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Nonlinear Dynamics and Economic Instability:
The Optimal Management of a Biological Population

Jean-Paul Chavas and Matthew Holt

Assuming a competitive market, conditions are determined for when a steady-state equilib-
rium does not exist in the optimal dynamic management of a biological population. Irregular
and unpredictable behavior (called "chaos") can arise from fully rational economic decision
making. High interest rate, adjustment costs, and an inelastic demand can contribute to
market instability.
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Introduction

Much research has focused on the economic instability' of agricultural markets (e.g.,
Cochrane; Newbery and Stiglitz). Instability is a relevant topic given that most agricultural
economists believe that a primary justification for government intervention in agriculture is
to reduce instability (Pope and Hallam). Yet, agricultural instability remains poorly under-
stood. Agricultural markets are clearly subject to exogenous shocks that affect food prices
in unpredictable ways (e.g., weather effects). If farmers are risk averse and risk markets are
incomplete, then competitive agricultural markets likely generate an inefficient allocation
of resources (Newbery and Stiglitz). However, Newbery and Stiglitz's approach is basically
static and neglects the role of dynamic adjustments. Cochrane's analysis of unstable
agricultural markets relies on a cobweb analysis that reflects biological lags in the production
process. Cochrane pointed out that supply and demand elasticities influence the dynamic
path of market prices. He stressed that the inelasticity of food demand contributes to the
instability of agricultural markets. Unfortunately, Cochrane's cobweb model assumes that
farmers base their production decisions on lagged market prices. Such price expectations
are not consistent with the rational expectations hypothesis. This raises the question: can
market instability be generated dynamically by fully rational participants in competitive
markets?

Most economists believe that market prices are regular and predictable. This regularity
is often seen as a consequence of optimizing behavior by economic agents. For example,
intertemporal arbitrage incentives tend to smooth the dynamic path of optimal resource use
over time. Assuming the system being studied is stationary, this behavior can contribute to
the convergence toward a steady-state equilibrium. Optimizing behavior, however, does not
always lead to a steady-state equilibrium. The possibility of the optimal dynamic path

Respectively, professor of agricultural economics, University of Wisconsin, Madison, and associate professor of agricultural
and resource economics, North Carolina State University, Raleigh.

This research was supported in part from a Hatch grant from the College of Agriculture and Life Science, University of
Wisconsin.

The authors thank two anonymous reviewers for useful comments made on an earlier draft of this article.
Throughout the article, the term "instability" is meant to characterize any situation that is not constant over time and not

fully predictable ahead of time.



Journal of'Agricultural and Resource Economics

converging to a limit cycle is well documented (e.g., Benhabib and Nishimura; Clark;
Boldrin and Woodford). Irregular and unpredictable market equilibrium can arise without
exogenous or stochastic shocks. Such irregular patterns are called "chaos" (e.g., May;
Benhabib; Day and Chen; Hao; Li and Yorke; Grandmont). Chavas and Holt show that the
management of the U.S. dairy he d rd can lead to a chaotic market equilibrium. However,
Chavas and Holt used decision rules thas wreaot derivted undett eriur rational expectations nor
optimizing behavior. Yet, chaotic dynamic paths are possible under optimal management
(e.g., Deneckere and Pelikan; Boldrin and Montrucchio; Benhabib). Since chaotic paths
correspond to situations of economic instability, this suggests a need to investigate further
when chaotic behavior can be the outcome of the dynamic optimization of resource flow
from biological populations.

This study determines when the optimal management of a biological population under
competitive market results in a steady-state equilibrium, limit cycle, or chaos. Although
much progress has been made on understanding economic dynamics in managed animal
populations (e.g., Clark; Rosen), the dynamics of the associated market equilibrium are still
not well understood. Rosen has presented a model of competitive market equilibrium in the
dynamic management of a biological population. His research, however, is based on a simple
model which assumes a linear-state equation and constant return to scale technology. These
assumptions imply that market equilibrium necessarily leads to the existence of a steady
state (Rosen, p. 550). In this article, we show that relaxing these stringent assumptions can
have significant impacts on the nature of long-term equilibrium. We investigate optimal
dynamics without imposing global concavity of the objective function, an assumption
commonly made in previous research (e.g., Deneckere and Pelikan; Boldrin and Montruc-
chio). We provide empirical examples illustrating how limit cycles as well as chaos can arise
as the outcome of optimizing behavior and market equilibrium. These results are obtained
in completely deterministic models, implying that (stochastic) uncertainty is not necessary
for the investigation of market instability. We show that such complexities in the nature of
long-run equilibrium can arise even in a simple model involving a single state variable. We
caution that our results do not mean that optimal behavior is necessarily chaotic; rather, they
warn us against the danger of assuming that optimizing behavior always leads to a regular
and predictable market equilibrium. Our analysis shows how irregular and unpredictable
behavior can arise from rational economic decision making. It provides new insights into
the possible causes of market instability.

