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Summary 
 
Long-term  exposure  to  ambient  air  pollutant  concentrations  is  known  to  cause  chronic  
lung  inflammation, a condition that may promote increased severity of COVID-19 syndrome 
caused by  the  novel  coronavirus  (SARS-CoV-2).  In  this  paper,  we  empirically  investigate  
the  ecologic  association  between  long-term  concentrations  of  area-level  fine  particulate  
matter  (PM2.5) and  excess  deaths  in  the  first  quarter  of  2020  in  municipalities  of  
Northern  Italy.  The  study  accounts  for  potentially  spatial  confounding  factors  related  to  
urbanization  that  may  have  influenced the spreading of SARS-CoV-2 and related COVID-19 
mortality. Our epidemiological analysis uses geographical information (e.g., municipalities) 
and negative binomial regression to assess whether both ambient PM2.5 concentration and 
excess mortality have a similar spatial distribution. Our analysis suggests a positive 
association of ambient PM2.5 concentration on excess mortality in Northern Italy related to 
the COVID-19 epidemic. Our estimates suggest that a  one-unit  increase  in  PM2.5  
concentration  (μg/m3)  is  associated  with  a  9%  (95%  confidence  interval: 6% - 12%) 
increase in COVID-19 related mortality. 
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01Introduction

With more than twelve million confirmed 
COVID-19 cases and more than 550 thousand 
related deaths globally as of the beginning of 
July 20201, the novel coronavirus pandemic 
has unquestionably caused dramatic health 
and economic impacts. Despite the public 
health benefits of the consequent COVID-19 
mitigation measures adopted by the central 
and the regional governments in Italy, one of 
the most heavily impacted countries, there are 
adverse socioeconomic effects of the lockdown 
on top of what are already dramatic public 
health impacts. Official morbidity statistics, 
although complicated by the public health 
interventions and the emergency status, reveal 
a strong spatial clustering phenomenon across 
administrative regions in Italy and provinces 
and municipalities within each region. Such a 
geographical concentration of both COVID-19 
morbidity and mortality is most likely the result 
of the interaction of multiple factors, among 
which include the clustering of initially infected 
individuals, different choices made about 
testing and contact tracing in order to identify 
community transmission, underlying population 
demographic and prevalence of health status, 
and the timely adoption of lockdown measures 
to control the COVID-19 epidemic (Ciminelli & 
Garcia-mandicó, 2020). Beyond such proximal 
factors, however, additional contextual factors 

may have played an important role in the health 
impacts of COVID-19 in Italy. 

The Northern Italian regions most affected 
by the spreading of coronavirus (Lombardia, 
Veneto, Piemonte, Emilia Romagna) are also 
the most densely populated and heavily 
industrialized and thereby the most heavily 
polluted region of Italy. These four regions 
together host 39% of the national population,2 
and approximately one-half of the Italian GDP 
is produced there. Such a spatial concentration 
of economic activities involves the industrial 
manufacturing sectors to the largest extent, 
and the consequent high level of emissions 
is at least in part responsible for poor air 
quality in the region.3 In Brescia, among 
the most affected cities in Lombardy, the 
concentration of particulate matter (PM) and 
ozone exceeded the allowable threshold in 150 
days in 2018, making it the most polluted city 
in Italy. Lodi and Monza follow, with 149 and 
140 exceedance days, respectively. Milan and 
Bergamo are sixth and ninth, respectively, with 
135 and 127 days. Lombardy is also among 
the most polluted regions in all of Europe 
(European Environmental Agency, 2019). The 
relatively higher air pollutant concentrations 
in the Po Valley region of Italy contrasts 
sharply with neighbouring alpine regions (van 

1	   Data from Johns Hopkins coronavirus resource center, updated July 10.

2	 At January 1st 2019, source: Italian Bureau of Statistics - ISTAT.

3	 Different components of gas emissions (e.g. nitrogen dioxide, carbon monoxide), derive from many activities like traffic congestion, 
house heating, agricultural and husbandry practices, as well as industrial combustion. Concentrations are characterized by 
seasonality, with high levels in Winter, and weather conditions, however the 2020 lockdown measures reduced substantially those 
derived from traffic but not those derived from agricultural activities (ARPA Lombardia, 2020). 
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Donkelaar et al., 2010) and stems from the 
combination of two main factors (Carugno et 
al., 2016; Larsen et al., 2012; Pozzer et al., 
2019). The first is the high concentration of 
urban areas with their congested roads and 
industrial belts. Source apportionment research 
from the Lombardy region (Pirovano et al., 
2015) indicates that the major sources of PM2.5 
include residential heating (e.g., fuel), transport, 
agriculture, background (including natural-
source sand long-range transport), and other 
(including stationary industrial sources). The 
second is the location in the orographic “bowl” 
of the Po Valley, an extension of flat river lands 
enclosed between the Alps and Apennines 
mountains, which causes the stagnation of 
pollutants due to low ventilation (Giulianelli et 
al., 2014). 

These factors help to characterize the Po 
Valley’s peculiarity with respect to different 
European areas with comparable urban and 
industrial density levels (Eeftens et al., 2012). 
Moreover, in addition to the urbanized and 
industrial areas, the remainder of the valley 
presents an intensive agricultural activity. 
Local studies on emission sources highlight a 
varying composition of the final concentration 
values depending on the position of monitoring 
stations and with different sources acting as 
local or diffused ones (for instance having high 
emissions from traffic close to cities, while 
having background biomass burning diffused 
in the whole region) (Bigi & Ghermandi, 2016; 
Larsen et al., 2012). Indeed, given the EU 
Ambient Air Quality Directives that sets the Air 
quality standards for the protection of health at 
25 μg/m3 for the averaging period of a calendar 
year, the Po valley shows values consistently 
near or above the threshold. These values often 
range in the 25-30 μg/m3 interval with peaks of 

>30 μg/m3, which in Europe are only matched 
in Southern Poland and other smaller Eastern 
European clusters (EEA, 2019).

Compared to its overall representation in the 
population, Lombardy is disproportionately 
impacted by COVID-19 related mortality, 
with approximately 53% of Italy’s COVID-19 
deaths as of April 15, 2020 (Odone et al., 
2020). Lombardy is also the most impacted 
Italian region as far as the total number of 
deaths in excess in the first quarter of 2020 
compared to the same period of the previous 
years. Comparing the official COVID-19 death 
data with registry deaths, it emerges that the 
latter is almost 70% larger than the former 
in Lombardy, 27% larger in Emilia-Romagna 
and 18% and 16% in Veneto and Piemonte, 
respectively. It is, therefore, imperative to 
consider the role that PM may have played 
in such disproportionate COVID-19 deaths in 
Northern Italy.

