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ABSTRACT

This study assesses the long-run relationship and short-run dynamics between 
paddy yields and climate variables, particularly maximum and minimum 
temperature and rainfall, using time-series data from 1971 to 2014 in Nepal. 
Applying Autoregressive-Distributed Lag Regression or ARDL bounds testing 
approach for analysis of co-integration between the variables, we confirm that there 
is a long-run relationship among the variables. Furthermore, we employ Granger 
non-causality tests for robustness. The findings reveal that rainfall has substantial 
effects on the rice yield. Specifically, a positive and significant relationship exists 
between rice yields and rainfall and that this relationship is unidirectional. Rainfall 
impacts on rice yield and holding all things constant, a 1 mm increase in rainfall 
increases rice yields by 0.65 percent. Given the effects of temperature on rice 
crops and increasing climate change vulnerabilities, agricultural scientists should 
focus on research and development of temperature tolerant rice varieties in the 
production of rice yields. 
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INTRODUCTION

There is no debate that climate change 
is real (Hornsey et al. 2016). As it 
affects people, their livelihoods, and 
the ecosystem, it  presents great 

development challenges for the global community, 
in general, and for the poor and natural resource 
dependent people in developing countries, in 
particular (Burton, Diringer, and Smith 2006; 
Khanal 2009). While climate change is a global 
phenomenon, potential effects are unevenly 
distributed, both between and within countries 
(Hunter, Salzman, and Zaelke 1998;      O’Brien et al. 
2007). The most vulnerable are often the poor, 
politically disenfranchised and marginalized 
communities, who are among the first to experience 
the impacts, and least equipped to diversify their 
livelihoods (Eriksen, O‘Brien, and Rosentrater  
2008; Mannke 2011). As a result, low-income 
populations dependent on subsistence farming 
will increasingly face severe hardships because 
they have little flexibility to buffer potentially 
large shifts in their production bases (FAO 2008; 
Ribot 2010). Climate stresses will push these 
populations over an all-too-low threshold into 
an insecurity and poverty that violates their basic 
human rights (Moser et al. 2001).

South Asia holds one fourth of the entire 
world’s population (i.e., about 1.89 billion) in a 
region that is prominently based on agriculture 
for employment and livelihoods of their people. 
Here, agriculture employs about 60 percent of 
its workforce and contributes around 22 percent 
of its GDP. Nearly 70 percent of South Asian 
people still live in rural areas and they account 
for 75 percent of its total poor. Thus, depending 
on their location, the people of South Asia are 
very vulnerable to climate change due to geo-
climatic conditions, socioeconomic background, 
population living in this region, and dependence 
on agriculture and rural sectors for livelihood 
(Islam, Salma, and Afroz 2009). 

 As an agricultural commodity, rice is 
one of the most important food grains and 
primary staple foods for over half of the 

world’s population (Bachelet and Gay 1993; 
Swain and Yadav 2009; Dareker and Reddy 2017). 
Asia alone accounts for about 90 percent of 
the world’s paddy cultivation and production 
(Rani et al. 2014; Dareker and Reddy 2017).  For 
South Asia in particular, it is the staple food of 158 
million Bangladeshi (Chowdhury and Khan 2015), 
covers one-third of total cultivable land in India 
(Farook and Kannan 2016), is the second major 
crop in Pakistan (Rehman et al. 2015), and is 
the primary staple crop in Bhutan (Katwal et al. 
2015), Nepal (Devkota et al. 2018), and Sri Lanka 
(Thirumarpan 2014). 

 In Nepal, paddy accounts for the greatest 
share in farm area (42.2%) and production (51.7%) 
(MOAC 2017). Rice production contributes the 
largest proportion of employment, GDP, and raw 
materials supplied to existing agro-based industries. 
But these contributions have steadily declined. For 
instance, the Central Bureau of Statistics of Nepal 
or CBS noted in 2013 that paddy cultivation area 
had decreased by more than 129,000 ha, while 
Bhandari et al. (2017) noted that paddy growing 
households have decreased from 76 percent in 
1996 to 72.3 percent  in 2011. 

Because of agriculture’s direct exposure and 
reliance on weather conditions (Le 2016), climate is 
still a key determinant for agricultural productivity 
and sustainability (Chowdhury and Khan 2015) in 
many developing countries. Increased temperatures, 
rainfall fluctuations, and frequent weather extremes 
(Karn 2014; Le 2016; Devkota et al. 2018)  will 
have beneficial and harmful effects on crops, 
mainly on crop growth, development, and yield 
(Amin et al. 2015; Riad and Peter 2017). Also, a 
change in the climate will affect the distribution 
and the severity of rice diseases and insect pests 
(Riad and Peter 2017). 

