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Abstract

Integrated pest management (IPM) has been promoted globally as an alternative approach to the
widespread broad-spectrum chemical insecticidal application for the control of pests and diseases in
agricultural production to minimise the harmful effects of the chemicals on humans and the
environment. This study examines the impact of an IPM strategy developed to control mango fruit
flies on humans and the environment. Using a random sample of 371 mango farmers from Meru
County in Kenya, health and environmental outcomes were measured using the environmental impact
quotient (EIQ) field use and causal impacts, which were estimated using the endogenous switching
regression (ESR) model. The results indicate that the adoption of the IPM strategy reduced pesticide
use and pesticide toxicity. Policy efforts therefore should focus on promoting and disseminating fruit
fly IPM to improve the livelihoods of rural mango farmers, but also reduce human health and
environmental threats as a result of pesticide use.

Key words: integrated pest management; environmental impact quotient; mango fruit fly

1. Introduction

Agriculture has been a significant source of food for the human population across many generations.
However, contemporary challenges, such as global warming, invasive species, land degradation and

chronic diseases, among others, have presented new problems in the sector. Hawkes and Ruel (2006)
developed a conceptual framework that shows a bidirectional relationship between health and
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agriculture. Good health and productive agriculture are two sides of a coin that are both imperative
in the fight against poverty and malnutrition. Good agricultural practices promote health through the
provision of safe food, medicine and fibre, while good health translates into productive labour in
agriculture (Chang et al. 2015).

Although food crops are the most significant crops in Kenya, mango production contributes
immensely to the horticultural sector of the country (Sennhenn et al. 2014; Horticultural Crops
Development Authority [HCDA] 2016). Besides their well-known nutritional benefits (Septembre-
Malaterre et al. 2016), mangoes provide income to farmers through local markets and also earn the
country foreign exchange through exports (HCDA 2016; Ndlela et al. 2017). The crop provides
employment opportunities to smallholder farmers, thereby presenting an excellent opportunity for
rural development. Despite the seeming benefits of the mango enterprise, the productivity of the crop
in Kenya is still below its potential due to various challenges, among them two main pests (fruit flies
and mango seed weevil) and two primary diseases (powdery mildew and anthracnose) (Griesbach
2003). Fruit fly infestation is the most disastrous constraint to mango production, contributing a loss
of up to 40% of annual mango production because of its numerous generations per season, which
cause rapid multiplying and spread, along with resistance to existing chemical pesticides over time
(Ekesi et al. 2014).

While pesticides are known to intensify agricultural production (Carvalho 2017), they are often
over(mis)used (Bertrand 2019). The limited effectiveness of synthetic pesticides, due to the
progressive loss of the pesticidal potency of the active ingredients and farmers’ low levels of
knowledge, could prompt delayed treatment or incorrect dosages (Fan et al. 2015). Mis(over)use of
chemical pesticides contributes to adverse environmental effects such as loss of biodiversity,
pollution of soils and water resources, alteration of soil and groundwater pH, and permanent changes
to the ecosystem (Gill & Garg 2014). Besides, pesticides affect the health of domestic animals,
mammals, fish, bees, soil microorganisms and other beneficial organisms (Maumbe & Swinton 2003;
Donga & Eklo 2018). Synthetic chemicals might cause short-term health effects such as pain in the
chest, and long-term consequences such as cancer (Macharia 2015).

Chemical-free protection strategies that are less harmful to the environment and humans offer safe
and cost-friendly protection of crops against pests and diseases. One such approach is integrated pest
management (IPM), which decreases the net quantity of pesticide used in pest control (Alam et al.
2016). The IPM approach combines different pest control methods (e.g. biological, chemical,
mechanical and cultural) to develop the most effective and cost-friendly package of strategies to
manage insects and diseases below their economic injury level (Fernandez-Cornejo 1998; Fernandez-
Cornejo & Ferraioli 1999). In Africa, the International Centre of Insect Physiology and Ecology
(ICIPE), under the Africa fruit fly programme (AFFP), in collaboration with its local and international
partners, has developed and promoted an IPM package for the suppression of fruit flies (Ekesi &
Billah 2007; Mohamed et al. 2008; Mohamed et al. 2010; Ekesi et al. 2014; Ekesi 2015). The package
comprises: (1) spot application of food bait, (2) male annihilation technique, (3) Metarhizium
anisopliae-based biopesticide application, (4) releases of parasitoids (Fopius arisanus (Sonan) and
Diachasmimorpha longicaudata (Ashmead) (both Hymenoptera: Braconidae), and (5) the use of
orchard sanitation. AFFP aims at stimulating mango productivity and enhancing the marketing of
mangoes and to increase the income and food security of mango farmers and other value chain actors
in the region.

While socioeconomic-related literature exists on the effectiveness of IPM in reducing pest damage in
horticultural enterprises in developing countries (see, for example, Kibira et al. 2015; Muriithi et al.
2016; Githiomi et al. 2019; Midingoyi et al. 2019), rigorous empirical literature, particularly on the
health and environmental impacts of IPM practices and especially on Sub-Saharan Africa, is limited.
The few existing farm-level IPM impact studies (Isoto et al. 2014; Kibira et al. 2015; Muriithi et al.
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2016; Githiomi et al. 2019) focused mainly on the direct economic benefits of IPM adoption.
Understanding the environment and health benefits of IPM is essential because continuous chemical
inputs pose a considerable risk to human health and the environment (Macharia 2015).

