met. Thus, for purposes of 

calculating the SE based on Ray (1998), the omitted 

variables problem is accommodated for the conventional 

model. It must be noted that Sherlund et al. (2002) and 

Rahman and Hasan (2008) have argued that omitted 

variables can inflate individual technical efficiency 

estimates. However, the random error, v, capture the errors 

including omitted variables (Aigner et al, 1977; Mussa, 

2014; Mujawariya et al., 2017; Njikam and Alhadji, 

2017). Further, the use of farm age (age of trees) is a 

capital variable. Thus, we accommodate the omitted 

variables error on two grounds; the capture of the omitted 

variable error within the random error term and the fact 

the technical efficiency measure is not an ingredient in the 

calculation of scale efficiency. And finally, the role of 

FARMAGE as capital.  

 

 

 

Production function  

The estimations that generated results for technical 

efficiency of conventional and organic cocoa farms, 

required the testing of some hypotheses. First, the use of 

OLS is a better representation of the data than SFA. 

Second, that CD production function is preferred to the 

translog function. Third, that inefficiency is absent in the 

models. The results of the hypotheses tests are provided in 

Table 3. The rejection of the null hypotheses for both 

organic and conventional functions shows that there is 

technical inefficiency based on CD production function. 

Similarly, the rejection of the null hypotheses that there is 

no technical inefficiency in the translog production 

function is desirable. Comparing the CD to translog, the 

latter is preferred to the former. Further, the sigma squared 

values showed the existence of technical inefficiency in 

both the conventional and organic models. Aside from the 

empirical suitability of the translog SFA production 

function, estimating the SE by the Ray (1998) approach is 

conditioned on a translog functional form and existence of 

technical inefficiency. The marginal products (Table 5) 

generated from the selected production functions (Table 

4) are positive in line with theoretical expectations. Both 

production practices show increasing returns to scale. Due 

to space limitations, technical inefficiency effects are not 

presented and discussed. 

The production practices of organic and conventional 

cocoa production differ as noted earlier. Moreover, the 

computation of the scale efficiency measure relies on 

production function parameters which necessitate the 

estimation of separate production functions. The a priori 

estimation of the separate production functions hinges on 

these.  

Table 2: Omitted variables test 

  Conventional Organic 

 Description χ2 statistic  χ2 statistic 

H0 Power terms are not jointly significant 11.53*** 1.77 

H1 Power terms are jointly significant 

Degrees of freedom 2 2 

Decision Reject Accept 
Note: *** denotes statistical significance at 1%.  

 

Table 3: Functional form selection test  

  Conventional  Organic  

H0: There is no technical inefficiency 

H1: There is technical inefficiency 

OLS (Restricted) -418.83696 -231.04506 

 

SFA- Cobb-Douglas 

(Unrestricted) 

-407.80759 -213.53219 

Loglikelihood ratio 22.05874** 35.02654*** 

Decision Reject Reject 

H0: There is no technical inefficiency 

H1: There is technical inefficiency 

OLS (Restricted) -376.22986 -219.74919 

 

SFA- Translog (Unrestricted) 

-367.43498 -202.78204 

Loglikelihood ratio 17.58976* 33.9343*** 

Decision Reject Reject 

H0: Cobb-Douglas is a better representation of the 

data 

H1: Cobb-Douglas is not a better representation of the 

data 

SFA- Cobb-Douglas (Restricted) -407.80759 -213.53219 

 

SFA- Translog (Unrestricted) 

-367.43498 -2002.78204 

Loglikelihood ratio 80.74522*** 21.5003** 

Decision Reject Reject 
Note: ***, **,* denotes statistical significance at 1%, 5% and 10% respectively.  
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Table 4: Estimation of production function and inefficiency effects 

Variables Conventional Organic 

FARMAGE 1.5082*** 

(0.5578) 

0.0950 

(0.5332) 

FARMSIZE 0.9900*** 

(0.3519) 

0.9760** 

(0.4533) 

LABOUR 2.2659*** 

(0.4463) 

1.1243*** 

(0.3447) 

FARMAGE2 -0.2126*** 

(0.0786) 

-0.0405 

(0.0651) 