In many regions throughout the world, 
temperatures and precipitation impact the 
production potential of major crops (Le 2016; 
Devkota et al. 2013; Yang et al. 2018). In rice 
production, modeling studies project country-
specific variations in rice production due to 
climate change in Bangladesh (Sarker et al. 2013), 
Japan (Matthews et al. 1995), China (Bachelet et al. 



	 Asian Journal of Agriculture and Development   Volume 17  |  Number 2  |     65

1995), India (Mall and Agrawal 2002), Pakistan 
(Abid et al. 2015), and Nepal (Karn 2014; 
Adhikari et al. 2017). Reportedly, rice yield declines 
by 5 to 7 percent with 1°C increase in mean day 
time temperature (Riad and Peter 2017) and may 
decline by 10 percent with increase a 1°C in 
minimum temperature and night time temperature 
(Farook and Kanna 2016; Riad and Peter 2017). 

Very few studies have intensively examined 
the relationship between climate change and 
rice production in Nepal. This paper thus aims 
to undertake a more comprehensive analysis 
of the impact of climate change, as seen in the 
effect of temperature and rainfall, on the yield of 
rice production in Nepal using country-specific 
historical data for the time period 1971–2014.  

RESEARCH METHODOLOGY

Data and Sources 
This paper examines the available data of 

annual observations from Nepal spanning 1971–
2014 period. Rice area, production, and yields 
data were collected from statistical information 
on Nepalese agriculture from the Ministry of 
Agriculture and Cooperatives. Other data such as 
minimum temperature, maximum temperature, 

and rainfall were obtained from the Department 
of Hydrology and Meteorology in the Ministry of 
Energy, Water Resources, and Irrigation. Table 1 
provides a summary of basic descriptive statistics 
of variables utilized in this study. In the base or 
original form, the mean of rice yield and rainfall 
is 2,365.50 kg/ha and 1,164.19 mm, respectively.  
A causal analysis of the standard deviation in Table 
1 shows that both variables experienced significant 
variations during the sample period. Figure 1 
represents the rice yields, which fluctuated upward. 
However, rice production drastically decreased in 
1982. 

Table 1. Descriptive statistics

Statistics Riceyield 
(kg/ha)

T max
(°C)

T min
(°C)

Rain 
(mm) Riceyield T max T min Rain

 Mean 2,365.500 21.846 12.642 1,164.189 7.749 3.083 2.536 7.055

 Median 2,378.500 22.054 12.603 1,185.050 7.774 3.093 2.534 7.078

 Maximum 3,394.000 23.112 14.187 1,361.200 8.130 3.140 2.652 7.216

 Minimum 1,449 20.073 11.696 954 7.279 2.999 2.459 6.861

 Std. Dev. 481.646 0.821 0.443 111.193 0.203 0.038 0.035 0.097

 Skewness 0.382 –0.576 0.652 –0.150 –0.005 –0.630 0.472 –0.301

 Kurtosis 2.407 2.287 5.039 2.081 2.338 2.356 4.618 2.132

 J.B. 1.712 3.366 10.734 1.712 0.803 3.673 6.435 2.044

 Probability (0.425) (0.186) (0.005) (0.425) (0.669) (0.159) (0.040) (0.360)

Source: Authors’ calculation
Note: The uppercase and lowercase letters refer to the variables in the base and logarithmic form, respectively. The J.B. test indicates the Jarque-Bera 
normality test.
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Figure 1. The overall trend of paddy yield 
in Nepal (1971–2014)
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Econometric Model
Several rice production models have 

established the level of rainfall and temperature 
combined with favorable variables, which would 
result to a significant reduction in rice yield. But 
one limitation of such models is that they are 
mostly used in lab-based exercises and applied 
by agricultural scientists. In fact, results from the 
use of such rice production models would differ 
depending on rice varieties, seasonality, and the 
farm area location. Behavioral socioeconomic 
studies, however, tend to work with how such 
effects impact overall GDP, livelihoods of the 
people, and their poverty level. This study looks 
at the economics of impact of climate change 
adaptation on rice farmers based on the selected 
variables that previous studies used for their 
analysis. 

We examined the possible impact of climate 
change on rice yield (independent variable), 
using three climatic variables: maximum and 
minimum temperature (°C) and rainfall (mm). 
This study used an average growing season 
temperature and rainfall to capture the net effect 
of climate (i.e. temperature and rainfall) on rice 
yield development, which was used in several 
previous studies (e.g., Ozkan and Akcaoz 2002; 
Lobell et al. 2007; Almaraz et al. 2008; Sarker  
et al. 2012; Farook and Kanan 2016) following this 
basic model: 

						    
	 (1)

where riceyields is rice production in kg/ha, t 
max is maximum temperature, t min is minimum 
temperature, and rain is the average rainfall 
within the country. To adjust for the ratio, we 
implement empirical estimations, perform a linear 
transformation on equation (1) that yields:

					     (2)

with the subscript t  and tµ  indicating the time 
period and the Gaussian errors, respectively. Since 
the lowercase letters in Equation (2) denotes that 

all variables are in their natural logarithms, s'β
represent the long-run elasticities to be estimated. 
This specification also captures the relationship 
between rice yields, temperatures, and rainfall.

