

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

```
```

ag84 ah

```
```

ag84 ah
agric.Hnabk.25t

```
```

agric.Hnabk.25t

```
```


## AGRICULTURE HANDBOOK N0. 256

| HERARY <br> RE二五 <br>  <br>  gELTSVILLE BRAMCH |
| :---: |
|  |  |
|  |  |


Page
I. INTRODUCTION ..... 1
II. THE PEARL-REED (LOGISTIC) FUNCTION ..... 1
Method 1: A Transformation of the Dependent Variable ..... 2
Method 2: A Difference Equation for the Dependent Variable ..... 2
III. THE SPILLMAN FUNCTION ..... 3
Method 1: A Transformation of the Dependent Variable ..... 3
Method 2: A Difference Equation for the Dependent Variable ..... 3
IV. THE GOMPERTZ FUNCTION ..... 4
Method 1: A Transformation of the Dependent Variable ..... 4
Method 2: A Difference Equation for the Dependent Variable ..... 4
V. THE FUNCTIONS AS EXPLICIT SOLUTIONS OF DIFFERENCE EQUATIONS ..... 5
The Spillman ..... 5
The Gompertz ..... 5
The Logistic ..... 5
VI. EXAMPLES FOR THE SPILLMAN AND GOMPERTZ FUNCTIONS ..... 5
VII. THE RELATIVE MERITS OF LINEAR TRANSFORMA TION VS. ITERATIVE METHODS ..... 12
LITERATURE CITED ..... 14
APPENDIX ..... 15

## Errata Sheet

Agriculture Handbook No. 256: Simple Methods of Estimating Certain Nonlinear Functions with Emphasis on Agricultural Data

Page 2, Equation (2)
Page 2, Equation (4)

Substitute $\alpha$ for a
Substitute $y_{i+1}$ for $y_{i}+1$

Page 4, first paragraph of Part IV, The Gompertz Function; third sentence should read:
"As yield response to nitrogen at low levels of nutrient application frequently manifest this phenomenon, the Gompertz curve is particularly useful. It also may be applicable for estimating trends in technological diffusion, a process that typically exhibits an increasing rate in its early stages and a declining rate in its latter stages (4)."

By<br>Richard H. Day, 'Agricultural Economist Farm Production Economics Division, Economic Research Service 1/

## I. I NTRODUCTION

1
wesiots,

This paper presents two elementary methods for fitting three different nonlinear functions to empirical data by means of simple linear regression. Iterative least squares methods which have been developed for estimating parameters of nonlinear functions $(\underline{2}, \underline{8}) \underline{2}$ ) sometimes lead to certain difficulties in application. Because this is the case the much simpler methods developed in this handbook are useful tools for application. The relative merits of this approach versus the nonlinear iterative approach are briefly described, in the concluding section.

The Spillman, Gompertz, and Pearl-Reed (logistic) functions are considered. The two methods presented for the Pearl-Reed function are already well known and are given first. Then analogous methods are derived for the Spillman and the closely related Gompertz curves; these apparently have not been presented in the literature. .

## II. THE PEARL-REED (LOGISTIC) FUNCTION

The logistic curve has been applied by Griliches (4) to the estimation of the rate of adoption of hybrid seed corn, and the author of this handbook has found suitable use for it as a production function. ${ }^{/}$The logistic, like the Gompertz, is an S-shaped or sigmoid curve, and is therefore particularly applicable to the estimation of single input production functions manifesting increasing returns to scale, and to trends in technological diffusion (4, 10). The equation for this function is

$$
\begin{equation*}
\mathrm{y}=\frac{\boldsymbol{\gamma}}{1+\beta \mathrm{e}^{-\alpha \mathrm{x}}} \tag{1}
\end{equation*}
$$

$$
\boldsymbol{\beta}, \boldsymbol{\gamma}>0, \circ<\boldsymbol{\alpha}<1
$$

in which $y$ is the "dependent" and $x$ the "independent" variable. The parameter $\boldsymbol{\gamma}$ is the maximum value for y , and it is approached assymptotically as x increases; $\boldsymbol{\alpha}$ determines the rate at which $y$ increases with $x$, and $\boldsymbol{\beta}$ determines the value of $y$ when x is zero.

1/ A part of the research on which this report is based was financed by the National Cotton Council.

2/ Underscored figures in parentheses refer to Literature Cited, p. 14.
$\overline{3} /$ Day, R. H. Recursive Programing and Production Response. North-Holland Pub. Co., Amsterdam, Contributions to Economic Analysis, 1963.

Equation (1) may be placed in the form

$$
\begin{equation*}
Z=\log (\gamma / y-1)=\log \beta-\gamma x \tag{2}
\end{equation*}
$$

If the data are suitable a graphical estimate of $\gamma$ may be obtained, $\hat{\gamma}$. Letting $Z_{i}=\log \left(\hat{\gamma} \mid \mathrm{y}_{\mathrm{i}}-1\right), \mathrm{i}=1, \ldots, h$, where $h$ is the number of observations, the regression equation (3) may be fitted by classical least squares.

$$
\begin{equation*}
Z=A+B x \tag{3}
\end{equation*}
$$

Estimates of $\alpha$ and $\beta$ can now be obtained from the expressions, $\hat{\alpha}=-B, \hat{\beta}=e^{A}=$ antilog A. A similar transformation due to Berkson (1) was used by Griliches.

Note that $\hat{\alpha}$ and $\hat{\beta}$ are not least squares estimates of $\alpha$ and $\beta$. Instead, they are derived from the least squares parameters $A$ and $B$.

