
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


Journal ofAgricultura1 and Resource Economics 28(1): 100-1 15 
Copyright 2003 Western Agricultural Economics Association 

The Semivariance-Minimizing 
Hedge Ratio 

Calum G. Turvey and Govindaray Nayak 

This study presents a new approach to the optimal hedging decision. In some 
empirical studies, the standard hedge using the mean-variance hedge ratio provides 
results which are inconsistent with downside risk management. The new approach 
taken here relates the optimal hedge ratio to semivariance rather than variance. An 
algorithm to solve for the minimum semivariance hedge is presented, and applied to 
hedging Kansas City wheat and Texas steers. 

Key words: downside risk, optimal hedging ratio, risk management, semivariance 
hedge ratio 

Introduction 

The traditional notion of effective hedging is that hedgers manage risk by taking an 
opposite-to-cash position in the futures market. A hedge is effective if the ex post vari- 
ance of profits is lower with a hedge in place than without. The minimum-variance hedge 
ratio represents a specific proportion of the cash position to hedge that maximizes the 
effectiveness of the hedge. The value of the minimum-variance hedge ratio is determined 
by the covariance between the respective cash and futures prices (Johnson; Heifner). 

However, variance as a risk measure has been judged by many economists as too 
conservative because it regards all extremes as undesirable. The economics of finance 
(e.g., Markowitz; Quirk and Saposnik; Samuelson; Tsiang 1972,1974; Borch; Levy; and 
Fishburn, among others) warns mean-variance analysis should be used with caution 
unless the probability distributions used in the analysis satisfy certain restrictions such 
as quadratic utility functions (Markowitz) or normal distributions with the negative 
exponential utility function (Freund). There is a contention that even when such restric- 
tions are satisfied, or approximately satisfied, decision makers frequently associate risk 
with failure to attain a target value or return (Lanzilotti; Mao; Markowitz). 

To overcome the limitations of mean-variance analysis, Markowitz proposed using 
semivariance, a notion which was more fully developed by Mao and by Bawa using the 
lower partial moments of the assets distribution. The heuristic motivation for using semi- 
variance is that minimization of semivariance concentrates solely on the reduction of 
losses (Hogan and Warren 1972,1974), a concept which may be generalized as the failure 
to achieve a stated standard. 
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The objective of this study is to propose an alternative approach to hedging which we 
call the minimum semivariance hedge. The model builds upon earlier research by Mao; 
Lanzilotti; Hogan and Warren (1972,1974); Porter; and others who conclude risk-averse 
decision makers consistently define or explain risk as the chance of failing to meet a tar- 
geted level of returns. This definition suggests a focal point of hedging strategies ought 
not to be variance, but semivariance--which is more specific to downside risk aversion. 
DeJong, de Roons, and Veld; Eftekhari; Lien and Tse (1998,2000); and Chen, Lee, and 
Shrestha have all discussed and developedvarious approaches to hedging downside risk, 
but none have examined semivariance hedging in the context of agricultural commodities. 

The semivariance hedging model proposed in this analysis differs from other hedging 
models in several ways. First, it provides an explicit mathematical representation of the 
semivariance hedge ratio. Second, an iterative approach, rather than an econometric 
approach, is outlined for calculating this hedge ratio. Numerical approaches have been 
used by DeJong, de Roons, and Veld, and by Eftekhari, amongothers. For example, Lien 
and Tse (2000) calculate portfolio returns for each possible hedge ratio, construct a prob- 
ability distribution assuming a normal distribution, and then use a grid search method 
across lower partial moments to determine the optimal hedge ratio that produces the 
smallest estimated partial moment. Third, although the semivariance model is entirely 
consistent with the lower partial moment models of Lien and Tse (1998,2000), and Chen, 
Lee, and Shrestha, and the stochastic dominance arguments of Fishburn, the need to 
estimate risk-aversion parameters is avoided by using the mathematical definition of 
semivariance. Fourth, our model is distribution free in that it requires no prior assump- 
tions about the underlying probability distribution. Finally, a model is applied to 
agricultural futures contracts for which the relationship between the cash value of a 
physical commodity and the futures contract is examined. 

