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Heteroskedasticity in Crop Yield Models

Seung-Ryong Yang, Won W. Koo, and William W. Wilson

This study examines three alternative models of correcting for heteroskedasticity in wheat
yield: the time trend variance, the GARCH, and an econometric model that includes
the potential sources of heteroskedasticity. Nonnested test results suggest that modeling
the sources of heteroskedasticity is the preferred procedure. Including potential sources
of heteroskedasticity as explanatory variables removed the heteroskedasticity in the
sample wheat yields. The results also suggest that the GARCH specification is a promising
model of correcting for heteroskedasticity when the sources cannot be identified. The
time trend variance model alone may misspecify the true variance structure.
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Understanding the behavior of crop yields becomes increasingly important for modeling production
functions, forecasting price movements, and understanding farmers’ responses to government programs.
Variability in crop yields is a principal source of instability in production levels (Hazell 1985), and most
studies use the coefficient of variation around the trend to measure the variability in crop production
(Hazell 1984; Weber and Sievers; Singh and Byerlee). The maintained assumption of using the coefficients
of variation for analysis is that detrended yields are homoskedastic within the sample period.

A phenomenon usually confronted in statistical analysis of crop vields is heteroskedasticity, which seems
to be characterized mainly by systematic changes in yield variation over time. Nevertheless, heteroske-
dasticity has received less attention and frequently has been handled inadequately in empirical analyses.

Hazell (1984) and, similarly, Singh and Byerlee recognized heteroskedasticity in detrended yields and
partitioned the residuals into subperiods for analysis. However, the measured coefficient of variation can
be misleading if heteroskedasticity occurs more frequently. Gallagher found that detrended yields have
an upward trend in variation, and he standardized the data with the predicted standard deviation from
a regression against a time trend to correct for heteroskedasticity.! This standardization procedure results
in heteroskedasticity-adjusted estimates only if the true error structure is known. If the variation is cyclical
or changing with some systematic patterns other than trend, this procedure would not correct fully for
heteroskedasticity. ‘

Variation in yields may have some patterns due to autocorrelated weather and/or gradual adoption of
new technology. If this is the case, the GARCH (Generalized Autoregressive Conditional Heteroskedastic)
process developed by Bollerslev can serve as an alternative to the time-trend variance model. The GARCH
(p, q@) process, which is equivalent to an ARMA process with m = max{p, g} and p in the squared
disturbances (Bollerslev), is useful to model systematic changes in yield variation. The GARCH model
is similar to Just and Pope’s stochastic production function, which allows the relationships of inputs with
risk to be independent of the relationships of inputs with production.

Conventional time-trend variance or the GARCH models may explain the variation in crop yields.
However, heteroskedasticity may result from model misspecification, most likely from omitted variables
(Judge et al.). Offutt, Garcia, and Pinar found that variability of corn yield around a trend increases over
time, but including weather variables is likely to remove the heteroskedasticity. Engle (p. 990) claimed:

The existence of ARCH effect would be interpreted as evidence of misspecification. ... The
ARCH may be a better approximation to reality than making standard assumptions about the
disturbance, but trying to find the omitted- variables or determine the nature of the structural
change would be even better.
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An alternative way to model heteroskedastic yields is to incorporate possible sources of heteroskedas-
ticity as a priori information. To remove heteroskedasticity, this approach should be preferred, as Engle
suggested, to models that allow heteroskedasticity and approximate the true error structure with time-
varying variance models, such as the time-trend variance or the GARCH model. If the analysis fails to
identify those sources, then determining how the variance behaves over time becomes important to
correctly standardizing the data. If heteroskedasticity results from omitted variables that are dependent,
the GARCH process might well approximate the variance. When crop yields follow a GARCH process,
ignoring it would bias estimated standard errors and test results (Diebold).

The objective of this study is to specify and evaluate models of heteroskedasticity in crop yields. In
this analysis, we conduct a nonnested test of three alternative models of heteroskedasticity: the time-trend
variance model, the GARCH specification, and an econometric model that explicitly includes the potential
sources of heteroskedasticity.