There are a number of plausible pathways 
by which airborne PM may impact COVID-19 
related morbidity and mortality. Existing data 
already finds a strong positive correlation 
between viral respiratory infection incidence 
and ambient PM concentrations (Ciencewicki 
& Jaspers, 2007; Sedlmaier et al., 2009). One 
plausible pathway for this phenomenon is the 
fate and transport of the virus itself within 
the environment. A recent position paper by 
the Italian Society of Environmental Medicine 
argues that PM may act as both a carrier and 
substrate of the virus and thus influence the 
virus’ fate and transport in the environment 
and reaching susceptible receptors (Setti et 
al., 2020). Another pathway is the increase in 
susceptibility to COVID-19 mortality caused by 
long term exposure to PM. Fine PM is already 
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known to affect cardiovascular and respiratory 
morbidity and mortality (Cakmak et al., 2018; 
Jeong et al., 2017; McGuinn et al., 2017; Yin 
et al., 2017). Moreover, among 1,596 Italian 
COVID-19 patients who died in the hospitals, 
and for whom it was possible to analyze clinic 
charts, data showed substantial comorbidities 
including ischemic heart disease (27.9%); atrial 
fibrillation (22.4%); heart failure (15.6%); stroke 
(10.9%); hypertension (70.6%), and chronic 
obstructive pulmonary disease (17.9%) (Istituto 
Superiore di Sanità, 2020). Biologically, long-
term PM exposure may be responsible for a 
chronic inflammation status that causes the 
hyper-activation of the immune system and the 
life-threatening respiratory disorders caused by 
COVID-19 (Shi et al., 2020). 

Some preliminary evidence is now emerging 
about COVID-19 that shows a positive 
relationship between air pollution and morbidity 
and mortality. Beyond qualitatively describing 
the European Air Quality Index for Northern Italy 
to argue the causal role of air pollution and the 
relatively high COVID-19 mortality observed 
in that region, Conticini et al. (2020) review 
the most recent existing toxicological and 
epidemiological literature. Based on existing 
evidence from other empirical studies, they 
clarify the relationship between air pollution, 
prolonged inflammation and immune system 
hyper-activation and immune suppression, 
and the link between the latter and acute 
respiratory distress syndrome, and respiratory 
mortality. Their paper is important in that it 
suggests a clinical and biologically plausible 
explanation to our analysis, but does not 
provide statistical evidence in support of the 
hypothesis. A separate empirical analysis 
by Becchetti et al. (2020) finds preliminary 
empirical evidence that confirms such a 

positive effect of air pollution on mortality in 
Italy based on the analysis of death data at 
the province level. Similarly, Wu et al. (2020) 
show a positive association between long term 
PM exposure and COVID-19-related death in 
US counties. Ogen (2020) recently analysed 
data from 66 administrative regions in France, 
Spain, Italy, and Germany, and found that the 
highest COVID-19 deaths in these regions were 
associated with five regions of Northern Italy 
that also corresponded with the highest levels 
of atmospheric nitrogen dioxide (NO2). Cole et 
al. (2020) estimate the same relationship using 
Netherlands municipality data and find PM2.5 
positively associated with COVID-19 cases, 
hospitalization, and deaths. 

In this paper, we follow this emerging stream of 
the empirical literature and test the hypothesis 
that a higher average long-term exposure to 
PM2.5 is positively associated with the current 
extraordinarily high death toll in Northern 
Italy. We decided to focus on PM2.5 because, 
given the complexity of air pollution, it is quite 
common in air pollution epidemiology studies 
to focus the analysis on a single pollutant (Wu 
et al., 2020), although multipollutant analyses 
are certainly warranted. We selected PM2.5 for 
a variety of important reasons, including policy 
implications and evidence in the literature in 
terms of chronic health effects. Regarding 
its policy implications, we selected PM2.5 as 
opposed to PM10 because the former is more 
correlated with human activities than the latter, 
and it correlates with stronger health effects 
than PM10 does. With respect to respiratory 
mortality effects from the existing air pollution 
literature, the most robust evidence points 
to PM2.5 as opposed to other gaseous air 
pollutants (Bowe et al., 2019). 
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Mortality data are collected at the municipality 
level for the period January-April 2020. Given 
that mortality data are not disaggregated by 
mortality cause, death counts are measured as 
the difference from the last five-years mean to 
reflect the abnormal number of deaths caused 
by the spreading of the pandemic. Since PM2.5 
can be associated to generic mortality even 
in the absence of the pandemic outbreak 
(Dominici et al., 2003; Katsouyanni et al., 
2001; Samet et al., 2000), we also estimate 
the impact of PM2.5 on the excess mortality in 
the sample using 2019 data, a time in which 
the coronavirus epidemic had presumably not 
yet begun. Data on PM2.5 concentration at the 
municipality level refer to the years prior 2020 
to account for long-term population exposure. 
We assign municipality PM2.5 concentration 
by  a set of different methods of spatial 
interpolation (kriging) of monitoring station data 
related to the years 2015-2019.

We estimate a negative binomial model 
of excessive deaths on historical PM2.5 
concentrations and a series of control 
variables that may plausibly affect both 
PM2.5 concentration and mortality, including 
population density; the spatial concentration 
of the industrial manufacturing sites; climatic 
conditions observed during the first quarter 

of 2020; and the demographic composition 
of the municipal population among others. In 
addition, we consider spatial heterogeneity 
in the distribution of the number of deaths 
related to regional and local unobservable 
factors. We account for region-specific effects 
because regions, in Italy, are the administrative 
units in charge of managing the health 
systems and the measures taken to trace 
and contrast the spreading of the pandemic 
varied greatly among even contiguous regions. 
We also account for local effects common to 
functionally linked clusters of municipalities 
(the Local Labour Systems – LLS). We deem 
this part of the identification strategy crucial 
because the relationship between PM2.5 and 
COVID-19 mortality may be confounded by 
several other factors, some of which were not 
observable or measurable, but are nevertheless 
intrinsically related to the geographical location 
of the observed units. 

The remainder of the paper is organized 
as follows. The next section introduces the 
empirical strategy and describes the dataset. 
The results are presented and discussed in 
section three, considering the total number 
of (excess) deaths. Section four draws the 
conclusions and highlights the limitation of the 
study and the indications for future research.
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Our analysis is restricted to the study area of 
Northern Italy (Figure 1), which encompasses 
the sub-regions of Valle D’Aosta, Piemonte, 
Liguria, Lombardia, Emilia-Romagna, Veneto, 
Friuli-Venezia Giulia and Trentino-Alto 
Adige/Südtirol. Official territorial data on 
COVID-19 mortality in Italy are available at 
the rather aggregate regional or provincial 
level, corresponding to the levels 2 and 3, 
respectively of the European nomenclature 
units for territorial statistics (NUTS)4. In 
addition, these official data refer to the deaths 
of patients tested positive for severe acute 
respiratory syndrome coronavirus 2 (SARS-

CoV2) only and do not include (potential) 
patients without COVID-19 diagnosis because 
they were not tested and died at home or 
elsewhere. Hence, the officially reported 
deaths are likely underestimated. Because 
testing policies vary among regions in Italy, 
the induced measurement error is also non-
randomly distributed among the provinces. 
Ciminelli & Garcia-mandicó (2020) compare the 
official COVID-19 fatality rates with historical 
death data and report that deaths were higher 
than official fatalities throughout the period of 
COVID-19 epidemic. 