Other studies have focused more on financial futures, such as  currency futures 
(DeJong, de Roons, and Veld) or stock market indices (Lien and Tse 1998,2000). How- 
ever, use of live cattle and wheat futures allows a qualitative assessment of the effects, 
if any, on storable versus nonstorable commodities. For example Yang, Bessler, and 
Leatham found that storability does not affect the cointegrated relationship between 
futures and cash markets. This article concludes with an  empirical application of 
hedging live cattle and wheat futures, and some final comments. 

Background 

Semivariance is defined as E( [min(K- T), 0121, where E is the expectation operator, K 
is a random outcome (variable), and T is some reference point. T could be the expected 
value or a fmed target value. Thus, semivariance is measured as the expected value of 
squared deviations below a fmed target value.' The expected value-semivariance (E-SV) 
model of portfolio selection (Hogan and Warren 1972) identifies as efficient those port- 
folios that minimize semivariance for a given expected value or that maximize expected 
value for a given semivariance. 

In earlier studies, Harlow and Rao developed an  equilibrium asset pricing model 
using a "mean-lower partial moment" (mean-semivariance) framework, and Skelton and 

' Mean-semivariance analysis about the mean is not consistent with expected utiity maximization, while mean-semivari- 
ance about a fixed point can be (Selley). 
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Turvey used semivariance directly in a portfolio selection model applied to agriculture. 
Porter demonstrated a close relationship between stochastic dominance and the mean- 
target semivariance model. Except for cases of identical means and semivariances, 
Porter's results indicate if a cumulative probability distribution F(K) dominates another 
cumulative probability distribution G(K) by second-degree stochastic dominance, then 
F(K) dominates G(K) by the mean-target semivariance model. 

Despite the intuitive appeal of semivariance and downside risk, semivariance has, 
until fairly recently, been largely ignored in hedging decisions. Target semivariance has 
been used to some extent in measuring hedging effectiveness (Hauser and Eales 1986, 
1987). In this previous work, hedging effectiveness was not measured by reduced vari- 
ance, but in terms of the probability of final outcomes falling below a fxed target. 

How downside risk affects the optimal hedge has also been explored in relation to 
government programs in agriculture, capital structure, and liquidity (Turvey and Baker 
1989,1990; Arias, Brorsen, and Harri). Government subsidies and stabilization policies 
for agricultural commodities reduce business risk by essentially truncating the lower 
partial moments of the cash price distribution. In the context of financial risk, firms 
with less debt or excess liquidity have a lower probability of bankruptcy than those with 
high debt or low liquidity. Again, the concern is how outcomes affect downside risk. 

Chen, Lee, and Shrestha; Lien and Tse (1998); and DeJong, de Roons, and Veld have 
developed various hedging models based on Fishburn's lower partial moments model. 
In Fishburn's framework, semivariance is equivalent to a lower partial moment of two 
(2.0). DeJong, de Roons, and Veld, in an application of hedging currency futures, use a 
direct expected utility approach and provide a semivariance hedge ratio stated as a 
function of marginal utility and risk aversion. Their model requires an estimate of risk 
aversion to be operational. 

Examining lower partial moment hedge ratios for the Financial Times-London Stock 
Exchange's FTSE-100 index and futures contract, Eftekhari found that the ratios of 
lower partial moments would have increased portfolio returns while reducing downside 
risks. Lien and Tse (1998,2000) further illustrate how Fishburn's framework can be 
used to hedge downside risk for Nikkei Stock Average futures contracts. Again, their 
model requires estimates of the risk-aversion coefficient and, because they do not have 
an explicit analytical expression for the semivariance hedge ratio, they use GARCH or 
nonparametric approaches to estimate hedge ratios. 

Chen, Lee, and Shrestha propose a mean-generalized semivariance approach to 
hedging. They defend this argument by noting that the generalized semivariance 
approach considered by DeJong, de Roons, and Veld, and by Lien and Tse (1998,2000) 
is not consistent with stochastic dominance (as in Fishburn). Chen, Lee, and Shrestha 
still require explicit measurement of risk aversion in their model, and as in previous 
models, they do not provide an explicit closed-form expression for the hedge ratio. In 
contrast to the semivariance models proposed by DeJong, de Roons, and Veld; Lien and 
Tse (1998,2000); and Chen, Lee, and Shrestha, in this analysis an explicit, step-by-step, 
expression for the semivariance-minimizing hedge ratio is developed, and an approach 
to deriving the hedge ratio directly from sample price and futures data is provided.' 

