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The Vanishing U.S. Cattle Cycle:
A Stochastic Cycle Approach

Yunhan Li and J. Scott Shonkwiler

We re-examine the existence of cattle cycles based on U.S. beef cow inventories from 1979 to
2019. Our analysis begins with a basic first-order stochastic cycle model and finds a cattle cycle of
16.54 years, significantly longer than the presumed 10- to 12-year cycle. Typically cycles become
longer before they disappear. Upon further investigation, we re-estimate the length of the cycle by
applying a second-order stochastic cycle model which improves goodness of fit. Surprisingly, the
cycle length is estimated to be infinitely long, implying the complete disappearance of the beef
cow cycle.
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Introduction

The dynamics of beef cattle supply and the existence of cattle cycles have been widely researched
topics in the last 4 decades. Jarvis (1974) was first to treat beef cows in the context of capital goods
and recognized that increasing beef prices can actually lead to reduced slaughter in the short run.
This study influenced empirical approaches to modeling the beef cattle herd such as formulated
by Rucker, Burt, and LaFrance (1984) and stimulated a theoretical treatment of the dynamics
of livestock production by Rosen (1987). Rosen, Murphy, and Scheinkman (1994) specifically
addressed the existence of cattle cycles. More recently Aadland (2004) constructed a model to
describe the putative 10-year cattle cycle by assuming that producers maximize a discounted stream
of future profits subject to biological constraints and market forces.

Under a fully rational expectations theory, forward-looking ranchers should anticipate future
cattle cycles, which were known to be approximately 10 years, and take actions to mitigate them. Of
course, under the animal spirits paradigm (where emotions affect economic decisions), their actions
could endogenously generate or realize another 10-year cycle in the future. There are also quite a few
studies that question the appropriateness of fully rational expectations in the cattle industry (Nerlove
and Fornari, 1998; Baak, 1999; Chavas, 2000) as most cattle market participants are found to be
not fully rational (i.e., quasirational or boundedly rational). However, Aadland (2004) showed that
individual optimizing behavior endogenously generated approximate 10-year cycles in cattle supply
even under a less restrictive assumption that ranchers are only boundedly rational (i.e., ranchers
have limited access to future information and form expectations of future prices based on only past
or current information). As will be seen, the extraordinary change in the beef cow cycle suggests
that previous studies of the cattle cycle may need to be re-evaluated.
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Since it is difficult to visualize a persistent cycle from the recent semiannual or annual data,
we turn to the business cycle literature because periodic patterns in business cycles are typically
not easily discerned. In 1927, Eugen Slutzky published a paper (subsequently available in English
in 1937), which was the first to introduce the notion of a stochastic cycle. He posited that under
certain circumstances the summation of random causes may be the source of a cyclical process.
He also noted that cycles may transition over time, making it difficult to detect a regular pattern.
Slutzky (1937) was able to closely approximate a nineteenth-century English business cycle using
his stochastic model. Beveridge and Nelson (1981) reviewed business cycle analyses, and their study
was one of the first to recognize and account for the nonstationarity of macroeconomic data. Harvey
(1985) developed a stochastic cycle model that allowed the amplitude and phase of the cycle to
vary over time. Harvey divided his datasets of macroeconomic series into two periods. He found
that before 1948, a 6- to 9-year cycle was evident in gross national product. For more recent data,
Harvey was less confident that cyclical components could be identified. A highly influential paper
by Howitt and McAfee (1992) addressed the idea that the business cycle results from exogenous
shocks that lead to economic fluctuations in an otherwise stable system. They constructed a rational
expectations–animal spirits cycle. The notion of animal spirits relates to random waves of optimism
or pessimism that are not necessarily based on economic conditions. Howitt and McAfee proposed,

When spirits are high, firms expect a high level of employment, and hence a high level
of aggregate demand. . . This encourages firms to hire more aggressively, thus validating
the original expectation (p. 494).

They showed that the animal spirits cycle may be stable under Bayesian learning:

If people start with diffuse priors, there is a positive probability that accidental
correlations during the early stages of learning could lead them forever into the self-
fulfilling beliefs of the animal spirits cycle (p. 505).