Our study contributes to the existing literature by quantifying the health and environmental benefits
of IPM adoption, utilising the environmental impact quotient (EIQ) model (Kovach et al. 1992).
Unlike previous studies that relied on descriptive results based on EIQ field-use rating (e.g. Mujica
& Kroschel, 2019), we empirically evaluated the health and environmental impact of IPM adoption
using the endogenous switching regression model, a more rigorous approach for estimating treatment
effects. Although Midingoyi ef al. (2019) used similar methods, the literature on the health and
environmental impacts of IPM technologies is limited.

2. Methodology
2.1 Study area and sampling technique

This study was conducted in Meru County, Kenya. The county represents one of the significant
mango-growing regions in the country and it is one of the counties in which ICIPE previously
disseminated the IPM strategy for the suppression of fruit flies. The study utilised a sampling frame
developed by an earlier survey done by ICIPE to evaluate the direct effects of the approach on mango
production. An elaborate description of the study area, sample size, target population and sampling
procedure is provided by Muriithi et al. (2016).

Out of the 828 mango producers successfully interviewed previously, a sample of 371 households
was randomly selected for this study. Similarly to the case in the earlier survey, we followed the
probability proportional-to-size (PPS) sampling technique to select 206 IPM farmers from Central
Imenti, North Imenti and South Imenti sub-counties, and 165 non-IPM farmers from Tigania West
sub-county. The data were collected using face-to-face interviews to capture mango-related variables
(production, pest management and sales, among others) referring to the mango season from July 2014
to April 2015. Farm and household characteristics and contextual information were also captured.

2.2 Environmental impact quotient (EIQ)

This paper utilised the environmental impact quotient (EIQ) model to quantify the health and
environmental effects of IPM technologies. The EIQ model was developed by Kovach et al. (1992)
to quantify the effects of various crop pests and disease-control strategies on humans and the
environment. The model aggregates the pesticide risks posed to farm workers, consumers of farm
products and the environment into a single numerical value (Macharia et al. 2009). The model
estimates pesticide risks on a three-point scale, following the hazard of the various pesticides, with 1
representing the lowest, 3 intermediate and 5 the highest. The potential risks of pesticide toxicity can
also be determined by other proxies, such as LD50 (dose at which 50% of the treatment group dies
within a specified period) or LC50 (concentration at which 50% of the treatment group dies within a
specified time), and the potential exposure such as the half-life, runoff or leaching potential (Swinton
& Williams 1998). The EIQ formula is defined as stated below:

EIQ = {C[(DT *5) + (DT *P)]+ [C x((S+ P)/2) *SY)+ (L)] + [(F *R) +
D*((S+P)/2)*3)+(Z*+P+x3)+(B*P=*5)]}/3 (1)

where:
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C = chronic toxicity, DT = dermal toxicity, P = plant surface residue half-life, S = soil residue half-
life, SY = systematicity, L. = leaching potential, F = fish toxicity, R = surface loss, D = bird toxicity,
Z = bee toxicity, and B = beneficial arthropod activity.

The values of the parameters in the equation are determined by toxicity information from several
sources, including the extension toxicology network, published journals and individual chemical
manufacturers. However, EIQ is not a convincing measure of pesticide health and environmental
health impacts. There are pesticides of different formulations that have the same active ingredient and
are applied in various dosages and frequencies by farmers. To account for this discrepancy, we
adopted the EIQ field use component to compare the health and environmental impacts of IPM
technologies and conventional methods. We computed the EIQ field use by finding the product of
EIQ, the pesticide dose, the percentage active ingredient and the frequency of pesticide application,
as shown in the formulae below (Donga & Eklo 2018).

EIQ field use rating = EIQ * % active * frequency of application *dose (2)

EIQ field use helps in comparing the health and environmental impacts of different pest control
strategies. The weights used were based on the area sprayed with pesticides, the dose, and the
frequency of application.

2.3 Endogenous switching regression (ESR) model

The endogenous switching regression (ESR) model was estimated to determine the counterfactual
health and environmental effects between the control and treatment groups. This is a two-stage model
according to which a probit model is used in the first stage to evaluate the adoption determinants of
IPM technologies. We specified the probit model, as shown below:

Z; = BX; + u; where Z; =1, when Z; > 1 and 0 otherwise, 3)

where Z; is the unobserved variable of IPM adoption, Z; is the observed adoption variable in terms
of which 1 represents adoption and 0 otherwise, X; are noted variables that influence IPM adoption,
and u; is the unobserved variable related to [PM adoption.

We assume farmers are rational and that they will make decisions based on the expected benefits of
the new technology. However, technology adoption is potentially endogenous (Adego et al. 2019).
Thus, we adopt an ESR model that treats the control and treatment farmers in two separate regimes,
expressed as:

Vi, =af;; +e;ifZ; =1 4)
Yoi = apfp; + ey ifZ; =0 (5)

where Y; refers to the computed EIQ field use of the control and treatment, J; is a vector of covariates
that influence the magnitude of EIQ field use, and e; is white noise.