Model Specifications and Test Procedures

Let y, be the sample yield per planted acre and X’ be a vector of explanatory variables for the mean
process at time ¢. The three alternative models to be tested are specified as follows. The time-trend variance
model is

(1) yi=Xb+e,
&=ay+ o7, +p,

where b and the as are unknown parameters, T is a trend variable, and T = 1 at the first year of the
sample period. ¢, and p, are disturbances, and u, is assumed i.i.d. normal. This model indicates that,
regardless of the mean process (i.e., X,), the squared disturbances have a linear trend.

On the other hand, the alternative GARCH process, which is used extensively for heteroskedastic time-
series data (Akgiray; Aradhyula and Holt; Yang), is designed to allow the conditional variance to change
over time. Following Bollerslev’s proposition, we used the GARCH(1, 1) specification as follows:

(2) yt=Xzb + €,
h,= 8, + Bie-y + Boh,_y,
el ~ N(07 ht)’

where the 8s are parameters, and ¢, follows conditionally a normal distribution with zero mean and time-
varying variance, #, which is determined by lagged squared disturbance and its own lag. The variance
equation is equivalent to an ARMA specification in 2.

Finally, the econometric model specifies that the disturbances ¢, in the above equations have a constant
variance, i.e., 4, = ¢%, for all ¢. In this alternative model, X, is a vector of explanatory variables, which
causes heteroskedasticity in crop yields.

Potential sources of heteroskedasticity considered in this study are changes in technology, government
programs, and climatological variables. The time-trend mean process, which is used most often in the
analysis of crop yields, models changes in technology with a trend, interpreting the coefficient as the
productivity growth rate. However, in addition to yield increases, technology also could change the
variability in yields. For example, most crop breeding programs improve disease resistance. Crop yields
would be less variable as disease resistance improves.

Government programs have a significant impact on yields in a particular crop year (Houck and Gal-
lagher). Marginal shifts in arca planted (due mainly to government programs) are typically on the less
productive land. Thus, variation in the area planted on marginal land should affect the variability in
yields.

The variation in key climatological variables appears to be nonconstant. For example, weather patterns
in the 1980s differed significantly from those in previous decades. Greater variation appeared in both
temperature and precipitation in key growing regions in the 1980s. Thus, changes in weather patterns
induce apparent changes in variability in yield trends. Weather-related heteroskedasticity seems to influ-
ence regional crop yield data more than aggregated national data, i.e., aggregation tends to average out
regional weather effects (Offutt, Garcia, and Pinar). We chose two key climatological variables, temperature
and moisture. :

Finally, we included a lagged dependent variable to remove autocorrelation, which makes inferences
unreliable. This lagged variable also models persistence in average productivity, which may be due either
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to continuous cropping patterns or to fertilizer and moisture remaining from previous years. This per-
sistence would reduce yield variability.
The mean process for the econometric model is then specified as

3) Vo= by + BT, + b,T? + b,T? + by, + bsd, + bWT, + b,WM, + ¢,

where A4, is the planted acres of sample crop, WT, is the temperature, and WM, is the moisture. A cubic
function of trend is introduced to capture nonlinearity in growth rates.

For the hypothesis test, we used the nonnested orthodox test. The first step for the test is to nest the
alternative models in a more general specification. The general model with the same notations as above is

) v, =by+ b,T,+ b,T? + b,T? + by,_, + bsA, + bWT, + b,WM, + e,
h,=v +viei +v.h_ +vT,
e, ~ N, h),

where the ys are parameters.

The hypothesis of the time-trend model is H,: v, = 0 and v, = 0, while that of the GARCH model is
H,: v, = 0. The hypothesis of the econometric model is H,: v, = 0, v, = 0, and v, = 0. As is always true
of nonnested tests, the test may reject all alternative models or fail to reject any of them. There are eight
possible cases of test results, including those mentioned above.?

The data considered in this study are average yields of durum and hard red spring (HRS) wheat produced
in North Dakota from 1929 to 1988. We used these state-level data to avoid the possibility that sources
of heteroskedasticity would be neutralized or masked in the nationwide data. For temperature we used
the average of June’s daily maximum temperature in North Dakota, and for moisture we used the sum
of growing season precipitation (May to July) and the recharged precipitation (October of the previous
year to April) measured in inches in North Dakota.? The data for yields and planted acres were obtained

“from various issues of North Dakota Agricultural Statistics (North Dakota State University and U.S.
Department of Agriculture). The data for the climatological variables were taken from the U.S. Department
of Commerce’s Climatological Data for North Dakota.