Nevertheless, they did conclude that the probability of a perpetual cycle seemed remote. Hodrick
and Prescott (1997) introduced a low-pass filter to de-trend economic time series. If properly de-
trended, the cycle then is the residual of the series. Harvey and Trimbur (2003) reconsidered the use
of model-based time series filters to extract cyclical components. They extended the original trend
plus cycle model of Harvey (1985) to allow for higher-ordered cycles. They showed that a second-
order stochastic cycle model tends to fit the data better and can provide a smoother (i.e., less noisy)
cyclical representation. Based on their experience the second-order model should also yield more
plausible values for the cycle length. To the best of our knowledge, this is the first study that applies
business cycle models to depict the cyclical pattern in the U.S. beef cattle inventory.

Data Description

The data used in this study are sourced from the USDA National Agricultural Statistics Service (see
https://quickstats.nass.usda.gov/), which reports the U.S. beef cow inventory twice a year, in January
and July. While the January beef cow inventory is based on survey data, the midyear numbers are
derived from marketing information and a smaller survey. Figure 1 plots annual beef cow inventory
numbers corrected for mean and trend for the 62-year period from 1920 to 1981.1 It is evident
that generally numbers peaked mid-decade and tended to bottom out around the beginning of each
decade—suggesting a 10-year cattle cycle. In fact, when a trigonometric regression with sin(λ t) and
cos(λ t) along with a polynomial in time is performed over this period, λ is estimated to be 0.6235,
which implies a cycle length of 10.08 years.

However, Figure 1 stands in contrast to the trend and seasonally adjusted semiannual beef cow
inventories for the recent 40 years (1979–2019) depicted in Figure 2.2 Since 1995, the number

1 A linear trend has been removed from the original series.
2 A quadratic trend and a semiannual dummy variable are included in the regression.
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Figure 1. U.S. Annual Beef Cow Numbers, 1920–1981, Corrected for Mean and Trend

Figure 2. U.S. Semiannual Beef Cow Numbers, 1979–2018, Corrected for Mean, Trend, and
Seasonality

of beef cows (trend and seasonally adjusted) appears to have little cyclicality. We do need to
mention that there are two missing values for this series: midyear 2013 and 2016. These values were
calculated by estimating an autoregressive model of order four with constant, seasonal dummy, and
trend and performing a grid search over the missing values such that the model’s sum of squared
errors was minimized. The resulting estimates of beef cow numbers were 29.9 million for 2013
and 31.4 million for 2016. The little cyclical pattern observed in the more recent beef cow cycle—
whether it is significantly longer than 10 years or has disappeared—calls for the need to re-examine
the cattle cycle.

The Basic Stochastic Cycle Model

We begin by analyzing the semiannual beef cow inventory data using the Harvey and Trimbur
(2003) approach, which we refer to in this study as the basic stochastic cycle model, to attempt
to estimate the length of the beef cow cycle. The irregular patterns evidenced in Figure 2 suggest
that the amplitudes and phases of this series have been evolving over time. To address these issues,
we investigate a random walk plus cycle model that allows for (i) analysis of nonstationary data, (ii)
direct estimation of cycle length, and (iii) shifting phase and changing amplitudes.

The model is specified to be a random walk (with drift) with a stochastic cycle (Harvey, 1989)
for the stochastic series yt :

yt = µt + ψt + xtδ + εt ;(1)

µt = µt−1 + β + ηt ;(2)

ψt = ρ
{

cos(λ )ψt−1 + sin(λ )ψ
∗
t−1
}
+ κt ;(3)

ψ
∗
t = ρ

{
−sin(λ )ψt−1 + cos(λ )ψ

∗
t−1
}
+ νt ;(4)
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where µt and ψt represent dynamic unobservables associated with a random walk (with drift β )
and a cyclical process (with frequency λ ), respectively; xt is coded as 1 if the inventory number is
reported in January, and 0 otherwise; the coefficient ρ is termed the damping factor, and ρ = 1 if the
cyclical process is nonstationary; and the error processes εt , ηt , κt , and νt are assumed to be i.i.d.
normal with variance–covariance matrix