The error terms in Equations 3 to 5 are assumed to have a trivariate normal distribution with a zero
mean and a non-zero determinant matrix, as follows:

2
O¢2 ' O-ez;t
2
cov(eyj, exp,u) = | - Oc1  Oe1puls (6)
2
Ou
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where afl refers to the variance of the random disturbance term in the probit model, while g%, and
02, are variances of Equations 4 and 5 respectively. The covariance of the error terms in equations
3,4 and 5 are represented by 01, and G,y,. According to Maddala (1983), since u; is correlated with
eq; and e,;, the expected values of eq; and e,; conditional on the selected sample of 371 are not equal
to zero. While analysing the model in STATA, we followed a full information maximum likelihood
(FIML), as discussed by Lokshin and Sajaia (2004). The advantage of FIML is that the first and
second stages of the ESR model are estimated concurrently to yield consistent standard errors

(Hensher 1986). The model was further identified by the use of distance to the hospital as an
instrument that was obtained using the falsification process (Di Falco & Veronesi 2013).

2.4 Counterfactual analysis and treatment effects

The ESR model has the capability to conduct a counterfactual analysis. In other words, the model
helps us to compute hypothetical values of EIQ field use if the farmers in the treatment region had
not adopted IPM technologies. Similarly, we can calculate EIQ field use for control farmers had they
adopted IPM technologies. The difference between the observed EIQ field use and the respective
hypothetical values for the treatment and control farmers gives the treatment effects. The average
EIQ field use for IPM adopters is calculated as shown in Equation 7. If they had not adopted IPM
technologies, the average EIQ field use would be computed using Equation 8.

E(Wyi/Zi = 1) = ayyi + Oerutii (7)
E(Yyi/Z; = 1) = aq)yi + Oezutii (8)
Similarly, the average EIQ field use for non-adopters is computed as shown in Equation 9. Had they

adopted IPM technologies, the new EIQ field use for non-adopters would be arrived at as shown in
Equation 10.

E(Y5i/Z; = 0) = az)5; + 0gzul; )
E(Yyi/Z; = 0) = az)y; + Oeruy (10)
Treatment effects are obtained by obtaining the difference between the observed and counterfactual
expected values of EIQ field use (Adego ef al. 2019). The average treatment of the treated (ATT) is
the difference between Equations 7 and 8, as illustrated below:

ATT = E(Y;/Z; = 1) —E(Yyi/Z; = 1) = J1i(ay — az) + 21i(0e1y — Oezu) (11)

In the same way, the average treatment on the untreated (ATU) is the difference between Equations
9 and 10. This is expressed below:

ATU = E(Yy;/Z; = 0) —E(Y,;/Z; = 0) = J;(ay — az) + A3i(0e1y — Te2u) (12)
3. Results and discussion

3.1 Descriptive estimation of health and environmental effects of IPM technologies and
pesticides

Table 1 presents the field use environmental impact quotient (EIQ) for pesticide use in mango

production for the control and treatment regions in Meru County. The results from the table show that
Bayleton and Bulldock are the most used pesticides in mango production in the study area,
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representing 34.50% and 33.96% of the total pesticide used respectively. The two pesticides recorded
15.43% and 24.47% of the total pesticide usage by the IPM farmers and 22.78% and 22.42% among
non-IPM farmers respectively. Mean EIQ values for farmworkers, consumers and environmental
components among the non-IPM users were 24, 10 and 75 respectively, while among IPM farmers
the mean components were 25, 10 and 73 respectively.

To obtain the volume of individual pesticides applied per acre, we first computed the treated area by
multiplying the percentage of farmers using pesticides in mango production by the total area under
mango trees. The obtained treated area was then multiplied by the rate of pesticide applied per acre
to find the estimated amount of chemicals used. From the literature, we listed all pesticides applied
to mangoes and their recommended application rates. We also interviewed pivotal agricultural experts
and pesticide vendors to obtain information on recommended pesticide dosages, which were
counterchecked with the report on the Pest Control Products Board (PCPB) Kenya website and the
product labels. With the aid of the procedure proposed by Kovach et al. (1992), EIQ values for each
active ingredient of a pesticide used were calculated based on the active pesticide ingredient and
physical properties, while others were obtained from internet sources and published journals
(Macharia et al. 2009).

Based on the EIQ classification rule of Mazlan and Mumford (2005), values for all the pesticides
used in mango production showed that 30%, 25% and 45% of those pesticides were rated as low (EIQ
= 0 to 20), moderate (EIQ = 21 to 40) and high (EIQ > 41) respectively. Pesticide active ingredients
that had EIQ field use below 40 were deltamethrin (II), acephate (III), thiamethoxam (U), lambda
cyhalothrin (I), carbendazim (U), cypermethrin (II), imidacloprid (II), propineb (11I), thiophanate-
methyl (U) and sulphur (U). Methomyl (IB), dimethoate (I1), triadimefon (III), acephate (III), copper
oxychloride (IIT) and beta-cyfluthrin (II) had an EIQ field use of greater than 40. Generally, the results
show that the environmental component of the EIQ was high among both the IPM and non-IPM
farmers, but there was a significant difference in the EIQ field use between the two categories of
farmers. Continued use of pesticides in mango production among the IPM farmers is puzzling, since
the strategy is expected to reduce pesticide use. Muriithi et al. (2016) made a similar observation in
this region, where they found no significant difference in pesticide expenditure between the IPM and
non-IPM farmers.