The Model

Consider a population where the state variable x, denotes the number of population members
living at time t. We assume that x, E X, where X= [0, H] is a convex and compact subset of

HI+, H being a positive scalar. The natural evolution of the population over time is given by
the state equation x,+ =j(x,), where f(x,) is a continuous function from Xto X. The function
fix,) is not necessarily concave everywhere. Indeed, in population growth, the function J(x,)
is typically concave for large values ofx but may be convex for small values ofx (e.g., Clark,
p. 17).

The population is assumed to be manageable. The management decision is to choose how
many population members to harvest (i.e., to remove from the population) at each time

I2 n the absence of a steady-state equilibrium, a variable x, exhibits a limit cycle if it eventually reaches a regular cycle such
that x, = x,+k as time / becomes large, k denoting the period of the cycle.
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period. Let mt denote the harvest rate at time t. Then, under management, the dynamics of
the population is given by the following state equation:

(1) xat+ = f(x t) - mt .

We focus our attention on the simple case where benefits from the animal population
come only through the harvest variable m,. At time t, the demand for m, is specified in
price-dependent form as:

Pt = p(m ) O,

where p, is the market price at time t, and p(mn) is a continuous, decreasing function of the
harvest, m,. The social benefits generated by the demand p(mt) at time t are given by:

D(mt)= p(q)dq < oo,
o

where the marginal benefit of consumption is equal to the market price: OD(m) m, =

p(mt)= p,.
The management of the animal population is assumed to be costly. At time t, the cost of

choosing a harvest level mt given an animal population (x,x , x ) is denoted by C(x,,x+ ),
where C(x,,xt+, ) is a continuous, bounded function from Xx X into 9R.3

Assuming that the cost and demand functions are stationary over time, consider the
optimal management of the animal population. The net social benefit from the animal
population at time t, Bt, can be measured as consumer surplus net of production cost:

MIt

(2) Bt = p(q)dq- C(x,,xt, ).
o

Given an infinite planning horizon, optimal behavior corresponds to:

00

(3) V(xo) = max[ 3 tB, : equations (1) and (2), x, e X]
X, lie I=0

n 11I

=max[ P'[ fp(q)dq - C(x,, xt+,)]: equation (1), x, E X]
x11=O

f(.V )-Xt +

= max[Z3'[ Jp(q)dq-C(x,,x,±,)]: x, X],
1-o0 t

3 More generally, the cost function could be written as C(x,, x,+l, in,). Hlowever; this reduces to our specification after
substituting (I) for mn to give C(xt, x,+l, (x,)-x,,), which depends only on xt and x,+i. Alternatively, our specification can be
rationalized if the cost function takes the form Cl(x,, xt+, mn) = C(r,, x,+l) + Co(lnl), where C(x,, x,t+) denotes the cost of
managing the biological population, and C0(m,) is the cost of marketing the product in,. In this case, if po(n,) denotes the
consumer demand function, then p(n = o() - C n would bethe derived demand function, i.e., the consumer demand
function net of the marginal cost of marketing the product in, to the consumer.
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where x = (x,, x2, . . .); mn = (mo, ml, . . .); and P is the discount factor, 0 < p < 1.Under
differentiability and assuming an interior solution, the first-order necessary condition for an
optimum with respect to x, in equation (3) is

aj; ac, I ac
(4) p, -I [- + p,,]=O forx, intX,

Ax, ax, P3 x,

where p, =p(m,);f = f(x,);C, = C(x,,xt+);m, =f(x,)-x,,; t= 1,2,3, ... ; and "int X'
denotes the interior of the set X. Equation (4) characterizes the dynamics of optimal
management of the animal population x,. It also represents the dynamics of competitive
market equilibrium, where p, is the competitive market price. Thus, model (3) provides a
framework for analyzing the dynamic behavior of rational agents facing a competitive
market under perfect information.

Using backward induction of dynamic programming, equation (3) can be alternatively
expressed in terms of Bellman's equation as:

/'( x, )-x1 +1

(5) V(x,) = max[ J p(q)dq-C(x,, x,+)+ V(x,+)]

= max [U(x, xi) + (x,+ )],
X,1+ E 1 x

where V(x) is the optimal value function and

f(x) )-x,

(6) U(x, ,, ) = f p(q) dq - C(x,, x,),
o

for all t, t = 1, 2, .... We assume throughout the article that U(x,, x,,) in (6) is a bounded
and continuous function of (x,, x,+,) E Xx X. From Weierstrass theorem, the compactness
of X then implies that the optimization problem (3) [or, alternatively, (5)] has an optimal
solution.

Denote the solution of (5) by xt+ = h(x,) for each x, E X. Thus, x,+ = h(x,) is the
optimal policy correspondence from optimally managing the animal population over time.
In the case of an interior solution, this solution corresponds to the first-order condition:

(7a) t+ = O for x+1 E int X,
axt+l ,xt+l

where

aU(x,, x,+,) C,
(7b) -PI

ax,+ Ax,+,

Also, note that the envelope theorem applied to (5) yields

av(x_) 8ft ac,(7c) a ( =p t forx, int X.
ax, atx, ax,
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Dynamic programming problem (5) is of course equivalent to problem (3). This can be
seen simply by noting that the first-order condition (4) is equivalent to equations (7a), (7b),
and (7c).