FARMSIZE2 0.0455*** 

(0.0051) 

-0.0220 

(0.0782) 

LABOUR2 -0.2053*** 

(0.0415) 

-0.1188*** 

(0.0356) 

FARMAGE*FARMSIZE 0.0405 

(0.08830 

0.1933 

(0.2331) 

FARMAGE*LABOUR -0.1142 

(0.1474) 

0.0871 

(0.12580 

FARMSSIZE*LABOUR -0.2386* 

(0.1312) 

-0.3263** 

(0.1286) 

CONSTANT -2.4015* 

(1.4084) 

1.9335 

(1.2380) 

Sigma squared 0.4291*** 0.4650*** 

N 378 280 

Wald  168.21*** 85.4*** 

Loglikelihood -367.4350 -202.7820 
***, **,* are 1%, 5% and 10% levels of significance respectively. Figures in parenthesis are standard errors 

  

Table 5: Elasticities and returns to scale  

 Conventional Organic 

Land 1.3994 0.0025 

Labour 0.9147 0.6578 

Farm Age 0.4448 0.4721 

Returns to scale 1.2994 1.1324 
 

 

Selection-bias 

The generation of the propensity scores from the binary 

choice model, and matching these for organic to 

conventional farms, resulted in new sub-samples of 161 

organic and 161 conventional farms. The binary model 

estimation is reported and discussed in Djokoto et al. 

(2016). All other farms from the 658 were discarded. 

Matching after estimation of technical efficiency was 

performed following Rao et al. (2012), to avoid the 

influence of data attrition on technical efficiency 

estimation. For the discussion of the technical efficiency 

model, see Djokoto et al. (2017).   

 

Scale efficiency  

The mean SE for organic cocoa production is 0.5332, 

corrected for selection bias, whilst a slightly higher value 

of 0.5351 was obtained with selection biased sample 

(Table 6). In the case of the conventional cocoa sample, 

the values are respectively 0.6601 and 0.6681. In both 

cases, the mean values are less than 1, indicating a sub-

optimal scale of operation. Indeed, the inspection of the 

individual farms showed that in both production practices, 

most farms operate at sub-optimal scale; 153 for organic 

and 151 for conventional (Table 7). The SE values less 

than 1, in the presence of increasing returns to scale imply, 

the farms analysed failed to take advantage of the 

increasing returns-to-scale to increase their inputs for 

increased output (Karagiannis and Sarris, 2004). Our 

findings show a marked lower scale efficiency, indeed, 

quite pronounced SIE unlike studies on Africa (maize 

farms in Nigeria, 0.880 -Karimov et al., 2014) and rice in 

Ghana, 0.8200 (Anang and Rezitis, 2016). Since our 

findings relate to cocoa, we cautiously conclude that cocoa 

production is less scale efficient than other agricultural 

products. As scale economies are usually a consequence 

of the better and more efficient use of production factors, 

an increase in firm size first leads to higher marginal 

returns and lower marginal costs. Beyond a certain size, 

however, marginal returns will decrease, and marginal 

costs will rise although not contemporaneously. Optimal 

size is reached when marginal returns equal marginal 

costs. 

Comparing organic and conventional SIE values, both 

production practices posted the same extreme values; 0.00 

and 1.00. The mean for organic cocoa is 0.5332, 

significantly lower than that of conventional; 0.6601. This 

finding does not depart from that of Karagiannis et al. 

(2012) for dairy in Austria. This is irrespective of whether 

the complete sample is corrected for selection bias or not. 

Restrictions on types of resources and technology may be 

responsible for the higher scale inefficiency in organic 
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production (IFOAM, 2008, 2014; Mayen et al., 2010; 

Beltran-Esteve and Reig-Martinez, 2014).   