Amongst the total pesticides used for mango production in Meru County, none were classified in
category la (extremely hazardous), 10% were in category 1b (highly hazardous), 40% were in
category Il (moderately hazardous), 25% in category III (slightly hazardous), and 25% were in
category U (unlikely to present acute hazard when in regular use). The remaining two categories —
FM (fumigant, not classified) and O (obsolete as a pesticide, not ranked) — were not used in mango
production. The total EIQ field use in Meru County was 4 049.67, with 84% found among the non-
IPM farmers. The overall field-use EIQ rating per individual pesticide ranged from 0.58 to 946.16,
being lowest for deltamethrin (0.58) and highest for dimethoate (946.16).

There is a need to encourage farmers to use more moderate hazardous pesticides, since only 25% of
pesticides in this category are used in mango production. The use of less hazardous pesticides and
IPM technologies by mango farmers will promote environmental and economically sustainable
agriculture that is consistent with the sustainable development goals. Although this study was done
for mango production, increasing awareness of the use of less hazardous chemicals in combination
with IPM will help in safeguarding the environment and human health.
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Table 1: EIQ component values related to health and environmental effects of pesticides used by mango farmers in Meru County

EIQ field use | EIQ field use % of
Active ingredient Trade | pior |EIQC| EIQE | EIQT |  Rate | EIQ field I(l)’M non- QIPM Tvalue | Pvalue |farmers | Volkg
name (kg/acre) | use overall . . . . .
participants participants using

Thiamethoxam (U) Actara 10.35| 12.03 77.52 33.3 0.12 5.75 3.55 2.19 0.7891 0.2341 0.81 1.14
Methomyl (IB) Agrinate 6 11 75 31 0.28 277.38 221.12 56.27 0.2389 0.8805 6.20 452.31
Propineb (11I) Antracol 6| 5.78 14 18.34 0.27 30.93 0.10 30.82 1.2615 0.5807 6.20 534.42
Triadimefon (III) Bayleton 12.15| 15.15 53.57 33.3 0.25 277.31 105.04 172.27 -2.9994*** | 0.0033 34.50| 134 040.8
Beta-cyfluthrin (II) Bulldock 9 4 69 27 0.21 634.28 550.42 83.86 2.6674*** | 0.0087 33.96| 69418.38
Copper oxychloride (III) | Copper 108 19 76 67.7 0.20 557.61 512.49 45.12 3.0990*** | 0.0035 12.12 9444.32
Cypermethrin (II) Cyclone 9 4 69 27 0.14 22.75 12.14 10.61 -1.5302 0.1482 4.58 173.3091
Dimethoate (II) Danadim 72 9 141 74 0.22 76.91 46.79 30.11 -0.5301 0.6104 2.67 35.25
Deltamethrin (II) Decis 6 3 68 26 0.26 0.58 0.21 0.37 0.2350 0.4325 243 101.10
Dimethoate (II) Twigathoate 72 9 141 74 0.21 946.16 794.15 152.01 1.3425 0.7856 8.63| 2855.765
Mancozeb (U) Dithane 12 3 29 44 0.40 532.53 515.95 16.56 0.0955 0.92566 243 90.54
Lambda cyhalothrin (II) | Karate 21 3 106 44.17 0.09 7.96 7.12 0.84 0.1144 0.9100 6.20 84.38
Methomyl (IB) Weiling 6 11 75 31 0.31 56.45 38.27 18.18 -1.9925% 0.0866 242 69.92
Propineb (I11) Milraz 6 6 14 9 0.17 1.54 0.00 1.54 0.8745%* 0.0534 1.35 5.07
Acephate (III) Orthene 15 12.5 47.15 24.88 0.19 16.81 12.59 4.22 0.7131 0.4875 4.58 230.25
Carbendazim (U) Rodazim 25| 405 86 50.5 0.26 490.33 485.54 4.79 -0.7419 0.4752 3.23 28.57
Alpha-cypermethrin (II) | Tata alpha 21 3 106 44 0.30 39.62 39.62 0.00 0.1451 0.8862 5.39 34.38
Sulphur (U) Thiovit 10 6 120 45.5 0.32 24.09 14.12 9.97 0.7117 0.4835 7.00 1 427.01
Imidacloprid (1) Thunder 6.9] 10.35 92.88 36.71 0.21 36.36 35.51 0.85 -1.1227 0.2722 7.27 435.39
Thiophanate-methyl (U) | Topsin 16.2 15.3 39.95 23.83 0.10 14.32 11.30 3.02 -0.58546 0.5796 2.16 2.87

