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Measurement of Price Risk in
Revenue Insurance: Implications
of Distributional Assumptions

Barry K. Goodwin, Matthew C. Roberts,
and Keith H. Coble

A variety of crop revenue insurance programs have recently been introduced. A
critical component of revenue insurance contracts is quantifying the risk associated
with stochastic prices. Forward-looking, market-based measures of price risk which
are often available in the form of options premia are preferable. Because such
measures are not available for every crop, some current revenue insurance programs
alternatively utilize historical price data to construct measures of price risk. This
study evaluates the distributional implications of alternative methods for estimating
price risk and deriving insurance premium rates. A variety of specification tests are
employed to evaluate distributional assumptions. Conditional heteroskedasticity
models are used to determine the extent to which price distributions may be charac-
terized by nonconstant variances. In addition, these models are used to identify vari-
ables which may be used for conditioning distributions for rating purposes. Discrete
mixtures of normals provide flexible parametric specifications capable of recognizing
the skewness and kurtosis present in commodity prices.
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Introduction

A variety of crop revenue insurance programs have recently been developed to supple-
ment the standard Multiple Peril Crop Insurance that has existed in the U.S. since the
1930s. In general, these programs guarantee producer revenues by protecting against
any revenue-diminishing combination of low prices and/or low crop yields. The revenue
insurance contracts guarantee producers a minimum level of revenues. If, because of
any combination of poor yields and/or low prices, revenues are beneath the guaranteed
level, insured farmers receive an indemnity payment equal to the difference between
realized and guaranteed revenues. Increased planting flexibility and recent farm
program changes which included the elimination or reduction of direct price supports
have led many to anticipate increased price risk and uncertainty. Such concerns have
heightened interest in the revenue insurance products.
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Three alternative crop revenue insurance products currently exist: Crop Revenue
Coverage (CRC), Income Protection (IP), and Revenue Assurance (RA).! Conventional
crop insurance programs have been hampered by actuarial problems that have led to
significant losses. In particular, program outlays exceeded $8.9 billion between 1990 and
1997 [U.S. General Accounting Office (U.S. GAO)]. These high losses have been attrib-
uted to adverse selection and moral hazard issues. Adverse selection occurs when
producers have more information about their risk than do insurers, such that premium
rates are inaccurate. Moral hazard occurs when insuring producers alter their behavior
in order to increase the likelihood of collecting indemnities.

Inaccurate premium rates and performance monitoring problems underlie the actu-
arial shortcomings of crop insurance programs. Conventional yield insurance programs
need accurate measurements of an individual producer’s distribution of expected yields
in order to determine actuarially fair premium rates. In the case of revenue insurance,
an additional critical component of the proper insurance premium is setting a rate that
accurately reflects the price dimension of risk. A variety of methods for measuring
price risk have been proposed. A report recently released by the General Accounting
Office is critical of the actuarial methods underlying all three revenue insurance plans
(U.S. GAO).

" It is important to note that yields and prices are likely to be negatively correlated
since low yields are typically accompanied by high prices. The extent of this correlation
for an individual producer depends upon the degree of correlation between the
producer’s yields and an aggregate yield, such as the national average. This, in turn,
depends upon the spatial correlations of yields over principal production regions. The
three primary revenue insurance contracts have different approaches to addressing this
yield-price correlation issue. CRC, the largest of the three main revenue insurance
programs, simply treats yield and price risk as though they are independent. Standard
Multiple Peril Crop Insurance (MPCI) rates are added to a premium component that
represents the price side of revenue risk. Negative correlation implies that the risks
associated with a revenue shortfall are probably less than those associated with
price and yield shortfalls when the latter are considered in isolation. This is because
low yields would typically be expected to increase price, thus offsetting a portion of
_ the revenue shortfall. In this manner, CRC is sometimes said to be “conservatively”

rated—i.e., the CRC rate is higher than a rate which recognized the negative yield-
‘price correlation would be. '

The emphasis of our analysis is on evaluating methods for rating the price side of risk
in the largest revenue insurance program, CRC. As is the case with current CRC rating
methods, we do not consider the issue of yield and price correlation, though we do dis-
cuss below how our analysis might be extended to consider such correlation. In contrast
to the CRC plan, the RA and IP plans do attempt to account for yield and price correla-
tion, though the adjustments made to account for correlation have been questioned (see
U.S. GAO, pp. 63-64, 71).

! Additional forms of revenue insurance, including insurance which utilizes Schedule F tax return information as a basis
for insurance and an areawide version that utilizes county average yields as a basis for insurance, are currently under devel-
opment. Although the issues discussed in this study are pertinent to all three products, the specific provisions of the contract
and examples are taken from CRC.
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Within the academic community, the Risk Management Agency (RMA), and through-
out the insurance industry, there has been a collaborative focus on the development of
proper actuarial methods for rating revenue insurance contracts. Stokes, Nayda, and
English review research on revenue insurance pricing methods and discuss options-
based pricing methods for rating revenue insurance. Considerable disagreement exists
regarding the proper approach for rating price risk. While it is widely recognized that
forward-looking, market-based measures of price risk are to be preferred, it is also the
case that such market-based mechanisms do not exist for several of the crops covered
by revenue insurance. For example, appropriate options markets do not exist for soft
white wheat, which is covered under new revenue insurance contracts. In addition,
because rates are set several months before planting, options markets for many crops
have very low volumes and thus are inappropriate for rating.