The Autoregressive-Distributed Lag 
Regression (ARDL) Approach 

This study employed the Autoregressive-
Distributed Lag Regression (ARDL) approach 
(Pesaran and Shin 1998; Pesaran et al. 2001) to 
capture the long-run relationship and the short-
run dynamics for rice yield and its determinants 
on the following grounds. First, the variables 
riceyield, t max, t min, and rain are to be found 
cointegrated with a mixed order of one and 
zero-order of integration to be included under 
a unified framework. This favors the application 
of the Augmented-Dickey-Fuller (ADF) method 
to confirm that the tested variables are either (1) 
or (0).  

First, the use of the general-to-specific 
modeling technique such as optimal lag length 
selection over a differencing operation will prevent 
spurious regression and preserves the long-run 
equilibrium relationship among variables. Second, 
choosing an appropriate lag structure reduces the 
problem of serial correlation in the residuals, and 
provides consistent estimates in the presence of 
endogenous regressors. Third, the test gives reliable 
consistency in short-run and long-run coefficient 
and is valid for a small and finite sample size. 
Finally, a dynamic unrestricted Error-Correction 
Model (ECM) is applied to identify the short-run 
adjustments with long-run equilibrium that can 
be derived from the ARDL method following a 
simple linear transformation. Symbolically, the 
ARDL representation of Equation (2) is expressed 
as follows:

		 (3)

)min,max,( rainttfriceyields =  
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(4)

(5)
	

(6)

where the terms with the first-difference operator 
(Δ) represent the error-correction dynamics and 
the terms with βi correspond to the long-run 
relationship. 

We examine possible cointegration in 
the system of Equations (3), (4), (5) and (6) by 
conducting the joint-significance F-test on 
lagged levels terms )0:( 43210 ==== ββββH , while 
the alternative hypothesis states the opposite 

)0:( 4321 ≠≠≠≠ ββββaH . Then, we reject H0 
if the test statistics exceed their respective upper 
critical values and conclude that a long-run 
relationship exists in the system. In contrast, we 
cannot reject the H0 if the test statistics fall below 
their respective lower critical values. However, our 
bounds testing result becomes inconclusive when 
the F-statistic is observed to be between the lower 
and upper critical values. 

If there is a cointegrating relationship in the 
system of Equations (3), (4), (5) and (6), our next 
step is to continue with its corresponding error 
correction model as shown in equation (3) to 
investigate the short-run dynamics of respective 
variables along with short-run adjustment rates 
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toward the long-run. For the purpose of this study, 
a dynamic error-correction model of Equation (3) 
was estimated as follows:

(7)

where ECT
t-1

 is the one period lagged 
error-correction term derived from the 
long-run cointegrating vector. As per 
Engle and Granger (1987), causality of the 
cointegrated ECM derives either from ECT (if λ 
≠ 0) or from lagged dynamic terms. 

Finally, following Pesaran and Pesaran (1997), 
this study conducts several diagnostic tests 
to estimate the goodness of fit of the chosen 
model specification, including the test for serial 
correlation, functional form, normality, ARCH,1 
and heteroskedasticity. We also look at model 
stability by examining the plot of the cumulative 
(CUSUM) and cumulative sum of square 
(CUSUMSQ) statistics. 

Granger Non-causality Test
This study adopted the Toda-Yamamoto 

(1995) Technique (TY, hereafter) to perform a 
Granger causality test  that is valid irrespective 
of whether a series is I(0), I(1), or I(2), not-
cointegrated or cointegrated with any arbitrary 
order (Menyah and Wolde-Rufael 2010). Co-
integration tests may be sensitive to lag selection 
and omitted variables and may be biased themselves. 
The TY technique specifically avoids pre-test bias 
and some of these problems mentioned. Based 
on augmented VAR modeling, TY implements 
a Wald test statistic that produces an asymptotic 
chi square (χ2) distribution regardless of the order 
of integration or the cointegration properties of 
the variables. The modified Wald test (MWALD) 
restricts the parameters of the VAR (k) where k 

1	 Autoregressive Conditional Heteroscedasticity

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡 = 𝛼𝛼𝛼𝛼0 + 
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is the system’s lag length. The basic principle 
behind the TY method is to arbitrarily augment 
the correct order, k, by the maximum order of 
integration, say d

max
. 

