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Abstract

NEV PROCEDURES IN MODELING RISK: NIHIL NOVUM SUB SQL EST

An important issue in risk management is how to model random events. 
This

study highlights two alternatives in current literature which allows 
for the

modeling of nonnormal correlated random deviates. First, the paper presents the

transformation to normality approach focusing on its uses in pooling 
yield

variability. Second, the study examines the possibility of using a multivariac
e

inverse Gaussian distribution function. The two marginal distributions of corn

yields for Holmes county are then used to discuss the empirical 
implications of

each approach.

keywords: nonnormality, correlation, risk, inverse hyperbolic sine, 
inverse

Gaussian



NEV PROCEDURES IN MODELING RISK: NIHIL NOVUM SUB SOL EST

An important research issue in risk management involves how to model random

events. Traditionally, economic analysis has focused on mean-variance analysis

of random events. Undoubtedly, the use of mean-variance analysis is linked to

two considerations. First, the normal distribution is easily quantified and

possesses a well defined multivariate form. Second, mean-variance analysis is

consistent with expected utility under certain assumptions (Freund, Kroll, Levy

and Markowitz, and Meyers). However, certain facets of decision making under

risk may be inadequately modeled by normality, such as the probability of

bankruptcy or the value of insurance. Therefore, some effort has been expended

in agricultural economics in the area of modeling nonnormality.

The purpose of this paper is to discuss some new approaches to modeling

random events for risk analysis. However, the primary approach to be discussed

brings into focus a portion of this paper's title Nihil Novum Sub Sol Esc chat

translates to "nothing is new under the sun." Specifically, this study examines

a transformation of random variables approach used by Moss et al. to model

cotrelated nonnormal yields. However, a recent literature review revealed that

neither the concept of transforming random variables to normality nor the

multivariate context applied by Moss et al. is unique. Specifically, using

transformations to model nonnormal bivariate distributions was proposed by

Johnson (1949a) who built on previous work by Edgeworth, Charlier and Rietz. In
7

keeping with the venue of this presentation, however, this manuscript will

discuss how the rediscovered concept of transformations can significantly aid in

modeling nonnormal, correlated random deviates. The second "new" method

presented involves the use of nonnormal multivariate distributions.
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Specifically, the study will present a slight reformulation of :he inverse

Gaussian distribution.

Transformation to Normality

The first procedure presented for modeling nonnormality involves using a

transformation function to transform nonnormal random variables to normal random

variables. The general game plan is to use the transformation to model skewness

or kurtosis while relying on the multivariate normal distribution to model

correlation in the transformed random variables. The problem of modeling

nonnormal random variables is not new to the profession. Several authors have

fit univariate densities such as beta or gamma distributions to agricultural data

(e.g., Nelson and Preckel). However, modeling nonnormal correlated random

deviates has been more problematic.

Historically, Richardson and Condra, King, and Taylor (1990) have proposed

procedures for simulating correlated nonnormal variables. Richardson and Condra

suggest using the observed errors from the trend line regression in modeling the

ndnnormality. Specifically, a regression is estimated for each lquation,

correlation matrix is computed from the estimated residuals of each k
1uation, and

the estimates are used to construct an empirical cumulative probability

distribution function. King proposes a similar- approach in ARMS (King et al.).

ARMS allows the producer to enter yield and price distributions using various

options. After entering the marginal distributions, the producer is asked to

supply a correlation matrix. Nonpormal correlated random deviates are then

correlation matrix, computing the cumulative probability for these correlated

liedsimulated by drawing correlated standard normal variables using the user supplied

correlation

1

_
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standard normal draws, and then transforming the cumulative probabilities back

to the marginal distributions.

One weakness of :he King and Richardson and Condra approaches is the

separation of the nonnormality components from the correlation components of the

distribution. Put another way, there is little interaction between the

parameters that control nonnormality and the parameters that control correlation.

To further examine this problem, consider the approach used in Taylor (1990).

Taylor proposes fitting a sequence of conditional distributions for random

variables based on the nonnormal transformation he proposed in Taylor (1984).

Specifically, the distribution of the first variable estimated is identical with

a marginal distribution. The second distribution is then fit conditional on the

first distribution, and so on. Although this approach is fairly flexible, it may

be sensitive to ordering. However, the interaction between random variables and

their respective nonnormality is considered in the estimation.

Because of the similarity in names, a brief discussion of the difference

between Taylor (1984) 's inverse hyperbolic tangent transformation and the inverse

hyperbolic sine transformation presented in Moss et al. also the other

transformations suggested by Johnson may be instructive. *Taylor noted that the

hyperbolic tangent resembles a cumulative probability density function with the

exception that it approaches -1 as x approaches minus infinity and one as x

approaches infinity as shown in. Figure 1. Therefore, he defined a transformation

(1)f(x)=.54.5*tanh(x).