Recent discussions have addressed three alternative approaches to rating price risk.
The current CRC program uses a historical series (1973-98) of futures prices, quoted at
planting time (F,) and harvest time (P,) to derive a “forecast error” (e,= P, - F,), which
is then assumed to be normally distributed. The portion of premium associated with
price risk is then calculated using standard results for a normal distribution. An
approach which utilizes proportional errors (e,/P,) under the assumption of normality
has been recommended as an alternative. This approach assumes that errors are
proportionally larger as prices are higher, and is thus somewhat analogous to assuming
a lognormal distribution for prices since lognormality suggests a proportional relation-
ship between the variance and the mean of the observed data. A third approach to
rating price risk utilizes existing options markets to derive market-based measures of
price risk. As noted, this approach, while clearly preferable, is not appropriate for all
revenue insurance contracts since the necessary options contracts do not exist for all
crops currently insured. The revenue assurance (RA) version of revenue insurance
utilizes corn and soybean options premia to rate revenue insurance contracts.

The assumption of lognormality has considerable precedent in the financial literature.
Models of price variability and options price determination have typically assumed that
prices are lognormally distributed. In particular, the Black-Scholes option valuation
formula, which is based on the assumption of lognormally distributed prices, has gained
widespread acceptance. However, relatively little attention has been given to evaluating
the extent to which prices adhere to distributional assumptions and the potential impli-
cations of distributional misspecification. More recent research (see, e.g., Cornew, Town,
and Crowson; Hudson, Leuthold, and Sarassoro; Hall, Brorsen, and Irwin; Hsieh) has
documented leptokurtosis, skewness, and other distributional characteristics that may
be inconsistent with normality and lognormality. Recognition of these problems has led
to the development of a variety of approaches to easing distributional restrictions and
providing modeling techniques that allow for nonnormal distributions.

The distribution of market prices also may be sensitive to market conditions. Distri-
butional shifts may occur if market conditions change. If the variance of prices is time-
dependent, and if this time dependence is not explicitly modeled, the distribution of
prices observed over time may involve a mixture of different variances and thus may
exhibit characteristics incompatible with normality.? The price series may also display
other distributional characteristics such as skewness, kurtosis, and multiple modes.

? A mixture of two zero mean normal processes with different variances will typically imply a distribution that exhibits
kurtosis.
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Recent research has applied alternative techniques to derive price distributions that
reflect characteristics not consistent with normality (see, e.g., Hall, Brorsen, and Irwin;
Hsieh). In one approach, finite mixtures of known distributions are used to represent
distributional characteristics that are not compatible with normality. This approach is
often motivated by the assumption that, although a standard distribution is appropriate
under a given set of market conditions, changing market conditions may result in
different distributions. Thus, when the entire series of prices is observed, the underlying
process describing the aggregate distribution is a mixture of several distributions. In
other research, mixed-jump processes have been used to represent nonstandard distri-
butions. Jump processes are appropriate in situations where random shocks shift the
entire distribution. In both cases, the resulting distributions are capable of representing
characteristics of a series that may not be consistent with normality or lognormality. For
example, a simple mixture of two normals is capable of representing a standard, sym-
metric normal distribution as well as nonsymmetric distributions, skewness, bimodality,
and leptokurtosis.

Figure 1 (panels A and B) illustrates implied volatilities for corn and wheat, respec-
tively. In both cases, the volatilities appear to imply two general states of nature.? In
the first and most common state (perhaps 75% of the time), volatilities are relatively
stable at around 15%. In the second and less frequent state, volatilities are much higher.
Of course, the patterns of volatility also reflect seasonality in variance. While the impli-
cations of such a cursory examination of weekly intraseason data for the annual price
data required for revenue insurance products are unclear, the illustration provides
at least anecdotal evidence consistent with a mixture of a low variance and a high vari-
ance state.

The objective of this analysis is to explore the distributional characteristics of corn
and wheat prices, focusing on the measurement of price risk for determining premium
rates for crop revenue insurance programs. We utilize time-dependent conditional
heteroskedasticity models and mixture distribution models to evaluate price risk. The
~ conditional heteroskedasticity models evaluate the role of time to maturity, contract
quote and expiration dates, and annual fixed effects in modeling wheat and corn price
variability. Implications for improving actuarial methods utilized in the revenue insur-
ance programs are also considered.

The article proceeds in the following manner. We begin with a description of crop
revenue insurance products available in the U.S. The econometric methods applied to
the analysis of price risk are then developed. In the next section we analyze the time
dependency of the variance of prices and provide a discussion of conditional hetero-
skedasticity models that relate price variation to a number of explanatory factors.
Models of conditional corn and wheat price distributions obtained under alternative
distributional assumptions, including normality, lognormality, and discrete mixtures,
are also presented. The final section offers a brief review of the analysis and some con-
cluding remarks.

® Of course, one could argue in favor of more than two states. As we point out below, identification of multiple states is an
exercise generally constrained by the number of observations available for empirical work.
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Figure 1. Implied volatilities for December corn and
September wheat options contracts
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Revenue Insurance Programs

Standard Multiple Peril Crop Insurance (MPCI) has been in existence in various forms
since the 1930s. This insurance pays indemnities at a predetermined price whenever
realized yields are less than guaranteed yields. A shortcoming of standard MPCI can be
observed in the price (determined prior to planting) at which indemnities are paid.
When yield losses are widespread, market prices are likely to be higher. Farmers receiv-
ing indemnities for lost yields may actually be reimbursed somewhat less (in bushel
terms) than their guarantee since their indemnities likely reflect a price that is lower
than the market price at harvest time. Revenue insurance had its beginnings with an
optional rider that paid indemnities at harvest-time market prices. This, in conjunction
with a put option contract, allowed producers to guarantee a minimum level of crop
revenues. This coverage was extended to form the basis for individual Crop Revenue
Coverage (CRC). CRC is currently available in major corn, soybeans, wheat, cotton, and
grain sorghum growing regions. CRC has been quite successful, accounting for over 26%
of corn crop insurance sales in 1997; the latest sales figures indicate that revenue
insurance plans currently account for about 23% of the total acreage insured (RMA).