The following equation system is estimated 
to undertake the TY version of the Granger 
non-causality test, for VAR with 2 lags, (k=1 and 
d

max
=1): 

(8)

In Equation (8), A1…A2 are four 4 × 3 
matrices of coefficients with A0 being the 4 × 1 
identity matrix, εs are the disturbance terms with 
zero mean and constant variance. From Equation 
(8), the standard modified Wald tests were applied 
to the first k VAR coefficient matrix to determine 
the direction of Granger causality. The following 
hypotheses were tested:

𝐻𝐻𝐻𝐻01 = 𝑎𝑎𝑎𝑎121 = 𝑎𝑎𝑎𝑎122 = 𝑎𝑎𝑎𝑎123 = 0, 

 

 

𝐻𝐻𝐻𝐻02 = 𝑎𝑎𝑎𝑎211 = 𝑎𝑎𝑎𝑎212 = 𝑎𝑎𝑎𝑎213 = 0, 

 

 

𝐻𝐻𝐻𝐻03 = 𝑎𝑎𝑎𝑎131 = 𝑎𝑎𝑎𝑎132 = 𝑎𝑎𝑎𝑎133 = 0, 

 

 

𝐻𝐻𝐻𝐻04 = 𝑎𝑎𝑎𝑎231 = 𝑎𝑎𝑎𝑎232 = 𝑎𝑎𝑎𝑎233 = 0, 

 

 meaning that 
maximum temperature does not Granger cause 
rice yield;

𝐻𝐻𝐻𝐻01 = 𝑎𝑎𝑎𝑎121 = 𝑎𝑎𝑎𝑎122 = 𝑎𝑎𝑎𝑎123 = 0, 

 

 

𝐻𝐻𝐻𝐻02 = 𝑎𝑎𝑎𝑎211 = 𝑎𝑎𝑎𝑎212 = 𝑎𝑎𝑎𝑎213 = 0, 

 

 

𝐻𝐻𝐻𝐻03 = 𝑎𝑎𝑎𝑎131 = 𝑎𝑎𝑎𝑎132 = 𝑎𝑎𝑎𝑎133 = 0, 

 

 

𝐻𝐻𝐻𝐻04 = 𝑎𝑎𝑎𝑎231 = 𝑎𝑎𝑎𝑎232 = 𝑎𝑎𝑎𝑎233 = 0, 

 

  meaning that 
rice yield does not Granger cause maximum 
temperature;

𝐻𝐻𝐻𝐻01 = 𝑎𝑎𝑎𝑎121 = 𝑎𝑎𝑎𝑎122 = 𝑎𝑎𝑎𝑎123 = 0, 

 

 

𝐻𝐻𝐻𝐻02 = 𝑎𝑎𝑎𝑎211 = 𝑎𝑎𝑎𝑎212 = 𝑎𝑎𝑎𝑎213 = 0, 

 

 

𝐻𝐻𝐻𝐻03 = 𝑎𝑎𝑎𝑎131 = 𝑎𝑎𝑎𝑎132 = 𝑎𝑎𝑎𝑎133 = 0, 

 

 

𝐻𝐻𝐻𝐻04 = 𝑎𝑎𝑎𝑎231 = 𝑎𝑎𝑎𝑎232 = 𝑎𝑎𝑎𝑎233 = 0, 

 

 meaning that 
minimum temperature does not Granger cause 
rice yield;

𝐻𝐻𝐻𝐻01 = 𝑎𝑎𝑎𝑎121 = 𝑎𝑎𝑎𝑎122 = 𝑎𝑎𝑎𝑎123 = 0, 

 

 

𝐻𝐻𝐻𝐻02 = 𝑎𝑎𝑎𝑎211 = 𝑎𝑎𝑎𝑎212 = 𝑎𝑎𝑎𝑎213 = 0, 

 

 

𝐻𝐻𝐻𝐻03 = 𝑎𝑎𝑎𝑎131 = 𝑎𝑎𝑎𝑎132 = 𝑎𝑎𝑎𝑎133 = 0, 

 

 

𝐻𝐻𝐻𝐻04 = 𝑎𝑎𝑎𝑎231 = 𝑎𝑎𝑎𝑎232 = 𝑎𝑎𝑎𝑎233 = 0, 

 

 meaning that 
rice yield does not Granger cause minimum 
temperature; and so on for the other variables.