'Another approach to dealing with downside risk is the mean-Gini coefficient (Kolb and Okuney; Shalit; Lien and ShafTer). 
The Gini coefficient actually measures the covariance between cash-flow outcomes from a hedged position and high-end 
probabilities. Unfortunately, the Gini hedge ratio requires an explicit measure of risk aversion and requires solving fairly 
complex numerical grid search techniques (Lien and Shaffer). 
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Utility Theory and Expected 
Value-Semivariance (E-SV) Criteria 

Quirk and Saposnik were the first to identify deficiencies in the E-V model and provide 
theoretical support for the E-SV model. They defined a concept of admissibility which 
corresponds to the more modern idea of stochastic dominance, and then showed that E-V 
efficient portfolios may be inadmissible, even when compared with portfolios which are 
not on the efficient frontier. Based on their observations, Quirk and Saposnik deter- 
mined the E-SV model is not subject to this potential drawback. 

Mao compared the merits of the E-V and E-SV criteria by examining the specific 
utility functions from which these criteria are derived. For example, if an  investor's 
utility function is quadratic, then maximizing the expected utility for a random variable 
of revenues, profits, or returns, R, E [U(R)I, implies Max E [U(R)] = Max [a + by - ca21, 
where y is the expected value of R, and o2 is the variance of R. This investor chooses his 
or her portfolio solely on the basis of the mean and variance of R. In contrast, a utility 
function of the following form would imply the E-SV criteria of an investment appraisal: 
U(R) = a + by  + c [min(R - T, 0)J2. This utility function is a hybrid in that it is quadratic 
for R < T and is linear for R 2 T. The maximization of expected utility implies the maxi- 
mization of a + by + cq2, where q2 is the semivariance of R with respect to T. Thus, E-V 
and E-SVcriteria follow from utility functions of different shapes. Because the quadratic 
utility function is concave throughout, the decision maker is consistently risk averse. 
The utility function in the hybrid case indicates a decision maker is averse to risk asso- 
ciated with returns below a target, but is neutral toward risk a t  higher returns. 

Derivation of an Algebraic Expression 
for Semivariance 

Semivariance is defined as E{min(K- T, o)~] ,  where K is a random variable and T is the 
fxed target below which the investor shows aversion. In financial applications, K might 
represent investment cash flow or portfolio returns. Let 

Semivariance can now be defined as: 

where KT is the expected value of KT, and eKT- N(0, oiT) is an independent and identi- 
cally distributed random variable. Taking the expectation of the right-hand side yields: 

2 where aKT is the variance of KT. 



104 April 2003 Journal of Agricultural and Resource Economics 

In the hedging problem, the variable Krepresents a return from a portfolio comprised 
of a cash and a hedge position. The hedge position is a natural long position, so the down- 
side risk is measured relative to price decreases. Consequently, the variable K is actually 
a function of two random variables: the cash position (x = f + E,) and the payoff from 
trading in futures (n = ii + en). The final outcome is the sum of realizations on these two 
random variables: 

where Pt is the total payoff from the hedge. The variable x represents the net proceeds 
from transactions in the cash market. Thus, Pt can represent the cash price of a com- 
modity grown on a farm, or it can represent the difference between the selling price and 
the buying price of a stock held in a portfolio. According to equation (31, the hedger sells 
futures contracts in direct (1:l) proportion to the cash position. Because this may not be 
an optimal semivariance-minimizing hedge, the hedger may elect to hedge a proportion, 
6, of the cash position. Now, the firm's net profit equation can be written as: 

Substituting Pt for K in equation (31, the semivariance for this problem is given by: 

where 3, is the expected value of x,, ii, is the expected value of n, with variance o:,,~, 
is the semivariance target, and ax,,,, is the covariance betweenx, and n,. The expected 
values of x, and n, are obtained from: 

and 

The introduction of 6 as the decision variable capturing the minimum semivariance 
hedge ratio poses an empirical problem. Specifically, the arguments of semivariance x,, 

2 2 n,, ax,, a,,, and a,,,,, in equation (5) cannot be determined without knowing 6; and 6 
cannot be solved without determining these arguments. Because these need to be simul- 
taneously determined, there is no explicit closed-form formula for the optimal semi- 
variance-minimizing hedge ratio, 6*, and the problem must be solved using an iterative 
approach. 