This transformation results in a valid cumulative probability density function

in that it is monotonically increasing and bounded between zero and one. The

transformed hyperbolic tangent function is compared with the cummulative normal
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density function in Figure 2. Taylor then proposes to estimate a mapping

function (g) that maps yields into x based on an arbitrary function

f (x) = .5+.54.tarli-1(x)
(2)

x= g(y, z)

where y is a vector of observed yields and z is a vector of inputs.

Taylor's approach is different than the general approach used by Johnson

(1949b). Specifically, Johnson relies on the general result that

I  drt (y)  I
(3) f dyy(Y) If x(g-1 (7) )

where f7(y) is the marginal distribution of y, f(x) is the marginal distribution

of x, and g(x) is a function that transforms x into y. In other words, a random

variable can be transformed into another random variable with a well defined

distribution. Two co=on examples are the chi square distribution as the square

of the normal distribution and the Box-Cox transformation. However, the chi

square distribution is not strictly applicable because g(x) in equation (3) 
must

be a monotonic mapping.

The general approach of Johnson as described by Slifker and Shapiro was 
to

define alternative functions k(x; A , e) that transform a nonnormal random variable,

X, into a standard normal random variable. Specifically, the goal is to create

a variable, z, that is distributed standard normal by

(4) zity+iiki(x;1,E)

where 7 is analogous to the mean. of the normal distribution and is the standard

r_
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t_

deviation of the transformed variable. As described by Slifker and Shapiro,

there are three general forms of this transformation

(x; e) =sini).-1(

(5) 41C2 (X; /1 e) =

k3 (x; e) .1n(

X-E\

X

the k1 distribution is typically referred to as the Su distribution, the k2

distribution is referred to as the SB distribution, and the k3 distribution is

called the St distribution. The SL distribution is generically known as the

lognormal distribution. Thus, modeling a nonnormal random variable entails

choosing 7, q, A, and e to maximize the likelihood function defined by equation

(3).

The extension of this transformation to the bivariate case is given by

Johnson (1949a). Specifically, Johnson proposes a bivariate normal defined as

(6)

4

zitayl+Tilki(xL;)1.,c)

z2ay2+thici(x2;12,E.2)

1 
zi-Zpz,z2+z)

/2s: (1-p2) 2 1-p2

where f(.) is the joint probability density function for z1 and za which

determines the distribution of xi and x2. In equation (6), p is the correlation

148
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coefficient between the two transformed random variables. 
Using this framework,

Johnson defined ten different prObability surfaces.

3urbidge et al. reformulated Johnson's univariate inverse 
hyperbolic sine

transformation in a way that yields normality as a specia
l case.

3urbidge et al.'s inverse hyperbolic sine transformation i
s

in (ex+Ve2x2.1)
a

which is equivalent to Johnson's transformation such that

a
(8)

1
76

Specificall y,

applying L'Hopital's rule to this transformation as 9 approaches 
zero yields a

straight line. Therefore, the normal distribution is a special case of 
inverse

hyperbolic sine (see Ramirez at al. for further details). 
Unfortunately,

Burt?idge et al.'s formulation introduces a specific form of 
heteroseedasticity.-

Ramirez proposed to circumvent this problem by transforming the 
deviations from

the regression rather than the dependent variable itself. 
Following this

procedure, Moss et al. model nonnormal correlated. trends over time 
using an

inverse hyperbolic sine density function
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-

1 , frf 1
2 2II (2.4-v„Oi)

2 - /i=2.

/
vt

(9)
Z= ln(v2,02-V 6 '4)/62

vt:=Y,-(a+pc)

where Oi controls the kurtosis on variable i, Ai controls the skewness in

conjunction with ei, 0 is the correlation matrix for the transformed random

variables, zt is a vector of transformed (normally distributed) random variables,

vt is the vector of deviations from the trend line, and a and A are parameters

used to specify the trend line. Moss et al. show how this *formulation can be

used to represent correlated nonnormal corn, soybean, and wheat yields over time

in, the southeastern United States.