02Empirical strategy and data

Figure 1– Italian regions included in the study

4	 https://ec.europa.eu/eurostat/web/nuts/background 

Region:

Emilia-Romagna

Friuli V.G.

Liguria

Lombardia

Piemonte

Trentino A.A.

Valle D'Aosta

Veneto
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Working under the assumption that COVID-19 
deaths are underestimated in Italy, the choice 
is made in this paper to use the total deaths 
from the official registries, accordingly, and 
to scale the analysis at the municipality level, 
the smallest administrative units, to have a 
more granular representation of the spatial 
dimension of the phenomenon. Since we 
are interested in excess deaths, we take the 

difference between the number of deaths in 
the period January 1 – April 30, 2020, and the 
average number of deaths in the same period 
of the previous five years (ExDeaths) and use 
this ExDeaths metric as the dependent variable 
in our statistical model. Figure 2 displays 
the geographical distribution of the above-
described data among the 4041 municipalities 
for which data is available.

of the covariates. Among the covariates, PM 
is the concentration of fine particulate matter 
in municipality i and β is the associated 
parameter, which we expect positive and 
statistically different from zero; X is a vector of 
control variables that adjusts for the potential 
confounding effects and includes the (log 
of) total population as the offset while ε is a 
normally-distributed error term.

Our main source of PM2.5 data is the European 
Environmental Agency’s (EEA) air monitoring 
database, which is provided to EEA by the 

Figure 2: Spatial distribution of cumulative excess deaths in sample municipalities, Northern Italy, January 1 – April 30, 2020

	ExDeathsi	 ~	 NB(μi, θ)
	 log(μi)	 =	 α + βPMi + δ' Xi + εi

The variable is assumed to follow a Negative 
Binomial distribution, a generalization of the 
Poisson distribution that avoids the restrictive 
mean-variance equality of the latter, and is 
modelled as follows:

(1)

	   

where θ is the overdispersion parameter 
to be estimated and μi is the municipality-
specific expectation conditional on the value 
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Institute for Environmental Protection and 
Research (ISPRA). ISPRA conducts ground-level 
air measurements of PM2.5 air concentrations 
(µg/m3) collected at 268 monitoring sites 
throughout Italy. Specifically, we use the EEA’s 
E1a and E2a datasets, which are primary 
validated assessment data and primary 
up-to-date assessment data reported by 
the European Member States, respectively. 
Although the measurements come both in 
hourly and daily averaging formats, we work 
with daily values and use them to obtain yearly 
aggregates for the years 2015, 2016, 2017, 
2018, and 2019. However, because model 
(1) does not include a time component, we 
further compute a six-year averaging time to 
obtain a metric of long-term (chronic) PM2.5 
concentration levels throughout different 
spatial units of Northern Italy. The number of 

six years for the reference period is sufficiently 
long to account for long-term exposure while 
being not too long to be affected by the mobility 
of people among municipalities, and it is in 
line with existing literature assessing long-term 
effects of PM exposure (Yorifuji et al., 2019). 
Since the air monitoring stations provide only 
partial spatial coverage for municipality-level 
PM2.5 concentration data, we impute missing 
observations using a spatial interpolation 
model. Specifically, we fill in the gaps using 
a mean stationary Ordinary Kriging (see 
Bivand et al., 2013 p 209) defined through an 
exponential covariance function with nugget, 
partial sill and range parameters estimated 
through (restricted) maximum likelihood 
methods. Figure 2 displays the resulting PM2.5 
concentration data5. 

Figure 3: Spatial distribution of PM2.5 concentration levels in the sample municipalities, simple kriging of monitoring stations, 
average across years 2015-2019

5	 We also replicate the analysis using other trend-stationary models (i.e. universal kriging) and different covariance functions; these 
extensions are discussed in the robustness check section.
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Comparing figures 2 and 3, it is possible to 
visually appreciate a spatial coincidence 
between higher levels of excess mortality 
and higher levels of PM2.5, in particular in the 
Lombardia region which notably is the region 
with both the highest particulate concentration 
and the highest number of excess mortality. 

The hypothesis that PM2.5 concentration 
affected COVID deaths, that is (β̂1>0), is tested 
among several possible specifications. In 
model (2) we include regional effects (λj). These 
effects are expected to capture the aspects 
related to the management of the outbreak, 
which may have systematically influenced 
COVID-19 mortality and that are common to all 
the municipalities in the same region. Italy has 
a national health system that ensures equal 

The use of LLS captures the interlinkages 
within neighbouring municipalities that may 
have favoured the geographical spreading 
of coronavirus around specific hotspots. 
Mortality data are then expected to vary among 
municipalities in different LLS, but differences 
are expected to be non-systematic in this case. 
In model (4) we include both the regional fixed 
effects and the LLS random effects.(ek)

access to healthcare to all citizens. The system 
is managed by regions at the local level, and, 
in the specific case of this pandemic, regions 
were responsible for defining the testing and 
contact-tracing protocols and implementing the 
necessary measures to contain the outbreak, 
among which the measure to protect healthcare 
workers. In model (3), we include LLS-specific 
effects (ek). LLS are spatial clusters of 
contiguous municipalities related by commuting 
flows that share a common specialization in 
a specific sector of manufacturing production 
and correspond to the conceptualization of 
Marshallian districts (Becattini, 2002). The 
number of LLS clusters per-region and the 
total number of municipalities belonging to 
clusters are reported in table 1, along with the 
minimum, maximum, and average cluster size. 

(2)	   

(3)	   

(4)	  

Table 1: Number of LLS spatial clusters in each region. 

Region N. LLS N. of municipalities Smallest LLS (N. of 
municipalities)

Largest LLS  (N. of 
municipalities)