Time-Trend Variance versus GARCH Models

We first estimated a general model combining the time-trend variance and the GARCH models to confirm
the existence of heteroskedasticity in the data since the null hypothesis of the econometric model is no
heteroskedasticity. The nonnested test between the time-trend variance and the GARCH models is also
important since few studies in the literature have considered dependence in yield variation implied by
the GARCH specification. The test is performed with the time-series (Bessler) and time-trend mean
processes, which were widely used in past studies.

Time-Series Mean Process

The mean process of each crop yield is identified as an ARMA(1, 1) process through autocorrelation and
partial autocorrelation functions (Box and Jenkins). We estimated the ARMAC(I, 1) process for the mean
equation with the same variance equation as in (4).

Table 1 shows the estimated results of the models for both crops. Both durum and HRS yields are
serially correlated. Estimated coefficients of the autoregressive and moving-average terms are significant
at the 5% level for each crop, using the ¢-tests. The Ljung-Box test* does not reject the null hypothesis of
no serial correlation in the standardized residuals for each model. The models removed autocorrelation
in the sample data.

The results of nonnested tests differ for each crop. The test rejects the time-trend variance model in
favor of the GARCH alternative for durum, i.e., the GARCH term (#,_,) is significant while the trend is
not statistically different from zero at the conventional levels. On the other hand, the test rejects neither
time-trend nor GARCH alternatives for HRS, i.e., all variables are significant.

Time-Trend Mean Process

The sample data were autocorrelated as found in the time-series model, so we included a lagged dependent
variable. To avoid heteroskedasticity due to misspecified functional form, trend is introduced into the
model using a cubic function as in the general model (4).

The estimated results in table 1 indicate significant changes in productivity due to time-dependent
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Table 1. Estimated Results of Time-Series and Time-Trend Models
with the Time-Varying Variance Equations

Time Series Time Trend
Durum HRS Durum HRS
Mean:
Intercept 1.68 1.69 8.96* 3.88*
(1.16) (1.15) (2.15) (1.82)
AR(1) 0.92* 0.90*
0.07) 0.07)
MA(1) -0.26* —0.39*
‘ 0.11) .17
Vi 0.37* 0.42*
0.17) (0.13)
T —0.64* 0.22*
0.24) (0.07)
T? 0.04* -
(0.01) -
T —0.0005* —_
(0.0001) -
Variance:
- Intercept -0.89 -0.97 13.01 -0.71
(1.62) (1.00) 9.94) (1.09)
e, -0.11 -0.13* 0.30 —0.11
(0.15) (0.05) 0.17) 0.07)
h_, 0.92* 0.99* -0.73* 0.99*
(0.16) (0.10) 0.27) 0.11)
T 0.18 0.13* 0.53 0.10*
(0.12) (0.04) (0.36) (0.04)
Log-Likelihood —173.60 —165.27 —168.91 —164.05
Ljung-Box Test (Lag = 10):
elh, 5.17 7.29 14.65 13.22
(e,/h)? 3.63 7.15 6.10 13.17
Normality Test:®
Skewness 0.540* 0.331 —0.197 0.189
Kurtosis 0.463 0.168 —0.692 0.541
D, ax 0.078 0.075 0.058 0.069

Note; Standard errors are in parentheses. An asterisk indicates statistical
significance at the 5% level.

a Critical values are 14.45 for the time-series models and 16.01 for the time-
trend models.

b Tests applied to the GARCH residuals.

technical changes in each crop.® However, the growth rate patterns differ. Yields for HRS increase linearly
over time, while those for durum increase, first at an increasing rate and then at a decreasing rate. Thus,
the second- and third-order terms are not included in the final models for HRS.

The nonnested test results are consistent with those of time-series mean models. In the case of durum,
only the GARCH term is significant, rejecting the time-trend variance model in favor of the GARCH
alternative, while neither model is rejected for HRS.

The results of these tests indicate that the conventional use of a time trend in variance misspecified the
variance structure. The GARCH effects should be considered when modeling heteroskedastic sample
yields. Ljung-Box and Kolmogorov-Smirnov tests of fit (D,,,,) were used as diagnostic checks. These tests
indicated that the standardized residuals (é,/4,) satisfy the maintained assumption of i.i.d. normal. The
estimated model seems to be a valid specification for the sample data.