σ2
ε 0 0 0

0 σ2
η 0 0

0 0 σ2
κ 0

0 0 0 σ2
v

 .
The initial conditions ψ0 and ψ∗0 determine the initial amplitude and phase shift of the series and
µ0 denotes the initial level of the series, which can be estimated in lieu of fitting a constant to the
model. Parker and Shonkwiler (2014) showed that the reduced form of the model can be written in
terms of the observable process yt , the unknown parameters, and the error processes:

∆yt = 2ρ cosλ∆yt−1 − ρ
2
∆yt−2 + β

∗ + ηt − 2ρ cosληt−1 + ρ
2
ηt−2 + ∆κt

(5)
− ρ cosλ∆κt−1 + ρ sinλ∆νt−1 + ∆ξt − 2ρ cosλ∆ξt−1 + ρ

2
∆ξt−2,

where ∆ denotes the (first) difference operator, β ∗ represents the sum of deterministic terms, and
ξt = xtδ + εt . In time series parlance, the series is a type of ARIMA(2,1,2) process. This
representation is valid when yt has a random walk component (i.e., σ2

η > 0) and consequently the
series must be first differenced to achieve stationarity. If this is not the case, the model with σ2

η = 0
simplifies to

(6) yt = 2ρ cosλξt−1 + ρ
2
ξt−2,

or a type of ARMA(2,2) process with constant trend. An additional simplification of the dynamic
process occurs when all the noise in the system is due to the stochastic cycle. In this case σ2

ε = 0,
and then

yt = 2ρ cosλyt−1 − ρ
2yt−2 + β t + κt − ρ cosλκt−1

(7)
+ ρ sinλνt−1 − 2ρ cosλx(t−1)δ + ρ

2x(t−2)δ .

Estimation Results Model I

A MATLAB program using double-sided numerical first and second derivatives of the likelihood
function implied by the state-space model was used to obtain parameter estimates (Harvey, 1989,
p. 126). Estimation results for the basic stochastic cycle model are reported in Table 1, where
µ0, Ψ0, and Ψ∗0 represent the initial values for µt ,Ψt , and Ψ∗t , respectively; δ is the coefficient
on the semiannual dummy variable; and the other parameters are defined as in equations (1)–(4)
with the dependent variable being semiannual beef cow inventory from 1979 to 2019. Imposing the
customary restriction (Harvey, 1989, p. 39) that σ2

κ = σ2
v for the cow herd size, we found that σ2

ε

converged to 0 under maximum likelihood estimation of the stochastic cycle model. We adopted a
logarithmic time trend as it resulted in a marginally better fit than a linear counterpart;3 its coefficient
(β ) is estimated to be positive and significant at the 5% level. The highly significant coefficient on the
semiannual dummy variable (δ ) shows that the cow herd tends to be smaller by almost 700,000 (herd

3 The logarithmic time trend is sensitive to the value of the beginning time. We use t = 1 to date the first observation that
was observed in January 1979.
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Table 1. First-Order Cycle Estimation Results
First-Order Cycle I First-Order Cycle II

Parameter Estimate Std. Err. Estimate Std. Err.
µ0 323.800 18.030 337.810 15.338
β 10.310 5.194 5.872 4.030
δ −6.750 0.347 −9.828 1.156
σε 0 0
λ 0.190 0.023 0.190 0.019
ρ 0.943 0.015 0.948 0.014

σκ = σν 1.677 0.327 1.665 0.298
ση 2.568 0.377 2.341 0.347

Ψ0 = Ψ∗0 51.203 16.490 43.580 13.528
∆yt−3 0.234 0.091

Log-likelihood −206.980 −202.260
LBQ p-value 0.030 0.258
R2 0.983 0.985

Notes: Standard errors are robust standard errors. The dependent variable is U.S. semiannual beef cow inventory from 1979
to 2019. µ0, Ψ0, and Ψ∗0 represent the initial values for µt ,Ψt , and Ψ∗t , respectively. β is the drift term within the random
walk component, µt . δ is the coefficient on the semiannual dummy variable. λ represents cycle frequency, and ρ is the
damping factor of the cycle. σε , ση , σκ , and σν are standard deviations for disturbance terms ε , η , κ , and ν , respectively.
∆yt−3 is the first difference between yt−3 and yt−4.