Average number of 
municipalities by LLS

Emilia-Romagna 42 328 1 38 8

Friuli-Venezia Giulia 13 215 1 51 16

Liguria 17 234 1 26 12

Lombardia 57 1507 1 174 25

Piemonte 39 1181 1 104 26

Trentino-Alto Adige/
Südtirol

27 291 1 30 10

Valle d'Aosta 5 74 3 29 12

Veneto 49 563 1 52 11

	ExDeathsi	 ~	 NB(μij, θ)
	 log(μij)	 =	 α + βPMij + δ' Xij + λj +εij

	ExDeathsi	 ~	 NB(μik, θ)
	 log(μik)	 =	 α + βPMik + δ' Xik + uik

	 uik	 =	 εik + ek

	ExDeathsi	 ~	 NB(μijk, θ)
	 log(μijk)	 =	α + βPMijk + δ' Xijk+ λi + uijk

	 uijk	 =	 εijk + ek
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Control variables to be included in the model 
were chosen to avoid any potential spatial 
confounding effect and considering as well 
the emerging literature on the impact of PM 
on COVID-19 related deaths (Cole et al., 2020; 
Wu et al., 2020). The population density and 
per-capita income account for urbanisation 
level. The most densely populated and wealthy 
municipalities are among the most polluted due 
to the spatial concentration of manufacturing 
and service activities but are also the places 
where the contagion could have been easier, 
with a potential impact on mortality. In addition 
to the density of population, the shares of 
municipality area occupied by industrial sites 
and the average size of manufacturing firms 
are included in the regression because they 
are related to pollutant concentration and 
possibly to mortality. National measures 
to stop the spreading of the viral infection 
(lockdown) involved the service sector to the 
largest extent while many manufacturing 
activities, being considered necessary, were 
left open and, in the absence of social distance 
and individual protection measures, the 
geographical concentration of these activities 
in a municipality with their complex logistics 
and transport interconnections, and the size of 
plants, may have influenced mortality. Average 
temperature, for which an association with 
COVID-19 deaths has also been found (Ma et 
al., 2020), is also included in the regression6. 
Moreover, COVID-19 incidence has proven to 
be higher among men than women and people 
aged 65 or more. Hence these two variables 
are considered in the model, even though these 
aspects are not necessarily connected with 
the average PM2.5 exposure in a municipality. 
Underlying socioeconomic conditions can also 

play a role in COVID-19 related mortality (Goutte 
et al., 2020). Brandt et al. (2020) and Mukherji 
(n.d.) have shown that, in the US, COVID-19 
is more threatening for ethnic minorities, 
and we believe that the share of migrants, 
identified as non-EU citizens, can control for 
this aspect influencing the observed excess 
mortality. On the other hand, Mukherji (2020) 
and Goutte et al. (2020) also find that places 
with a higher share of the population with a 
low level of education have higher deaths. In 
our paper, given the lack of updated data on 
education at the municipal level, we proxy it 
with the percentage of university students on 
the total population. The distance from the 
closest airport is a proxy for the functional 
and relational linkage between a municipality 
and a place of highly frequent national and 
international connections and potential sources 
of coronavirus spreading. Finally, we consider 
the number of hospital beds as a proxy for the 
supply of health services to account for the fact 
that many people died at home without being 
diagnosed for coronavirus due to the shortage 
of beds in public structures. The full details of 
the variables in the model, including sources 
and summary statistics, are presented in Table 
2.

6	 We omit average humidity because the variable shows a too strong linear correlation (rho=0.98) with temperature in our sample 
observations, and its inclusion would cause severe imperfect collinearity in the model. 
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Concerning the PM variable, measurement 
errors are likely to occur when using satellite 
data or modelled data. We preferred to use 
PM2.5 levels observed from monitoring stations 
to avoid such a measurement error. Some 
caution is needed in the spatial interpolation 
because the method chosen to fill the missing 
data may underestimate the value in locations 
farther from the monitoring stations. With this 
concern in mind, we test the robustness of our 
results using PM2.5 data obtained from different 
interpolation approaches. 

Having accounted for the confounding effect 
due to the omission of relevant information 
from the empirical specification, we exclude 
any other potential source of endogeneity 
considered in similar papers. In particular, 
we exclude endogeneity due to measurement 
error in the outcome variable and the main 
independent variable. Concerning the outcome 
variable, the relationship between deaths and 
cases with fine PM could be spurious because 
more cases could be registered, and more 
individuals tested in highly polluted areas as 
people there are more likely to show COVID-19 
symptoms due to the chronic inflammation 
induced by PM. The high toll of deaths of 
people diagnosed with COVID-19 would be a 
natural consequence of that. In contrast, the 
number of deaths in excess, used in this paper, 
is not affected by testing problems since it 
considers all the potential COVID-19 deaths. 

Variable Description Mean Median SD

ExDeaths Number of deaths in the period January 1 – April 30 2020 – absolute 
difference compared to the average of the past five years, source: ISTAT

9.32 2 37.13

PM2.5 Fine (2.5 µg/m³) particulate matter concentration obtained by spatial 
interpolation of monitoring stations, average across the years 2015-
2019, source: European Environmental Agency

19.67 20.85 4.15

Pop. Density Population density computed as total population in number of inhabitants 
on January 1 2020 over the total artificial area in Km2, sources: ISTAT 
and European Environmental Agency – Corine land Cover data

34.44 14.69 58.19

PC Income Average per-capita income, source: Ministry of Finance, 2019 15658.46 15564.52 2497.44

% Ind. Land Share of industrial area on total municipality surface measures through 
satellite observation, source: European Environmental Agency – Corine 
land Cover data

2.62 0.02 5.17

% Small Ent Share of enterprises with less than 10 employees, source: Registro 
statistico delle Unità Locali (ASIA - UL)

94.26 94.44 3.80

Temperature Average mean skin temperature during the death observation period, 
source: Copernicus ERA5 0.25°x0.25° grid resolution dataset.

3.75 5.34 4.01

Female/Male Ratio between female and male population, source: ISTAT 1.01 1.02 0.06

% Over 65 Share of population older than 65, source: ISTAT 23.36 22.72 4.93

% non-EU Share of non-EU residents, source ISTAT 1.88 1.51 1.55

% Univ. Stud. Definition, source:  share of University students over total population, 
source: Ministry of University and Research

82.28 19.49 289.57

Dist. Airport Distance in meters to the closest Airport, source: our computation based 
on European Environmental Agency – Corine land Cover data

23255 21437.22 12823.72

PC Hospital 
Beds

Number per-capita hospital beds in the municipality, source: Health 
Ministry

0.001 0.00 0.012

Population Total population, source: ISTAT 6710.32 2549 38814.47

Table 2: Description of model variables and summary sample statistics 
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As indicated in Table 2, the overall average 
of PM2.5 for the study area between 2015 
and 2019 is roughly 20 µg/m3, as most 
municipalities in Norther Italian regions belong 
to industrial and agricultural intensive locations. 
The average mortality between 2015 and 2019 
for the period of interest (January 1 – April 30) 
was 25 deaths, while it grew to 34 in 2020. 
That results in an average excess death of 9, 
with standard deviation four times as larger. 
(see Table 2).

Estimation results from the negative binomial 
models are summarised in Table 3 for the four 
different specifications of the model (1- no 
geographical effects; 2 regional fixed effects; 
3- LLS random effects; 4- regional fixed effects 
and LLS random effects). In the lower part of the 
table, the estimated overdispersion parameter, 
the Akaike Information Criterion (AIC), and the 
Moran’s test for the null hypothesis of absence 
of spatial autocorrelation7 in the residuals 
(Moran, 1950) are reported. 

03Results

Table 3: Estimation result of main regressions, dependent variable: excess deaths during the period January 1 – April 30 2020, 
municipalities in Northern Italy.