RESULTS AND DISCUSSION

Unit Root Tests 
In this study, the analysis was begun by 

testing the order of integration for the variables 
used in the analysis. This step is essential since only 
I(0) and I(1) order of integration are applicable 
for bounds testing. Conventional unit root tests 
were applied, including the augmented Dickey-
Fuller (ADF), Phillips-Perron (P-P) and KPSS 
test. Table 2 reports the results of unit root tests 
to rule out if any of the selected variables contain 
an integration order of two or higher. Table 2 
reveals that rainfall and minimum temperature is 

Table 2. Results of ADF, P-P, and KPSS unit root tests

  ADF PP KPSS

Levels 

Lnpyield 0.169(2) –0.835 0.802***

lntmax –2.505(3) –2.095 0.806***

lntmin –5.691***(0) –5.653*** 0.077

Lnrain –6.705***(0) –6.701*** 0.097

First differences 

∆Lnpyield –7.522***(1) –14.300*** 0.217

∆lntmax –8.260***2(0) –27.861*** 0.500

∆lntmin –4.821****(1) –19.002*** 0.179

  ∆lnrain –7.590***(1) –22.188*** 0.099

Notes: ** and *** represent 5 percent and 10 percent level of significance, respectively.
ADF = Augmented Dickey-Fuller; (P-P) = Phillips-Perron; KPSS = Kwiatkowski–Phillips–
Schmidt–Shin

ln rice yieldt
ln t maxt
ln t mint
ln raint

= A0 + A1

ln rice yieldt–1
ln t maxt–1
ln t mint–1
ln raint–1

+ A2

ln rice yieldt–2
ln t maxt–2
ln t mint–2
ln raint–2

ɛln rice yieldtɛln T maxtɛln T mintɛln raint

+
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stationary at level I(0). However, rice yields and 
maximum temperature are non-stationary at that 
level, but these variables are stationary at their first 
differences. Thus, we conclude that the variables 
are of mixed order of integration, i.e., I(0) and I(1). 

Conventional unit root tests have been 
criticized for their low size and power and presume 
away any structural breaks in the series as well. As 
such, the standard unit root tests can fail to test the 
stationarity of series in the presence of structural 
break. Zivot and Andrews (1992) (hereafter, ZA) 
have proposed a unit root testing procedure 
which, under the alternative hypothesis, allows 
one to estimate any structural break in the trend 
function. The order of integration of a series using 
ZA unit root test was therefore tested to account 
for structural breaks; results of the test are reported 
in Table 3.

ZA tests show that rice yields and maximum 
temperature are integrated of order 1 (i.e., I(1)) at 
5 critical level. However, minimum temperature 

and rainfall shows, in order of integration, 
stationarity at the level (i.e., I(0)). The structural 
break in the series of rice yields during 1982 may 
be explained by huge flooding at the time in the 
lower belt of Nepal (Teria), which directly affected 
rice production. 

ARDL Bounds Test
As all the selected variables are integrated 

at I(0) or I(1), bounds testing focuses on the 
rice yields–maximum temperature–minimum 
temperature–rainfall linkage for Nepal. It begins 
by identifying an optimal lag structure, in particular 
the degrees of freedom retained by restricting the 
maximum lag length to one before determining 
the lag structure based on Schwarz Information 
Criterion (SC). Table 5 presents the results of 
bounds testing. If all variables are made dependent, 
the computed F-statistics are 7.03, 7.70, 5.55, and 
7.58, respectively, and each equation exceeds the 
upper critical bound at any conventional level of 

Table 3. Zivot-Andrews structural break unit root test

Varible
ZA Test for Level ZA Test for 1st Difference

T-statistic TB Outcome T-statistic TB Outcome

lnpaddyP –4.123 2011 Unit Root –11.287*** 1982 Stationary

lntmax –3.683 1990 Unit Root –10.849*** 2009 Stationary

lntmin –7.917*** 1981 Stationary –9.096*** 1979 Stationary

lnrain –6.235*** 1995 Unit Root   –12.186*** 1991 Stationary

Note: ***, **, * indicate 1 percent, 5 percent, and 10 percent significance levels, respectively.

Table 4. VAR lag order selection criteria 

Lag Log Likelihood LR Statistic Final Predictor 
Error (FPE)

Akaike 
Information 

Criterion (AIC)

Schwarz 
Information 

Criterion (SC)

Hannan-Quinn 
Information 

Criterion (HQ)

0 232.918 NA 1.66E-10 –11.167 –11.000 –11.106

1 298.089 114.447 1.52E-11 –13.565  –12.729*  –13.261*

2## 316.986   29.498*   1.35e-11*  –13.707* –12.202 –13.159

3 332.174 20.744 1.49E-11 –13.667 –11.494 –12.876

Notes: * indicates lag order selected by the criterion. 
** indicates the LR test (each test at 5 percent level). 
## indicates lag length selection according to SC.
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significance. The results suggest that cointegration 
exists in the rice yields–maximum temperature–
minimum temperature–rainfall linkage for Nepal 
over the sample period 1971–2014.