Dynamic Properties

Both state equation (1) and optimal policy correspondence xt l=h(x,) represent the
dynamics of the population. Equation (1) gives population dynamics when the harvest rate
m, is exogenously fixed or given. Alternatively, xt+ = h(x,) represents the dynamic path of
the population under optimal management. In general, these two equations are different and,
thus, generate different dynamic paths. This raises two questions: (a) What are the dynamic
patterns associated with each equation?; and (b) What factors influence the differences
between the two dynamic patterns? Before investigating these questions, we begin with a
general review of some analytical tools available in the analysis of dynamic systems.

The Nature of Dynamic Path

Consider a general first-order difference equation, x,+ = g(x,), representing the dynamics of
the state variable x, e X, Xbeing a compact set. The state equation xt+ = g(x,) can generate
three kinds of dynamic patterns: (a) the state variable x can converge to a steady state; (b)
it can converge to a limit cycle; or (c) it can exhibit chaos. While a steady g(.) state or a
limit cycle can be generated by a linear function g(.), only a nonlinear function can generate
chaos (Hao). Chaos is associated with "sensitive dependence to initial conditions," meaning
that small changes in initial conditions give rise to divergent time paths. Such divergence
implies that long-term predictions from a chaotic system are virtually impossible.4

Given a single state variable xt, the nature of dynamics associated with the state equation
xt+ = g(xt) can be inferred using the Lyapunov exponent X, defined as:

1 !-J

(8) = lim- y loglg'(g'(x)),
-oon tj=0

for x eX, where j(x,) = xt+, and g (x) = g / x (Benettin, Galgani, and Strelcyn). The
Lyapunov exponent X in (8) measures the average (linearized) contraction (or expansion)
rate of the forward dynamic path. A negative Lyapunov exponent (X < 0) indicates either a
limit cycle or a steady-state equilibrium. Alternatively, a positive Lyapunov exponent
(k > 0) identifies sensitivity to initial conditions and thus chaos (Benettin, Galgani, and
Strelcyn; Wolf et al.).

Optimal Dynamics

The optimal policy correspondence xt+ = h(x,) is used to determine the dynamic nature of
optimal resource allocation. Of particular interest is the existence (or nonexistence) of a
steady-state equilibrium in the optimally managed population. Optimal dynamics have been
investigated by Benhabib and Nishimura, Deneckere and Pelikan, and Boldrin and Mon-

4 This raises the issue of distinguishing between a random process and a chaotic deterministic process (see Brock and Sayers).
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trucchio under the assumption that the function U(x,,x,,+) in (6) is concave in
(x,, x,, ) E Xx X. Here we relax this assumption and consider the more general case where
U(x,, x,+ ) is continuous but not necessarily concave in (x,, x,+,) E Xx X. This allows us to
consider a broader class of dynamic optimization problems. The following lemma is an
extension of a rresult obtained by Benhabib and Nishimure (p. 293) but without assuming
the concavity of U(x,, x,+,).

Lemma 1: Let (x,, x,+] ) be a point on the graph of the optimal policy correspondence
x,+ =- h(xt). If 2U(x,,x,+l) / xx,a+, > 0 (<)0, then h(x,) is nondecreasing (nonin-
creasing) at x,.

Proof. Choose any two points x4 E X and x'4 e X such that x t is in the neighborhood
of x, and x'" x. Denote the corresponding optimal choices by xt+ =-h(xa) and
Xt = h(x4). By definition of a maximum in (5), we have

V(x)' = U(X, X+ ) + V(x+,) > U(xT, x+)+ V(x +

and

V(xl)= U(x,) V( ) = U(xx, x+ U) + p V(xt+).

Combining these two expressions yields

U(x, x+) )- U(x, x,+ ) <p V(x+, )-p - V(x+,) < U(x,, X, + )- U(xt, X+ )

or

D=-- [U('x,, ,) - U(x', xt+ )] [Ux7, xV+ )- U(x, X,+l )] Ž 0.

But, when evaluated at (x',xt+,), note that sign { a2 U/Oxax,+,} = sign
{D I [(x' - t )(x/'+l - x+ )] } if [(x4 - xt )(x'+ - xf)] • 0. Given x4' x, there are two
possibilities:

(i) x+ - X,+I, or

(ii) X/' 7+, in which case 0 2U / xxt+ > 0 (<0) implies that {D /[(x' - t )X+i) X X in which case . a.

(xh+ -x,+,)]}>0(<0). With D>0, it follows that D>0 and [(x4 -x7)

(x, - l )] > 0 (< 0) if c2U / rx&+ > 0 (< 0).

In other words, when evaluated at x,',x,+ =h(x,) is a nondecreasing (nonincreasing)
correspondence if 0 2 U(x,, xt+ ) / axOxt+ > (<) 0.

Using lemma 1, a number of useful results can be obtained concerning the dynamic nature
of optimal behavior. Extending the analysis presented by Deneckere and Pelikan, and
Boldrin and Montrucchio, without assuming the concavity of U(x,, x,+,), we have the
following proposition.