Income Protection (IP) was developed at Montana State University under a directive
of the Federal Crop Insurance Reform Act to create a pilot insurance plan based on the
actual costs of production. IP insurance is available for corn, soybeans, grain sorghum,
cotton, and wheat in major growing regions. IP guarantees a minimum level of crop
revenues, based on forecasted prices, individual farm yields, and area yields. If realized
revenues fall beneath the revenue guarantee, producers receive an indemnity payment
for the amount of the shortfall.

Revenue Assurance (RA) was developed by the lowa Farm Bureau as a pilot program
for corn and soybeans in Iowa. RA provides the option for “whole-farm” insurance in
which producers insuring both corn and soybeans receive significant premium discounts.
RA provides a guaranteed minimum level of revenue which is determined by individual
farm yields and futures prices (adjusted for the local historical basis). If realized
revenues are beneath the guarantee because of either low prices or low yields, or both,
farmers receive an indemnity payment for the amount of the shortfall. A unique char-
acteristic of the RA program is the utilization of market-based measures of price risks
that are available in options markets. In contrast, the CRC and IP programs utilize
historical futures prices to develop measures of price risks. RA actuarial procedures
employ estimates of a beta distribution to model yield risks.

Econometric Methods

Revenue insurance contracts require a forecast of harvest-time prices, made conditional
on information available prior to planting time. In addition, a measure of the uncer-
tainty associated with the price forecast is needed to construct a premium rate reflect-
ing the risk of adverse movements in prices. In all three revenue insurance plans,
futures prices are used to forecast harvest-time prices. In the case of RA, options
markets are used to gauge the uncertainty associated with prices. IP and CRC utilize
historical price movements to evaluate price risks. The measurement of price risk in
both the RA and CRC programs is heavily dependent upon assumptions regarding the
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parametric distributions underlying price movements. RA adopts standard Black-
Scholes results to construct implied volatilities from observed options prices. As noted
above, this approach assumes lognormally distributed prices (or, to be more precise, this
model assumes a-.geometric Brownian motion process for prices, which is the continuous
time equivalent of a lognormal distribution). In contrast, CRC assumes normally dis-
tributed prices in the construction of the price component of the revenue insurance
premium. IP utilizes a nonparametric “empirical distribution” approach.*

In this analysis we employ two distinct approaches for evaluating price risk. In the
first, the interest lies in determining if the variance of historical prices, which is used
in rating revenue insurance products, is constant. Maximum-likelihood estimates of
conditional heteroskedasticity models are used to evaluate the exogenous determinants
of price variability. If an empirical analysis confirms that variances are constant or,
alternatively, identifies factors which underlie a nonconstant variance, model estimates
can provide conditional variance forecasts to be used in revenue insurance contract
construction. In the second segment of the analysis, a set of annual price data is utilized
to estimate price distributions and to evaluate insurance premia under alternative
distributional assumptions.

In the conditional heteroskedasticity models, the variance of conditional prices (i.e.,
price differences) is assumed to be proportional to a function of several exogenous
factors which are hypothesized to be related to price variability. In particular, it is
assumed that the variance of prices for an individual contract i quoted at time ¢ is given
by the following:

(1 oft = 62f(Z,y).

We assume that the conditional variance function f(Z,y) is the squaré of a linear index
function—i.e., (Z,y)%. Such a model of multiplicative heteroskedasticity is widely applied
in the literature. (For a detailed discussion of this model and its many variants, see
Harvey.) Our specification ensures nonnegative variances for all observations. Under
the assumption of normality, the following log-likelihood function is maximized to
obtain estimates of v and, if applicable, of parameters of a conditional mean equation
(n; = }{itﬁ):5 k

(2) InL = -Z[In@2n) + In(e?)] - % i ln((Zity)Q)
i1

n
2

20% i1 (Z,y)?

1 < (yit—]‘lit)2

* Nonparametric density estimation techniques offer complete flexibility in representing characteristics of a distribution.
Such flexibility, however, does not come without a significant loss in efficiency. Thus, the nonparametric techniques may not
be appropriate for the small samples which are commonly available for measuring price risk. In that probability density
functions are commonly used as kernel functions in nonparametric density estimation, the nonparametric techniques are
analogous to mixtures of a large number of components. For example, nonparametric estimation with Gaussian kernels is
analogous to a mixture of n normals with equal variance terms (i.e., as determined by the kernel bandwidth).

% A conditional mean equation represents movements in expected prices, conditioned on observable data (typically ex-
pressed as y;, = X,,). In our application, y, represents the price difference, and no conditioning variables are added to the
mean equation. As we explain below, this equation is modified to allow for first-order autocorrelation by replacing y,, with
Yie = Pip-
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The second part of the analysis evaluates the distributional properties of the price
data commonly used to rate revenue insurance. Finite mixture distributions represent
a flexible, parametric approach to modeling probability distribution functions whose
intrinsic characteristics are largely unknown. A k-component mixture density function
is given by:

k
3) f@) = Y [,
i=1

where the probability weights (4,) satisfy the conditions that Ef;l A;=1, and A,>0 for
all i. In our application, we consider only a mixture of two distributions, such that
there is a single mixing parameter A. Various densities are commonly applied in repre-
senting the underlying components of the mixture. The most common approach involves
utilizing normal densities:

-2/ -207

(@) » filw) = et
2
270,

Mixtures of normals nest a conventional normal distribution (obtained whenp; =p,=....
=1, and 0, = 0, = ... = 0;). Asymmetric and bimodal distributions may result when the
1’s are not all equal. Kurtosis is implied when the p’s are not all identical.