Total 4 049.67 3410.27 639.40 -7.7660%** 0.000 100| 219 465.20

NB: Statistical significance at 0.01 (***), 0.05 (**) and 0.1 (*)
EIQ F refers to the EIQ component for the farmer
EIQ C refers to the EIQ component for the consumer

EIQ E refers to the EIQ component for the environment
EIQ T refers to the EIQ total
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3.2 Determinants of IPM adoption

A probit model was estimated in the first stage of the ESR model to evaluate determinants of [IPM
adoption. Post-estimation tests were also determined to test the validity of the model. First, the
variance inflation factor (VIF) was applied among the independent variables. The results show that
there was no strong correlation between the variables, since the values of VIF were far below 10. The
Hosmer-Lemeshow test was also conducted to test the goodness of fit of the model. With a p-value
of 0.29, we can say that Hosmer and Lemeshow’s goodness-of-fit test justified our choice of model.

Exclusion restriction is required for the identification of the ESR model. This is because at least one
variable that affects farmers’ adoption of IPM but does not directly affect the EIQ field use is needed.
Based on the existing literature and our study context, we use households’ access to a health centre
proxied as the distance to the nearest health centre as our identification strategy. Households’ access
to a health facility has been used for identification purposes in previous, related studies (Baiocchi et
al.2010). We hypothesised that households that are near a health centre are likely to be more informed
about the adverse effects of chemicals and consequently will adopt alternative methods of pest
control, such as IPM. However, distance to a health centre may not relate directly to the EIQ field
use. The suitability of this variable as a valid instrument is established by performing a falsification
test, following Di Falco and Veronesi (2013). The variable exhibited a significant effect on IPM
adoption decisions, but did not affect EIQ field use among the non-IPM households.

The parameter estimates of the probit model are presented in Table 2. The likelihood to adopt IPM
technologies was influenced by the size of agricultural land, the number of mature mango trees, access
to irrigation water, IPM training, distance to the nearest health facility, group membership, and age
of the household head. The probability of IPM adoption increased with the number of mature mango
trees. This is reasonable, because more productive trees imply high production, and thus higher
revenue from mango production may provide the necessary capital for investing in new technologies.
This finding is consistent with Korir ez al. (2015), who found that farmers with more mango trees are
likely to adopt more IPM components.

Table 2: Probit model for determinants of IPM adoption

Variables Coefficient SE ME
Wealth variables

Agricultural land owned 0.3031%** 0.1329 0.1183**
Number of mango-producing trees 0.0034*** 0.0010 0.0013%**
Human and productive capital variables

Years is school 0.0057 0.0184 0.0022
Years in mango farming 0.0121 0.0094 0.0047
Household head age -0.0126* 0.0071 -0.0049*
Household size -0.0152 0.0370 -0.0059
Gender of the household head 0.2457 0.2027 0.0959
Labour management 0.1357 0.1046 0.0529
Institutional and finance variables

Access to extension officers 0.0696 0.1783 0.0272
Attended IPM training 0.8281*** 0.1726 0.3232%**
Access to irrigation water 0.2826* 0.1536 0.1103*
Access to credit facilities -0.0447 0.1756 -0.0175
Member of an agricultural group -0.5360*** 0.1694 -0.2092%**
Distance to the nearest health facility 0.1718%** 0.0429 0.3232%**
Farm management variables

Protective clothes usage 0.1919 0.1557 0.0749
Number of observations 371

NB: Statistical significance at 0.01 (***), 0.05 (**), 0.1 (*)
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The positive correlation between farm size and IPM adoption is consistent with the findings of Uaiene
et al. (2009). A possible reason is that the collateral value of land could be used to access credit,
which enhances the adoption of IPM. Farm size affects adoption costs, risk perceptions, human
capital, credit constraints, and labour requirements. Households with small farms face enormously
high fixed costs involved in the adoption of new technologies.

Access to water for irrigation is significantly correlated with the decision to adopt IPM technologies.
Qualitative information from our study area revealed that access to water was a significant challenge,
with only a few farmers having access to irrigation. Although Meru County receives adequate rainfall
throughout the year, recent threats posed by climate change have induced farmers to supplement farm
production with irrigation. Thus, farmers who access irrigation water can diversify production and
produce different farm products throughout the year, which increases their yields and revenue
(Bruinsma 2009), enabling farmers to adopt IPM technologies.

In contrast to our expectation, social capital in terms of membership of a farming group negatively
affected the probability of adopting IPM technologies. This is unexpected, as participation in social
networks is considered a channel for accessing new information and thus increasing the likelihood of
being exposed to new farming ideas (Uaiene et al. 2009). It is possible that farmers in a group are
limited by group dynamics, while individual farmers have the freedom to make their decisions
independently. In a large group of farmers, for instance, learning externalities can lead to opposite
effects because of free-riding behaviours (Bandiera & Rasul 2006).

The age of household heads is negatively related to the adoption of IPM. Adesina and Zinnah (1993)
note that the rate of risk aversion and reluctance to invest in long-term technologies increases with
age. Farmers who had attended IPM training were 32.32% more likely to adopt IPM technologies
than those who had not. Trained farmers have prior knowledge of the potential benefits associated
with technology, and thus they are likely to adopt the technology (Miheretu & Yimer 2017).
Interestingly, farmers who reside further from health centres were more likely to adopt IPM
technologies. A possible explanation could be that farmers far from health centres incur high
transportation costs to these centres, thus increasing their health costs (Maumbe & Swinton 2003),
and therefore are more likely to adopt technologies that are more health friendly.