## Method 2: A Difference Equation for the Dependent Variable

Suppose data are selected in such a way that $x_{i}=m i, i=j, \ldots, j+h-1$. That is, there are $h$ observations available at even intervals of width $m$ for the independent variable. Then equation (1) may be written as
(4)

$$
\mathrm{y}_{\mathrm{i}}=\frac{\gamma}{1+\beta \mathrm{e}^{-\alpha \mathrm{mi}}}
$$

$$
{ }_{i+1}^{\text {and }} \because y_{1}=\frac{\gamma}{1+\beta \mathrm{e}^{-\alpha \operatorname{m}(i+1)}}
$$

By combining these two expressions the following is obtained,

$$
\begin{equation*}
\frac{1}{y_{i+1}}=\frac{1}{\gamma}\left(1-\mathrm{e}^{-\alpha m}\right)+\mathrm{e}^{-\alpha m} \frac{1}{\mathrm{y}_{\mathrm{i}}} \tag{5}
\end{equation*}
$$

Let $Z_{i}=1 / y_{i}, i=j, \ldots, j+h-1$. Then the difference equation

$$
\begin{equation*}
Z_{i+1}=A+B Z_{i} \tag{6}
\end{equation*}
$$

may be fitted by least squares. From equation (5) it is seen that $A=\left(1-e^{-\alpha m}\right) / \gamma$ and $B=e^{-\alpha m}$. Therefore the estimates of $\alpha$ and $\gamma$ are $\hat{\alpha}=-(\log B) / m$ and $\hat{\gamma}=(1-B) / \hat{A}$

This procedure is due to Rhodes (13) who also suggests a method for estimatin: $\beta$. He utilizes the transformation (2) as follows:

$$
\begin{equation*}
\log \beta_{i}=\left(\hat{\gamma} / y_{i}-1\right)+\hat{\alpha m i}, \quad i=j, \ldots, j+h-1 \tag{7}
\end{equation*}
$$

He then takes the mean of the right hand side of this expression as the estimate of $\log \beta$. Thus,

$$
\begin{equation*}
\beta=\operatorname{antilog}\left[\Sigma\left(\hat{\gamma} / y_{i}-1\right) / h+\hat{\alpha_{m}}(h-1) / 2\right] \tag{8}
\end{equation*}
$$

I have found that this estimator leads to extremely poor fits for some data, Frequently, a much better estimator of $\beta$ is simply the value which will force the curve through the first (or last or any other) data point $\left(y_{j}, x_{j}\right)$. Thus

If $\mathrm{x}_{\mathrm{j}}=\mathrm{mj}=\mathrm{o}, \quad$ then $\hat{\beta}=\left(\hat{\gamma} / \mathrm{y}_{\mathrm{o}}-1\right)$.
A discussion of various methods for estimating the parameters of the logistic may be found in Nair (11).

## III. THE SPILLMAN FUNCTION

The Spillman curve has been used by Spillman (14) and Ibach (7) for estimating the yield response of field crops to nitrogen. The latter has developed an ingenious method for graphical estimation of its parameters (6). Paschal and French (12) have presented an iterative least squares method due to Stevens (15) for fitting the function.

The Spillman curve is expressed algebraically as

$$
\begin{equation*}
y=\gamma-\beta \alpha^{x} \quad 0<\alpha<1 ; \gamma, \beta>0 \tag{9}
\end{equation*}
$$

The parameters $\boldsymbol{\alpha}, \boldsymbol{\beta}$, and $\boldsymbol{\gamma}$ have the same general interpretation as the corresponding parameters for the Pearl-Reed curve. Two methods, analogous to those peresented for the logistic, are now derived for estimating these parameters.

## Method 1: A Transformation of the Dependent Variable

From equation (9) we obtain

$$
\begin{equation*}
Z=\log (\gamma-y)=\log \beta+(\log \alpha) \mathrm{x} \tag{10}
\end{equation*}
$$

If data are distributed fortunately a good graphical estimate of $\gamma$ may be obtained, say $\hat{\gamma}$. Now let $\left(y_{i}, x_{i}\right)$, $i=1, \ldots, h$ be a set of $h$ observations of the variables $y$ and $x$. Let $Z_{i}=\log \left(\hat{\gamma}-y_{i}\right), i=1, \ldots, h$. The linear equation

$$
\begin{equation*}
\mathrm{Z}=\mathrm{A}+\mathrm{Bx} \tag{11}
\end{equation*}
$$

may now be fitted to the points $\left(Z_{i}, X_{i}\right) i=1, \ldots, h$, giving least squares estimates of $A$ and $B$. From equation (10) it is seen that $\hat{\alpha}=e^{B}=$ antilog $B$ and $\widehat{\beta}=e^{A}=$ antilog A .

## Method 2: A Difference Equation for the Dependent Variable

Let us suppose that the observations $\left(y_{i}, x_{i}\right)$ are available in such a way that $x_{i}=m i, i=j, \ldots, j+h-1$. That is, the variable $x$ is spaced at even intervals of width m . Then equation (9) may be written

$$
\begin{gather*}
y_{i}=\gamma-\beta \alpha^{m i}, i=j, \ldots, j+h-1  \tag{12}\\
y_{i+1}=\gamma-\beta \alpha^{m(i+1), i} \quad i=j, \ldots, j+h-1
\end{gather*}
$$

and also
By a suitable combination of these two equations the following expression is obtained.

$$
\begin{equation*}
y_{i+1}=\left(1-\alpha^{m}\right) \gamma+\alpha^{m} ; \quad ;=j, \ldots, j+h \tag{13}
\end{equation*}
$$

The linear equation
(14)

$$
\mathrm{y}_{\mathrm{i}+1}=\mathrm{A}+\mathrm{By}_{\mathrm{i}}
$$

may now be derived from the resulting least squares estimates $A$ and $B$. Thus $\hat{\alpha}=\mathrm{B}^{-\mathrm{m}}$ and $\hat{\gamma}=\mathrm{A} /(1-\mathrm{B})$.

In a manner analogous to Rhodes' method for estimating $\beta$ for the logistic the following estimator of $\boldsymbol{\beta}$ for the Spillman can be obtained.

$$
\begin{equation*}
\hat{\beta}=\operatorname{antilog}\left[\Sigma\left(\hat{\gamma}-\mathrm{y}_{\mathrm{i}}\right) / \mathrm{h}-\mathrm{m} \log \hat{\alpha}(\mathrm{~h}-1) / 2\right] \tag{15}
\end{equation*}
$$

Or by forcing the curve through $\left(y_{j}, x_{j}\right)$ the first data point, one obtains

$$
\begin{gather*}
\hat{\beta}=\left(\hat{\gamma}-y_{j}\right) \alpha^{-m j}  \tag{15'}\\
\text { or } \hat{\beta}=\hat{\gamma}-y_{o} \text { if } x_{o}=o .
\end{gather*}
$$

## IV. THE GOMPERTZ FUNCTION

The Gompertz function was found by French (3) to be superior to a great variety of alternative production function forms for the analysis of yield response of corn to nitrogen for a series of Nebraska experiments. The Gompertz is an S-shaped or sigmoid curve, that is, when used as a production function it may show increasing returns to scale. As yield response to nitrogen at low levels of nutrient application frequently manifest this phenomenon, the Gompertz curve at faitucuarty usefar that It may be applicable for estimating trends in technological diffusion, a process that typically exhibits an increasing rate in its early stages and a declining rate in its latter stages (4).