size is expressed in units of 100,000) on January 1 than on July 1. The estimate of λ implies a cattle
cycle of 2π

λ̂
, about 33.1 periods or 16.57 years. Using the delta method, we find an approximate

asymptotic 95% confidence interval for the cycle length of 12.68 to 20.46 years. Clearly this is
significantly longer than the presumed 10-year cycle. Further the estimated amplitude, ρ̂ = 0.94,
suggests that the cycle does not decay much from period to period.

The statistically significant estimate of ση indicates that there is a nonstationary component to
beef cow numbers. Therefore the reduced form of the model follows equation (5), with ξt = xtδ

and δ = [βtβDV ]. Here, we also impose the restriction ψ0 = ψ∗0 ; whereas it is often customary to set
ψ0 = ψ∗0 = 0. Clearly, the initial condition for the cyclical component is significantly different than
0.

We calculate robust standard errors (White, 1982) to ensure that inference is robust to
distributional misspecification such as nonnormality or heteroskedasticity; however, the standard
errors may be affected by autocorrelated errors. Therefore, we calculate the Ljung–Box (1978) Q test
(LBQ) for serially correlated residuals based on m = 20 lagged residual correlations and adjusted for
degrees of freedom determined by m less the number of parameters estimated excluding the constant,
µ0, and the variance terms. The p-value of the test under the hypothesis of temporally independent
errors is shown to be 0.030 for Model I. Inspection of the correlogram then led to the inclusion of
the stationary variable ∆yt−3.

Estimation Results Model II

The first-order stochastic cycle model augmented with ∆yt−3 has estimated parameters that are
largely unchanged except for the coefficient on the logarithmic trend, which becomes statistically
insignificant. Interestingly, λ is estimated with more precision and the model now suggests a beef
cow cycle of 16.54 years with a 95% confidence interval of 13.35–19.74 years. The variance of the
cycle is σ2

ψ = σ2
κ/
(
1− ρ2

)
= 27.46, which can be compared to the variance of the random walk,

which is tσ2
η , or 438.46 at the 80th observation. We cannot reject the hypothesis of independent

errors at conventional levels based on the LBQ test calculated as above. In addition, the estimated
amplitude (ρ̂ = 0.95) does not vary much compared with that in Model I.
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Were we to stop the analysis at this point, we would conclude that the augmented random walk
model with stochastic trend demonstrates a substantial lengthening of the beef cattle cycle. The
95% interval for the cycle length does not include the 10- to 12-year cycle that has been historically
accepted. For this reason, we extend the analysis to a second-order stochastic cycle representation to
determine whether it offers an improvement in fit and corroborating evidence of a lengthening cattle
cycle.

The Higher-Order Stochastic Cycle Model

Generalized Stochastic Cycles

Instead of the basic model, which incorporates a first-order stochastic cycle, described previously.
we apply a higher-order stochastic model to explore the periodic dynamics of the beef cow
inventories. Periodic behavior can be better identified by generalized cycles as they have more
power concentrated near the spectral peak (Trimbur, 2006). Examples in Harvey and Trimbur (2003)
showed that smoother cycles in economic series can be extracted by generalized cyclical processes.
Allowing for variation in the amplitude and phase over time, as the first-order stochastic cycle does,
the higher-order cycles also allow the disturbances themselves to be periodic, thus producing a
more flexible description of periodic behavior in time series data. Additionally, the interpretation
of parameters remains straightforward and as such the cyclical pattern can be studied directly.
Extensions to multivariable models are also possible.