Proposition 1:

(i) If 02U(x,, x,+ ) / 0xxt+ I > 0 for all (x,, x,+ ) on the graph of the policy correspon-

236 Dectember 1995



Nonlinear Dynamics and Economic Instability 237

dence h, then xt+j = h/(x,) converges monotonically to a steady state for all
x, E X.

(ii) If 8 2U(X,, x,+) / axxxt < 0 for all (x,, x,+l) on the graph of the policy cor-
respondence h, then x,+i = h'(xt) converges to a cycle of period one or two.

Proof: Proposition 1 can be shown as follows. Part (i) assumes that an increase in x,
raises the marginal benefit of xt+ [i.e.,a 2U(xt, x,+) / Dxtx,+ > 0]. From lemma 1, x,, =
h(x) is then a nondecreasing correspondence. As the optimal choice of x in any period
depends only on the value of x in the previous period, if x,, is at least (at most) equal to x,,
then x+2 will necessarily be no less (no greater) than x,,, implying a monotonic (either
increasing or decreasing) path. Given a bounded feasible region, this path must eventually
converge to a steady state.

Similarly, consider part (ii) where an increase in x, reduces the marginal benefit of x,+
[i.e., where O2U(xt, xt+i) / axatX+ < 0]. From lemma 1, x+1 = h(xt) is then a nonincreasing
correspondence. This in turn implies that x+2 = h2 (x,) = h(h(x,)) is nondecreasing in x,. In this
context, having xt+ at least (at most) equal to x, necessarily means that x+2 will be no more
(no less) than xt+,, and that x+2 will be no less (no more) than x,. This implies oscillatory
behavior ofxt+ as well as a monotonic path ofx,+2,,j = 1, 2,.... Given a bounded feasible
region, the optimal path of x, must eventually converge to a cycle of period one or two.

Proposition 1 implies that, whenever [ 2U(xt, xt+ ) / ax,ax,+ ] is of uniform sign onXxX,
then the long-run optimal behavior of the population is either a steady state or a stable orbit
of period two. In this case, any optimal trajectory is necessarily asymptotic to a periodic
orbit of period one or two. Let us define "simple dynamics" as the situation where the optimal
population exhibits periodic behavior with a period less than or equal to two. Then, having
[d U(xt , x+ ) / dxtx,+ ] of uniform sign on XxX is sufficient to guarantee that optimal
management can only generate simple dynamics. Alternatively, we can define "complicated
dynamics" as the situation where the optimal population exhibits long-run dynamic behavior
that cannot be represented by cycles of period one or two. Then, the following Corollary to
Proposition 1 is obtained.

Corollary 1: A necessary condition for an optimal population to exhibit complicated
dynamics is that [a 2U(x, x,+ ) / daxx,+1] is not of uniform sign on XxX.

The question then is: What kind of complicated optimal dynamics can be generated in
cases where [ 2 U(X,, x,+ ) / dxax,+ ] can take on both positive and negative values in XXX?
First, it should be noted that, in such situations, optimal dynamic behavior can be very
complicated. This is illustrated in the following proposition. (For a proof, see Deneckere
and Pelikan, p. 23).

Proposition 2: Assume that

2U(x,, x,l )/ / axtx+ >0 for x,+1 < a

<0 forx,1 >a,

for some a E int X, where X = [0, H]. Then, sufficient conditions for the optimal
population to exhibit chaotic dynamics are

(i) the optimal policy correspondence h(x,) is continuous from Xto X,
(ii) h(O)= h(H) =0,

Chavas, Holt
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(iii) a <h(a) < m, h2(a)< {x (a, H): h(x)= a and
(iv) h(a)> {x (a, H): a = h(x), a = h(a), a (0, )}.

Proposition 2 indicates that optimal chaotic behavior is possible under some conditions.
Even in simple models, the dynamic properties of optimal behavior can be quite complex.
Unfortunately, the conditions generating such complexities are still poorly understood. On
the one hand, the necessary condition stated in Corollary 1 is not sufficient to obtain
complicated dynamics. On the other hand, the sufficiency conditions stated in Proposition
2 are not necessary to generate chaotic dynamics. At this point of time, necessary and
sufficient conditions for complicated dynamics are not known. This suggests that the
analysis of complicated dynamics can best proceed by focusing on specific topics.

One topic has been the subject of considerable research: the role of the discount factor
13 in generating complicated optimal dynamics. Brock and Scheinkman have shown that a
discount factor 1 close to I contributes to a convergent path toward a steady-state equilib-
rium. Writing the discount factor as 1 = 1 / (1 + r) where r is the interest rate corresponds to
a situation where the interest rate r is low. In this case, future benefits are weighted almost
as much as current benefits, which provide incentive to smooth resource allocation over time
and contributes to the convergence to a steady-state equilibrium.