 

Scale inefficiency effects 

Aside from the differences in SIE for the production 

practices, there exists variability within the SIE of each 

production practice (Table 7). We, therefore, investigated 

the drivers of this variability using fractional regression 

modelling. For conventional cocoa production (first panel 

of Table 8), the statistical significance of the RESET test 

statistic for logit, probit, loglog and cloglog suggest these 

functional forms are misspecified. Since the cauchit link 

function is the only well-specified link function, the next 

two tests for selecting the appropriate link function have 

become redundant. Therefore, the cauchit link function is 

selected. The second part of Table 8 on organic cocoa, 

presents an interesting situation. By the RESET test, all 

link functions are well specified except cloglog. Thus, the 

cloglog function is out of contention. By the GGOFF, all 

link functions are appropriate. For the one-to-one P-test, 

the null hypotheses that the loglog is preferred to logit, 

probit and cauchit link functions are rejected. Therefore, 

loglog link function is also out of consideration. Logit, 

probit, and cauchit link functions are indifferent to one 

another, based on the alternative hypothesis tests, thus any 

of these could be selected for discussion. However, only 

one of these could be used, thus we proceed to choose one. 

A close examination of the magnitudes of the test statistics 

for each of the link functions, as null hypotheses, shows 

that those of cauchit is the lowest. Thus, whilst all are 

indifferent, cauchit test statistics demonstrate ‘strongest 

indifference’ or non-rejection of the null hypothesis. Thus, 

the decision is in favour of the cauchit link function, for 

the organic SIE model. 

 

Table 6: Scale efficiency 

 Conventional Organic Conventional- 

Organic 

 N SD Mean N SD Mean Difference  

Selection biased 378 0.3106 0.6688 280 0.3690 0.5351 1.3519*** 

Non-selection biased 161 0.3020 0.6601 161 0.3632 0.5332 0.1269*** 

Min   0.00   0.00  

Max   1.00   1.00  
*** implies 1% level of significance of the student’s t test. S.D.- standard deviation 

 

Table 7: Optimality of scale efficiency 

Category Organic Conventional 

Supra-optimal 0 0 

Optimal 8 10 

Sub-optimal 153 151 

N 161 161 

 

Table 8: Hypothesis tests for model selection for conventional and organic cocoa  

 Logit Probit Loglog Cloglog Cauchit 

Conventional cocoa production 

Ramsey test 

RESET 9.442*** 8.961*** 8.407*** 9.461*** 2.474 

Goodness-of-functional form tests 

GGOFF 10.823*** 11.678*** 8.207*** 9.946*** 3.803 

P-test 

H1Logit - 7.206*** 9.902*** 8.456*** 0.755 

H1Probit 6.478*** - 10.144*** 7.254*** 0.747 

H1Loglog 6.063*** 7.099*** - 5.056** 0.778 

H1Cloglog 12.227*** 11.568*** 12.533*** - 0.820 

H1Cauchit 13.982*** 15.644*** 18.626*** 11.035*** - 

Organic cocoa production 

Ramsey test 

RESET 2.291 2.217 1.586 2.795* 2.281 

Goodness-of-functional-form tests 

GGOFF 2.352 2.417 1.601 2.563 2.033 

P-test 

H1Logit - 0.062 3.142* 0.611 0.024 

H1Probit 0.029 - 3.029* 0.216 0.004 

H1Loglog 1.029 0.987 - 0.815 0.281 

H1Cloglog 4.251** 4.596** 5.445** - 1.901 

H1Cauchit 0.569 0.534 2.955* 0.064 - 
Note: ***,**.* denotes statistical significance at 1%, 5% and 10% respectively.  
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Table 9: Hypothesis tests for model selection for the combined sample 

 Logit Probit Loglog Cloglog Cauchit 

Ramsey test 

RESET 2.916* 3.277* 4.307* 2.583 1.854 

Goodness-of-functional-form tests 

GGOFF      

P-test 3.788 3.968 4.398 2.384 3.498 

H1Logit - 4.129** 5.279** 1/188 1.108 

H1Probit 3.572* - 4.941** 1.517 0.926 

H1Loglog 2.495 2.682 - 1.031 0.442 

H1Cloglog 3.348* 4.330** 5.976** - 0.223 

H1Cauchit 6.086** 6.376** 7.285*** 3.829* - 
Note: ***,**.* denotes statistical significance at 1%, 5% and 10% respectively.  