An Iterative Approach to Solve the 
Minimum Semivariance Hedge Ratio 

In this section, an iterative procedure for determining the semivariance hedge ratio is 
presented (Nayak). Like the approaches used by Eftekhari; DeJong, de Roons, and Veld; 
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and others, the procedure numerically optimizes the semivariance function. The first 
step is to initialize the net payoff equation in the first iteration. This is given by: 

where 6, is an arbitrary proportion to hedge. The semivariance is given by: 

where x, and n, are as defined in (5),  but 6, is substituted for 6. 
The second step is to define a synthetic parameter, 8 ,  which takes on the value of 1 

when semivariance is minimized. For each iteration, Q can be computed from known 
variables and will not be equal to 1 if semivariance is not at  a minimum. Thus, Q is 
introduced into equation (6) by defining: 

As 6, is an arbitrary starting point, set 6, = 1. Therefore, equation (8) can now be written 
as: 

and semivariance with respect to a target level, X,, is given by: 

where 

and other variables are as defined previously. Note that expression (10) gives the semi- 
variance if Q = 1. The process of searching for Q = 1 in equation (10) involves an iterative 
procedure where 6 is continually adjusted a t  every iteration until the convergence 
criterion (Q = 1) is met. The 6 that results in full convergence is the semivariance-mini- 
mizing hedge ratio, 6'. 

To simplify the process, a reduced-form expression for Q is obtained by setting dvldQ 
= 0 and solving for Q. For the first iteration, 

Now use Q, and 6, (i.e., 8, * 6, = 6,) as the proportion to hedge in the next iteration. The 
same semivariance expression as in (10) is repeated after substituting for 6,, and 
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If 8, = 1, then 6, is the semivariance-minimizing hedge ratio. If Q, + 1, then iterate 
once again by defining Q, * 6, = 6,, and so on. This iterative process will continue until 
Q, = 1 and is stable a t  1 thereafter (i.e., Qj+, = Q,+, = 8, = 1). The 6, which gives the stable 
8, = 1 is the semivariance-minimizing hedge ratio, 6'. Thus the dual problem of defining 
x, and n, without knowing 6, and the inability to solve for 6 without defining x, and n,, 
is resolved and the semivariance-minimizing hedge ratio can be calculated., 

The Minimum-Variance Hedge Ratio 

As discussed previously, the minimum-variance hedge is not necessarily the one that 
minimizes downside risk. The minimum-variance hedge ratio, 6*, is derived by taking 
the variance of equation (4). This variance is equal to a2 = a: + 6*2ai + 26*a,. Taking the 
derivative of Aa2/A6* and setting it at  zero gives 6* = a,/ai. In this analysis, the 
minimum-variance hedge ratio was calculated by dividing the sample covariance 
between cash and futures prices by the variance of the respective futures prices. In the 
next section, the above concepts are illustrated for a number of agricultural commodity 
contracts. 

Data and Procedures 

In the empirical analysis, the minimum semivariance hedge ratio is calculated and 
compared to the minimum-variance hedge ratio. The investigation covers Kansas cash 
wheat prices hedged with Chicago Board ofTrade (CBOT) wheat futures ($/bushel, daily 
from November 1980 through February 2000) and Texas steers hedged with Chicago 
Mercantile Exchange (CME) live cattle futures ($/cwt, daily from June 1989 through 
February 2000). The data were purchased on CD-ROM from Technical Tools, Inc. (a 
Chicago firm) and data were processed using software provided by Technical Tools. All 
futures data are daily data based on the nearby futures contract with a five-day rollover 
provision. Once the initial data sets were constructed, the cash and nearby futures prices 
were processed through a database to ensure cash and futures prices were matched by 
date. The final data set included 4,711 date-matched observations for the Kansas wheat 
cash price and wheat futures, and 2,503 date-matched observations for the Texas steer- 
live cattle hedge. 