Alternatively, Deneckere and Pelikan or Boldrin and Montrucchio have found that
optimal chaos (where the optimal trajectory of the state variable is chaotic) can appear when
the discount factor P in (3) is sufficiently small. This means the interest rate r must be
sufficiently large, implying that future benefits are heavily discounted. The intuitive inter-
pretation is that optimal chaotic dynamics can arise when current decisions are driven mostly
by current benefits. Thus, a very high interest rate would provide little incentive to smooth
resource allocation over time and could contribute to the nonexistence of a steady-state
equilibrium. The question then is: How high must the interest rate r (or how low the discount
rate 1) be before chaotic dynamics are likely to appear? Deneckere and Pelikan's example
(p. 24) indicates the presence of chaos when P = 0.01. Boldrin and Montrucchio (p. 37)
propose a model where chaos appears when 1 < 0.01263. In either case, this corresponds to
interest rates r around 100. Such extremely high interest rates seem very unlikely in most
real world situations. This suggests that interest rates alone are probably not sufficient to
motivate the existence of chaos in optimally controlled dynamic systems.

Thus, while we know that optimal paths can be quite complex, this does not imply that
such complexities are necessarily present. Whether or not such complexities do arise
depends on the dynamic system being considered. This stresses the need to evaluate further
under what empirical conditions such complexities might arise.

Optimal Management of a Biological Population

This section illustrates the implications of our analysis for the nature of market dynamics
under the optimal management of a biological population. From equation (6), we have

2(9U _ ap, f; a2C,
(9) ax,ax, I amr , ax, ax,, I

where Op, / Am, < 0. Corollary 1 states that complicated dynamics can take place only if the
second derivative a 2U / dx,ax,+ can change sign for (x,, x,+ ) Xx X. From equation (9),
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obtaining complicated dynamics thus requires that af; / ax, can change sign and/or that
a2 C, / ax,ax,+ can change sign. This implies that complicated dynamics can never arise
from a model with a linear state equation and a quadratic cost function C,. Such specifications
are commonly found in the literature. An example is given by Rosen who assumes a linear
state equation and a linear cost function. In such a case, the model specification precludes
uncovering complex forms of dynamic resource allocation. While this does not imply that
such complex forms necessarily exist, it appears quite undesirable to eliminate them a priori.

Under what conditions are complicated dynamics likely to arise? Using equation (9),
Corollary 1 and Proposition 2 suggest that complicated dynamics might arise when
aft;/ x, >0(<0) for x, <a 0 (>a 0) for some a0 e int X, and when a2 C, /x,axt+
< (> 0) for x t < a (> a,) for some a, E int X. However, whether or not they do arise will
depend on the problem investigated.

For the purpose of illustration, consider the case where f(x ) = yx, (1 - x,) and the state
equation (1) takes the form:

(10) x,+, = yx, (l - x,) - m,,

where 0<y <4 and x, X= (0, 1). With mt = 0, equation (10) is the classical logistic
difference equation commonly used to investigate population dynamics (e.g., Clark). As
shown by May, this simple deterministic state equation can generate complex dynamics. For
m, = 0 and E (0, 3), x, is stable and converges to a unique steady state, given any initial
condition x0 E X. For y E (3, 3.5699), x, exhibits cyclical patterns. Finally, x, produces
chaotic patterns for selected values of 7 e (3.5699, 4). In this case, the deterministic state
variable follows a highly irregular trajectory (May; Baumol and Benhabib). Thus, the
"uncontrolled" logistic equation (10) (with mt = 0) can generate a steady state, a limit cycle,
or chaos depending on the value of the tuning parameter .

The question of interest here is: What are the dynamic properties of the optimal policy
correspondence x,+= h(x,) associated with the state equation (10)? More specifically,
under what conditions does the optimal policy exhibit a steady state, a limit cycle, or chaos?
From equation (10), a large value ofy contributes to having a 2U / aXta t+ > 0 (< 0) for small
values (large values) of x,. From Corollary 1, this may be associated with complicated
optimal dynamics. And, from Proposition 2, this might generate optimal chaos. However,
knowing the nature of optimal dynamics is difficult in general: there is an infinite number
of possible nonlinear functional forms for the benefit function B, in (2), each functional form
generating a different optimal path.

Our analysis focuses on a particular parametric specification of the demand functionp(q)
and of the cost function C(x,, x,,+) in (2). More specifically, we assume that the (quantity
dependent) demand function for m, takes the form:5

(11) m = AP,B

where A > 0 and B = a In m, / a In p, < 0 denotes the (constant) price elasticity of demand.
This simple specification allows evaluating the effect of the demand elasticity on optimal
dynamics. The parameter A in (1 1) can be interpreted as the quantity m, demanded at price
pt= 1.

5The corresponding price dependent demand function p(i) used in equation (2) or (3) is p = A-I/Bn1t I

Chavas, Holt
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The cost function C(x,, x,+ ) in (2) is assumed to take the form:

(12) C = c(x,)+cl(x,+)+ C2Xtt+I +c3xt+l xt[C 4-Xt],

where Co(x,) and cI(x,+,) are parametric functions; and c2, c3, and c4 e (0, 2) are parameters.
Note that if c3=0, then the cost function C in (12) can provide a second-order approximation
to any differentiable cost function provided c,(x,) and c,(xt+1) are quadratic functions. Since
(xt+ ,x[c4-x] ) is a third-order term, c3 • 0 can then be interpreted as introducing a third-order
term in a quadratic cost specification. Moreover, given a2 C / xaxt+ = 3 [ C4 - 2X,] and
c4 E (0,2), equation (9) implies that c3 < 0 contributes to having 02 U / dxaX+ I > 0 (< 0) for
small values (large values) ofx,. Corollary 1 and Proposition 2 then suggest that c3 < 0 might
be associated with optimal chaos.