The Gompertz function is closely related to the Spillman function as can be observed in its algebraic expression,

$$
\begin{equation*}
\mathrm{y}=\mathrm{e}^{\boldsymbol{\gamma}-\boldsymbol{\beta} \alpha^{\mathbf{x}}} \tag{16}
\end{equation*}
$$

Thus $\mathrm{y}^{\prime}=\log \mathrm{y}$ will have the Spillman form if y has the Gompertz form. For this reason the results derived for the former function are directly applicable here.

## Method 1: A Transformation of the Dependent Variable

By letting $y^{\prime}{ }_{i}=\log y_{i}$ equation (10) can be obtained from (9). Then $Z_{i}=\log$ $\left(\hat{\gamma}-y_{i}^{\prime}\right)=\log \left(\hat{\gamma}-\log y_{i}\right)=\log B+(\log \boldsymbol{\alpha}) \mathrm{x}$. The least squares estimates of $A$ and $B$ are obtained from (11). Then the estimates $\hat{\alpha}=e^{B}$ and $\hat{\beta}=e^{A}$ are derived just as before. As in the Spillman case an exogenous estimate of $\gamma$ must be made, probably by a graphical analysis. The only difference is therefore the conversion of the observations of the dependent variable $y$ to logarithms in the case of the Gompertz curve.

## Method 2: A Difference Equation for the Dependent Variable

Converting y to logarithms also enables the direct application of method 2 for the Spillman to be used for estimating the parameters of the Gompertz. Thus, if $y^{\prime}{ }_{i}=\log y_{i}, i=j, \ldots, j+h-1$ equation (13) may be derived from (16). By fitting (14) the estimates of $\alpha$ and $\gamma$ are obtained from the least squares parameters $A$ and $B$. Thus $\hat{\alpha}=B^{-\mathrm{m}}$ and $\hat{\gamma}=\mathrm{A} /(1-\mathrm{B})$. To estimate $\boldsymbol{\beta},(15)$ or (15') may be used.

## V. THE FUNCTIONS AS EXPLICIT SOLUTIONS OF DIFFERENCE EQUATIONS

We may note that in the search for a linearizing transformation of the nonlinear functions explicit solutions to several difference equations have been found. These follow from the "even interval data" methods.

## The Spillman

The linear, nonhomogeneous difference equation $y_{t+1}=a+b y_{t}$ has as its explicit solution the Spillman function in the form
(5.1)

$$
\mathrm{y}=\frac{\mathrm{a}}{1-\mathrm{b}}+\beta\left(\mathrm{b}^{\mathrm{t}}\right)
$$

in which $\boldsymbol{\beta}$ is a constant determined by initial conditions on y .

## The Gompertz

The nonlinear difference equation $\exp \left(y_{t+1}\right)=\exp \left(a+b y_{t}\right)$ has as its explicit solution the Gompertz function in the form

$$
\begin{equation*}
\mathrm{y}=\exp \left[\frac{\mathrm{a}}{1-\mathrm{b}}+\boldsymbol{\beta} \mathrm{b}^{\mathrm{t}}\right] \tag{5.2}
\end{equation*}
$$

in which $\boldsymbol{\beta}$ is determined by initial conditions on $y$, and in which $\exp (y)=e^{y}$.

## The Logistic

The nonlinear difference equation $y_{t+1}^{-1}=a \widehat{a} y_{t}^{-1}$ has as its explicit solution the logistic function in the form

$$
\begin{equation*}
y=\frac{(1-b)}{a\left(1+\beta e^{t \log b}\right)} \tag{5.3}
\end{equation*}
$$

in which $\boldsymbol{\beta}$ is determined by initial conditions.

## VI. EXAMPLES FOR THE SPILLMAN AND GOMPERTZ FUNCTIONS

The data presented in tables 1 and 2 are used here to illustrate the methods derived above for fitting the Spillman and Gompertz functions. The literature already cited contains examples of the methods described in section II for the PearlReed function. First, three examples are given using the simple production function or relation of one output (oat yield) to one input (nitrogen). Second, two examples are given in which the trend of an aggregate index of mechanical power and machinery is estimated.

The examples demonstrate the utility of these simple methods, but suggest caution in their application. For some types of data, extremely close fits will be obtained; for others, poor results will follow. A graphical presentation of the results will indicate the success or failure of the method. For this reason graphs of both the derived nonlinear curve and the regression on the transformed variables are presented for each example. (Fig. 1 to fig. 10, inclusive.)

Table 1. - Average yields for oats-nitrogen response experiments, Mississippi Delta, 1951-1957

| Low rate experiments |  | High rate experiments |  |
| :---: | :---: | :---: | :---: |
| Nitrogen | Average yield | Nitrogen | Average yield |
| Pounds | Bushels | Pounds | Bushels |
| 0.0 | 13.6 | 0 | 15.4 |
| 7.5 | 23.4 | 45 | 54.4 |
| 15.0 | 34.7 | 60 | 60.3 |
| 22.5 | 36.8 | 75 | 66.5 |
| 30.0 | 43.5 | 90 | 68.0 |
| 37.5 | 49.5 | 105 | 66.6 |
| 45.0 | 54.8 | 120 | 67.5 |