Notes to table
*** p<0.01, ** p<0.05, * p<0.1

 Model (1) Model (2) Model (3) Model (4)

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Intercept -6.314 *** (1.834) -6.862 *** (1.717) -5.369 ** (1.844) -6.254 *** (1.807)
PM2.5 0.128 *** (0.008) 0.085 *** (0.009) 0.089 *** (0.014) 0.089 *** (0.014)
Female/Male -1.451 ** (0.449) -0.726 (0.427) 0.213 (0.426) 0.180 (0.422)
% Over 65 0.076 *** (0.006) 0.074 *** (0.006) 0.066 *** (0.006) 0.065 *** (0.006)
Temperature -0.064 *** (0.007) -0.046 *** (0.007) -0.048 *** (0.011) -0.040 *** (0.010)
Pop. Density -0.011 (0.030) -0.099 *** (0.028) -0.005 (0.029) -0.016 (0.028)
Ind. Land -0.009 (0.006) -0.009 (0.005) -0.008 (0.005) -0.008 (0.005)
% Small Ent. -0.008 (0.007) -0.017 * (0.007) -0.009 (0.007) -0.011 (0.007)
PC Income -0.199 (0.166) -0.082 (0.157) -0.385 * (0.173) -0.270 (0.170)
% non-EU 0.015 (0.016) 0.020 (0.015) -0.018 (0.016) -0.013 (0.015)
% Univ. Stud. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
PC Hospital Beds 0.418 (2.094) -1.001 (2.056) -0.517 (1.771) -0.746 (1.769)
Dist. Airport -0.159 *** (0.028) -0.091 *** (0.026) -0.087 * (0.039) -0.068 (0.035)
 Regional Fixed Effects
Lombardia   0.784 *** (0.081)   0.598 *** (0.139)
Emilia-Romagna   0.185 * (0.094)   -0.013 (0.147)
Piemonte   -0.024 (0.080)   -0.034 (0.136)
Veneto   -0.823 *** (0.097)   -0.894 *** (0.149)
theta 0.571 0.69 0.894 0.894
Observations 4041 4041 4041 4041
AIC 21045 205598 20397 20297
log-Likelihood -10509 -10281 -10183 -10129

Moran’s I Test [p-value in parenthesis]
 0.276 [<0.001] 0.143 [<0.001] 0.005 [0.784] 0.001 [0.596]

7	 The test is performed using queen-contiguity based spatial weights.
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The four specifications provide consistent 
results in terms of the direction and 
significance of PM2.5 coefficients. The overall 
effect of PM2.5 on COVID-19-related excess 
mortality is positive and statistically significant 

In model 2, the regional fixed effects 
coefficients are statistically significant. 
They indicate that other things being equal, 
the number of deaths in municipalities in 
Lombardy and Emilia Romagna has been 
systematically higher compared to base 
category8 and in municipalities in Veneto it has 
been systematically lower. The significance of 
the coefficient for Emilia Romagna, however, 
drops after including the random effects in the 
model. Since the first three models are nested 
into model 4 it is also possible to compare 
the models in terms of AIC. Model 4 performs 
substantially better than the other three. In 
general, the inclusion of RE in models 3 and 4 
leads to a decrease in the value of the AIC. In 
models 1 and 2 the residuals appear spatially 
autocorrelated, as the null hypothesis of no 
spatial autocorrelation is rejected in both 

in all models. The estimated incidence rate 
ratios, reported in Table 4 with their confidence 
interval, for Model 1, 2,3 and 4 are 13.7%, 
8.9%, 9.3%, and 9.3%, respectively.

cases (p<0.001). The introduction of the LLS 
random effects appears to solve the issue of 
autocorrelation. 

Based on the estimates of model 4, we 
compute the expected value of excess deaths 
conditional on covariates (taken at the 
average level) in the average city for varying 
levels of PM2.5 and show how the expected 
number of deaths by region varies at different 
concentration levels in figure 4. Notably, Emilia-
Romagna and Liguria are the regions in which a 
a reduction of average fine PM from the highest 
level to the lowest would have benefited the 
most. 

 

8	 The remaining regions in the base category are Liguria, Valle d’Aosta, Trentino Alto Adige e Friuli-Venezia Giulia. We performed the 
analysis also including dummy variables for the remaining regions and the results do not change (the related coefficients are jointly 
insignificant). Results are available upon request.

Table 4: marginal effects of an increase in PM2.5 concentration on excess deaths in Northern Italy during COVID-19 outbreak

 Estimate 2,50% 97,50%

Model (1): No territorial effect 1.137 1.119 1.154

Model (2): Regional FE 1.089 1.069 1.109

Model (3): LLS RE 1.093 1.064 1.122

Model (4): Regional FE and LLS RE 1.093 1.063 1.123
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Robustness checks
For robustness check of the PM2.5 metric used 
in our study, we explored the influence that 
other alternate PM2.5 metrics may have on 
the direction and magnitude of the observed 
associations. Figure 5 depicts the point 
estimates and the 95% confidence interval for 
the Incidence Rate Ratios (IRR)9. We find that 
while data from satellite elaborations (MODIS10 
and DIMAQ11), and monitoring stations’ 
interpolation EEA12 PM2.5 models result in 
IRRs trending in the same direction, the point 
estimates for IRRs are lower than our primary 
analysis which was based on a combination of 

ground monitoring and kriging. The lower IRR 
point estimates are unsurprising because the 
underlying data for the alternate PM2.5 metrics 
do not have the same temporal coverage as 
the ground-level monitoring data (2015-2019). 
This lack of temporal coverage contributes to 
non-differential exposure misclassification, 
which, in turn, would lead to suppressing effect 
estimates towards the null. Despite this, it is 
encouraging to find that regardless of the PM2.5 
metric used, the direction of the observed 
associations remains, and so does statistical 
significance.

9	 IRRs indicate the % change in Covid-related mortality for each one-unit increase in PM2.5 concentration.

10	 Data elaborated from the "The Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 
1998-2016" (van Donkelaar et al., 2018), for the annual 2016 concentration of PM 2.5 in μg/m3 with dust and sea-salt removed.

11	 2016 Annual average concentration in μg/m3 of Pm 2.5 processed from the Data Integration Model for Air Quality (DIMAQ) 
(Shaddick et al., 2018) from the WHO website.

12	 Monitoring Air quality data for PM2.5 annual average concentration for 2016 and 2017, interpolated in a ‘regression-interpolation-
merging mapping’ (EEA, 2020).

Figure 4: Expected excess deaths in the average municipality against the observed value of PM2.5, by region
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As previously anticipated, we re-estimate 
model (4) using different specifications of the 
Kriging interpolator. In particular, we first relax 
the mean-stationarity assumption of Ordinary 
Kriging by modelling the mean function of the 
process through both a linear and a quadratic 
trend in latitude and longitude. Next, we 
replace the simple Exponential function with 
a Spherical model and a more flexible Matérn 
kernel with the characteristic parameter set at 
3/2 (to preserve mean-square differentiability). 
All these specifications still assume covariance 
stationarity. Figure 6 and Table 5 in the 
Appendix report the estimated Incidence 
Rate Ratios (IRR) regression coefficients for 

the PM variable in model (4) under these 
multiple setups: both point estimates and 95% 
confidence intervals indicate that there are no 
substantive differences between using different 
trend or covariance models, indicating that our 
result is robust to alternative specification of 
the interpolation method.