3.3 Health and environmental effects of adopting IPM technologies

Table 3 reports the causal impacts of adopting IPM technologies. The descriptive statistics in the
previous section comparing the mean of EIQ field use for the intervention and farmers’ practices
revealed that adoption of the fruit fly IPM has aggregate positive benefits of a lower EIQ field use
value (639.40). However, the approach is not enough to justify the positive effects of IPM
technologies. The adoption of IPM technologies potentially is endogenous. The difference in EIQ
field use may be influenced by other, unobservable characteristics of the farm households, such as
their education level, farming experience, skills or income level. For instance, the most successful
farm households could also be the most able ones, hence they would have done better than others
even without adopting IPM technologies. We address this issue by estimating an endogenous
switching regression model, which enables us to construct a valid counterfactual.
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Table 3: Treatment effects of IPM technologies

Mean Std dev. T-test P-value
IPM farmers with IPM (observed) 7.1231 1.7415 -9.4207*** 0.0000
IPM farmers had they not adopted IPM (counterfactual) 7.8053 1.4993 -9.4207*** 0.0000
Net change (ATT) -8.74%***
Non-IPM farmers without IPM (Observed) 6.5240 1.8916 13.2567*** 0.0000
Non-IPM farmers had they adopted IPM (counterfactual) 5.2903 1.1881 13.2567*** 0.0000
Net change (ATU) 23.32%%**

*** mean values are significant at the 1% level

The results indicate that fruit fly IPM plays an essential role in reducing the harmful effects of
pesticide use among IPM farmers. The adoption of IPM helps reduces the EIQ field. Specifically,
farmers who used fruit fly IPM reduced the EIQ field use by 8.74%. The finding corroborates other
studies that utilise different methodologies, and finds definite evidence of the impact of IPM on health
and the environment (e.g. Fernandez-Cornejo 1998; Fernandez-Cornejo & Ferraioli 1999; De Bon ef
al. 2014). The ATU results in the lower part of Table 2 would show heterogeneous health and
environmental effects of fruit fly [IPM for non-IPM farmers if they adopted. The results suggest that
non-IPM farmers would have reduced the value of EIQ field use by 23.32% if they had adopted the
strategy.

4. Conclusion and policy implications

This study utilised household-level survey data collected from 371 mango growers in Meru County,
Kenya to evaluate the health and environmental benefits of using IPM technologies for controlling
fruit flies in mango production. While substantial literature exists on the effectiveness of IPM in
reducing insect pests of horticultural output in developing countries, the empirical literature,
particularly on the health and environmental impacts of IPM practices, especially in Sub-Saharan
Africa, is limited. We contribute to the limited studies by utilising the environmental impact quotient
(EIQ) model to quantify the health and environment effects of an IPM strategy developed and
disseminated by ICIPE and partners to suppress fruit flies in Sub-Saharan Africa. Furthermore, in
contrast to the previous studies, which relied on detailed results based on EIQ values or EIQ field-
use ratings, we empirically evaluated the treatment effects using the endogenous switching regression
(ESR) model.

We find that the adoption of IPM technologies reduces the negative impacts of pesticides, as
demonstrated by a lower EIQ field-use rating among the IPM farmers and the significant average
treatment effect. The first stage of the ESR model revealed that IPM adoption also depends on the
size of agricultural land and the number of mango-producing trees owned, the age of the household
head, IPM training, access to irrigation water, membership of a farming group, and distance to the
nearest health facility. The findings recommend policy efforts that focus on promoting and
disseminating fruit fly IPM to improve yields and income from horticultural production, and to reduce
human health and environmental threats from pesticide use among the rural communities. Providing
IPM training and access to irrigation water should be considered to enhance the adoption of fruit fly
IPM. While this study provides useful insights regarding the health and environmental benefits of
using IPM, our findings have limited generalisation, since the study is based on cross-sectional data.
Besides, the effectiveness of IPM technologies is specific to each site. The benefits of these
technologies vary geographically and depend on the level/intensity of adoption on the farm. We
recommend that future studies should evaluate the long-term adoption and impact of the fruit fly [IPM
strategy on health and the environment, utilising panel datasets and focusing on different contexts in
which the approach is being promoted. Further, we believe that collaboration by various disciplines,
such as biologists, agronomists, environmentalists, soil scientists and economists, will be a great
addition to future literature assessing the health and environmental benefits of IPM.

23



AfJARE Vol 15No 1 March 2020 Mwungu et al.
Acknowledgements

The authors would like to acknowledge financial support from the UK Government through UK Aid.
ICIPE also receives core funding from the Swedish International Development Cooperation Agency
(SIDA), the Swiss Agency for Development and Cooperation (SDC), the Federal Ministry for
Economic Cooperation and Development (BMZ) in Germany, and the Kenyan Government. The
authors are also grateful to the African Fruit Fly Programme (AFFP) of ICIPE, for their field support,
to the farmers, who dedicated their time to participate in the focus group discussion and household
surveys, and to the enumerators, for their hard work in data collection. A previous version of this
paper was presented at the 2nd Biennial International Conference on Enhancing Sustainable
Agricultural Production and Marketing Systems, hosted by the School of Agriculture and Enterprise
Development at Kenyatta University, Nairobi, Kenya. The authors are indebted to the conference
organisers and participants for their insightful comments.