Source: Perrin H. Grissom (5).
Table 2. -Index of mechanical power and machinery inputs, 1933-1958

| $(1947-49=100)$ |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Year | $:$ | Index | $::$ | Year | $:$ | Index | $::$ | Year | $:$ | Index |
|  | $:$ |  | $::$ |  | $:$ |  | $::$ |  | $:$ |  |
| -- | $:$ | - | $::$ | 1941 | $:$ | 61 | $::$ | 1951 | $:$ | 127 |
| 1933 | $:$ | -- | $::$ | 1942 | $:$ | 66 | $::$ | 1952 | $:$ | 133 |
| 1934 | $:$ | 44 | $::$ | 1943 | $:$ | 69 | $::$ | 1953 | $:$ | 134 |
| 1935 | $:$ | 45 | $::$ | 1944 | $:$ | 70 | $::$ | 1954 | $:$ | 135 |
| 1936 | $:$ | 48 | $::$ | 1946 | $:$ | 74 | $::$ | 1955 | $:$ | 136 |
| 1937 | $:$ | 52 | $::$ | 1947 | $:$ | 80 | $::$ | 1956 | $:$ | 137 |
| 1938 | $:$ | 55 | $::$ | 1948 | $:$ | 100 | $::$ | 1957 | $:$ | 138 |
| 1939 | $:$ | 55 | $::$ | 1949 | $:$ | 111 | $::$ | 1958 | $:$ | 137 |
| 1940 | $:$ | 58 | $::$ | 1950 | $:$ | 118 | $::$ | -- | $:$ | - |

Source: Ralph A. Loomis and Glen T. Barton (9, table 13).

In the discussion of sections II, III, and IV, natural logarithms or logs to the base "e" were used. However, Naperian logarithms, logs to the base 10, will serve just as well. The latter were in fact used for all computations contained in this section.

Example 1: The high rate data from table 1 are used to illustrate method 1 for the Spillman function. The estimated curve and the original data are presented in figure 1. These data indicate a strong nonlinear relationship, and a good "eyeball" estimate of the upper asymptote, $\boldsymbol{\gamma}$, apparently can be made. $\boldsymbol{\gamma}$ was estimated by eye to be 68.1. Figure 2 shows the simple regression of the transformed yield variable $z_{j}=\log \left(68.1-y_{j}\right)$ on nitrogen level. The transformation is strongly linear except for the $z$ value at 90 pounds of nitrogen. This "flyer" is due to the fact that the logs of values between zero and 1 are negative, and decrease very rapidly to $-\infty$ as z gets close to zero. As, $\mathrm{z}_{5}=68.1-68=0.1$, this strong negativity results.

## Spillman Function, Estimation Method 1 <br> YIELD RESPONSE OF OATS TO NITROGEN

High Rate Experiments, See Appendix Sheet 4


Figure 1

## Spillman Function, Estimation Method 1

## SIMPLE REGRESSION

High Rate Experiments, See Appendix Sheet 3


Figure 2

Such a flyer demonstrates the extreme care one should take in applying this particular transformation. In this example and those to follow all such flyers were omitted in the computation of the regression coefficients A and B.

Example 2: Figure 3 shows the result of applying method 2 for the Spillman function for the low rate data of table 1. Unlike the high rate data, these 7 observations are distributed at even nitrogen intervals of 7.5 pounds and method 2 is applicable. Figure 4 shows the simple regression of yield on "lagged" yield $y_{i+1}=A+B y_{i}$. This relation is also strongly linear. The flyer problem is not present for these data and all seven observations were used. The strong linear relationship shown in figure 4 is equivalent to serial correlation in a time series variable. The serial correlation of yields spaced at equal nitrogen levels is due to a causal relation between yield levels and nitrogen applications. It is exploited here to estimate the causal or structural relation represented by the nonlinear Spillman function.

Method 2 yields estimates of $\boldsymbol{\gamma}$ and $\boldsymbol{\alpha}$. The $\boldsymbol{\beta}$ coefficient was estimated by using equation $15^{\prime}$ with $\mathrm{j}=0$, that is, $\beta=\hat{\gamma}-\mathrm{y}_{\mathrm{o}}$

Example 3: To illustrate the use of the Gompertz function using method 1, the low and high rate experiments of table 1 were combined. The data and the estimated Gompertz production function are shown as figure 5. Substituting 10 for e in the various Gompertz equation logarithms to the base 10 were used. Thus the upper asymptote was estimated as $68=10^{\gamma}$ so that $\hat{\gamma}$ was chosen as 1.83251 . Figure 6 illustrates the simple regression of the transformed variables, $z_{j}=\log \left(\hat{\gamma}-\log y_{j}\right)=A+B x_{j}$ where $x_{j}$ was the nitrogen level. A close linear relation is evident in this transformation but the use of logs, as in example 1, introduces a flyer in the transformed data. At 90 pounds of nitrogen the experimental yield is 68.0, the same as the eyeball estimate of $10 \hat{\gamma}$. Consequently, the antilogarithm is $-\infty$. This data point was omitted. The occurrence of this flyer suggests, as in example 1, that the transformation for method 1 is linearizing for a considerable range of the data, but not for points close to the maximum attainable value. A superior estimate might be obtained by choosing only data points in the 0-60 pound nitrogen level range. Examination of the graph of the transformed variable is again seen to be an important precautionary supplement to a straightforward application of method 1 .

Example 4: The data from table 2 were used to illustrate method 2 for the Gompertz function. Figure 8 indicates a strong linear serial correlation of the $z_{j}=\log y_{j}$ variables, that is, the logs of the aggregate power and machinery index. However, the derived nonlinear relationship shown in figure 7 is extremely poor. While this might not have been guessed from a graphical analysis of the transformed data (fig. 8), the reason manifests itself in the original data. The latter do form a sigmoid or $S$-shaped curve, and the Gompertz is itself a function of this kind. However, the Gompertz best represents data which increase rapidly at first and then taper off into a long and more gradual approach to the upper asymptote. Yield response data typically follow such a pattern. The index considered, however, has an opposite pattern, that is, a gradual increase climaxed by an abrupt approach to an asymptote.