Figure 5 – Robustness check: estimated IRR (PM variable only) for models (1)-(4) using spatially interpolated data and four alter-
native satellite measures of particulate concentration.
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Figure 6 – Robustness Check: estimated IRR (PM variable only) for PM in Model 4 using three different covariance functions and 
three alternative trend models.
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in the case of Cole et al. and a hybrid approach 
using chemical transport, aerosol optical depth 
and land use regression modelling in the case 
of Wu et al. With respect to COVID-19 mortality 
data, Wu et al. use county-level data from the 
Johns Hopkins University, Center for Systems 
Science and Engineering Coronavirus Resource 
Center, which is comprised of COVID-19 deaths 
tabulated by the US Centers for Disease Control 
and Prevention and State health departments. 
In Cole et al., researchers obtained COVID-19 
deaths by residential address and aggregated 
these to the municipality level. The obvious 
difference between their study and ours is that 
we used a surrogate excess mortality measure 
due to the issues of reliability for COVID-19 
death data, as we have already discussed. The 
other relevant difference between our study 
and the Wu et al. and Cole et al. studies is 
that we subsample the total cohort of Italian 
municipalities to only regions with a very high 
mortality rate, which are also the regions most 
affected by the air quality problems. On the 
other hand, when satellite data are used, our 
estimate yields lower incidence ratios. Although 
ground-level concentration metrics come 
with fewer measurement errors, satellite data 
proves nevertheless useful in corroborating 
both the direction and the significance of 
the effect of interest. This redundancy is 
particularly relevant in light of the relatively 
few stations capable of detecting the finest 
particulate.

With reference to model (4) and the remaining 

In each of the four specifications presented, 
the coefficient related to PM2.5 is always of 
the hypothesized direction and statistically 
different from zero. Precisely and consistently 
with previous results for the original SARS-
Coronavirus during the 2003 outbreak (Cui et 
al., 2003), an increase in air pollution exposure 
is associated with increased mortality for 
COVID-19. The first panel in Figure 4, as well as 
Table 4, suggests that, when using interpolated 
data from ISPRA monitoring stations, the 
increase in mortality rate due to a one-unit 
increase in PM2.5 concentration varies between 
14% (model 1 – highest rate) and nearly 9% 
(model 4 – lowest rate). The 95% confidence 
interval for the point estimate in model 4 lies 
between roughly 6% and 12%. Our findings 
fall in line with both Wu et al. (2020) and Cole 
et al. (2020) papers. Specifically, both papers 
find a positive ecological relationship between 
PM2.5 and COVID-19 mortality. In relation to a 
1µg/m3 increase in PM2.5, Wu et al. find 8% 
change in COVID-19 mortality, Cole et al. find 
the same increase associated to additional 3 
COVID-19 deaths (almost 17% if compared to 
their sample mean), and our paper finds 9% 
increase in COVID-19 related excess mortality. 
Despite this similarity in results, the two key 
differences between our study and the others 
relate to the exposure assessment method and 
the outcome assessment method. In our study 
we use a spatial interpolation method (kriging) 
from ground-level monitoring data, whereas 
these other two studies utilize PM2.5 gridded 
surfaces such as chemical transport modelling 

04Discussion
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covariates, we observe no effect related to 
population density or income or the extent of 
industrial areas in the municipality. Likewise, 
there is no evidence suggesting significant 
links between the share of non-EU residents, 
the female to male ratio (which disappears 
after we incorporate the random effects), and 
the level of education (proxy by the percentage 
of university students) on the dependent 
variable of interest. On the other hand, our 
results suggest a negative association between 
temperatures and mortality due to COVID-19. 
Finally, as expected, we find that municipalities 
with higher shares of the population aged 65 
or more have been most affected. The distance 
from the closest airport, a measure of relational 
connectedness that also proxy for the exposure 
to the contagion process, deserves a last 
comment. We find that municipalities closer 
to an airport experience a higher number of 
deaths in excess. We speculate that the result 
could be related to a higher likelihood for these 
municipalities to become clusters of contagion 
in the initial phase of the pandemic, but a 
causal link cannot be inferred based on our 
result ad the topic needs more research to be 
addressed adequately.

We conclude our analysis by checking 
the consistency of our results to different 
choices of the dependent variable. Existing 
evidence (Dominici et al., 2003; Pascal et al., 
2014; Samet et al., 2000; Yin et al., 2017) 
associates fine PM to severe cardiovascular 
and respiratory diseases and mortality. In 
European cities, in particular, an estimated 
increase in the number of daily deaths of 0.7% 
is associated with an increase of 10 µg/m3 of 
PM10 (Katsouyanni et al., 2001). This evidence 
suggests that long term PM exposure may have 
had an overall effect on deaths even before 

the outbreak in the sample municipalities, 
making it more difficult to isolate the real effect 
on COVID-19 deaths. We thus run model (4) 
using the total number of deaths in the same 
observation period of 2019 as the dependent 
variable to understand whether the effect of 
fine PM2.5 on mortality has been more severe 
during the pandemic. We find no evidence of 
an effect of PM2.5 on total deaths for 2019 in 
the sampled municipalities, suggesting that 
the effect of PM exposure on the mortality rate 
is closely connected to the novel coronavirus 
outbreak (see Table 6 in the Appendix). 
However, since the dependent variable in 
this “placebo” regression cannot be directly 
compared to the excess mortality, we repeat 
the test using total mortality for the year 2020. 
Although the latter includes both COVID-19 
related and unrelated deaths, these two 
variables represent data generating processes 
of the same nature. As expected, both the 
regression coefficients and IRRs calculated 
regressing total deaths in 2020 suggest a 
positive and statistically significant effect of 
exposure to fine particulate on mortality, even 
though its magnitude is greatly reduced if 
compared to the estimates in Tables 3 and 
4 (see Table 7 in the Appendix). Presumably, 
the effect of PM2.5 concentration on COVID-19 
related mortality becomes muted by the 
noise introduced when accounting for other 
causes of death. This would also explain the 
non-significant PM2.5 coefficient in the first 
“placebo” regression.
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model does not allow concluding a causal 
effect exists. In our opinion, the robust 
evidence in the paper shows that the 
relationship between PM2.5 and COVID-19 
related excess deaths goes far beyond a simple 
geographical correlation, and further research 
is needed to explore the causal effect more 
in depth, when reliable time series data are 
available.

In fact, our paper does not deal with the 
spread of contagion and the dynamics 
linked to it, also because, as we underlined, 
such analysis would require time-series 
data, a different econometric methodology, 
and the identification of the exogenous 
Coronavirus insurgence in Northern Italy. To 
the latter purpose, the spread of the pandemic 
incorporates two different dynamics: i) on the 
one hand, the dynamics of the spread of the 
contagion requires further information to be 
investigated such as its genesis, the type of 
virus, and setting of the first outbreak; ii) the 
effects of the lockdown changed (or partially 
blocked) the contagion in an asymmetric way. 
In addition to this, of course, there are other 
elements that should be investigated, such as 
additional variables about health data, mobility, 
and so forth. 