Long-Run and Short-Run ARDL Estimates
After establishing cointegration in the rice 

yields–maximum and minimum temperature–
rainfall linkage, the results report the long-run and 
short-run estimates of equation (3) in Table 6 and 
Table 7, respectively. Table 6 reveals the long-run 
estimates, which indicate a positive and significant 
relationship between rice yields and rainfall. The 
empirical result implies that a 1 percent increase 
in rainfall increases rice yields by 0.65 percent, 
holding all things constant. However, starting 
with the long-run analysis, both the coefficient 
of maximum and minimum temperatures are 
negatively associated with rice yields but not 
statistically significant. Our findings corroborate 

Maharjan and Joshi (2013) who also found 
that in Nepal, rainfall is significantly associated 
with the paddy production but not maximum 
and minimum temperatures. On the contrary, 
(Poudel and Shaw 2016) found that precipitation 
does not impact on rice yield. However, in the 
case of Bangladesh, Sarker et al. (2012) found that 
rainfall has a positive effect on Aus and Aman rice, 
but an adverse effect on Boro rice.

In the short run analysis (Table 7), only 
the rainfall sources are statistically significant in 
determining rice production. On the other hand, 
a 1 percent increase in rainfall improves rice 
production by 0.45 percent at 1 percent level of 
significance. Considering the error correction 
term, ECT

t-1
, a negative and statistically significant 

correction mechanism for the coefficient error 
implies that deviations from the long-run 
equilibrium are corrected by nearly 70 percent 
in each year. As a summary of the short run, rice 

Table 5. Result of ARDL bounds test

Dependent variable F-stat. Outcome

FlnPaddy P (ln  paddyp| ln t max, ln t min, ln rain 7.029*** Cointegration

Fln T max ln t max | paddyp, ln t min, ln rain 7.701*** Cointegration

Fln t  min (ln t  min | In t max, ln paddyp, ln rain 5.552**  Cointegration

Fln Rain (ln rain | ln t max, ln t  min, ln paddyp 7.582*** Cointegration

1 percent significance level 5.17 6.36

5 Percent significance level 4.01 5.07

10 percent significance level 3.47 4.45

Note: *** and ** represent 1 percent and 5 percent level of significance, respectively.

Table 6. Long run coefficient using the ARDL 
approach, (1, 0, 0, 0) selected based on SIC, 
dependent variable is LnPaddyP

Regressor

Coeff. 
for time 
(trend) 

variable

Std. 
error T-Statistic Prob.

lntmax –1.264 1.069 –1.182 0.245

lntmin –0.123 0.491 –0.251 0.803

lnrain 0.648** 0.246 2.639 0.012

C 6.982* 3.694 1.890 0.067

Note: (***) and (***) represent 1 percent and 5 percent level of 
significance, respectively.

Table 7. Error correction representation of 
ARDL model (1, 0, 0, 0) selected based on SIC: 
Dependent variable is Δ In paddy P 

Regressor

Coef. 
for time 
(trend) 
variable

Std. 
Error t-Statistic Prob.   

∆lntmax -0.884 0.765 -1.156 0.255

∆lntmin -0.086 0.348 -0.248 0.806

∆lnrain 0.453*** 0.119 3.798 0.001

   ECTt-1 -0.699*** 0.145 -4.819 0.000

Note: ***, **, and * represent 1 percent, 5 percent, and 10 percent level 
of significance, respectively.
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production is not affected by the changes in t min 
in the short run.

The estimated ARDL model also requires 
diagnostic testing for robustness. Table 8 reveals 
that there is no serial correlation, which means we 
can reject the null hypothesis at 5 percent level of 
significance as p-value is greater than 0.05.

Similarly, normality of residual and 
heteroskedasticity cannot be rejected in favor of the 
alternative hypothesis. Additionally, the goodness 
of fit of the specification (R2=0.94 and Adjusted 
R2 = 0.92) is very close to unity that is favored 
in econometric analysis. The stability test is the 
last identification related to the goodness of the 
model fit. For this purpose, we conduct CUSUM 
and CUSUMQ tests. As seen in Figure 2, the 
estimated parameters are unstable over time since 
the plot of CUSUM and CUSUMQ test statistics 
fall out within the boundaries, implying some 
instability in the rice yield function. However, the 
plot of CUMUMQ is returned toward the critical 
boundaries, the deviation is only transitory.

Table 8. Diagnostic test of ARDL model

  F-statistic p-value   F-statistic p-value

R-squared 0.894 R-bar-squared 0.879

Serial correlation 0.016 0.901 Normality 0.349

ARCH(1) 0.945 0.337 Heteroscedasticity 1.034 0.412

Ramsey RESET 1.226 0.276
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Figure 2. Plots of cumulative sum of recursive residual and cumulative sum 
of squares of recursive residuals

Toda-Yamamoto Granger Causality Test
To establish the order of integration of the 

series (d
max

) and the optimum lag length (k), the 
next step is to conduct Granger non-causality test 
by augmenting the VAR (k) by the maximum order 
of integration of the series, d

max
. As the emphasis 

of the study was more on the relationship between 
rice yields and rainfall, discussion will focus on 
results about these variables.