## Spillman Function, Estimation Method 2

## YIELD RESPONSE OF OATS TO NITROGEN

Low Rate Experiments, See Appendix Sheet 6

U. S. DEPARTMENT OF AGRICULTURE

NEG. ERS 1689-63 (1) ECONOMIC RESEARCH SERVICE
Figure 3

Spillman Function, Estimation Method 2
SIMPLE REGRESSION


Figure 4

## Gompertz Function, Estimation Method 1 <br> YIELD RESPONSE OF OATS TO NITROGEN

High and Low Rate Experiments Combined, See Appendix Sheet 8

U. S. DEPARTMENT OF AGRICULTURE

NEG. ERS 1691-63(1) ECONOMIC RESEARCH SERVICE
Figure 5

## Gompertz Function, Estimation Method 1

## SIMPLE REGRESSION

High and Low Rate Experiments Combined, See Appendix Sheet 7


Figure 6


Figure 7


Figure 8

The logistic curve, which is a symmetric sigmoid function, would better represent the data, but even it would not be adequate to describe the asymmetry of this particular example. Again we are reminded to supplement the application of the techniques of this paper by graphical analysis of the data.

Example 5: The Spillman function is not sigmoid but could be used to represent the upper portion of an S-shaped curve. As the Gompertz and Logistic curves are not suited for representing the index of power and machinery over the period 19331958, the Spillman could be used to represent the upper portion of the trends. Figure 9 shows the result using method 2. As in example 1, the strong serial correlation of the variable enables the parameters of the Spillman to be estimated with some accuracy. Then a close fit to the index for the sub-period is obtained.

## VII. THE RELATIVE MERITS OF LINEAR TRANSFORMATION VS. ITERATIVE METHODS

The fitting of nonlinear functions to empirical data has been greatly facilitated in recent years by the advent of computer programs 4/ for iterative least squares estimation techniques (2, $\underline{8}$ ). These techniques generally begin with an initial guess for the parameters of the particular nonlinear function to be fitted. They then choose increments by which to modify the initial guess in such a way as to diminish the sums of squares of deviations of the data from the function fitted. One such modification is called an iteration. For well behaved functions and well behaved data a series of such iterations will converge to the least squares estimates.

Such techniques, however, have been found through extensive practical use to have four disadvantages.
(1) Certain types of data lead to convergence difficulties. Briefly, it has been found that if data are not sufficient to approximate an extensive portion of the function, numerous local optima in a least squares sense may be found by beginning with various initial guesses for the parameters. 5/ One is thus faced with the problem of finding all such least squares estimates and picking the best one.
(2) The computer programs involved usually require a specially programed subroutine for the particular function being used. Not all research workers who desire to use nonlinear functions will be interested in, or have the time to program such subroutines.
(3) The iterative procedures may consume a substantial amount of computer time relative to the linear transformation method.

4/ The following references describe several such programs: Booth, G. W., and Peterson, T. I. Non-linear Estimation (Princeton-IBM), in Mathematics and Applications Department, Internatl. Bus. Mach. Corp., Forecasting by Generalized Regression Methods (WL NLI), White Plains, N. Y., Feb. 1959; Gardner, R. S. A Least Squares Iteration. U. S. Naval Ord. Test Sta., IBM SHARE Distrib. No. 934, Prog. No. 145-20, China Lake, Calif., June 1960; and Wood, P. B. Nonlinear Least Squares - (OR NLLS). IBM Appl. Sci. Spec. Prog. Group, SHARE Distrib. No. 837, Union Carbide Nuclear Co., Oak Ridge, Tenn.

5/ See Gardner, footnote 4, A Least Squares Iteration.

Spillman Function, Estimation Method 2

## TREND OF MECHANICAL POWER AND MACHINERY INPUTS


U. S. DEPARTMENT OF AGRICULTURE

Figure 9


Figure 10
(4) Finally, iterative techniques are not well adapted for use on desk calculators, a disadvantage that may be serious to research workers who do not have an adequate scientific computer at their disposal.

The chief advantage of iterative techniques is their convergence if the data are suitable to least squares parameter estimates when the error or shock term is additive.

The disadvantages of transformation methods are (1) that they do not give least squares estimates for additive error terms, and (2) that some of the parameters may have to be exogenously estimated either "by eye" or some other means, perhaps one statistically arbitrary. But their ease of application, particularly to data which fall short of the range of values needed to approximate a sufficient range of the function, may frequently justify their use. Finally, one may observe that the methods presented in this handbook may be used to find initial parameter values which may then be improved by the iterative methods to which we have referred.

## LITERATURE CITED

(1) Berkson, Joseph.
1953. A Statistically Precise and Relatively Simple Method of Estimating the Bio-Assay with Quantal Response, Based on the Logistic Function. Jour. Amer. Statis. Assoc. 48:565-599, illus. Washington, D. C.
(2) Curry, H. B.
1944. The Method of Steepest Descent for Non-linear Minimization Problems. Quart. Appl. Math. 2(3):258-261.
(3) French, B. L.
1956. Functional Relationships for Irrigated Corn Response to Nitrogen. Jour. Farm Econ. 38(3):736-747, illus.
(4) Griliches, Zvi.
1957. Hybrid Corn: An Exploration in the Economics of Technological Change. Econometrica 25(4):501-522, illus.
(5) Grissom, P. H.
1958. Sources and Rates of Nitrogen. Miss. Agr. Expt. Sta. Inform. Sheet 575. February.
(6) Ibach, D. B.
1956. A Graphic Method of Interpreting Response to Fertilizer. U. S. Dept. Agr. Agr. Handb. 93, 27 pp., illus. January.
(7)
1958. Use of Standard Exponential Yield Curves. U. S. Agr. Res. Serv. ARS 43-69, 24 pp., illus. February.

## (8) Levenberg, Kenneth.

1944. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quart. Appl. Math. 2(2):164-168.
(9) Loomis, R. A., and Barton, G. T.
1945. Productivity of Agriculture, United States, 1870-1958. U. S. Dept. Agr. Tech. Bul. 1238, $63 \mathrm{pp} .$, illus. April.
(10) Mansfield, Edwin.
1946. Technical Change and the Rate of Imitation. Econometrica 29(4):741-766, illus. October.
(11) Nair, K. R.
1947. The Fitting of Growth Curves. In Kempthorne, O., and others (eds.), Statistics and Mathematics in Biology. Iowa State Col. Press, Ames, pp. 119-132.
(12) Paschal, J. L., and French, B. L.
1948. A Method of Economic Analysis Applied to Nitrogen Fertilizer Rate Experiments on Irrigated Corn. U. S. Dept. Agr. Tech. Bul. 1141, 73 pp., illus. May.
(13) Rhodes, E. C.
1949. Population Mathematics. Jour. Royal Statis. Soc. 103(3):362-387, illus. London.
(14) Spillman, W. J.
1950. Use of the Exponential Yield Curve in Fertilizer Experiments. U. S. Dept. Agr. Tech. Bul. 348, 67 pp., illus.
(15) Stevens, W. L.
1951. Asymptotic Regression. Biometrics 7:247-268.