The unobserved component, ψ
(m)
t , is defined as an mth-order stochastic cycle if[

ψ
(1)
t

ψ
(1)∗
t

]
= ρ

[
cos(λ ) sin(λ )
−sin(λ ) cos(λ )

][
ψ

(1)
t−1

ψ
(1)∗
t−1

]
+

[
κt

κ∗t

]
, t = 1,2, . . .T ;(8)

[
ψ

(i)
t

ψ
(i)∗
t

]
= ρ

[
cos(λ ) sin(λ )
−sin(λ ) cos(λ )

][
ψ

(i)
t−1

ψ
(i)∗
t−1

]
+

[
ψ

(i−1)
t−1

ψ
(i−1)∗
t−1

]
, t = 1,2, . . .T, i = 2, . . .m;(9)

where κt and κ∗t are uncorrelated white-noise processes with 0 mean and common variance σ2
κ and

ρ is the damping factor, which is bounded between 0 and 1. The cycle is stationary if ρ < 1. The

stochastic nature of cycles comes from the disturbances

[
κt

κ∗t

]
. Higher-order stochastic cycles are

more flexible than the first-order one because when order increases, the disturbances can impact
cycles in different ways, resulting in different dynamic properties. For instance, a second-order
stochastic cycle, ψ

(2)
t , has a first-order stochastic cycle, ψ

(1)
t−1, as a driving component, which allows

the shocks to the second-order cycle to be periodic as well.
Although cycles can be reduced to autoregressive moving-average (ARMA) form, they are more

often represented in a state-space form, as this is the easiest way in terms of estimation and offers
more intuitive parameterization than the reduced form. Therefore, we put an mth-order cycle in a
state-space form, with the transition equation specified as

(10) ψψψ t = TTT mψψψ t−1 + cccm ⊗

[
κt

κ∗t

]
,

where ψψψ t =
[
ψ

(m)
t , ψ

(m)∗
t ,ψ

(m−1)
t , ψ

(m−1)∗
t , . . . ,ψ

(1)
t , ψ

(1)∗
t

]′
is the state vector with 2m elements.

The last element of the m1 vector cccm is 1, with zeros elsewhere. TTT m is given by

(11) TTT m = IIIm ⊗ TTT + SSSm ⊗ III2,
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where the transition matrix TTT is given by TTT = ρ

[
cos(λ ) sin(λ )
−sin(λ ) cos(λ )

]
, and SSSm is a matrix with ones

on the diagonal strip to the right of the main diagonal and zeros elsewhere. The variance–covariance

matrix, VAR(·), of the disturbance vector cccm ⊗

[
κt

κ∗t

]
is given by

(12) VAR

(
cccm ⊗

[
κt

κ∗t

])
= cccmccc

′
m ⊗

[
σ2

κ 0
0 σ2

κ

]
.

Fitting Annual Beef Cow Inventories using Second-Order Stochastic Cycle Model

We then start analyzing this series with the random walk second-order stochastic cycle model:

yt = µt + ψ
(2)
t + log(tt)β + εt ,(13)

µt = µt−1 + ηt ,(14) [
ψ

(1)
t

ψ
(1)∗
t

]
= ρ

[
cos(λ ) sin(λ )
−sin(λ ) cos(λ )

][
ψ

(1)
t−1

ψ
(1)∗
t−1

]
+

[
κt

κ∗t

]
,(15)

and

(16)

[
ψ

(2)
t

ψ
(2)∗
t

]
= ρ

[
cos(λ ) sin(λ )
−sin(λ ) cos(λ )

][
ψ

(2)
t−1

ψ
(2)∗
t−1

]
+

[
ψ

(1)
t−1

ψ
(1)∗
t−1

]
,

where µt is the trend component and ψ
(2)
t is the second-order stochastic cycle component. All

parameters and disturbances follow the same definition as in equations (1)–(4), with the semiannual
dummy represented by xt. We can also write equations (13)–(16) in the state-space form, with the
measurement equation and transition equation specified as

yt = ZZZααα t + XXX tβββ + εt (measurement equation),(17)

ααα t =

[
µt

ψψψ t

]
=

 µt−1 + ηt

TTT 2ψψψ t−1 + ccc2 ⊗

[
κt

κ∗t

] (transition equation),(18)

where ZZZ = [1 1 0 0 0], and εt is assumed to be i.i.d. normally distributed with mean 0 and constant
variance σ2

ε .
The transition equation for the second-order cyclical component is

(19) TTT 2 =


ρ cos(λ ) ρ sin(λ )
−ρ sin(λ ) ρ cos(λ )