Standard maximum-likelihood estimation techniques are commonly used to esti-
mate mixture distributions. There are, however, particular characteristics of mixture
problems that may complicate estimation. Nonlinear estimation techniques may have
a tendency to concentrate component densities on individual points. In such a case, the
o, associated with that point goes to zero and the likelihood function becomes numer-
ically unstable. To prevent such instabilities, the A and o, terms must be constrained to
be positive. Estimation must also recognize that the mixing parameter A must be
constrained to lie in the interval (0, 1). Constrained maximume-likelihood estimation
techniques are used in this study to estimate the components of the mixture. We
constrain o, to be greater than 1E-9, and A to lie in the closed interval [0 + €, 1 - €] for
e =1E-9.

The fact that the mixing parameter must be constrained and can lie on the boundary
of the parameter space raises special concerns for hypothesis testing. In particular, test
statistics may not have conventional distributions when the true parameter value is on
the boundary of the parameter space. Likewise, under the null hypothesis that the
mixing parameter A is 0 (or, equivalently, 1), the parameters of the component distri-
butions may not be fully identified. Problems in tests where a subset of parameters
may be unidentified under the null hypothesis are common and can be addressed (see,
e.g., the extensive literature underlying structural change tests with unknown break
points, including the work of Andrews and of Hansen). In this application, the
parameters characterizing the components of the distribution (i.e., o; and u,) are
unidentified if A = 0.° This precludes the application of standard hypothesis testing
techniques for determining the number and nature of the component distributions.
Bootstrapping techniques are commonly used as an alternative to construct empirical

% It should be noted that component parameters of individual distributions can be estimated when A is constrained to be
positive, even when the estimate of A is very small.
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distributions from which appropriate critical values and associated p-values can be
obtained.

McLachlan, and Feng and McCulloch (1994, 1996) discuss bootstrapped likelihood-
ratio tests for evaluating hypotheses in finite mixture models. These tests are partic-
ularly appropriate for determining the number of components to include in a mixture
density. The tests also may be used to evaluate a particular parametric distributional
specification. For example, an evaluation of a normal versus a lognormal distribution
can be considered using a mixture of the form:

(5) flx) = Ap(x) + (1 - D (x),

where ¢(-) represents the lognormal probability density function (pdf), and ¢(-) repre-
sents the normal pdf. The estimate of A indicates whether the distribution is normal or,
under the alternative, is a mixture of normal and lognormal densities. Because the like-
lihood-ratio test statistic [givenby -2(Lj - L), where L and L, represent the restrict-
ed and unrestricted maximum log-likelihood function values, respectively] and param-
eters of the component distributions are defined even when A is at the boundary, this
approach provides a straightforward means for evaluating the number of components.
McLachlan recommends a parametric bootstrap, whereby the data are simulated using
estimates obtained under the null hypothesis. For each bootstrap replication, the alter-
native model is fit and the likelihood-ratio test statistic is constructed. The associated
p-values, which can be used to evaluate the significance of the likelihood-ratio test
statistic obtained from the estimation sample, can be calculated using the replicated test
statistics. We follow this bootstrapping procedure to evaluate the number and nature
of components in the price distributions.

The random variable x may also represent a conditional mean as in the standard
linear regression problem. In this case, x may be replaced by y - Xp in equation (3), and
the parameters of the conditional mean equation () may be estimated jointly with the
parameters of the probability distribution (o, n;, and A). We follow this approach in our
analysis. It should be noted that an additive intercept term is not identified when the
mixture does not restrict estimates of 11,. Estimates for the intercept can be recovered
by imposing restrictions on the means of the component distributions. In particular, the
implicit assumption of a zero mean for the errors provides identification.

Estimated Models and Results

The proper treatment of nominal prices observed over a long period of time is an
important issue, especially in the second component of our analysis which uses data
collected between 1899 and 1998. In particular, one must consider whether the prices
should be deflated. Indeed, this issue has arisen in actuarial debates over the CRC
program, where it was decided that nominal prices should be used. Of course,
inappropriate deflation causes heteroskedasticity. Standard price deflators such as the
CPI are not appropriate since they imply unreasonably high prices for distant periods.
_This is because agricultural prices have not followed the tendency of aggregate prices
to rise over time.
Models utilizing logarithmic transformations of prices imply that the residuals (or
price differences) are proportional to price levels, and thus that higher prices would be
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expected to correspond to larger price differences. Such an implication would suggest
that the mean level of residuals in a logarithmic model (or differences in logarithmic
prices) should be relatively stable over time. In contrast, models expressed in price
levels suggest that the mean level of residuals (or price differences) does not depend
upon the price level. To the extent that prices (or residuals) are being driven by move-
ments in the overall price level, a plot of price differences should reveal increasing
variability over time. Such plots (not presented here) were considered for both price
levels and logarithmic transformations of the prices. We did not find evidence that price
differences had trended upward in a manner consistent with aggregate price changes.’
This was especially the case when logarithmic prices were considered. In light of these
results and current rating practices used in the CRC program, both segments of our
analysis employ nominal prices.

The Bridge database of daily settlement prices is used to construct monthly average
futures prices for all contracts in all months over the period 1959-97. Expiration prices
were the average in the month preceding the contract’s expiration. This approach is
analogous to the treatment of futures prices in constructing CRC premium rates. These
data are used to estimate the conditional heteroskedasticity model [equation (2)] to
determine if prices are characterized by nonconstant variances and to provide appropri-
ate conditional forecasts of price variances. Since the pooled data set consists of many
overlapping contracts, a complex form of moving-average error correlation is inherent
in the price differentials. To allow for such correlation, we specify a first-order auto-
regressive correlation process among the monthly price differences. The correlation
structure is restricted to prevent correlation corrections across alternative contracts.