From an operational perspective the inverse hyperbolic sine formulation

presented in equation (9) can be estimated by maximizing the natural log of the

likelihood function. Moss et al. suggest using ordinary least squares estimates

as initial values in an iterative maximum likelihood procedure. The formulation

allows for examination of other stylized facts about risk. Specifically, we

typically hypothesize that yields become more normal as they are aggregated over

regions. Another way to pose this question is by looking at the pooling

properties of yields within the inverse hyperbolic sine framework.
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Corn yield data for Holmes, Okaloosa, and Walton counties were collected

for 1961 to 1989 (1986 data were missing, these data are presented in the

appendix. Following Moss et al., corn yields where detrended using ordinary

least squares and a linear trend. The residuals where then tested for normality

using the parametric procedures described in Spanos. These results (Table 1)

indicate that corn yields in Holmes and Okaloosa counties may be nonnormal while

:orn-yields in Walton county cannot be distinguished from normality. Next, the

multivariate distribution depicted in equation (9) was estimated allowing corn

yields in Holmes and Okaloosa counties to be nonnormal while restricting yields

in Walton county to be normal. These results are shown in Table 2.

The results in Table 2 indicate that the estimate of and A in the Holmes

equation have fairly large standard deviations. Given this, one approach is to

see whether the 9 and p parameters in the Holmes and Okaloosa equations can be

pooled. Pooling would allow for additional information to be focused on the

nonnormality. parameters. As a first step, the two nonnormality parameters where

restricted to be the same. This estimation resulted in a log likelihood of

246.04. compared with a log likelihood of 215.49 in the unrestricted case. This

implies a likelihood ratio statistic of 1.10 which is distributed x(2)2. At this

stage, we noticed that the intercept on the time trend and the own variance were

also close. .These results where not obvious from Table 2 since both the mean and

Variance are functions of 8.2 Therefore, a seconct set of restrictions where

imposed to restrict the intercept and variance to be equal across equations.

These results are reported in Table 3. In general, the log likelihood function

for estimation after imposing all four restrictions was 216.33 yielding a

likelihood ratio test of 1.68 which is distributed X(4)2• Thus, the pooling of

the four parameters cannot be rejected at any conventional level: of significance.

F
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In addition to comparing the likelihood of the unrestricted parameters to

the restricted parameters, another interesting comparison is to examine how the

pooled parameters compare with average state yields. Specifically, the test for

skewness and kurtosis indicate that the hypothesis that the deviations of state

average corn yields from the trend are normal cannot be rejected with any degree

of confidence. In addition, a region average was created by weighting the per

acre yields in.Holmes, Okaloosa, and Walton county by number of acres in each

county and the residuals were tested for normality. Again the hypothesis could

not be rejected. Hence, there is some preliminary evidence to suggest that

aggregation eliminates nonnormality from the sample. •

In addition to changes in the nonnormality parameters, the pooling of

county level data also lets us examine changes in the variance of corn yields.

The results indicate that the state level yields are normally distributed with

a variance of 62.35 bushels squared. The data aggregating county yields by the

number of acres indicates a slight increase invariance to 66.90 bushels squared.

Table 2 indicates that the Walton county's variance on corn yields was 65.55

bushels squared before pooling. The variance declines to 64.95 bushels squared

after pooling is depicted in Table 3. The variance for Holmes and Okaloosa

counties decline from 136.31 and 168.48 respectively before pooling to 155.96

after pooling. These variances are computed using the variance derivation under

the inverse hyperbolic sine transformation from Ramirez.

In general Johnson's formulations are useful and well behaved. However,

they are not exhaustive. Specifically, the requirements for an inverse mapping

as presented in equation (1) are a one to one mapping so that the inverse

function is well defined. As an area for future research, we suggest a flexible

third order Taylor series expansion. For example, in the simplest form a third
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order polynomial could be fit as a transformation function with the 
restriction

that the first derivative is always positive. Another alternative would be to

estimate a cubic root. The implications of these transformations could be

defined in terms of skewness and kurtosis and may yield more flexible 
results

than the three transformations. suggested by Johnson.

Other Multivariate Distributions

Another approach for modeling agricultural risk is to use other

distributions that have well defined multivariate forms. This study 
presents one

such alternative called the inverse Gaussian distribution as described by

Chhikara and Folks. Like the Burbidge et al. formulation of the inverse

hyperbolic sine the inverse Gaussian distribution must be reformulated 
to avoid

very specific heteroscedasticity implications. Similar reformulations will be

required of many multivariate distributions.

The univariate inverse Gaussian probability density function can be

expressed as

(x- )2),A,0
2µ2x

where x is a random variable, and A and p are parameters of the 
distribution.

Unlike the inverse hyperbolic sine as reformulated by Burbidge et al.,
the

inverse Gaussian distribution has no parameterization for the normal

distribution. The A parameter is the expected value of the distribution.

addition, the second, third, and fourth central moments of the distribution

given by Chhikara and Folks as

In

are

I __
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3

(11)113=32-

.15-a7-4-3-a-6-
13 12 •

Even though the distribution funAion does not have the normal distribution

function as a special case, if A/A becomes large the inverse Gaussian

distribution approaches a normal distribution function.