Table 9 presents the results of the TY 
(hereafter) Granger non-causality tests revealing 
an interesting outcome—there is a unidirectional 
causality running from rainfall to rice yields. 
However, maximum temperature and minimum 
temperature do not “cause” rice yield, which 
is consistent with the results from the log-run 
test presented in Table 6. This result reveals that 
there is a causal relationship between the climate 
variables and rice yield in the Nepal case. These 
results are also in line with a result for India 
(Farook and Kanan 2016), which concluded 
causal relationship between the climate variables 
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Nonetheless, although initial impact is significant, 
it decreases under the horizons after around 
two years. It implies that global warming is the 
main issue to consider in the variation of rainfall. 
On the other hand, maximum and minimum 
temperatures are negative and insignificant in their 
initial impact. Hence, this result seems to have a 
more robust base on ARDL long-run and Granger 
Causality test results with the Nepal status quo 
previously discussed.

Karn (2014) found, however, that in a 
positive relationship between rice yield–minimum 
temperature, rice yield increases up to a critical 
threshold of 29.9°C. When maximum temperature 
goes beyond this threshold, rice yield declines.

Table 10 encapsulates the generalized 
variance decompositions. The initial impact of 
rice yield on forecast error variance of maximum 
temperature is approximately 3 percent in shorter 
horizons and more than 34 percent in the longer 
horizons—higher than any other variable in the 
system. In all horizons, the impact of maximum 
temperature on rice yield is the highest. However, 
rainfall almost remains the same in all horizons. 
The results based on the rice yield equation 
indicate that maximum temperature accounts for 
more than other variables. These results support 
the previously reported causal relationship 
between maximum temperature, rainfall, and rice 
yield. Overall, these results are robust to findings of 
impulse response functions.

Implications of the Study
As paddy contributes highest in terms of 

production, consumption, and demand of the 
people of Nepal, it has received special focus in 
national planning documents along with major 
plans and policies (Bhandari et al. 2017). To 
encourage farmers toward paddy production and 
growth, the government of Nepal has introduced 
several policies, such as the  Agricultural 
Perspectives Plan (1995); National Agriculture 
Policy (2004); National Seed Vision (2013–
2015); Special Agriculture Production Program 
(since 2012); Agriculture Mechanization Policy 
(2014); and Agriculture Development Strategy 
(2015–2035)  (Devkota et al. 2018). In pursuit 

Table 9. Toda-Yamamoto Granger causality

Effect 
Cause

lnpyield lnTmax lnTmin lnrain

lnpyield – 0.207 0.159 6.128**

lntmax 12.129*** – 0.366 4.946*

lntmin 8.412** 1.186** – 2.909

Lnrain 0.459 1.248 3.263  –

Note: ***, **, and * represent 1 percent, 5 percent, and 10 percent level 
of significance, respectively.

and Rabi rice yields. The same study, however, 
concludes that rainfall does not “cause” Kharafi 
rice yield.  

Generalized Impulse Response Function and 
Variance Decompositions 

A way to test the long-run Granger causality 
relationship among the series is employed via 
the TY process. The results of the tests, however, 
do not consider how variables generally respond 
to innovations in other variables. In order to 
investigate how a shock may affect one variable 
from another variable, and how long the impact 
of innovations in all variables in the system on rice 
yield give useful insight in the short-run, this study 
uses generalized impulse response and generalized 
variance decompositions (Koop et al.1996; 
Pesaran and Shin 1998), which overcome the 
orthogonality problem in traditional out-of-
sample Granger Causality tests. Hence, the study 
estimates a VAR2 system in levels. The generalized 
impulse responses of maximum temperature, 
minimum temperature, and rainfall to one standard 
deviation innovations in rice yield are visualized in 
Figure 3.3

A shock in one of the rainfall variables has a 
positive and significant initial impact on rice yield. 

2	 The estimated VAR(2) system is as below:  
Yt = αy β1Yt-1 + β2 Yt-2 + εyt where Yt = f (riceyieldt, tmaxt, 

tmint raint), αy are (4x1) coefficient matrices, and εyt 

indicates white noise residuals.