References

Adego T, Simane B & Woldie GA, 2019. The impact of adaptation practices on crop productivity in
northwest Ethiopia: An endogenous switching estimation. Development Studies Research 6(1):
129-41.

Adesina AA & Zinnah MM, 1993. Technology characteristics, farmers' perceptions and adoption
decisions: A Tobit model application in Sierra Leone. Agricultural Economics 9(4): 297-311.
Alam MZ, Crump AR, Haque M, Islam S, Hossain E, Hasan SB, Hasan SB & Hossain S, 2016.
Effects of integrated pest management on pest damage and yield components in a rice agro-
ecosystem in the Barisal Region of Bangladesh. Frontiers in Environmental Science 4.

doi:10.3389/fenvs.2016.00022

Baiocchi M, Small DS, Lorch S & Rosenbaum PR, 2010. Building a stronger instrument in an
observational study of perinatal care for premature infants. Journal of the American Statistical
Association 105: 1285-96.

Bandiera O & Rasul I, 2006. Social networks and technology adoption in northern Mozambique. The
Economic Journal 116(514): 869-902.

Bertrand PG, 2019. Uses and misuses of agricultural pesticides in Africa: Neglected public health
threats for workers and population. In Larramendy M & Soloneski S (eds), Pesticides — Use and
misuse and their impact in the environment. London: IntechOpen.

Bruinsma J, 2009. The resource outlook to 2050: By how much do land, water and crop yields need
to increase by 2050. Paper presented at the FAO Expert Meeting on "How to feed the world in
2050", 24-26 June, Rome, Italy.

Carvalho FP, 2017. Pesticides, environment, and food safety. Food and Energy Security 6: 48—60.

Chang Q, Wang W, Regev-Yochay G, Lipsitch M & Hanage WP, 2015. Antibiotics in agriculture
and the risk to human health: How worried should we be? Evolutionary Applications 8(3): 240-7.

De Bon H, Huat J, Parrot L, Sinzogan A, Martin T, Malézieux E & Vaysicres J-F, 2014. Pesticide
risks from fruit and vegetable pest management by small farmers in sub-Saharan Africa. A review.
Agronomy for Sustainable Development 34: 723-36.

Di Falco S & Veronesi M, 2013. How can African agriculture adapt to climate change? A
counterfactual analysis from Ethiopia. Land Economics 89(4): 743—66.

Donga TK & Eklo OM, 2018. Environmental load of pesticides used in conventional sugarcane
production in Malawi. Crop Protection 108: 71-7.

Ekesi S, 2015. Field infestation and suppression of the invasive fruit fly Bactrocera invadens (Drew,
Tsuruta and White) on citrus in Kenya. Acta Horticulturae 1065: 1019-26.

Ekesi S & Billah MK, 2007. A field guide to the management of economically important tephritid
fruit flies in Africa. Second edition. Nairobi: ICIPE Science Press.

24



AfJARE Vol 15No 1 March 2020 Mwungu et al.

Ekesi S, Mohamed S & Tanga CM, 2014. Comparison of food-based attractants for Bactrocera
invadens (Diptera: Tephritidae) and evaluation of Mazoferm—Spinosad bait spray for field
suppression in mango. Journal of Economic Entomology 107(1): 299-309.

Fan L, Niu H, Yang X, Qin W, Bento CP, Ritsema CJ & Geissen V, 2015. Factors affecting farmers'
behaviour in pesticide use: Insights from a field study in northern China. Science of the Total
Environment 537: 360-8.

Fernandez-Cornejo J, 1998. Environmental and economic consequences of technology adoption: IPM
in viticulture. Agricultural Economics 18(2): 145-55.

Fernandez-Cornejo J & Ferraioli J, 1999. The environmental effects of adopting IPM techniques: The
case of peach producers. Journal of Agricultural and Applied Economics 31(3): 551-64.

Gill HK & Garg H, 2014. Pesticides: Environmental impacts and management strategies. In
Larramendy M & Soloneski S (eds), Pesticides — Toxic aspects. London: IntechOpen

Githiomi C, Muriithi B, Irungu P, Mwungu CM, Diiro G, Affognon H, Mburu J & Ekesi S, 2019.
Economic analysis of spillover effects of an integrated pest management (IPM) strategy for
suppression of mango fruit fly in Kenya. Food Policy 84: 121-32.

Griesbach J, 2003. Mango growing in Kenya. Nairobi, Keyna: World Agroforestry Centre.

Hawkes C & Ruel MT, 2006. Understanding the links between agriculture and health. International
Food Policy Research Institute, Washington DC.

Horticultural Crops Development Authority (HCDA), 2016. National horticulture validated report
2015-2016. Nairobi: Government Printers.