Econometric Model and Nonnested Tests

We have shown that the residuals in conventional time-series and time-trend mean processes are heter-
oskedastic. We now estimate model (4) and conduct nonnested tests among the three alternatives of the
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Table2. Estimated Results of the General Model for the Nonnested

Tests
Durum HRS
GARCH OLS GARCH OLS
Mean:
Intercept 33.05* 28.02* 25.31* 32.39*
(15.38) (10.39) 4.73) (9.13)
Yoy 0.34* 0.40* 0.43* 0.29*
©0.11) (0.10) (0.12) (0.10)
T —1.07* —0.83* 0.13* 0.17*
(0.49) (0.39) (0.05) (0.06)
T2 0.05* 0.04* - -
(0.017) (0.012) - -
T3 —0.0005* —0.0004* - —
(0.0002) (0.0001) —_ -
Acre -1.76 —1.14 —0.93* —1.12*
(0.97) (0.78) (0.21) (0.38)
wT —-0.37* -0.37* -0.30* -0.38*
(0.16) 0.11) (0.06) (0.08)
WM 0.88* 0.95* 0.65*% 0.73*
0.27) (0.18) (0.12) (0.15)
Variance:
Intercept 12.91* 11.59* 3.52 7.98*
(4.62) (2.31) (5.18) (1.57)
ez, 0.09 - 0.44 —
(0.08) - (0.28) -
h,_, -0.28 - -0.49 —
(1.30) - (0.44) -
T - - 0.23 -
- - (0.14) -
Log-Likelihood —-151.96 —153.55 —144.02 —145.06
LR Test 3.18 - 2.08 -
Adjusted R? —_ .83 - .87
Ljung-Box Test (Lag = 10):*
e 16.35 - 5.71 -
e? 7.98 - 4.26 -
e/h, 15.02 - 5.32 -
(e/h) 5.86 - 3.04 -
Normality Test:® '
Skewness -0.113 - —0.141 -
Kurtosis 1.109* - —-0.418 -
D, 0.088 - 0.063 -

Note: Standard errors are in parentheses. Acres are divided by 1,000 to avoid
the scaling problem. An asterisk indicates statistical significance at the 5%
level.

» Critical values are 19.02 for the residuals and 16.01 for the standardized
residuals.

© Tests applied for the residuals (not standardized).

econometric model and the two time-varying variance models. The trend variable in the variance equation
for durum is dropped according to the previous findings, since inclusion of an irrelevant variable reduces
efficiency.

The estimated results of the general models for durum and HRS are reported in table 2 along with
those from ordinary least squares estimation for comparison. In both cases, planted acres had the expected
negative impact on yields but was only significant for HRS. This negative coefficient implies the production
exhibits decreasing returns to scale with respect to land.s Climatological variables are all significant in
explaining yield movements for each crop. Moisture affects yields positively, while temperature affects
yields negatively.
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The nonnested tests support the econometric model against the other two time-varying variance models.
Neither the ARCH nor GARCH terms are significant at conventional levels for either crop. Also, the
trend is not significant in the HRS model. The null hypothesis of no heteroskedasticity is also supported
by the likelihood ratio (LR) test (H,: v, = 0, v, = 0, and v, = 0) for the two crops. The diagnostic tests
(Ljung-Box and Kolmogorov-Smirnov tests) show that the residuals (not standardized) are approximately
normal with no linear or quadratic dependence. These test results indicate that the econometric model
specified in this study corrects for heteroskedasticity found in the time-series and time-trend mean pro-
cesses.

The standard errors of GARCH estimates are compared to those of OLS. Since the econometric
specification removed autocorrelation and heteroskedasticity, OLS estimates should be more efficient.
The results support this proposition for the durum model in which all standard errors from OLS are
smaller than those from the GARCH model. However, results for HRS are mixed, i.e., some are smaller
and some larger.

Finally, to evaluate a farmer’s revised perception of yield risk from the econometric model, we calculated
standard deviations of raw yields and residuals of the econometric models.” The measured unconditional
and conditional standard deviations are 8.63 and 3.48 for durum and 8.26 and 2.94 for HRS, respectively.
The conditional standard deviations in this study represent farmer risk near harvest time because infor-
mation about the weather variables in the model is not available until the end of July.