## APPENDIX

The computations involved in the methods described in this paper require only a desk calculator and a table of natural or common logarithms. Computation forms were prepared to facilitate the various steps in estimating the coefficients. These forms are shown in this appendix. Forms for fitting the logistic function are included, though empirical examples were not prepared. The data and all computations are then provided on forms appropriate for each example presented in section VI.

Flyers described in the text, which were omitted in the computation of the parameters are indicated by asterisks.

Estimation of Logistic Parameters
(Method 1)
Description of Data: Sample computation sheet for fitting the Pearl-Reed or logistic curve by means of Method 1.


$$
\Sigma Z_{j}=\square \quad \Sigma X_{j}=\square \quad \Sigma X_{j} Z_{j}=
$$

$$
\Sigma X_{j}^{2}=\square \quad\left(\Sigma X_{j}\right)^{2}=\square \quad \Sigma X_{j} \quad \Sigma Z_{j}=
$$

$$
B=\frac{\sum X_{j} Z_{j}-\frac{1}{n} \sum X_{j} \sum z_{j}}{\sum X_{j}^{2}-\frac{1}{n}\left(\sum X_{j}\right)^{2}}=
$$

$$
A=\frac{1}{n}\left[\Sigma z_{j}-B \Sigma X_{j}\right]=
$$

$\hat{\alpha}=$
$-B=$
$\hat{\boldsymbol{\beta}}=\operatorname{Antilog} \mathrm{A}=$

Description of Data:
Sample computation sheet for fitting Pearl-Reed or lofistic curve by means of Method 2.

$B=\frac{\sum_{j=1}^{n-1} Z_{j} Z_{j+1}-\frac{1}{(n-1)} \sum_{j=1}^{n-1} Z_{j} \sum_{j=1}^{n-1} Z_{j+1}}{\sum_{j=1}^{n-1} Z_{j}^{2}-\frac{1}{(n-1)}\left(\sum_{j=1}^{n-1} z_{j}\right)^{2}}=$
$A=\frac{1}{c(n-1)}\left[\sum_{j=1}^{n-1} z_{j+1}-B \sum_{j=1}^{n-1} Z_{j}\right]=$
$\hat{\alpha}=\frac{-\log B}{M}=\square=-\hat{\gamma}=\frac{(1-B)}{A}=$
*Scale factor introduced for computational convenience. Note appearance of "c" in equation for the constant, A.


## COMPUTATION SHEET

for
Estimating Spillman Parameters
(Method 1)
Description of Data: Computations for Example 1, Figure 2. Columns 2 and 3 taken from Table 1 , high rates. $\hat{\gamma}=68.1$


$$
\begin{array}{ll}
\sum Z_{j}=\frac{4.13083}{} & \sum X_{j}=\underline{285.0} \\
\sum X_{j}^{2}=\frac{22,275.0}{2} & \left(\sum X_{j}\right)^{2}=\underline{81,225.00} \\
B=\frac{\sum X_{j} Z_{j}-\frac{1}{n} \sum X_{j} \sum Z_{j}}{} & \sum X_{j}=\frac{138.5}{\sum X_{j} Z_{j}=\underline{1177.28655}} \\
&
\end{array}
$$

$A=\frac{1}{n}\left[\Sigma Z_{j}-B \sum X_{j}\right]=1.7438$
$\hat{\alpha}=$ Antilog $B=\underline{.9840} \hat{\beta}=$ Antilog $A=\underline{55.44}$
*Flyers as described in text omitted from computations.

TABLE FOR COMPUTING VALUES OF SPILLMAN FUNCTION

| Description of Data: <br> Computation for Example 1 Figure 1. <br> Parameters from Sheet 3. |  |  | $\begin{aligned} \alpha & =-.9840 \\ \beta & =\frac{55.44}{\gamma} \end{aligned}=-68.1$ |  |
| :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) |
| $\begin{gathered} \mathrm{X} \\ \text { variable } \end{gathered}$ | Log $\boldsymbol{\alpha} \cdot \mathrm{Col}$. 1 | Antilog Col. 2 | $\boldsymbol{\beta} \cdot \mathrm{Col} \cdot 3$ | $\boldsymbol{\gamma}$ - Col. 4 |
| 0 | 0 | 1.0000 | 55.4400 | 12.7 |
| 7.5 | -. 1208 | . 7572 | 41.9792 | 26.1 |
| 15.0 | -. 2415 | . 5634 | 31.2349 | 36.9 |
| 22.5 | -. 3622 | . 4274 | 23.6951 | 44.4 |
| 30.0 | -. 4830 | . 3241 | 17.9681 | 50.1 |
| 37.5 | -. 6038 | . 2458 | 13.6272 | 54.5 |
| 45.0 | -. 7245 | . 1864 | 10.3340 | 57.8 |
| 60.0 | -. 9660 | . 1073 | 5.9487 | 62.2 |
| 75.0 | -1. 2075 | . 0617 | 3.4206 | 64.7 |
| 90.0 | -1.4490 | . 0355 | 1.9681 | 66.1 |
| 105.0 | -1.6905 | . 0200 | 1.1088 | 67.0 |
| 120.0 | -1.9320 | . 0117 | . 6486 | 67.4 |
| 150.0 | -2.4150 | . 0038 | . 2107 | 67.9 |