Hensher DA, 1986. Sequential and full information maximum likelihood estimation of a nested logit
model. The Review of Economics and Statistics 68(4): 657-67.

Isoto RE, Kraybill DS & Erbaugh MJ, 2014. Impact of integrated pest management technologies on
farm revenues of rural households: The case of smallholder Arabica coffee farmers. African
Journal of Agricultural and Resource Economics 9(2): 119-31.

Kibira M, Affognon H, Njehia B, Muriithi B, Mohamed S & Ekesi S, 2015. Economic evaluation of
integrated management of fruit fly in mango production in Embu County, Kenya. African Journal
of Agricultural and Resource Economics 10(4): 343-53.

Korir J, Affognon HD, Ritho CN, Kingori WS, Irungu P, Mohamed SA & Ekesi S, 2015. Grower
adoption of an integrated pest management package for management of mango-infesting fruit flies
(Diptera: Tephritidae) in Embu, Kenya. International Journal of Tropical Insect Science 35(2): 80—
9.

Kovach J, Petzoldt C, Degni J & Tette J, 1992. A method to measure the environmental impact of
pesticides. New York's Food and Life Sciences Bulletin 139: 1-8.

Lokshin M & Sajaia Z, 2004. Maximum likelihood estimation of endogenous switching regression
models. The Stata Journal 4(3): 282-9.

Macharia I, 2015. Pesticides and health in vegetable production in Kenya. BioMed Research
International 2015, Article ID 241516. https://doi.org/10.1155/2015/241516

Macharia IN, Mithofer D & Waibel H, 2009. Potential environmental impacts of pesticides use in the
vegetable sub-sector in Kenya. African Journal of Horticultural Science 2: 138-51.

Maddala G, 1983. Limited dependent and qualitative variables in econometrics. Cambridge:
Cambridge University Press (1986 reprint of the original edition).

Maumbe BM & Swinton SM, 2003. Hidden health costs of pesticide use in Zimbabwe's smallholder
cotton growers. Social Science & Medicine 57(9): 1559-71.

Mazlan N & Mumford J, 2005. Insecticide use in cabbage pest management in the Cameron
Highlands, Malaysia. Crop Protection 24(1): 31-9.

Midingoyi S-kG, Kassie M, Muriithi B, Diiro G & Ekesi S, 2019. Do farmers and the environment
benefit from adopting integrated pest management practices? Evidence from Kenya. Journal of
Agricultural Economics 70(2): 452—70.

Miheretu BA & Yimer AA, 2017. Determinants of farmers’ adoption of land management practices
in Gelana sub-watershed of Northern highlands of Ethiopia. Ecological Processes 6: Article no.
19.

25


https://doi.org/10.1155/2015/241516

AfJARE Vol 15No 1 March 2020 Mwungu et al.

Mohamed S, Ekesi S & Hanna R, 2008. Evaluation of the impact of Diachasmimorpha longicaudata
on Bactrocera invadens and five African fruit fly species. Journal of Applied Entomology 132(9-
10: 789-97.

Mohamed SA, Ekesi S & Hanna R, 2010. Old and new host-parasitoid associations: Parasitism of the
invasive fruit fly Bactrocera invadens (Diptera: Tephritidae) and five African fruit fly species by
Fopius arisanus, an Asian opiine parasitoid. Biocontrol Science and Technology 20, 183-96.

Mujica N & Kroschel J, 2019. Ecological, economic, and environmental assessments of integrated
pest management in potato: A case study from the Cafiete Valley, Peru. Food and Energy Security
8(1): e00153.

Muriithi BW, Affognon HD, Diiro GM, Kingori SW, Tanga CM, Nderitu PW, Mohamed SA & Ekesi
S, 2016. Impact assessment of integrated pest management (IPM) strategy for suppression of
mango-infesting fruit flies in Kenya. Crop Protection 81: 20-9.

Ndlela S, Ekesi S, Ndegwa P, Ong'amo G & Mohamed SA, 2017. Post-harvest disinfestation of
Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) in mango using hot-water treatments. Journal
of Applied Entomology 141: 848-59.

Sennhenn A, Prinz K, Gebauer J, Whitbread AM, Jamnadass R & Kehlenbeck K, 2014. Identification
of mango (Mangifera indica L.) landraces from Eastern and Central Kenya using a morphological
and molecular approach. Genetic Resources and Crop Evolution 61(1): 7-22.

Septembre-Malaterre A, Stanislas G, Douraguia E & Gonthier MP, 2016. Evaluation of nutritional
and antioxidant properties of the tropical fruits banana, litchi, mango, papaya, passion fruit and
pineapple cultivated in Réunion French Island. Food Chemistry 212: 225-33.

Swinton SM & Williams MB, 1998. Assessing the economic impacts of integrated pest management:
Lessons from the past, directions for the future. Staff Paper Series 11636, Department of
Agricultural, Food, and Resource Economics, Michigan State University, East Lansing, Michigan.

Uaiene RN, Arndt C & Masters WA, 2009. Determinants of agricultural technology adoption in
Mozambique. Discussion Paper No. 67E, Ministry of Planning and Development, Tete, Republic
of Mozambique.

26