Our results reinforce the need to adopt 
environmental policies that would not only 
reduce the impact of pollution on the health 
of citizens and workers but would contribute 
to smooth the negative effects of a (future) 

Italy is among the countries most severely 
affected by the new coronavirus, with more 
than 230 thousand confirmed cases and more 
than 30 thousand deaths as of the end of 
May. Yet, the spatial distribution of confirmed 
cases and deaths suggest that the effects 
of the viral infection spreading largely vary 
across the regions of the country but also 
within regions. In this work, we examined the 
role of ambient PM2.5 in explaining the spatial 
variation in deaths that occurred throughout 
the most extreme time period of the epidemic. 
The results in the paper, that suggest a positive 
relationship between PM2.5 concentration 
and COVID-19 related excess mortality, are 
robust to different specifications PM2.5 and 
estimation strategies, even after controlling for 
additional confounder factors. Coherently with 
previous findings in the literature, we highlight 
a strong positive correlation between viral 
respiratory infection incidence and ambient 
PM2.5 concentrations and the increase in 
susceptibility to COVID-19 mortality caused by 
long term exposure to PM2.5, consistent with 
evidence for the original SARS-Coronavirus 
during the 2003 outbreak. In fact, fine PM is 
already known to affect cardiovascular and 
respiratory morbidity and mortality.

However, we are aware that the phenomenon 
and the cause and effect relationships are very 
complex and that our work can only address 
part of the problem. The cross-sectional nature 
of the dataset and the use of geographically 
aggregated information in the epidemiological 

05Conclusion
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pandemics, avoiding collapses of health 
systems. Indeed, recent studies show that 
in addition to chronic lung inflammation, 
environmental air pollutant concentrations 
can exacerbate the effects of increasingly 
frequent one-shot systemic shocks, which in 
turn are also caused by environmental factors. 
In this regard, sustainable and decarbonization 
policies such as the Green New Deal, conceived 
as long-term policies, should be accelerated. 
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Appendix 1

Table 5: estimated regression coefficient (PM variable only) for Model 4 using nine Kriging specifications: three different covari-
ance functions (Exponential, Matérn and Spherical) time three alternative trend models (constant trend, linear trend and quadratic 
trend). The table also includes the estimated regression parameters for Model (4) using Satellite and EEA data.

Method Covariance Trend Estimate Std. Err. p-value AIC

Kriging Exponential No Trend 0.089 0.014 <0.001 20296

Linear 0.091 0.014 <0.001 20295

Quadratic 0.09 0.014 <0.001 20295

Matern No Trend 0.082 0.014 <0.001 20300

Linear 0.085 0.013 <0.001 20296

Quadratic 0.085 0.013 <0.001 20295

Spherical No Trend 0.083 0.014 <0.001 20300

Linear 0.084 0.014 <0.001 20298

Quadratic 0.084 0.014 <0.001 20298

Satellite MODIS 2016 - 0.02 0.01 0.013 20329

DIMAQ 2016 - 0.02 0.01 0.068 20331

DIMAQ 2014-2016 - 0.02 0.013 0.148 20333

EEA 2016-2017 - 0.026 0.01 0.003 20326
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Appendix 2

Table 6 – Estimation results for the placebo regression, dependent variable: total number of deaths during the period Jan1-April 
30 2019, municipalities in Northern Italy

 Model (1) Model (2) Model (3) Model (4)

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Intercept -5.072 *** (0.806) -5.209 *** (0.760) -5.530 *** (0.812) -5.809 *** (0.790)

PM2.5 0.044 *** (0.003) 0.034 *** (0.004) 0.033 *** (0.005) 0.031 *** (0.006)

Female/Male -0.034 (0.202) 0.304 (0.193) 0.669 *** (0.193) 0.642 *** (0.191)

% Over 65 0.062 *** (0.003) 0.061 *** (0.003) 0.057 *** (0.003) 0.057 *** (0.003)

Temperature -0.018 *** (0.003) -0.013 *** (0.003) -0.014 ** (0.004) -0.010 * (0.004)

Pop. Density -0.010 (0.013) -0.048 *** (0.012) -0.001 (0.012) -0.008 (0.012)

Ind. Land -0.004 (0.003) -0.004 (0.002) -0.004 (0.002) -0.004 (0.002)

% Samll Ent. -0.003 (0.003) -0.006 (0.003) -0.002 (0.003) -0.003 (0.003)

PC Income -0.215 ** (0.073) -0.201 ** (0.069) -0.217 ** (0.076) -0.177 * (0.074)

% non-EU 0.006 (0.007) 0.009 (0.007) -0.002 (0.007) 0.000 (0.007)

% Univ. Stud. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

PC Hospital Beds 0.723 (0.904) 0.231 (0.863) 0.364 (0.827) 0.223 (0.825)

Dist. Airport -0.040 ** (0.012) -0.014 (0.011) -0.018 (0.016) -0.007 (0.014)

 Regional Fixed Effects

Lombardia   0.317 *** (0.036)   0.289 *** (0.055)

Emila-Romagna   0.118 ** (0.04)   0.072 (0.057)

Piemonte   -0.026 (0.035)   -0.023 (0.053)

Veneto   -0.283 *** (0.041)   -0.274 *** (0.057)

theta 3,29 3,92 4,87 4,89

Observations 4041 4041 4041 4041

AIC 28517 28119 27971 27869

*** p<0.01, ** p<0.05, * p<0.1
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Appendix 3

Table 7 – Estimation results for the placebo regression, dependent variable: total number of deaths during the period Jan1-April 
30 2020, municipalities in Northern Italy

 Model (1) Model (2) Model (3) Model (4)

Estimate (SE) Estimate (SE) Estimate (SE) Estimate (SE)

Intercept -3.876 *** (0.280) -3.748 *** (0.277) -3.641 *** (0.295) -3.667 *** (0.292)

PM2.5 -0.001 (0.001) 0.000 (0.001) 0.000 (0.002) 0.002 (0.002)

Female/Male 0.313 *** (0.077) 0.325 *** (0.076) 0.357 *** (0.079) 0.354 *** (0.079)

% Over 65 0.056 *** (0.001) 0.054 *** (0.001) 0.053 *** (0.001) 0.053 *** (0.001)

Temperature 0.002 (0.001) 0.001 (0.001) 0.001 (0.001) 0.000 (0.001)

Pop. Density -0.014 *** (0.003) -0.012 *** (0.003) -0.006 (0.003) -0.006 (0.003)

Ind. Land -0.002 * (0.001) -0.002 ** (0.001) -0.002 ** (0.001) -0.002 ** (0.001)

% Samll Ent. 0.001 (0.001) 0.000 (0.001) 0.001 (0.001) 0.000 (0.001)

PC Income -0.238 *** (0.025) -0.247 *** (0.026) -0.260 *** (0.028) -0.258 *** (0.028)