Maximum-likelihood estimates and summary statistics for the conditional hetero-
skedasticity models (Z,,y) are presented in tables 1 and 2 for corn and wheat, respec-
tively. The models were expressed both in price levels (corresponding to a normal
distribution), and in logarithms of prices (corresponding to a lognormal distribution).
For corn, the default (omitted dummies) is a September contract quoted in the previous
January. For wheat, the default is a July contract quoted in the previous January.

Though the magnitudes of the estimates differ, the results for the models expressed
in levels and logarithms are quite similar. The results strongly confirm that the vari-
ance of the price differentials is not constant. They reveal that increased months to
maturity decreases price volatility. This is consistent with the “Samuelson hypothesis”
(Samuelson) which maintains that prices will reflect more information and thus be more
volatile as contract expiration nears. In contrast to our findings, Hennessy and Wahl
obtained results that were not consistent with the Samuelson hypothesis.

Our estimates also indicate that there are significant differences in price variability
across alternative contracts. Contracts which expire in the months immediately
preceding harvest (July for corn and May for wheat) appear to have the most volatile
prices. Significant differences in the variability of prices over the growing season are
also revealed in the estimates. Corn prices appear to be the most variable in June, July,
and August—the most critical growing period. Likewise, wheat prices appear to be more
variable in April. Wheat prices also appear to be quite variable in June and August,

" These plots are available from the authors on request. We should note that, although no trend in price differences was
apparent, the variability of price differences did appear to be larger after 1970, though this pattern was not reflected in the
logarithmic prices.
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Table 1. Maximum-Likelihood Parameter Estimates and Summary Statistics
for Conditional Price Heteroskedasticity Models: Corn

Linear Logarithmic
Variables Estimate  Std. Error Estimate  Std. Error
p 0.9476 0.0028* 0.9427 0.0032*
Intercept 8.5877 0.3319* 0.0351 0.0014*
Months to Maturity -0.0220 0.0021* -0.0229 0.0021*
March Contract 0.0312 0.0296 0.0355 0.0325
May Contract 0.0320 0.0308 0.0018 0.0337
July Contract 0.1030 0.0326* 0.0422 0.0338
September Contract — — — —
December Contract -0.0026 0.0292 0.0378 0.0326
February Quote 0.0261 0.0408 -0.0274 0.0429
March Quote -0.0695 0.0400 -0.1222 0.0387*
April Quote 0.2981 0.0503* 0.1364 0.0478*
May Quote 0.1693 0.0570* 0.1626 0.0611*
June Quote 0.8233 0.0656* 0.7982 0.0686*
July Quote 0.9112 0.0872* 0.8698 0.0961
August Quote 1.2120 0.1024* 1.0467 0.1001*
September Quote 0.0903 0.0464 0.0820 0.0508
October Quote 0.1971 0.0463* 0.0564 0.0463
November Quote 0.1148 0.0469* 0.0341 0.0484
December Quote 0.0819 0.0443 0.0079 0.0482
R? 0.9441 0.9381
N 2,575 2,575
Bera-Jarque Test (no annual effects) 1,384.52* 438.53%
Bera-Jarque Test (annual effects) 47.65% 39.47*
Test of Annual Effects 1,701.01* 815.71*

Note: An asterisk (*) denotes statistical significance at the « = 0.05 or smaller level.

perhaps reflecting harvest realizations or growing conditions for substitute spring
wheats. The strong seasonality in the prices confirms the findings of other studies as

well as conventional wisdom.

The parameter estimates allow a forecast of the variance, conditional on contract and
month of quote. This is a forecast of the “average” variance for the particular month of
quote and contract over the years of available data. This forecast could be used in
conjunction with a price forecast to construct premium rates for the price component of
revenue risk. This conditional variance may not be constant across years. Changes in
other factors that affect price volatility (e.g., stocks, production, demand shocks, etc.)

from year to year would result in annual differences in the conditional variances.
Annual dummy variables were added to estimate an expanded model (not presented).
Likelihood-ratio tests (tables 1 and 2) strongly confirm the significance of annual effects,
implying that the conditional variances are not constant over the years of the analysis.
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Table 2. Maximum-Likelihood Parameter Estimates and Summary Statistics
for Conditional Price Heteroskedasticity Models: Wheat

Linear Logarithmic
Variables Estimate  Std. Error Estimate  Std. Error
P 0.9065 0.0045%* 0.9023 0.0049*
Intercept 16.8720 0.7339* 0.0393 0.0020*
Months to Maturity -0.0117 0.0028* -0.0112 0.0038*
March Contract 0.0090 0.0299 0.0119 0.0396
May Contract -0.0277 0.0286 0.0380 0.0380
July Contract — — — —
September Contract -0.0033  0.0296 0.0444 0.0393
December Contract -0.0002 0.0308 0.0155 0.0413
February Quote -0.1745 0.0414%* -0.0574 0.0520
March Quote -0.1045 0.0506%* 0.0406 0.0756
April Quote 0.3641 0.0575* 0.3364 0.0659*
May Quote -0.0890 0.0467 0.1251 0.0670
June Quote 0.2392 0.0582* 0.4219 0.0801*
July Quote -0.1097 0.0505* 0.0584 0.0712
August Quote 0.5917 0.0618* 0.9330 0.0860*
September Quote -0.0634 0.0434 0.0731 0.0585
October Quote 0.1148 0.0491* 0.2023 0.0649*
November Quote -0.2031 0.0394* -0.0438 0.0543
December Quote 0.0526 0.0421 0.1251 0.0512%
R? 0.9103 0.9163
N 2,080 2,080
Bera-Jarque Test (no annual effects) 1,949.81* 683.57*
Bera-Jarque Test (annual effects) 9.72% 12.99*
Test of Annual Effects 1,881.61% 5,955.15%

Note: An asterisk (*) denotes statistical significance at the « = 0.05 or smaller level.