## COMPUTATION SHEET

for
Estimating Spillman Function
(Method 2)
Description of Data: Computations for Example 2, Figure 4. Columns 1 and 2 from Table 1, low rates. ( $M=7.5$ )


$$
\begin{aligned}
& \sum_{j=1}^{n-1} Y_{j} Y_{j+1}-\frac{1}{(n-1)} \quad \sum_{j=1}^{n-1} Y_{j} \sum_{j=1}^{n-1} Y_{j+1} \\
& B=\frac{}{n-1}= \\
& \left.\sum_{j=1}^{n-1} Y_{j}^{2}-\frac{1}{(n-1)} \quad \sum_{j=1}^{n-1} Y_{j}\right)^{2} \\
& A=\frac{1}{(n-1)}\left[\sum_{j=1}^{n-1} Y_{j+1}-B \sum_{j=1}^{n-1} Y_{j}\right]=12.4358 \\
& \hat{\alpha}=\operatorname{Antilog}\left(\frac{\log B}{M}\right)=\underline{.9761} \quad \hat{\gamma}=A /(1-B)=\underline{75.0048}
\end{aligned}
$$

TABLE FOR COMPUTING VALUES OF SPILLMAN FUNCTION
Description of Data:
Computations for Example 2 Figure 3. Parameters from sheet 5 .

|  |  |  | Log $\alpha=-.0242$ |  |
| :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | $(4)$ | $(5)$ |
| $X$ <br> variable | Log $\alpha \cdot$ Col.1 | Antilog Col.2 | $\beta \cdot$ Col. 3 | $\gamma$-Col. 4 |
| 0 | 0 | 1.0000 | 61.4000 | 13.6 |
| 7.5 | -.1815 | .8340 | 51.2076 | 23.8 |
| 15.0 | -.3630 | .6956 | 42.7098 | 32.3 |
| 22.5 | -.5445 | .5801 | 35.6181 | 39.4 |
| 30.0 | -.7260 | .4838 | 29.7053 | 45.3 |
| 37.5 | -.8954 | .4084 | 25.0758 | 49.9 |
| 45.0 | -1.0890 | .3366 | 20.6672 | 54.3 |
| 60.0 | -1.4520 | .2341 | 14.3737 | 60.6 |
| 75.0 | -1.8150 | .1628 | 9.9959 | 65.0 |
| 90.0 | -2.1780 | .1133 | 6.9566 | 68.0 |
| 105.0 | -2.5410 | .0788 | 4.8383 | 70.2 |
| 120.0 | -2.9040 | .0548 | 3.3647 | 71.6 |
| 150.0 | -3.6300 | .0265 | 1.6271 | 73.4 |

Description of Data: Computations for Example $\widehat{\hat{\gamma}}$, Figure 6. Column 2 taken from Table l. $\quad \hat{\boldsymbol{\gamma}}=1.83251=\log 68.0$

$B=\frac{\Sigma z_{j} X_{j}-\frac{1}{n} \Sigma z_{j} \Sigma x_{j}}{\Sigma X_{j}^{2}-\frac{1}{n}\left(\Sigma x_{j}\right)^{2}}=$
$A=\frac{1}{n} \quad\left[\Sigma Z_{j}-B \Sigma X_{j}\right]=$
$\hat{\boldsymbol{\alpha}}=$ Antilog $\mathrm{B}=$
.9564
$\hat{\beta}=\operatorname{Antilog} \mathrm{A}=$ $\qquad$
*See note on Sheet 3.

TABLE FOR COMPUTING VALUES OF GOMPERTZ FUNCTION

| Description of Data: <br> Computations for Example 3, Figure 5. Parameters taken from sheet 7. |  |  |  | $\begin{aligned} & \boldsymbol{\alpha}=\underline{.9564} \\ & \boldsymbol{\beta}=\frac{.6627}{\boldsymbol{\gamma}} \\ &=\underline{1.8325} \\ & \log \boldsymbol{\alpha}=-.0194 \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) |
| $\underset{\text { Variable }}{\mathrm{X}_{\mathrm{j}}}$ | $\log a \cdot \operatorname{Col} .1$ | Antilog $\text { Col. } 2$ | $\boldsymbol{\beta} \cdot \mathrm{Col} \cdot 3$ | $\boldsymbol{\gamma}$-Col. 4 | $\begin{aligned} & \text { Antilog } \\ & \text { Co1. } 5 \end{aligned}$ |
| 0 | 0 | 1.0000 | . 6627 | 1.1698 | 14.78 |
| 7.5 | -. 1455 | .7087 | . 4696 | 1.3629 | 23.06 |
| 15.0 | -. 2910 | . 5022 | . 3328 | 1.4997 | 31.60 |
| 22.5 | -. 4365 | . 3634 | . 2408 | 1.5917 | 39.06 |
| 30.0 | -. 5820 | . 2575 | . 1706 | 1.6619 | 45.91 |
| 37.5 | -. 7275 | . 1863 | . 1235 | 1.7090 | 50.22 |
| 45.0 | -. 8730 | . 1320 | . 0875 | 1.7450 | 55.59 |
| 60.0 | -1.1640 | . 0677 | . 0449 | 1.7876 | 61.32 |
| 75.0 | -1.4550 | . 0347 | . 0230 | 1.8095 | 64.49 |
| 90.0 | -1.7460 | . 0178 | . 0118 | 1.8207 | 66.18 |
| 105.0 | -2.0370 | . 0091 | . 0060 | 1.8265 | 67.07 |
| 120.0 | -2.3280 | . 0047 | . 0031 | 1.8294 | 67.52 |
| 150.0 | -2.9100 | . 0012 | . 0008 | 1.8317 | 67.88 |

Description of Data: Computations for Example 4, Figure 8. Column 1 taken from Table 2.


$$
\begin{aligned}
& \sum_{j=1}^{n-1} Z_{j} Z_{j+1}-\frac{1}{(n-1)} \underset{j=1}{\sum-1} \underset{j=1}{\sum-1} \underset{j}{n}+1 \\
& B= \\
& \left.\sum_{j=1}^{n-1} Z_{j}^{2}-\frac{1}{(n-1)} \sum_{j=1}^{n-1} z_{j}\right)^{2} \\
& A=\frac{1}{(n-1)}\left[\sum_{j=1}^{n-1} Z_{j+1}-B \sum_{j=1}^{n-1} Z_{j}\right]=\frac{.0553}{\wedge} \\
& \hat{\boldsymbol{\alpha}}=\operatorname{Antilog}\left(\frac{\log B}{M}\right)=\underline{.9813} \quad \hat{\boldsymbol{\gamma}}=\mathrm{A} /(1-B)=\underline{2.9572}
\end{aligned}
$$