Given equations (10), (11), and (12), the dynamic programming problem (5) was solved
for selected values of the parameters P, A, B, and c. With P = 1 / (1 + r), where r denotes the
interest rate, analyzing the effects of the parameter P is done through parametric changes
in the interest rate r. The solution to problem (5) was obtained using the successive
approximation method (Bertsekas, p. 237). The method necessarily converges to a fixed
point of the value function V(xt) (Bertsekas; Streufert). It was implemented by discretizing
the state space X = (0, 1) in a grid of 200 equally spaced points. The associated optimal
policy function was first examined for possible discontinuities. Except at the points of
discontinuities, the optimal policy h(x,) was smoothed using a piecewise quadratic, continu-
ous and first-differentiable spline function.6 The smoothed optimal policy x*, = h(x,) was
then simulated numerically. This provided the basis for estimating the Lyapunov exponent
[given in (8)] and for evaluating the nature of optimal dynamics.

Three sets of scenarios are evaluated. The first set assumes that y = 2.9 in (10). This is
a situation where the uncontrolled state equation (10) has a steady-state long-run equilib-
rium. The second set of scenarios assumes that y = 3.5. This is a case where the uncontrolled
state equation (10) exhibits a limit cycle (May). Finally, the third set of scenarios assumes
that Y = 3.9. This is the case where the uncontrolled state equation (10) generates chaotic
patterns (May). Thus we start from a state equation that can generate a wide variety of
dynamic behavior. The question then is: How does optimal management influence the
dynamics of the state variable?

For each set of scenarios, we evaluate seven different economic situations. These
situations differ according to the elasticity of demand (B), the third-order term coefficient
(c3), and the interest rate [r, where P = l/(l+r)]. In each case, the remaining parameters in
(11) and (12) are assumed constant, taking the following values: A=0.1,
Co (X) = 0, C1 (xtl ) = 0, 2 = 0,and c4 =0.5. Thus, we evaluate 21 scenarios: seven scenarios
for each value of y: y = 2.5,3.5, and 3.9. The 21 scenarios are presented in table I, along
with the corresponding estimate of the Lyapunov exponent X. Each scenario is denoted by
two indexes (i.j). The index i takes the value i = 1, 2, and 3 for y = 2.5, 3.5, and 3.9,
respectively. The indexj takes the valuesj = 1, 2,..., 7, each corresponding to a particular
economic situation represented by specific parameter values B, c3 and r (see table 1).

6When feasible, each segment of the spline approximation was chosen to include five points.
7The model was simulated using () = 0.456 as initial value. In general, the results reported in table I were insensitive to this

choice. However, we cannot rule out the possibility that complicated optimal dynamics might be associated with some initial
conditions of(Lebesgue) measure zero. In this case, "topological chaos" might exist, although it would not be easily observable.
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Figure 3. Optimal dynamic path (scenario (13))

Scenario (1.1) considers the following parameter values: B = -0.01, c3 = -0.05, and r=
1.6. It represents a very inelastic demand. It also corresponds to a situation we associated
with the possibility of chaos: a negative value for c3 and a fairly large interest rate r. With a
Lyapunov exponent equal to 0.2763 (see table 1), scenario (1.1) indeed generates an optimal
chaotic market. This is illustrated in figure 1, which shows the chaotic path generated by the
corresponding optimal policy correspondence xt+1 = h(x,). Scenario (1.1) is an example
where, starting from a stable system, optimal behavior does generate market instability. The
sensitivity of this result is evaluated in scenarios (1.2) through (1.7).

In scenarios (1.2) and (1.3), the elasticity of demand B is changed. With an elasticity of
demand equal to -0. 1, scenario (1.2) generates a limit cycle of period 2. Figure 2 shows the
optimal path of the state variable xt under scenario (1.2). With an elasticity of demand equal
to -0.5, scenario (1.3) generates a steady-state equilibrium, as shown in figure 3. These
results indicate that the inelasticity of demand contributes to market instability under optimal
management. Alternatively, a more elastic demand contributes to the existence of a steady-
state equilibrium, that is, to the convergence of optimal dynamics toward a unique long-run
equilibrium.

Scenarios (1.4) and (1.5) consider the influence of changing the third-order term
parameter c3 in the cost function. They illustrate that, in the absence of third-order terms (C3

= 0), optimal dynamics exhibit a steady-state long-run equilibrium. Finally, scenarios (1.6)
and (1.7) evaluate the effects of the interest rate r on market dynamics. As expected, they
indicate that a lower interest rate provides incentives to smooth the optimal path ofx,: market
dynamics changes from chaos for r = 1.6, to a limit cycle for r = 1.0, and to a steady-state
equilibrium for r = 0.5.