Summary and Conclusions

Most studies on crop yields tend to ignore heteroskedasticity or handle it improperly. Simple linear time-
trend as well as time-series models usually encounter variances that change over time. The conventional
correction for heteroskedasticity is to standardize the data with their predicted standard deviations.
However, we suggest that including factors that cause systematic changes in yield variation should be
preferred to models that allow heteroskedasticity and approximate the variance structure. The underlying
hypothesis is that heteroskedasticity in crop yields results from omitted variables, explaining the systematic
changes in yield variability. To confirm this proposition, we conducted nonnested tests among three
alternatives: the time-trend variance, the GARCH, and an econometric model that includes potential
sources of heteroskedasticity for durum and HRS produced in North Dakota from 1929 to 1988.

The empirical results showed that the variances of sample yields were serially correlated and/or trending
when yields were modeled conditional to time trend only or modeled as ARMA specifications. This
heteroskedasticity disappeared when mean yields were conditioned on trend, planted acres, and clima-
tological variables. The results imply that these variables caused heteroskedasticity when they were omitted
from the model. Among the variables included, the climatological variables seemed most important for
explaining heteroskedasticity. The sample yields conditional only on the weather variables were not
heteroskedastic. This was not true for models that only included the time trend (as shown in the previous
section) or planted acres.® The conventional use of the OLS estimator is acceptable for these sample data,
which is convenient for empirical studies.

The results of this study support our proposition that heteroskedasticity may result from model mis-
specification. Efforts to identify sources of heteroskedasticity may not be too difficult. Climatological
variables used in this study were easily incorporated. The conventional time-trend variance model alone
could not correctly approximate the systematic changes in the sample yield variation. Past analyses that
used monotonically increasing risk in crop yields might provide misleading results.

Another important implication is that the GARCH specification shows promise in modeling heteroske-
dastic yields. The GARCH effects were significant for the models that did not include those econometric
variables. This seems to result from omission of climatological variables that are dependent. If these
variables are neither identified nor available, the GARCH specification or the GARCH with a trend in
variance would be an important model of heteroskedasticity. In addition, the GARCH model predicts
the conditional variance for each observation. Thus, this model should be preferred to a procedure that
arbitrarily partitions and standardizes the sample data.

Since this study was restricted to a small set of crop data in North Dakota, drawing general conclusions
is difficult. However, the implications of this study should generate a broader discussion of issues on
heteroskedasticity in crop yields. A natural extension would be to include other important crops, such as
corn, barley, and soybeans, for various levels of aggregation.

[Received June 1990; final revision received November 1991.]

Notes

! Hereafter we call this model a time-trend variance model.
2 With n alternatives, there are 2” possible cases of nonnested test results.
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3 The recharged precipitation is for the period preceding wheat seeding in May. Therefore, the moisture represents
the total precipitation from October of the previous year to July of the current year. Spring wheat matures in August
and harvesting is usually completed by early September; thus, precipitation during the omitted period rarely affects
crop yields. Also, in North Dakota, these two months are usually dry and almost all precipitation is lost to evaporation.
Precipitation during the period does not add moisture for the next crop year.

4 Under the null hypothesis of no serial correlation, the Ljung-Box test statistic with sample size T is

QK =T(T+2) Z.paP(T— 1), 1<K

where p(r) is the rth autocorrelation coefficient. When applied to residuals, Q has asymptotically a chi-square distribution
with K — s degrees of freedom to adjust for the estimated parameters, and s is the number of lagged dependent variables.

5 A reviewer correctly pointed out that the trend term may reflect technical changes, but it may also reflect other,
unspecified changes. Most studies use the trend as a proxy for technology. This is mainly because technology as a
whole is hardly quantifiable. In this study, the econometric model includes other variables such as weather, acres, and
persistence in production. There may not be many other omitted factors that can significantly influence the trend term.
To this extent, the trend variable can serve as a proxy for technology change,

¢ Since yield is the average product of land (y = Q/4 = AP,), the negative coefficient implies that (MP, — AP,)/A
< 0and MP, < AP,.

7 When assessing farmer risks in yields, conditional standard deviations may be more accurate measures than the
raw standard deviations. However, the conditional standard deviation is subject to information set at a specific time.
For example, near harvest, all information about the variables in the econometric model is available, while at seeding,
the data for weather variables are not known.

# The mean equations only with the planted acres showed the GARCH effects. We did not report these results because
of space limitations.
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