3	 For simplicity, the responses of some variables are 
omitted, which are available from the author upon 
request.
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Figure 3. Generalized impulse responses of t max, t min, and rain to rice yield

of food security, it has also introduced important 
programs and guidelines such as the Mega Rice 
Production Program, and the Fine and Aromatic 
Rice Production Promotion Program and Prime 
Minister Agriculture Modernization Program 
(PMAMP). Under the PMAMP, the government 

Table 10: Forecast error variance decomposition 
for rice yield

Period S.E. Rice 
Yield t max t min rain

1 0.082 100.000 0.000 0.000 0.000

2 0.085 96.355 2.498 0.038 1.110

3 0.098 77.984 6.619 14.488 0.909

4 0.103 72.802 8.381 17.925 0.892

5 0.111 63.201 14.994 21.024 0.781

6 0.117 57.074 18.423 23.799 0.704

7 0.123 51.499 23.505 24.361 0.634

8 0.129 47.364 27.291 24.739 0.607

9 0.134 43.877 31.077 24.456 0.590

10 0.138 41.120 34.177 24.099 0.604

of Nepal envisions a commercial agriculture with 
specialized production center development (also 
known as pocket areas). Under this scheme, blocks 
will be developed based on their commercial 
feasibility, 24 blocks of 100 ha each, 5 zones 
covering 500 ha each, and 1 super zone covering 
1,000 ha. The project aims to make the country 
self-reliant in rice in three years. Under this project, 
the super zone for rice is being implemented in 
Jhapa District (Bhandari et al. 2017). Also, there 
are more than five dozens of food grain-related 
periodic projects launched by the government 
of Nepal in the different time periods with the 
principal aim of strengthening research and 
extension for the development of the agricultural 
sector. 

To implement the government’s plan and 
policies, several government and international 
governmental organizations such as the Nepal 
Agricultural Research Center or NARC, 
Local Initiatives for Biodiversity, Research and 
Developments or LI-BIRD, Forum for Rural 
Welfare and Agricultural Reform for Development 
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or FORWARD, and the International Rice 
Research Institute or IRRI have been involved 
in paddy production in Nepal. At the educational 
level, the Institution of Agriculture and Animal 
Sciences and the Agriculture Forest University 
are providing academic research, experimental 
areas, and other teaching-learning support to the 
students (Devkota et al. 2018). 

In 2018, the paddy super zone and paddy 
blocks have been established in Jhapa and the 
rice zone program has been implemented in 
Kapilavastu under PMAMP. The main aim of 
declaring such zones is to increase the production 
and productivity of rice by supporting necessary 
technology, inputs, mechanization, processing, and 
marketing. Unfortunately, paddy production in 
Jhapa district’s paddy super zone and paddy blocks 
failed to meet expectations of many due to low soil 
quality, floods, and irregular rain (Rajbanshi 2018). 
It requires further actions from the government to 
recoup the huge expenditures incurred. 

Despite all the efforts, the result has not been 
as planned. Moreover, the recent phenomenon 
of the stagnant or even declining yields, land 
degradation, and environmental pollution has raised 
concern regarding the long-term sustainability of 
increasing productivity (Joshi 2017). In light of all 
these, the results of this research could help explain 
why climate anomalies restrict rice production in 
Nepal. These results will be a primary input for 
those institutions planning and developing policies 
for Nepalese rice production and sustainability. 

CONCLUSION AND RECOMMENDATION

The study finds a positive rice yield–rainfall 
nexus both in the short-run and the long-run. 
These results are consistent with the view that 
the technique and composition effects capture 
long term adjustment, such that rainfall does cause 
paddy productivity in the long-term. 

On the other hand, the findings suggest a 
negative but statistically insignificant relationship 

between both minimum and maximum tempe-
ratures with rice yields.  This study notes that 
the current average maximum temperature for 
the decade of 1999 to 2008 is already 30.8°C. 
Thus, it is expected that rice yields are already 
being negatively affected by increases in the daily 
maximum temperature.

Research on sustainable agricultural 
development shows the avenues to explore the 
long-term relationship between climate change 
and cereal production in a mountainous economy. 
Rice grows in a very wide climatic area where 
the cultivation conditions greatly vary. Moreover, 
higher yield, better grain quality, and stronger stress 
resistance are important goals of grain production 
everywhere. Adaptation strategies for increasing 
rice productivity in future environments will have 
to integrate these rice characteristics into one 
ultimate target. Improving rice quality without 
sacrificing high yield and pest resistance could 
be a major challenge for scientists. The above 
recommendation should be helpful as policy input 
to Agriculture Development Strategy 2015–2035, 
and the PMAMP being implemented in Nepal.  

Limitation of the Study and Further Avenues
Other than temperature and rainfall, other 

rice production-related variables such as land 
area and production-related variables that have 
been established by previous studies as significant 
explanatory variables of rice yield can be included 
in further econometric analysis. Furthermore, the 
extension would vary depending on other variables 
like soil type, soil quality, farm management, and 
scale/area of operation. Including such variables 
can clearly isolate the effects of each of these 
variables on rice yield and determine the specific 
elasticities with the maximum and minimum 
temperatures and rainfall. While acquiring data 
for such variables is challenging in the Nepalese 
context, such study would be novel in terms 
of being the first of its kind for a mountainous 
country like Nepal.
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