In general, similar results were obtained under scenarios (2j) and (3j),j = 1, 2 ... , 7.
In particular, optimal paths exhibited chaos under a very inelastic demand (as measured by
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Table 1. The Nature of Dynamic Market Equilibrium under Alternative Scenarios

Lyapunov
Scenariosa y B c3 r Exponent Optimal Path

(1.1) 2.9 - 0.01 - 0.05 1.6 0.2763 chaos
(1.2) 2.9 - 0.1 - 0.05 1.6 - 1.3032 limit cycle (period = 2)
(1.3) 2.9 - 0.5 - 0.05 1.6 - 0.1132 steady state (xe = 0.0667)c
(1.4) 2.9 - 0.01 0.00 1.6 - 0.0391 steady state (xe = 0.2264)
(1.5) 2.9 - 0.5 0.00 1.6 - 0.1084 steady state (xe = 0.0634)
(1.6) 2.9 -0.01 -0.05 1.0 -0.8371 limit cycle (period = 2)
(1.7) 2.9 - 0.01 - 0.05 0.5 - 0.6275 steady state (xe = 0.3574)

(2.1) 3.5 -0.01 -0.05 1.6 0.2371 chaos
(2.2) 3.5 - 0.1 - 0.05 1.6 0.2153 chaos
(2.3) 3.5 - 0.50 - 0.05 1.6 - 0.2074 steady state (xe = 0.1351)
(2.4) 3.5 - 0.01 0.00 1.6 - 0.0319 steady state (xe = 0.1499)
(2.5) 3.5 -0.5 0.00 1.6 -0.1960 steady state (xe = 0.1267)
(2.6) 3.5 -0.01 - 0.05 1.0 - 0.0152 limit cycle (period = 4)
(2.7) 3.5 -0.01 -0.05 0.5 -0.6314 steady state (x = 0.3575)

(3.1) 3.9 -0.01 -0.05 1.6 0.2019 chaos
(3.2) 3.9 - 0.1 - 0.05 1.6 0.1365 chaos
(3.3) 3.9 - 0.5 - 0.05 1.6 - 0.2848 steady state (xe = 0.1868)
(3.4) 3.9 - 0.01 0.00 1.6 - 0.1497 steady state (xe = 0.2682)
(3.5) 3.9 - 0.5 0.00 1.6 - 0.2595 steady state (xe = 0.1675)
(3.6) 3.9 - 0.01 - 0.05 1.0 - 0.3433 limit cycle (period = 4)
(3.7) 3.9 - 0.01 -0.05 0.5 - 0.6312 steady state (xC = 0.3575)

aThe parameter Y is a parameter of the state equation (10). The parameter B is the price elasticity of demand
in ( I1). The parameter c, characterizes the third-order term in the cost function (12), and r is the interest rate
satisfying P = 1/(1 + r). The other parameters held constant across all scenarios are: A = 0.1 in equation (11);
and c,(x,) = 0, c,(x,) = 0, c2 = 0, and c = 0.5 in (12).
hThe Lyapunov exponent (X) was estimated from (8) by simulating the optimal policy correspondence
x,, =h(x,) forward.
The x' denotes the long-run equilibrium value in the presence of a steady state.

the demand elasticity B), a negative c3 coefficient, and a large interest rate r. The optimal
paths converged to a steady-state equilibrium under a more elastic demand, a zero c3
coefficient, and a smaller interest rate r. Some limit cycles existed in between the chaotic
situations and the steady-state situations. The fact that these results were consistently
obtained for different values of the parameter y is worth emphasizing. First, it indicates a
weak linkage between the dynamics of the uncontrolled state equation (10) and the dynamics
of the optimally managed population. In our examples, knowing that equation (10) exhibits
a steady state (or chaos) clearly does not imply that the optimal state equation x,, = h(x, )
will also exhibit a steady state (or chaos). Second, our results suggests that the nature of
optimal dynamics depends crucially on the particular economic situation (as reflected by the
parameters B, c3, and r).
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Implications

The above results have implications for the research methods used in analyzing optimal
dynamic behavior. They also provide new insights in the economics of market instability.

First, the arguments presented in the previous sections imply that quadratic cost functions
and linear state equations preclude obtaining complicated optimal dynamics. Define a
dynamically flexible functional form as a form that does not restrict a priori the qualitative
nature of optimal dynamics. It follows that cost functions that can provide a quadratic local
approximation to an arbitrary cost function are not dynamically flexible. This is in sharp
contrast to static analysis (where such functions would be considered "flexible"). It stresses
the need to consider third-order terms in the specification of cost (or profit) functions in
dynamic problems (Epstein). Linear state equations are not dynamically flexible. Such linear
equations are commonly used in dynamic models (e.g., Rosen) and often justified as "linear
approximations" to some underlying (nonlinear) state equation. Clearly, such linear approxi-
mations can preclude finding complicated dynamics in optimally managed resources.