The next step was to model corn yields in north Florida as a. function of

time. This required reformulation of the inverse Gaussian function distribution

function. Specifically, Chhikara and Folks present an unbiased estimator for a

and A, which in this study are the constant and slope of the linear trend

respectively, in which µ varies overtime. Relying on the representation of the

central moments presented in equation (11), this would imply that the higher

moments are also a function of time. As an alternative, this study proposes a

transformation such that the "residuals" from the regression are distributed

inverse Gaussian. Specifically, the probability density function becomes

4 ( a 413 t) 1-102  )
2µ2[3,-(cc4fir))

Initial values are computed estimated by assuming that a and 15 are both zero.

Table 4 presents the maximum likelihood estimates of a, A, A, and A for Holmes

and Okaloosa counties. We attempted to estimate corn yields in Walton county

1 514
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using the modified inverse Gaussian, but the distribution was c
lose enough zo

normality to cause difficulties.

Figure 3 depicts the estimated distribution given the inverse 
hyperbolic

sine distribution and the inverse gaussian distribution for Holmes count
y. Both

distributions are positively skewed. However, the inverse hyperbolic sine

distribution has a positive probability for yields below 23 bushels per 
acre.

The inverse Gaussian distribution, on the other hand, has a zero probabi
lity for

yields less than 23 bushels per acre. This difference along with inability of

the inverse Gaussian to model negative skewness will probably limit its

applicability to agriculture. However, comparing the difference in probability

between the inverse Gaussian and the inverse hyperbolic sine in Figure 3 
shows

that the actual probability mass between 23 bushels per acre and 0 bus
hels per

acre is quite small. Thus, this problem is the least damning.

Finally, the multivariate form of the inverse Gaussian distribution 
first

presented by Wasan is

f (y1,3,2, • • •yp)
(13)

(27) 
21. 

1112-13  

11

a

Yi (Y2 -YI) 3***

1 -  Ai (3",-111) 2 12 (72-71-142) 2 lp (Yp-Tp-1. -11P) 2 

2gyt - 2y 2y

Our suggestion is to transform this distribution function such that y is 
the

"residual" from the time trend as presented in equation (12) in the 
univariate

case.

Summary, Conclusions and New Directions

•
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This paper presented two approaches to modeling random events that are new

to the agricultural economics literature, although they are not new to the

statistics literature. First, we presented an overview of the transformation of

random variables approach presented by Moss et al. This approach allows the

researcher to jointly model trends, nonnormality and correlation. Historically,

Johnson proposed three transformations to normality one of which, the lognormal,

is quite familiar, to agricultural economists. The two other distributions, the

inverse hyperbolic sine distribution and the Su distribution have not been widely

utilized by agricultural economist. Moss et al. show that the inverse hyperbolic

sine has the desirable property that the normal is a special case. A similar

special case may exist for the Su distribution, but is not likely for the

lognormal distribution. However, legitimate transformations are not limited to

the three proposed by Johnson. Any one-to-one mapping could be used to transform

random variables to normality.

To provide evidence of the potential usefulness of this transformation

function approach, the study demonstrated how the inverse hyperbolic sine could

be used to pool data across counties. Specifically, by restricting the

nonnormality Parameters for different counties to be the same it is possible to

focus more information on those characteristics controlled by those parameters.

Hence, it is possible to increase the precision of the estimate. In addition,

our results indicate that aggregation may eliminate nonnormality from the sample.

Finally, this study examined the use of other multivariate distribution

functions in modeling nonnormal correlated random deviates. Specifically, we

presented a reformulation of the inverse Gaussian distribution similar to

Ramirez. The reformulation transforms the distribution to a homoscedastic form

as opposed to a very specific form of heteroscedasticity imposed by the original
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formulation. Lastly, the multivariate formulation of the inverse Gaussian is

presented in an untransformed formulation.

t

4
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Endnotes

1. Originally, Burbidge et al. proposed to transform the dependent variable

of the regression so that yt was distributed inverse hyperbolic sine the

mean of the transformed deviation being xt„3. Ramirez points out that this

transformation implies a variance of

V(7,) =(Exp(262a2) -Exp (620'2))
•Exp (26x...f3) +Exp ( -28x:13))+2(Exp (02a2) -1) 44,821.

Notice that the variance of the distribution depends on xtj5 which is by

definition heterosceciastic. Under Ramirez' reformulation, only the error

from the regression is distributed inverse hyperbolic sine. A constant ;4

becomes the mean of the transformed residuals so that homoscedasticity is

imposed.