However, the expanded model cannot be used for forecasting variances out of sample
since only information available at the time a forecast is made can be used to condition
the forecast. The model which omits the annual dummy variables provides an “average”
variance forecast which could be conditioned upon the months of contract and quote and
used to forecast the variance, and thus rate price risk. Such models may offer advan-
tages over current procedures which utilize only a single contract quoted at a single
period of time by allowing use of a much larger sample (derived from using many
contracts quoted over many different periods), thereby potentially improving the statis-
tical efficiency of forecasts.

Bera-Jarque conditional moment (chi-square) tests of normality were also applied
to evaluate the extent to which the models were consistent with normality and, in
the case of the logarithmic models, lognormality. When the test is applied to the
price-level models presented in tables 1 and 2, normality is strongly rejected in every
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case.® Likewise, the tests reject normality in each of the logarithmic versions of the
model, suggesting that lognormality is also unsupported. When the test is applied to the
models containing annual dummy variables, normality is still rejected, though at a
much lower level of significance. This suggests that omission of fixed annual effects
which are related to factors that influence variability from year to year results in a
distribution that is much less consistent with normality than when such annual effects
are accounted for. The residual nonnormality in the model without dummy variables to
account for shifting annual variances may in part result from the implied mixture of
‘(possibly normal or lognormal) distributions with different variances being associated
with each year’s distribution. Such a conclusion is somewhat tenuous, however, in light
of the fact that the models containing annual effects still reject normality, albeit at a
much lower level of significance. Alternatively, these results may suggest that the
distribution of futures prices is inconsistent with either normality or lognormality,
and thus that more flexible conditional heteroskedasticity models perhaps should be
considered.’

In summary, the results from the first model show that futures price variability may
be conditioned upon a number of explanatory factors, including months to maturity,
month of contract, and month of price quote. These findings should be useful for
constructing more accurate premium rates for the price-risk component of revenue
insurance contracts. The proposed modeling approach allows a much larger sample to be
used in constructing premium rates, potentially improving inferences and the accuracy
of premium rates. Conditional moment tests reject normality, which may in part resuit
from the mixing of time-varying variance distributions.

The second segment of the analysis utilizes a long series of annual observations on
planting- and harvest-time futures prices. Corn and wheat futures were collected from
selected issues of the Chicago Board of Trade’s Annual Report of the Trade and Com-
merce of Chicago for the period covering 1899 to 1960. Data for subsequent years were
taken from the Bridge financial database. Monthly observations for contracts expiring
at harvest (September for corn and July for wheat) were constructed by taking the
midpoint of the monthly high and low price quotes at planting times (January for corn
and December for wheat).'® The “harvest-time” price for each contract was that quoted
in the month preceding the contract’s expiration.

Maximum-likelihood techniques were employed to estimate alternative models of the
annual price differentials in the second part of the analysis. A price relationship of the
form P, =« + BF, was estimated, where P, represents the harvest-time price, and F, is
the planting-time futures price." In light of the prevailing assumption of lognormality
for price distributions, five separate models differing in their distributional assumptions

8 It should be noted that we do not report robust standard errors, and thus our estimated standard errors may be incon-
sistent if remaining residual heteroskedasticity is present.

® For example, Ramirez presented a flexible autoregressive conditional heteroskedasticity (ARCH) model that accounts
for unimodal nonnormality. Such models may have promise in applications such as this one.

10 This approach was necessitated by the available data—daily prices were not available before 1959. An evaluation of the
difference in the monthly price constructed in this manner and a monthly average of daily closing prices revealed no signif-
icant difference. In particular, the average differential between the alternative monthly prices was nearly zero. Our use of
these particular contracts was also necessitated by the availability of data.

! Similar results were obtained when the models were constrained according to an “efficient-markets” type of relationship,
such that & = 0, and B = 1. We estimate the parameters rather than constraining them in order to allow for any biases or
premia which may exist in the relationship between prices. This is analogous to a linear mean forecast conditioned upon
futures prices at planting.
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were estimated. These included normality, lognormality, a mixture of two normals, a
mixture of two lognormals, and a mixture of a lognormal and a normal. The mixture
models permit testing of standard distributional assumptions using the bootstrapping
procedures described above.

Tables 3 and 4 present the estimation results for the models of corn and wheat
futures price relationships, respectively. Note that, with the exception of the variance
estimate, maximum-likelihood estimates obtained under normality are equivalent to
ordinary least squares (OLS). Estimates labeled as “OLS” in tables 3 and 4 are actually
the equivalent maximum-likelihood estimates obtained under normality. Bera-Jarque
normality tests are used to assess the extent to which the OLS residuals are consistent
with normality and lognormality. As was the case above for the large sample of
contracts, the tests reject normality and lognormality for both corn and wheat. These
results question the validity of the assumptions of normality and lognormality used in
the construction of revenue insurance premia. They suggest that alternative, flexible
distributional specifications may be preferred. The OLS estimates for the normal and
lognormal models have price coefficients which are slightly less than one. The mixture
of normals model for corn has a price coefficient of 0.81—somewhat far from the
expected value of one which would correspond to the futures price being an unbiased
forecast of the future harvest-time price. The price coefficients for the other corn and
wheat models are very similar, with values of about 0.90-0.96.