The calculations of both the mean variance and semivariance hedge ratios used data 
in levels rather than differenced data. The approach is pragmatic. In practice, it is more 
useful to set a target relative to an actual price than a price difference. In conventional 
hedge ratio estimation, differencing data are often used to create a stationary time series 

The iterative procedure is not difficult to program. But like many other iterative techniques, speed and efficiency depend 
upon the accepted tolerance about the optimal solution. For example, a solution tolerance of P = (0.99, 1.01) will converge 
much quicker than a tolerance of S2 = 10.9999, 1.00011. 
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Table 1. Sample Statistics of Cash and Futures Positions 

Kansas City Live Cattle 
Wheat Futures Wheat Futures Texas Steers 

Description (@/bushel) (@/bushel) ($/cwt) ($/&) 

c--- Nov. 1980-Feb. 2000 ---> c--- June 1989-Feb. 2000 ---> 

Minimum 232.50 235.50 54.80 54.50 
Maximum 716.50 750.00 83.73 84.75 

Mean 352.16 375.75 71.47 71.64 

Mode 346.24 376.99 73.17 63.12 
Median 348.75 376.50 72.53 72.50 

Standard Deviation 63.85 72.98 5.46 6.23 
Variance 4,076.24 5,326.42 29.78 38.78 

Skewness 1.13 1.09 (0.45) (0.37) 
Kurtosis 4.51 4.80 2.33 2.15 

Correlations 0.947 0.940 
No. of Obsenrations 4,711 2,503 

required to satisfy (a) a Gaussian assumption of random walks, or ( b )  the asymptotic 
properties of a maximum-likelihood or other parametric estimators. For example, Lien 
and Tse (1998) argue that ifheteroskedasticity is present in the data, then the minimum- 
variance and semivariance hedge ratios should also be time varying. Because the semi- 
variance hedge ratios in this study are calculated, rather than estimated, there is no need 
to correct for heteroskedasticity. For direct comparison of the semivariance and minimum- 
variance hedge ratios, no heteroskedastic adjustment was made in the calculation of the 
minimum-variance hedge ratio. 

Some sample statistics are presented in table 1. The empirical distributions of wheat 
and cattle cash and futures prices are shown, with their normal distribution approxi- 
mations, in figure 1 (panels A-D). As  observed from the summary statistics reported in 
table 1, on average, cash prices exceed future prices for wheat, but are about the same 
for cattle. The variance of the cash price is greater than the futures price, and with simi- 
lar skewness coefficients, the cash to futures track closely. Risk is varied. The coefficient 
of variation (ulE) for wheat is more than twice that of the livestock; however, based on 
the annualized (250-da~)~  volatility in the percentage daily change in cash prices, the 
cash market risks for Kansas wheat and Texas steers are almost identical a t  about 0.22. 
In contrast, the volatility in wheat futures is about 30% higher than the volatility in 
cattle futures. 

Under the assumption of bivariate normality in the cash-futures price distributions 
and an  unbiased futures market, Lien and Tse (1998) show the minimum-variance 
hedge ratio will be equal to the minimum semivariance hedge ratio. In figures 1A and 
1B (and in table 11, wheat prices ($/bushel) are shown to be positively skewed and quite 
leptokurtic, indicating there is a large density of downside risk probabilities. In figures 
1C and ID, Texas steers ($/cwt) and live cattle futures ($/cwt) prices are shown to be 
slightly negatively skewed and the tails are not as fat as with the wheat prices. 

The use of 250 days represents the approximate number of trading days in one year. 
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Chi squared, Anderson-Darling, and Kolmogorov-Smirnov tests all reject the null 
hypothesis of normality at the 1% level. Chen, Lee, and Shrestha also reject the assump- 
tion of bivariate normality in their evaluation of S&P500 futures contracts. Formally, 
this means the minimum semivariance hedge ratio and the minimum-variance hedge 
ratio will differ. However, the correlation coefficients for both commodity pairs are about 
0.94 (table I), so it is expected the hedge ratios will be in the neighborhood of 1. 

The minimum-variance and semivariance hedge ratios were calculated using the 
following  method^.^ 

The cash position was assumed to be equal to the mean of the sample distribution, 
and so the expected gain from the hedge position is zero. For both commodities, it 
was assumed the hedger was initially long in the cash asset. 

The minimum-variance hedge ratio was calculated by dividing the covariance be- 
tween the cash and futures positions by the variance of the futures position. 

Semivariance targets were generated relative to the mean cash position. Targets 
were set according to X, = Z + oa, where is the mean cash price with a standard 
deviation a. The variable o is a weight, ranging from - 1.0 to 1.0 in 0.10 step incre- 
ments, to obtain a total of 21 different targets. 

For each of the weights in the preceding step, 6 was initialized to 1.00, and the 
program iterated about equation (8) until Q [equation (9)l fell within a tolerance 
of 1.0 * 0.0000 1. The resulting 6 was recorded as the minimum semivariance hedge 
ratio. 