1 0
0 1

0 0
0 0

ρ cos(λ ) ρ sin(λ )
−ρ sin(λ ) ρ cos(λ )

 , c2 = [0,1]′

The system involves the eight parameters µ0, β , ρ , λ , σε , σκ = σκ∗, ση , and the initial condition
ψ0 = ψ∗0 . The system is estimated by maximum likelihood, and optimization is achieved by Kalman
filter algorithm.
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Table 2. Second-Order Cycle Estimation Results
Second-Order Cycle I Second-Order Cycle II

Parameter Estimate Std. Err. Estimate Std. Err.
µ0 349.260 5.924 358.190 5.218
β −5.003 4.086 −7.067 3.377
σε 0 0
λ 0 0
ρ 0.792 0.041 0.791 0.030

σκ = σν 1.978 0.469 2.119 0.585
ση 2.153 0.473 1.715 0.447

Ψ0 = Ψ∗0 28.445 5.788 24.984 4.618
∆yt−3 0.217 0.066

Log-likelihood −204.540 −198.730
LBQ p-value 0.076 0.934
R2 0.984 0.986

Notes: Standard errors are robust standard errors. The dependent variable is U.S. annual beef cow inventory from 1979 to
2019. µ0, Ψ0, and Ψ∗0 represent the initial values for µt ,Ψt , and Ψ∗t , respectively. β is the drift term within the random walk
component, µt . λ represents cycle frequency, and ρ is the damping factor of the cycle. σε , ση , σκ , and σν are standard
deviations for disturbance terms ε , η , κ , and ν , respectively. ∆yt−3 is the first difference between yt−3 and yt−4.

As mentioned previously, given the concern that the results from using semiannual data may
partially be an artifact of the different survey used to calculate midyear inventories, we use
the second-order cycle model to fit annual beef cow inventory data, which include the same
40 observations used earlier. Table 2 reports the second-order cycle estimation results. All the
parameters have the same definitions as in Table 1. As the model iterated to convergence, the
estimate of λ became quite small. Because λ must be in the interval between 0 and π , inclusive,
it was replaced by its square to maintain nonnegativity. Surprisingly, the estimate of λ 2 converged
to 0, signifying an infinitely long cattle cycle. As with the first-order cycle model, the estimate
of σε also converged to 0. Because the LBQ statistic for the base model suggests some temporal
nonindependence of the error terms, we will focus on the model augmented with ∆yt−3.

Comparing the second-order cycle augmented model to the first-order cycle augmented
model, we see that the logarithmic time trend has a coefficient that is now negative and
statistically significant. The estimate of the damping factor, ρ , shrinks and the amount of
the relative variation in the random components switches: The variance of the cycle is
σ2

ψ =
(
1 + ρ2

)
σ2

κ/(1− ρ2)
3
= 144.88, much greater than the variance of the first-order cycle,

while the variance of the random walk at the 80th observation is 235.16, much less than that of
the first-order cycle model. In choosing between models, we observe that the log-likelihood and
implied R2 of the second-order model are both greater than those of the first-order model, and this
is accomplished with one less parameter. Further, the very small value of the LBQ statistic (and
consequently large p-value) indicates a much better representation of the data by the second-order
augmented model.

Implications of λ = 0

The fact that λ becomes 0 in the second-order cycle model implies the complete disappearance of
the beef cow cycle. It may seem contradictory that a stochastic cycle model would converge to a
solution that indicates the absence of a cycle. To better understand the meaning of λ = 0, consider
the autocorrelation functions, ρ(τ), determined by the two stochastic cycle models. For the first-
order model ρ(τ) = ρτ cos(λτ) and for the second-order model, the autocorrelation function is
ρ (τ) = ρτ cos(λτ)

(
1 + 1−ρ2

1+ρ2 τ

)
. When λ = 0, cos(λτ) = 1 for any τ . We can compare the
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Table 3. Autocorrelation Functions
Lag = τττ Observed Cow Numbers First-Order Cycle Second-Order Cycle