Recall that the mixing parameter A characterizes the frequency of the alternative
regimes. The estimated mixture of normals models points to an environment charac-
terized by a mixture of a frequent (75-89% of the time) low-variance regime and a less
frequent (11-25% of the time) high-variance regime. A similar pattern of variability is
implied by the lognormal mixtures.” Such a finding is consistent with the pattern
observed for options premia (figure 1). Our mixture approach is somewhat analogous
to modeling heteroskedasticity in that two different variance estimates are used to
characterize the aggregate distribution, though each distribution is permitted to have
a unique mean. Analogously, our mixture models represent the nonnormal distribution
that results when distributions with different variances are combined (.e., mixed).

The bootstrapped testing approach described above was used to calculate the p-values
associated with standard likelihood-ratio test statistics for the number of components
(one versus two) to include in the mixture models. These are equivalent to testing
H,: 4 = 0. The evaluation of a mixture of normals versus a single normal results in a
strong rejection, implying that a standard normal distribution is not suitable for either
corn or wheat. In the tests of a mixture of lognormals versus a single lognormal, the test
statistic has a value of 9.17 for corn (table 3) and 10.96 for wheat (table 4). The boot-
strapped probability values indicate that these test statistics do not allow for rejecting
H,: A = 0. Specifically, the corn and wheat test statistics have p-values of 0.29 and 0.25,
respectively. This suggests that a single lognormal distribution is sufficient to model the
price differentials when compared to a mixture of two lognormals. The final model
includes a mixture of a normal and a lognormal distribution. Estimation of this mixture

12 A reviewer has correctly noted that confidence intervals for o, contain o, in several cases. Though this is not a valid test
of the significance of the differences in the two alternative variance parameter estimates, it does suggest thiat one should be
cautious in concluding that the variance terms are different.

13 In cases where the mixture consists of two identical distributions (e.g., two normals), this is also analogous to a test of
A =1, since the estimates are equivalent under either null. The simulations used 300 replications.
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Table 3. Maximum-Likelihood Parameter Estimates and Summary Statistics:
Corn

Mixture Mixture Mixture of
Normal Lognormal of Two of Two Lognormal/
Parameter OLS OLS Normals  Lognormals Normal
o 13.8443 0.4676
(7.1627)* (0.1693)*
B 0.9120 0.9063 0.8087 0.9158 0.9063
‘ (0.0438)* (0.0353)* (0.0293)* (0.0334)* (0.0349)*
o 34.2225° 0.2063*°
(2.5943)* (0.0156)*
A 0.8928 0.9657 0.0000°
(0.0522)* (0.0282)* _
1, 18.6397 0.4008 18.3780
(4.2833)*  (0.1616)*  (1.0991)*
o, 18.5889 0.1739 39.7344
(1.8038)* (0.0164)* (4.6821)*
M 108.7290 1.0252 0.4676
(27.6845)* (0.2197) (0.1693)*
Oy 38.9203 0.1143 0.2063
(18.2851)* (0.1062) (0.0156)*
Log-Likelihood Fune. -430.8066 13.8852 -408.4302 18.4701 13.8852
Test of Mixing 44.7563 9.1696 0.0000
p-Value 0.0000 0.2933 —
B 239.4381 240.7328 228.5558 242.5003 240.3953
Pr {P< P} 0.5015 0.5467 0.6246 0.5840 0.5436
Rate 5.6702 8.3928 5.1426 8.0266 8.2271
Bera-Jarque Test 13,698.38 1,156.53

Notes: Numbers in parentheses are standard errors. An asterisk (*) denotes statistical significance at the
o = 0.05 or smaller level.

*Mazimum-likelihood estimate of standard deviation.
*Value fixed by estimate on boundary of parameter space.

model produced estimates under which the density collapsed into a single lognormal
distribution (i.e., A was at its boundary value of 1E-9). The maximized log-likelihood
function was nearly identical to that of the single lognormal. This obviates formal
hypothesis testing, though the implication is clear—lognormality has strong support
over normality. It should be noted that estimates of components of the mixture distri-
butions are obtained even when the mixing parameter estimate lies on its boundary.
Such estimates are difficult to interpret since they apply only to a very small fraction
of the sample, as is implied by the restricted value of the mixing parameter.

It is also desirable to test the lognormal specification against the mixture of normals.
The bootstrapping method was extended to consider a composite distribution com-
prised of a lognormal distribution and a bivariate mixture of normals. In each case, the
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Table 4. Maximum-Likelihood Parameter Estimates and Summary Statistics:
Wheat

Mixture Mixture Mixture of
Normal Lognormal of Two of Two Lognormal/
Parameter OLS OLS Normals  Lognormals Normal
o 11.5468 0.2652
(6.5464) (0.1207)*
B 0.9371 0.9486 0.9648 0.9486 0.9486
(0.0296)* (0.0235)* (0.0263)* (0.0234)* (0.0235)*
o 31.0776° 0.1376*
(2.2665)* (0.0100)*
A 0.7464 0.0208 0.0000°"
(0.0860)* (0.0150)* —
W 1 7.8977 0.6628 -30.4253
(4.1681)* (0.1124)* (0.0001)*
o, 14.1964 0.0612 2.2109
(1.8793)* (0.0375)* (0.0001)*
s 24.3102 0.1719 0.2652
(14.9832)* (0.1204) (0.1207)*
o, 54.9053 0.1197 0.1376
(10.2585)* (0.0091) (0.0034)*
Log-Likelihood Func. -480.6846 15.9152  -459.7164 61.3998 55.9152
Test of Mixing 41.9503 10.9593 0.0000
p-Value 0.0000 0.2500 —_—
P 330.4983 331.9241 330.2235 336.2555 332.4651
Pr {P<P} 0.4934 0.5275 0.5553 0.5277 0.5276
Rate 3.7265 5.5187 2.9860 5.2874 5.4899
Bera-Jarque Test 7,895.48 1,658.61

Notes: Numbers in parentheses are standard errors. An asterisk (*) denotes statistical significance at the

o = 0.05 or smaller level.