Results 

The results are presented in tables 2 and 3. The first column indicates the number of 
standard deviations used to set the targets reported in the second column. Column 3 
reports the semivariance hedge ratio for each target, and column 4 presents the square 
root of the calculated semivariance associated with a particular hedge ratio. Column 5 
shows the standard deviation of the payoff, and columns 6 and 7 provide the respective 
minimum and maximum payoff values. The minimum-variance hedge ratio is found in 
the second to last row, and the last row in the tables shows the risk associated with the 
unhedged cash position. 

Results for the wheat hedge are reported in table 2. The minimum-variance hedge 
ratio was estimated at 1.08. The minimum payoff for the minimum-variance hedge ratio 
was 286.66qlbushel and the maximum was 475.99qlbushel. At the highest target level 
of 447.19qlbushe1, the semivariance hedge ratio for wheat was 1.078 and the range of 
payoff values was 286.99qlbushel to 476.51qlbushel. The lowest hedge ratio of 0.894 
occurred for a target of 3 14.18qlbushel (at - 0.8 standard deviations) with a payoff range 
of 313.799bushel to 518.24qlbushel. In contrast, the range of the unhedged cash 
position was a low of 235.509bushel and a maximum of 750.009bushel. 

The semivariance-minimizing hedge ratio was calculated using a visual basic program written in a Mimsoft Excel spread- 
sheet. This model and data are available ftom the senior author upon request. 
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Results for the Texas steer hedge are found in table 3. The hedge ratios ranged from 
a high of 1.146 for a target of 69.15 and 0.904 for the lowest target.6 The minimum-vari- 
ance hedge ratio was 1.073. The minimum payoff was highest ($61.OWcwt) for a hedge 
ratio of 0.904, and the maximum payoff was $89.17/cwt for a hedge ratio of 1.132. The 
payoff range for the minimum-variance ratio was $60.67/cwt to $88.19/cwt, and the 
range of the unhedged cash position was $54.50/cwt to $84.75/cwt. 

The general result that the semivariance-minimizing hedge ratio is different from the 
variance-minimizing hedge ratio is consistent with the findings of DeJong, de Roons, 
and Veld; Lien and Tse (1998,2000); and Chen, Lee, and Shrestha. How downsize risk 
is reduced depends on the target and the distribution of risk. As observed in tables 2 and 
3 and figure 2, a low target does not necessarily mean a low hedge ratio. For example, 
in the case of wheat, the hedge ratio decreases from 1.078 to 0.894 as the target falls 
from 447.19glbushel to 314.18glbushel. For targets lower than 314.18gIbushe1, the 
semivariance hedge ratio actually increases. The pattern is quite different for Texas 
steers. As the target decreases from $77.85/cwt to $69.15/cwt, the semivariance hedge 
ratio is increasing and then decreases thereafter. 

Table 2. Minimum 

C11 [21 
Std. Dev. 

Used to Set Target 
Target (elbushel) 

1.0 447.19 
0.9 439.81 
0.8 432.42 
0.7 425.05 
0.6 417.64 
0.5 410.25 
0.4 402.86 
0.3 395.47 
0.2 388.08 
0.1 380.69 
0.0 373.30 
-0.1 365.91 
-0.2 385.52 
-0.3 351.13 
-0.4 343.71 
-0.5 336.35 
-0.6 328.96 
-0.7 321.57 
-0.8 314.18 
-0.9 306.79 
- 1.0 299.40 

Min.-Var. Hedge Ratio 
Unhedged Cash 

A hedge ratio greater than 1.0 suggests there is an opportunity to speculate on commodity beyond the cash position. A 
relatively strong correlation and the fact that the standard deviation of cash prices is greater than the respective futures 
prices (table 1) can explain the result. 