2. Given that the residuals from the trend are distributed inverse hyperbolic

sine, the expected residual given 9 and A is

Eke]  
--1132ci2 Exp(eµ) -Exp(-610j1

28

4-

1 6 1



Table 1: Tests for Normality in Corn Yields in Selected Counties in

North Florida.

Parametric Tests for Normalitya

County Skewness Kurtosis Joint Test for Likelihood Ratio

Skewness and Test of IHS
Kurtosis Transformation

Holmes 3.91 7.15 9.70 5.81

(.94)b (.93) (.01) (.05)

Okaloosa 5.78 2.93 - 8.50 5.21

(.99) (.72) (.01) (.07)

'..7alton -3.78 0.07 2.45 0.08

(.06) (.51) (.29) (.96)

aThe parametric tests given by Spanos are derived by Bera and Jaque. These

tests compare the observed distribution against a general Pearson
distribution. The skewness and kurtosis statistics are normal, or two
tailed tests, while the joint test for skewness and kurtosis is a one

tailed test.
bNumbers in parenthesis indicate confidence levels

Table 2: Multivariate Representation of Corn Yields in North Florida
Using the Inverse Hyperbolic Sine Transformation.

Nonnormality . Time Trend Transformed Covariance
Parameters Parameters Parameters

County 0 A a 0 (At Imes 4tka1oosa cAoialton

Holmes 3.24 1.44 23.951 -0.02 0.03 0.87 0.53

(2.81)a (0.97) (1.13) (0.10) (0.06) (0.86) (0.53)

Okaloosa -0.09 11.18 27.42 0.67 43.71 35.97

(0.02) (0.97) (1.00) (0.12) (1.07) (1.05)

Walton • - - 37.56 0.67 65.55

(0.98) (0.10) (1.07)

aNumbers in parenthesis denote asymptotic standard errors.
— 



Table 3: Restricted Multivariate Representation of 
Corn Yields in North

Florida Using the Inverse Hyperbolic Sine T
ransformation.

Nonnormality
Parameters

Time Trend
Parameters

Transformed Covariance

Parameters

County 0 a `').11o1zaes 4')Cka1oosa WWaltan

Holmes -0.10 11.05 26.89 0.04 34.68 14.97 30.05

(0.04)a (5.42) (8.09) (0.15) (22.45) (11.09) (13.49)

Okaloosa -0.10 11.05 26.89 0.67 34.68 31.24

(0.04) (5.42) (8.09) (0.16) (22.45) (13.23)

Walton - - 37.40 0.67 64.95

(2.82) (0.16) (18.19)

aNumbers in parenthesis denote asymptot
ic standard errors.

Table 4: Estimated Distribution of Corn Yields Using the 
Modified

Inverse Gaussian Distribution Function.

County

.Distribution Parameters Time Trend Parameters

A a is

Holmes

Okaloosa

51.58

(51.06)a

456.54

(621.55)

19.28

(4.97)

39.88

(16.47)

23.46

(5.07) .

1.15

(17.29)

*Numbers in parenthesis denote asymptotic standar
d errors.
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Figure 1 Hyerbolic Tangent Function
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Figure 2: Transformed Hyperbolic Targen Versus

the Cumulative Normal Density Function
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Figure 3: Comparison Between Inverse Gaussian

and tne Inverse HyperOolic Sine for Corn YielaS

in Holmes County
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Appendix: Corn Yields for North Florida

YEARS HOLMES OKALOOSA WALTON STATE WEIGHTED
YIELD

61 34 34 35 35 34.27

62 36 35 36 37 35.81

63 39 38 :38 40 38.58

64 29 35 33 29 30.83

65 45 49 41 44 44.59

66 44 48 40 43 43.60

67 46 54 52 50 48.66

68 36 45 41 57 39.25

69 32 37 37 39 34.90

70 33 33 27 25 29.45

71 42 75 54 49 52.82

72 50 50 56 46 52.90

73 45 50 48 43 46.98

74 40 57 51 48 47.22

75 36 55 40 45 41.48

76 50 90 55 60 63.75

77 32 34 36 35 33.76

78 41 56 40 .52 46.40

79 50 60 46 53 52.49

80 35 59 55 47 47.66

81 55 80 60 55 64.17

82 55 55 60 66 55.95

83 55 50 60 67 55.00

84 44 60 50 65 47.67

86 30 70 65 62 51.30

87 50 65 65 69 59.22

88 30 50 40 58 40.00

89 85 55 65 74 68.57
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