 

Table 10: Scale inefficiency effects 

 Conventional  Organic  Pooled sample  

 Cauchit Cauchit Cauchit 

 ME 

(δ-method SE) 

ME 

   (δ-method SE)   

ME 

(δ-method SE) 

ADOPTION - 

(-) 

- 

(-) 

0.0989** 

(0.0384) 

CREDIACC 0.0355    

(0.0641) 

-0.0303    

(0.0627) 

-0.0199    

(0.0415) 

CSSVD -0.0748    

(0.0718) 

-0.2164*** 

(0.0735) 

-0.1433***    

(0.0513) 

EDUCATION -0.0054    

(0.0054) 

0.0188*    

(0.0089) 

0.0020    

(0.0057) 

EXTNACCESS 0.2862***     

(0.0821) 

0.0591     

(0.0949) 

0.1887***    

(0.0609) 

FARMAGE -0.0140   

(0.0706) 

0.0845    

(0.0670) 

0.0271     

(0.0389) 

FARMERAGE 0.0046**     

(0.0022) 

0.0054   

(0.0035) 

0.0043***   

(0.0020) 

FARMEXP -0.0098  

(0.0082) 

-0.0075**    

(0.0032) 

-0.0080**   

(0.0035) 

FBOPARTICIPATION -0.0925***    

(0.0180) 

-0.0225   

(0.0151) 

-0.0461***    

(0.0123) 

GENDER 0.0167    

(0.0474) 

-0.0823     

(0.0836) 

-0.0592     

(0.0453) 

HHS -0.0337**    

(0.0166) 

0.0123   

(0.0113) 

-0.0020  

(0.0050) 

Model properties 

N 161 161 322 

R2-type measure 0.2662 0.1082 0.1191 

Log pseudolikelihood -74.6410 -88.0993 -168.5314 
Note: ***, **, * denotes statistical significance at 1%, 5% and 10% respectively. SE- standard errors. ME- Marginal effects         

 

For the combined sample (Table 9), the RESET test 

statistics for logit, probit and loglog are statistically 

significant. This implies these link functions are 

misspecified whilst the other two; cloglog and cauchit are 

not. The earlier three link functions are therefore 

eliminated from consideration. Using the cloglog as a null 

hypothesis with cauchit as the alternative hypothesis, the 

cloglog is rejected in favour of the cauchit link function. 

Consequently, the marginal effects for conventional, 

organic and combined sample for the cauchit link function 

are presented in Table 10.  

The R2 measures appear low. However, these are the 

highest among the five link functions and the best 

attainable, as the OLS estimates; the default posted values 

lower than these. Moreover, as the R squared-type 

measure is a relative measure unlike the standard R-

squared value, the absolute value is less important, rather 

how this compares to those of competing functional forms 

(Ricci, 2010; Ricci and Martinez, 2008; Wei Shi, 2018). 

The positive marginal effect of ADOPTION, 0.0989 

indicates organic cocoa producers are less scale efficient 

than conventional cocoa producers. This finding from a 

multivariate analysis confirms the outcomes of the 

univariate analysis of the previous section. The existence 

of CSSVD enhances scale efficiency. CREDIACC should 

allow farmers to acquire resources to increase input levels 

thereby increasing the scale of operation. This may appear 

to be the case for the conventional cocoa producers. 

However, the marginal effect of CREDIACC for both 

organic and the combined sample showed negative signs. 
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Since in all three models, the magnitude for the 

CREDIACC is statistically insignificant, CREDIACC 

does not have any discernible effect on scale efficiency. 

Wongnaa and Awunyo-Vitor (2019) however found a 

positive effect of credit on scale efficiency.   

The role of CSSVD on SE is rather interesting. CHED, 

the Ghana Cocoa Board agency that addresses issues of 

the disease, undertakes disease control programmes 

involving cutting and burning of diseased trees. This does 

not reduce land area but number trees, lower labour use 

for husbandry practices as well as output. By this, the 

levels of input, for example, a lower level of labour leads 

to reduced output. This then culminates in the appropriate 

scale of operation. Formal education had no discernible 

effect on SIE for conventional cocoa and the combined 

sample, consistent with the conclusions of Paul et al. 