Semivariance Hedge Ratios for Kansas Wheat (ehushel) 

C31 141 C51 C6l [TI 
Semi- Standard 

variance (Semi- Deviation Minimum Maximum 
Hedge Ratio variance)' of Payoff Payoff Payoff 

1.078 77.62 23.78 286.99 476.51 

1.077 70.62 23.78 287.17 476.77 
1.075 63.69 23.78 287.40 477.13 

1.073 56.86 23.78 287.71 477.62 

1.021 50.15 23.79 288.05 478.14 

1.068 43.61 23.79 288.44 478.74 

1.064 37.27 23.80 289.05 479.68 
1.058 31.17 23.82 289.94 481.05 

1.051 25.42 23.86 291.01 482.70 

1.042 20.11 23.91 292.33 484.74 

1.028 15.40 24.02 294.37 487.90 

1.009 11.34 24.22 297.11 492.13 

0.988 7.94 24.52 300.20 496.90 

0.968 5.23 24.86 303.08 501.35 

0.950 3.17 25.23 305.72 505.42 
0.928 1.73 35.75 309.03 510.54 
0.903 0.75 36.41 312.66 516.14 
0.905 0.21 26.36 312.40 515.74 
0.894 0.006 26.68 313.79 518.24 

0.943 0.00 25.38 306.78 507.06 
0.994 0.00 24.44 299.39 495.65 

1.0805 15.60 23.77 286.66 475.99 
- - 73.19 235.50 750.00 
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Table 3. Minimum Semivariance Hedge Ratios for Texas Steers ($/cwt) 

[ l l  [21 
Std. Dev. 

Used to Set Target 
Target ($Id)  

1.0 77.85 
0.9 71.23 
0.8 76.61 
0.7 75.90 
0.6 75.37 
0.5 74.74 
0.4 74.12 
0.3 73.50 
0.2 72.88 
0.1 72.26 
0.0 71.63 
-0.1 71.01 
-0.2 70.39 
-0.3 69.77 
-0.4 69.15 
-0.5 68.52 
-0.6 67.90 
-0.7 67.28 
-0.8 66.66 
-0.9 66.04 
- 1.0 65.41 

[31 
Semi- 

variance 
Hedge Ratio 

1.076 
1.076 
1.077 
1.078 
1.080 
1.082 
1.085 
1.087 
1.089 
1.093 
1.097 
1.105 
1.116 
1.132 
1.146 
1.126 
1.090 
1.048 
1.001 
0.976 
0.904 

(Semi- 
variance)" 

[51 
Standard 
Deviation 
of Payoff 

2.116 
2.116 
2.116 
2.116 
2.116 
2.117 
2.117 
2.117 
2.118 
2.119 
2.120 
2.123 
2.129 
2.140 
2.153 
2.135 
2.118 
2.120 
2.152 
2.181 
2.309 

Minimum 
Payoff 

60.66 
60.66 
60.66 
60.66 
60.65 
60.64 
60.64 
60.64 
60.63 
60.63 
60.63 
60.60 
60.58 
60.54 
60.51 
60.55 
60.63 
60.72 
60.82 
60.87 
61.04 

Maximum 
Payoff 

88.22 
88.24 
88.25 
88.28 
88.31 
88.34 
88.37 
88.40 
88.45 
88.52 
88.62 
88.77 
88.98 
89.17 
88.90 
88.42 
87.84 
87.21 
86.87 
85.89 
84.82 

En.-Var. Hedge Ratio 1.073 1.35 2.116 60.67 88.19 

Unhedged Cash 1 - - 6.22 54.50 84.75 

In terms of risk measurement, the semivariance, measured by its square root in 
tables 2 and 3, falls as the target falls. This is expected. Likewise, the standard 
deviation of the semivariance-minimizing hedge is always higher than the variance- 
minimizing hedge (unless they are equal). The fact that a semivariance hedge can reduce 
the downside probabilities relative to a minimum-variance hedge is reason enough to 
pursue a lower partial moment model. For example, from table 2, the lowest outcome 
for the minimum-variance hedge was 286.66elbushel. Hedging 89.4% of wheat (at -0.8 
target) rather than 108.05% increases the downside to 313.79elbushe1, representing a 
9.4% (313.791286.66 - 1.0) increase in the lower bound of profits. Likewise, the maximum 
value calculated was 518.249bushe1, which represents an 8% (518.241475.99 - 1) in- 
crease in the upper payoff level over the minimum-variance hedge. 

Of course, such results are not as pronounced for the cattle hedge in table 3. But refer- 
ring again to table 1, the wheat prices tended to be positively skewed (a greater chance 
of actual prices falling below the mean), and therefore had more downside risk relative 
to the target associated with them. Cattle prices were negatively skewed (a greater 
chance of an outcome above the mean), and therefore they had less downside risk rela- 
tive to the target. Similar results were found by Lien and Tse (2000) where the minimum 
semivariance hedge ratio was either less than or greater than the minimum-variance 
hedge ratio, with the trend signaling a lower semivariance hedge ratio for lower targets. 
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Target = Cash i x Standard Deviations 

0.85 - 

Figure 2. Semivariance-minimizing hedge ratios for 
various targets 

-Wheat +Live Cattle 1 

Consistent with our results, Lien and Tse (2000) did not find a uniform decrease in the 
semivariance hedge ratio; however, their results did not show the concave or convex 
shapes found in figure 2. 