TABLE FOR COMPUTING VALUES OF GOMPERTZ FUNCTION

| Computations for Example 4, Figure 7. Parameters from Sheet 9. |  |  |  | $\begin{aligned} & \alpha \\ & \boldsymbol{\alpha} \\ & \gamma \\ \text { Log } & \alpha \end{aligned}$ | $\begin{aligned} & \frac{.9813}{1.3138} \\ & \frac{2.9572}{-.0082} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) | (6) |
| $\begin{gathered} X_{j} \\ \text { variable } \end{gathered}$ | Log $\boldsymbol{\alpha} \cdot \mathrm{Col}$. 1 | Antilog <br> Col. 2 | $\beta \cdot \mathrm{Col} .3$ | $\gamma$ - Col. 4 | Antilog <br> Col. 5 |
| 0 | 0 | 1.0000 | 1.3138 | 1.6434 | 44.0 |
| 2 | -. 0164 | . 9630 | 1.2652 | 1.2920 | 49.3 |
| 5 | -. 0410 | . 9100 | 1.1956 | 1.7616 | 57.8 |
| 8 | -. 0656 | . 8598 | 1.1296 | 1.8276 | 67.2 |
| 10 | -. 0820 | . 8280 | 1.0878 | 1.8694 | 74.0 |
| 12 | -. 0984 | . 7946 | 1.0439 | 1.9133 | 81.9 |
| 15 | -. 1230 | . 7534 | . 9898 | 1.9674 | 92.8 |
| 18 | -. 1476 | . 7119 | . 9353 | 2.0219 | 105.2 |
| 20 | -. 1640 | . 6855 | . 9006 | 2.0566 | 113.9 |
| 22 | -. 1804 | . 6601 | . 8672 | 2.0900 | 123.1 |
| 25 | -. 2050 | . 6237 | . 8194 | 2.1378 | 137.3 |
| 30 | -. 2460 | . 5676 | . 7457 | 2.2115 | 162.2 |
| 35 | -. 2870 | . 5164 | . 6784 | 2.2788 | 190.0 |
| 38 | -. 3116 | . 4880 | . 6411 | 2.3161 | 207.1 |

Estimating Spillman Function
(Method 2)
Description of Data: Computations for Example 5, Figure 10, Columns 1 and 2 taken from Table 2.

| (1) | (2) | (3) | $\sum_{j=1}^{n-1} Y_{j}=\underline{1358}$ |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} Y_{j} \\ \text { variable } \end{gathered}$ | $\begin{gathered} Y_{j}+l \\ \text { variable } \end{gathered}$ | Col. 1 X Col. 2 |  |
| 89 | 100 | 8900 | $\sum_{j=1}^{n-1} Y_{j}^{2}=170,474$ |
| 100 | 111 | 11100 |  |
| 111 | 118 | 13098 | $\left.\sum_{i=1}^{n-1} Y_{j}\right)^{2}=1,844,164$ |
| 118 | 127 | 14986 |  |
| 127 | 133 | 16891 | $\sum_{j=1} Y_{j} Y_{j+1}=175,691$ |
| 133 | 134 | 17822 |  |
| 134 | 135 | 18090 | $\sum_{j=1}^{n-1} Y_{j} \sum_{j=1}^{n-1} Y_{j+1}=1,909,348$ |
| 135 | 136 | 18360 |  |
| 136 | 137 | 18632 | $\sum_{j=1}^{n-1} Y_{j+1}=1406$ |
| 137 | 138 | 18906 |  |
| 138 | 137 | 18906 |  |
| $\sum_{j=1}^{n-1} Y_{j} Y_{j+1}-\frac{1}{(n-1)} \sum_{i=1}^{n-1} Y_{j} \sum_{j=1}^{n-1} Y_{j+1}$ |  |  | . 7504 |
| $\sum_{j=1}^{n-1} Y_{j}{ }^{2}-\frac{1}{(n-1)}\left(\sum_{j=1}^{n-1} Y_{j}\right)^{2}$ |  |  |  |
| $\left.\sum_{j=1}^{n-1} Y_{j+1}-B \sum_{j=1}^{n-1} Y_{j}\right]=$ |  |  | $35.1783$ |
| $\hat{\alpha}=\text { Anti }$ | $\left(\frac{\log B}{M}\right.$ | $=. .7504$ | $A /(1-B)=140.9387$ |


| Description of Data: |  | Computations for Example 5, Figure 9. Parameters from Sheet 11. | $\begin{array}{r} \boldsymbol{\alpha}= \\ \boldsymbol{\beta}= \\ \boldsymbol{\gamma}= \\ \log \boldsymbol{\alpha}= \end{array}$ | $\begin{array}{r} .7504 \\ \hline \frac{51.9387}{140.9387} \\ \hline-.12471 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: |
| (1) | (2) | (3) | (4) | (5) |
|  | Log $\boldsymbol{\alpha} \cdot \mathrm{Col} .1$ | Antilog Col. 2 | $\boldsymbol{\beta} \cdot \mathrm{Col}$. 3 | $\boldsymbol{\gamma}$ - Col. 4 |
| 0 | 0 | 1.0000 | 51.9387 | 89.0 |
| 1 | -. 12471 | .7504 | 38.3408 | 102.6 |
| 2 | -. 24942 | . 5631 | 29.2467 | 111.7 |
| 3 | -. 37413 | .4225 | 21.9441 | 118.9 |
| 4 | -. 49884 | . 3171 | 16.4698 | 124.5 |
| 5 | -. 62355 | . 2379 | 12.3562 | 128.6 |
| 6 | -. 74826 | . 1785 | 9.2711 | 131.7 |
| 7 | -. 87297 | . 1340 | 6.9598 | 133.9 |
| 8 | -. 99768 | . 1005 | 5.2198 | 135.7 |
| 9 | -1. 12239 | . 0754 | 3.9162 | 137.0 |
| 10 | -1.24710 | . 0566 | 2.9397 | 138.0 |
| 11 | -1.37181 | . 0425 | 2.2074 | 138.7 |
| 12 | -1.49652 | . 0319 | 1.6568 | 139.3 |
| 22 | -2.74362 | . 0018 | . 0935 | 140.8 |