(2004) and Rahman and Awerije (2015). However, 

formal education increased SIE for organic cocoa 

producers. Formally educated farmers may be motivated 

to cultivate larger farms, however, they engage in other 

livelihoods, which compete with organic cocoa 

production, may lead to less attention given to the organic 

cocoa farm. Thus, the input and output results may be 

inappropriate for the chosen farm size. The findings of 

Wongnaa and Awunyo-Vitor (2019) for conventional 

maize in Ghana, concurs with the findings of this study.  

EXTNACCESS strongly reduced SE. This finding is 

surprising, as access to extension should improve farm 

management skills and capacity of farmers. This 

notwithstanding, Madau (2015) and Paul et al. (2004) 

reported a neutral effect whilst Anang et al. (2016) and 

Wongnaa and Awunyo-Vitor (2019) reported a positive 

effect. The age of the farm (FARMAGE) has no 

discernible effect on scale inefficiency for all three 

models. Gimbol et al. (1994) and Currey et al. (2007) 

acknowledged the parabolic distribution of the output of 

cocoa over time. Thus, with the relatively aged farms 

noted in Table 1, the output will decline irrespective of 

increased input use. This explains the positive sign of the 

coefficient of the FARMAGE. However, the effect is not 

strong enough to result in a statistically significant value 

of the marginal effect. Farmer age (FARMERAGE) 

exacerbates SIE for the conventional and combined 

sample. As cocoa farmers age, their inability to pay 

attention to the cocoa farms result in absenteeism and 

sometimes, turning the farm over to caretakers, who may 

not provide adequate attention, thereby failing to ensure 

the appropriate scale of operation. The conclusions of 

Wongnaa and Awunyo-Vitor (2019) for maize confirms 

these findings.  

The coefficient of FARMEXP has a negative sign for 

all three models. Increased experience in cocoa farming 

should lead to accumulation of knowledge resulting in a 

better combination of input and their levels relative to 

farm size. Therefore, farm experience enhances scale 

efficiency. The effect was however significant for the 

organic sample and the combined sample but not so for the 

conventional sample. For Rahman and Awerije (2015) 

and Wongnaa and Awunyo-Vitor (2019), farmer 

experience enhanced scale efficiency. Membership and 

participation in FBO, whilst providing the platform to 

receive knowledge and acquire skills from subject matter 

specialists, it also provides opportunities to network, share 

ideas and communicate at the level of peers. This creates 

the platform to deliberate on common problems to find 

solutions. This is useful in enhancing scale efficiency 

(Wongnaa and Awunyo-Vitor, 2017), thus, it is no 

wonder that FBOPARTICIPATION enhances SE. Gender 

does not distinguish SIE of OA and CA, in all three cases, 

whilst HHS promotes SE for conventional cocoa. 

Increased HHS provides opportunity for more labour that 

can be combined with land, to maintain an appropriate 

farm scale. This finding agrees with the recent findings of 

Wongnaa and Awunyo-Vitor (2019).  

 

CONCLUSIONS 

 

In this study, we departed from the existing SE literature 

in three ways: We accounted for selection-bias in the 

organic and conventional samples. We modelled 

parametrically estimated SE, using fractional regression 

and empirically selected the appropriate link function and 

considered an institutional variable, participation in 

farmer-based organisations.  

Both organic and conventional producers are scale 

inefficient. However, organic producers’ mean SE of 

0.5332 is significantly less than 0.6601, for conventional 

producers, thus OA is not more scale efficient than CA. 

Although it is recommended that both producer groups 

improve SE, organic producers require greater work to do 

to make up for the almost 50% SIE. Until the organic 

regulators increase the latitude for resources to be used in 

production, organic agriculture researchers must come up 

with quality inputs whilst organic producers need to 

improve their capacity in farm management, to improve 

input allocation on the farm. SE in organic cocoa can be 

further increased through increased efforts by CHED to 

control CSSVD. Younger persons should be encouraged 

to go into and remain in cocoa production. Revenue side 

factors such as increased producer price as well as cost 

side factors including availability of cost-effective 

production inputs, leading to improved profitability, could 

be useful. Organic cocoa producers should increase farm 

hectares to reduce SIE. Farmer-based organisations should 

be further strengthened, particularly focusing on activities 

that will increase participation.  
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