The main conclusion drawn from the wheat and cattle results is that the minimum 
semivariance hedge will protect the downside more than the minimum-variance hedge. 
Yet, no general statement can be made regarding the magnitude because the semivari- 
ance hedge ratio is sensitive to the nature of the probability distributions of the under- 
lying cash and forward positions as well as the chosen target. However, relative to profits, 
the cash position will be more variable than the semivariance hedge payoff, which in 
turn will be more variable than the minimum-variance hedge. This result is consistent 
with theory because the semivariance-minimizing payoff distribution cannot have a 
variance lower than the variance-minimizing payoff distribution. 

Conclusions 

The variance-minimizing hedge implicitly assumes hedgers are willing to forego upside 
opportunities to reduce totalvariance. This study proposed a method to derive the down- 
side risk-reducing (semivariance-minimizing) hedge ratio. The expected value of outcomes 
below a fured target was used as the basis for deriving first a mathematical expression 
for semivariance, and then the mathematical expression for the semivariance-minimizing 
hedge. Because of simultaneity, an iterative rather than parametric approach to solving 
the problem was presented. 

Findings show the semivariance hedge ratio can differ from the minimum-variance 
hedge ratio. For both Kansas wheat and Texas steers, the hedge position was lower 
using the semivariance criteria than with the minimum-variance criteria. The amount 
hedged is contingent on the target selected and the distribution of probabilities below 



Turvey and Nayak The Semivariance-Minimizing Hedge Ratio 1 13 

1-wheat -Live Cattle I 

As at Date 

Figure 3. Rolling 250-day variance-minimizing hedge ratios 
for Kansas wheat and Texas steers 

the target. Based on the empirical results, wheat had a greater potential to decrease 
downside risk through semivariance hedging than Texas steers. These results are gener- 
ally consistent with the findings ofYang, Bessler, and Leatham that storability does not 
affect the cointegrated relationship between cash and futures markets. The gains in 
hedging may not appear to significantly reduce the variance reduction, or the minimum 
and maximum of hedged payoffs, but when considered in the context of a single or 
multiple contracts, the downside risk reduction can be quite substantial. 

However, a number of related issues, including the sample time frame, basis between 
cash and forward markets, and the shape of the underlying probability distribution func- 
tions, can affect the magnitudes ofthe gains in hedging from the semivariance approach. 
While the shape of the distributions and relationship between cash and futures were 
discussed in the text, in figure 3 we calculate rolling 250-day sample minimum-variance 
hedge ratios. The variability of these hedge ratios suggests (as do Lien and Tse 1998) 
the semivariance hedge ratio will also be affected by the data sample frame. Nonetheless, 
the semivariance hedge is always more effective than the minimum-variance hedge at 
reducing downside risk. 

For both the wheat and steer hedges, the post-hedge probability distribution function 
had a minimum higher than the minimum-variance hedge and, in the case of wheat, it 
had a higher maximum. Furthermore, in both cases, the semivariance hedge ratio was 
less than the minimum-variance hedge ratio for most targets, including those set in-the- 
money. In addition, an important and distinguishing characteristic of the minimum 
semivariance hedge ratio is that it is distribution free. 

The ideas presented in this study provide a new approach to solving the problem of 
efficient hedging. The potential gain in efficiency achieved by focusing on downside risk 
rather than variance when making hedging decisions may be significant. From a practi- 
tioner's point of view, applying a semivariance hedge can reduce the number of futures 
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contracts. The extent of reduction depends on the chosen target. An important contribu- 
tion of this analysis is that it allows the hedger the opportunity to fur a target, above or 
below expected prices, and to hedge optimally on this target. The minimum-variance 
hedge ratio does not permit such flexibility. In addition to this practical side of semi- 
variance hedging, a further contribution of this study is the theoretical development of 
the semivariance hedging model and a numerical solution that can be used by producers, 
traders, and other hedgers in the futures markets. 

[Received October 2000;JinaI revision received December 2002.1 
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