1 0.931 0.931 0.974
2 0.906 0.835 0.916
3 0.799 0.718 0.841
4 0.744 0.586 0.758
5 0.623 0.446 0.673
6 0.569 0.304 0.591
7 0.450 0.165 0.514
8 0.395 0.034 0.444
9 0.281 −0.085 0.381

10 0.239 −0.189 0.325

autocorrelation functions implied by the two models to that of the observed beef cow inventory
series in Table 3, where we see that the second-order stochastic cycle model more closely represents
the observed autocorrelation of the beef cow inventory series. In fact, for any λ > 0, the implied
autocorrelation function will become negative at some point. This feature may not be consistent
with the data-generating process.

Conclusion and Discussion

We began our analysis on the dynamics of beef cow numbers with a basic random walk (first-
order) stochastic cycle model utilizing semiannual data of beef cow inventories over a recent 40-
year period. Results from the augmented first-order stochastic model imply a cattle cycle of 16.54
years with an asymptotic standard deviation of 1.63 years. We find that a second-order random walk
stochastic cycle model provides a better representation of beef cow numbers both in terms of fit as
measured by the log-likelihood and implied R2 and fit as measured by the Ljung–Box Q statistic.
However, this model yields the unexpected result that the beef cattle cycle disappears.

This raises a question: Will there the beef cow herd continue to expand and contract? Our model
does not suggest otherwise. Depending on where a starting point is chosen, there will likely be some
pattern of beef cow numbers that allows a cyclical interpretation. The value of our stochastic cycle
model is to inform analysts that, using recent data, the cyclical movements are not highly predictable
and probably do not conform to a putative 9- to 12-year beef cow cycle. Yes, there are patterns in
beef cow numbers that reasoned analysts may interpret as cycles, but our models show there is
currently no regularity to cattle cycles such as existed in the past.

For example, the Livestock Marketing Information Center (LMIC) has identified three complete
cattle cycles since 1979. Using plots of annual data on total cattle inventory, the LMIC has suggested
an 11-year cycle beginning in 1979, a 14-year cycle beginning in 1990, and a 10-year cycle
beginning in 2004. But unlike earlier patterns in total cattle inventories, the distances from peaks
to troughs are muted, making cycle identification somewhat subjective. In fact, a basic stochastic
cycle analysis of these data over the last 41 years actually identifies an infinitely long cycle, even
though the dynamic properties of the total annual cattle inventory series differ markedly from those
of the semiannual beef cow inventory series.

Although the identification of commodity cycles can be viewed as purely a statistical exercise,
the presence of cycles has important implications. Beveridge and Nelson (1981, p. 151) have pointed
out that the observation of cyclical components in economic time series “has played an important
role in shaping our thinking about economic phenomena.” In this case, we observe either a significant
lengthening of the cattle cycle or its complete disappearance. Typically, cycles become longer before
they disappear. While the popular press has already buried the cattle cycle (e.g., Speer, 2014), given
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the observed patterns in herd size since the 1990s, the second-order stochastic cycle model provides
evidence for its disappearance.

This leads to speculation as to why the cycle in recent decades has not followed the approximate
10-year cycle observed over most of the twentieth century. Since 2000, a number of events have been
linked to a lengthening cattle cycle—specifically due to a long-term trend of decreasing beef cow
numbers. There were a number of droughts in major cow–calf-producing areas from 2000 to 2008
and again in the southern plains from 2010 to 2013 (Petry, 2015). Higher row crop prices and the
consequent expansion of crop production may also have led to a reduction in cow–calf operations.
The 2012 Census of Agriculture observed a decline of almost 175,000 cow–calf operations over the
previous 20 years, with a bulk of these operations having fewer than 50 cows. These exogenous
shocks hitting the cattle industry could partly explain the change in patterns of beef cow numbers.

While it is debatable whether rational expectation theory holds in the cattle industry, our
stochastic cycle models identify a lengthening or disappearing cattle cycle, which certainly gives
more credence to a rational expectations paradigm. It will be a matter of time to determine whether
the cycle re-emerges and reverts to a traditional cycle length of approximately 10 years.

[First submitted February 2020; accepted for publication August 2020.]
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