2 Maximum-likelihood estimate of standard deviation.
bValue fixed by estimate on boundary of parameter space.

parameter defining the composite mixture between the lognormal and the discrete
mixture of normals was on the boundary corresponding to an estimate of one. This
indicates that the distribution again collapsed to a lognormal for both corn and wheat.
Because the maximized log-likelihood function was again nearly identical to that of the
single lognormal, formal hypothesis testing is again precluded. This does, however,
indicate strong support for a single lognormal distribution when compared to a mixture
of normals.

Prices were forecast for the last observation (1997) and insurance rates were based
on a guarantee of 100% of this forecasted level. An insurance premium rate is given
by expected loss over total liability. Expected loss is given by the product of the proba-
bility of a loss and the expected price given that a loss occurs. Numerical integration
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was used to estimate these probabilities and expected loss levels. With the exception of
the mixture of normals case for corn, the predicted prices (given by P in tables 3 and 4)
are very similar. As would be expected, rates based on lognormality are considerably
higher than those based on normality. This reflects the positive skewness inherent in
the lognormal distribution and larger variance estimates. In contrast, rates for the
mixture of normals are somewhat lower than those under normality or lognormality,
particularly in the case of corn. This lower rate in part reflects the lower forecasted
price, which implies a lower price guarantee. The mixture of normals generates wheat
premium rates that are somewhat smaller than those under normality. The premium
rate estimates using the lognormal models and the models involving mixtures with log-
normals are similar due to the similarity of the price distributions implied by the
estimated models. The results suggest that rating procedures assuming normality may
underestimate the price component of risk. Lognormality appears to provide more
accurate estimates.

Differences in the premium rates and underlying distributions are revealed in plots
of the densities implied by OLS and the mixture of normals cases. Figures 2(A) and 2(B)
illustrate nonparametric kernel estimates of the densities associated with the OLS
residuals.’ Strong positive skewness is revealed in the estimates. In several cases,
slight bimodality is revealed, suggesting that large, positive errors are sometimes
observed—i.e., that the distributions may be a mixture of an infrequent high-variance
regime and a frequent lower-variance regime. The distributions do not resemble normal
densities, and thus the assumption of normality would again seem questionable. Figures
2(C) and 2(D) show the normal distributions implied by the maximum-likelihood
estimates obtained under normality. Figures 2(E) and 2(F) illustrate the distributions
under the mixture of normals case, which have a noticeably lower variance. This lower
variance underlies the low premium rates suggested by the mixture of normals models.
Figures 2(G)-2(J) graphically portray the distributions of the mixtures involving
lognormal densities. In all cases, the models were dominated by a single lognormal
distribution, suggesting that the distributions are very similar to those obtained under
a single lognormal distribution. The distributions are nearly identical in the case of the
normal/lognormal mixture.

In summary, this part of the analysis suggests that current premium rates which are
based on normality are likely to be lower than the underlying price risk estimate
implied by lognormality. Rates calculated in this manner, however, are based solely on
historical information, and consequently may not fully reflect the uncertainty under-
lying market participants’ actions at the time contracts are offered.

Concluding Remarks

This analysis evaluates distributional implications of modeling price uncertainty. The
issue of price uncertainty has taken on increased importance with the introduction of
three revenue insurance programs. In addition, changes in the farm policy environment
that occurred with the 1996 Farm Bill have led to increased concerns regarding the
stability of farm prices.

“Note that the nonparametric densities do not assume normality. OLS is a nonparametric estimation technique providing
unbiased parameter estimates regardless of the underlying distribution. It has been noted, however, that least-squares
estimation may make sample residuals more symmetric than the actual errors (see Huang and Bolch).
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An analysis of the conditional variance of corn and wheat prices revealed that
variance decreases as time to maturity rises, and is highest during important growing
periods. The findings of this analysis also imply that a nonconstant variance may
contribute to significant departures from normality when data are aggregated over time.
The results also indicate that conventional approaches to measuring price variability
and rating revenue insurance may be misspecified. Our empirical results strongly reject
normality. Although conditional moment tests also reject lognormality, testing results
obtained from flexible mixtures of normals and lognormals provide reasonably strong
support for a lognormal distribution. Insurance rates based on lognormality are con-
siderably higher than those implied by normality.

Although our research findings have important implications for rating revenue insur-
ance contracts, many important research issues remain. Most fundamentally, we have
followed current CRC revenue insurance rating procedures and ignored yield-price
correlation. Our methods could be extended to consider bivariate density estimation
using mixture distributions that explicitly model such correlation. However, such an
extension of our methods faces the same hurdle as nearly all insurance programs—a
general lack of available yield data. In particular, nearly all crop insurance programs
have been hampered by the fact that individual producer yield data are almost always
scarce. Extension of the methods described here to yield models would also raise a
number of other issues, including representation of regional differences in yield patterns
and the appropriate geographic area for which to consider common yield distribution
models. Avenues for making use of the limited data that are available within the context
of mixture distribution estimation methods remain an important topic for further
research.

Future research will consider additional explanatory factors (such as options premia,
stocks, demand shocks, and growing conditions) which may be used to condition vari-
ance forecasts. Additional attention will also be given to modeling the complex correla-
tion structure underlying our analysis of overlapping contracts.

[Received January 1999; final revision received September 1999.]
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