Second, our analysis has implications for the numerical methods used in solving dynamic
optimization problems. Two broad classes of methods are available: optimal control methods
which solve (3) for the optimal level ofx = (x, x 2, .. .); and dynamic programming methods
which solve (5) for the optimal policy correspondence x,+ = h(x ). In the previous section,
we chose a dynamic programming method. The reason is that, under optimal chaos, optimal
control methods may not converge numerically. Solving the optimal state equation forward
is a fairly standard way to obtain numerical solutions to optimal control problems (e.g.,
Bryson and Ho). But, under chaos, this leads to a locally unstable trajectory that is sensitive
to initial conditions. This local instability will in general preclude the numerical convergence
of the corresponding iterative optimal control algorithm. In other words, under optimal
chaos, standard optimal control methods can fail to provide a numerical solution to a dynamic
optimization problem. Dynamic programming methods are not subject to this limitation
because they do not solve directly for the optimal path of the state variable. Rather they solve
for the optimal policy correspondence xt+, = h(x,). This optimal policy correspondence is
stationary even under optimal chaos, as long as the planning horizon is sufficiently long
(Bertsekas). In that sense, dynamic programming algorithms are superior to optimal control
methods in obtaining numerical solutions to dynamic optimization problems.

Third, our results illustrate that optimal chaos can arise even in a completely deterministic
model of optimal resource allocation. Uncertainty or exogenous shocks are not necessary to
obtain competitive market instability and unpredictability. This should not be interpreted to
mean that uncertainty and exogenous shock do not play a role in population dynamics: they
do. Rather, market instability can be endogenously generated (Boldrin and Montrucchio;
Deneckere and Pelikan). The results presented in table I indicate that the inelasticity of
demand (B) can contribute to optimal chaos. This is consistent with the findings of Chavas
and Holt. Thus, markets that face very inelastic demands seem to be prone to be unstable.
Agricultural markets involve biological populations and tend to exhibit inelastic demand for
food. As a result, a number of agricultural markets could well be endogenously unstable,
even in the presence of rational decision makers, perfect information and perfect competi-

XThis is not to imply that dynamic programming algorithms are always simple to implement. First, they are subject to the
"curse of dimensionality" when the number of state variables is large. Second, the numerical approximations used in obtaining
the solution to Bellman's equation can influence the quality of the results. This should be kept in mind in the design and
interpretation of any dynamic programming analysis.
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tion. This suggests a need for further research on the economics of instability in agricultural
markets.

Fourth, table 1 indicates that third-order terms in the cost function (with c3 < 0) can
contribute to market instability. These third-order terms could arise in many situations. For
example, adjustment costs necessarily involve interaction effects between state variables at
successive time periods. Thus the existence of adjustment costs may lead to terms such as
[C3 Xt+ X, (C4-Xt)] in the cost function. It follows that adjustment costs can contribute to
obtaining optimal chaos. This suggests that, in general, it would be inappropriate to assume
that an optimal steady state exists in adjustment cost models. Yet, such an assumption is
common in previous research (e.g., Epstein). This raises questions about the validity of a
number of adjustment cost models found in the literature. Our analysis stresses the need for
a more careful evaluation of the role of adjustment costs in dynamic resource allocation.

Finally, table 1 shows that a high (low) interest rate tends to contribute to complicated
(simple) dynamics of the market equilibrium. This result is consistent with previous research
(e.g., Brock and Scheinkman; Boldrin and Montrucchio; Deneckere and Pelikan). What is
of interest here is that optimal chaos seems possible under an interest rate r much lower
(about 60 times lower) than those discussed by Boldrin and Montrucchio or Deneckere and
Pelikan. Thus, a high interest rate could contribute to market instability in situations
somewhat more realistic than those identified in previous research. To the extent that high
interest rates can be associated with imperfection in the capital and credit markets, this
suggests that such imperfections would reduce the ability of rational decision makers to
smooth resource allocation over time and could contribute to market instability. This stresses
the need to investigate further the role of imperfect capital markets in the management of
biological populations, in the functioning of agricultural markets, and in the evaluation of
conservation policies.

Concluding Remarks

Our analysis strongly suggests that a steady-state equilibrium cannot be assumed in the
analysis of competitive market allocation of biological resources, even with rational agents
under perfect information. Limit cycles or chaotic patterns are possible in such competitive
markets. The inelasticity of demand, the presence of adjustment costs, or imperfections in
the credit market can contribute to endogenous market instability.

What are the policy implications of these results? Our analysis was done in the context
of rational agents facing a competitive market under perfect information. This implies that
the standard welfare theorem holds, implying a Pareto optimal resource allocation given the
assumed institutional framework. However, the following question remains: Under market
instability, does there exist some alternative institutional arrangement that would affect
resource allocation in a Pareto improving way? The existence of such institutional arrange-
ments cannot be ruled out. For example, if adjustment costs are generating chaotic markets,
then any institution (e.g., a government program) that would help smooth intertemporal
resource allocation could possibly reduce these adjustment costs sufficiently to generate a
Pareto welfare improvement. This suggests a need to investigate further the policy implica-
tions of endogenous market instability in agriculture and natural resources. Finally, the role
of market imperfections and/or imperfect information can clearly play a role in dynamic
resource allocation. Examining such issues appears to be a good topic for future research.

[Received February 1995; final version received August 1995]
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