% non-EU 0.000 (0.002) 0.002 (0.002) 0.002 (0.003) 0.002 (0.003)

% Univ. Stud. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)

PC Hospital Beds 0.433 (0.365) 0.349 (0.362) 0.469 (0.354) 0.439 (0.355

Dist. Airport 0.016 *** (0.004) 0.017 *** (0.004) 0.017 ** (0.005) 0.017 *** (0.005)

 Regional Fixed Effects

Lombardia   0.013 (0.013)   0.002 (0.019)

Emila-Romagna   0.047 *** (0.013)   0.028 (0.019)

Piemonte   0.076 *** (0.013)   0.071 *** (0.018)

Veneto   -0.035 * (0.014)   -0.039 * (0.02)

theta 3.29 3.92 4.87 4.89

Observations 4041 4041 4041 4041

AIC 27432 27327 27269 27238

*** p<0.01, ** p<0.05, * p<0.1
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Appendix 4

Data comparison from different 
official sources
Table 8 reports the excess deaths data as 
reported by the Italian Bureau of Statistics 
(ISTAT) along with the official covid19 statistics 
as indicated by Protezione Civile Italiana (PC). 
ED-I stands for Excess deaths reported by 
ISTAT, calculated as the sum of deaths (from 
all causes) between January 1 and March 31 
(column 1) or April 30. 2020 (column 3) with 
respect to the average value in 2015-2019 
(same months). The difference between column 
1 and column 2 involves the sampling base. 
In fact, as long as ISTAT was upgrading the 
deaths data, it was both enlarging the sample 
of municipalities and correcting the past 
figures; see column 4 to 6: TD-I (a) stands for 
Total deaths reported by ISTAT as the sum of 
total deaths from January 1 to March 31, 2020 
in the initial sample (column 4),TD-I (b) for the 
updated sample (column 5) and TD-I (c) for the 
latter release. It turned out that the number of 
ISTAT excess deaths increased by 97% with this 
revision (compare column 1 and column 2). It 
further increased by 52% on April 30 (compare 
column 2 and column 3) due to corrections, 
enlargement and new cases.

D-PC stands for number of deaths with or from 
Covid-19 reported by the national department 
Protezione Civile Italiana (Italian Civil Protection, 
which is a department of the Presidency of 
the Italian Council of Ministers) over January 
1-March 31, 2020 (column 7) and January 
1-April 30, 2020 in column 8. The official D-PC 
data are available only at the regional level 
and they are officially released by the health 
departments of the Regional administrations. In 

the period March 31 and April 30, PC registered 
a 119% increase in Covid-19 deaths

ISTAT and PC department therefore collect data 
independently. The key difference between 
ED-I and D-PC lies in how PC recognizes 
fatalities as Covid-19 related: only patients 
known to have tested positive to SARS-COV-2 
got registered under this nomenclature. On 
the other hand, ED-I is just a mathematical 
construct that takes into account all deaths 
in a given municipality, regardless the cause. 
Due to difficulties in providing timely screenings 
and accurate testing during the peak of the 
pandemics, it is likely that official figures from 
PC might have been underestimated between 
early January and mid-April. This is particularly 
true for the most affected areas. Consequently, 
the discrepancies between ED-I and D-PC can 
be either moderate or strong, as we observe 
for Lombardy (where ED-I is roughly 69% higher 
than D-PC) and Trentino Alto-Adige. Last, the 
unlikely event of ED-I lying below D-PC is due 
the fact that ISTAT initially collected figures for 
only a subsample of municipalities (i.e. those 
recording a percentage of excess deaths in 
2020 greater than 20%) leaving out quite 
a lot of statistical units (for example, Friuli-
Venezia Giulia, which had initially the biggest 
discrepancy (ratio 0,39) reported data for a 
very small number of municipalities to ISTAT). 
However, with some delay, ISTAT has been 
upgrading the sample, such that in June it 
covered about all municipalities.

In our paper, we use the updated data ED-I 
1J-30A (column 3), disaggregated at the 
municipality level. Column (9) shows that the 
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ratio of total ED-I and D-PC is about 1.09, 
with mean ratio equal to 0.74 and standard 
deviation equal to 0.4. Underestimation of 
cases in the initial sampling base concerned 
all Northern Italian regions except Emilia 
Romagna, Lombardy and Veneto (the biggest 
regions in terms of population and Covid-19 
cases). 

The ratio of total ED-I (b) and D-PC (b) in 
column (10) is about 2.1, with a mean ratio 
equal to 1.89 and standard deviation 0.6. 
One month later, the total ratio decreases to 

1.5 - column (11) - with mean ratio 1.24 and 
standard deviation 0.27. In the latter case, a 
slight underestimation of the registered cases 
concerns only FVG and Valle d’Aosta.  

In any case, since Lombardy has the biggest 
discrepancy on April 30 (ratio 1,69) we also run 
our regressions excluding Lombardy (i.e. taking 
all Lombardy municipalities off) and the results 
are robust, reporting a significant higher-than-1 
relative risk ratio for the exposure variable. The 
latter results are available upon request.

Table 8: Regional comparison of death data from different sources

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Regions ED-I (a) 
1J-31M

ED-I (b) 
1J-31M

ED-I (c) 
1J-30A

TD-I (a) 
1J-31M

TD-I (b) 
1J-31M

TD-I (c) 
1J-30A

D-PC 
31M

D-PC 
30A

(1)/(7) (2)/(7) (3)/(8)

Emilia-
Romagna 

1874 3251.5 4525 8433 16879 22142 1644 3551 1.14 1.98 1.27

Friuli-Venezia 
Giulia 

44 55 255 353 1596 5332 113 289 0.39 0.49 0.88

Liguria 65 837.75 1454 3982 6187 9193 428 1167 0.15 1.96 1.25

Lombardy 8539 15771.75 23329 26749 40969 58882 7199 13772 1.19 2.19 1.69

Piemonte 816 2216.75 3547 5566 12637 21931 854 3066 0.96 2.60 1.16

Trentino-Alto 
Adige 

132 416.25 1048 551 1737 4286 240 693 0.55 1.73 1.51

Valle d'Aosta 25 117 128 184 541 622 56 137 0.45 2.09 0.93

Veneto 529 1002 1723 4884 12645 18248 477 1459 1.11 2.10 1.18

total 12024 23668 36009 50702 93191 140636 11011 24134 1.09 2.15 1.49

municipalities n.a. 6866 7270 n.a. 6866 7270 - - - - -

Note: ED-I (a) = excess deaths reported by ISTAT January 1-March 31 2020 with initial sample. ED-I (b) = excess deaths by ISTAT 
January 1-March 31 with enlarged sample. ED-I (c) = excess deaths by ISTAT, latest release. TD-I (a) = total deaths by ISTAT Janu-
ary 1-March 31 with initial sample. D-PC = number of deaths with or from Covid-19 registered by Protezione Civile Italiana (PC). 
Total municipalities in Northern Italy: 7904.
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