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Summary

Long-term exposure to ambient air pollutant concentrations is known to cause chronic
lung inflammation, a condition that may promote increased severity of COVID-19 syndrome
caused by the novel coronavirus (SARS-CoV-2). In this paper, we empirically investigate
the ecologic association between long-term concentrations of area-level fine particulate
matter (PM2.5) and excess deaths in the first quarter of 2020 in municipalities of
Northern Italy. The study accounts for potentially spatial confounding factors related to
urbanization that may have influenced the spreading of SARS-CoV-2 and related COVID-19
mortality. Our epidemiological analysis uses geographical information (e.g., municipalities)
and negative binomial regression to assess whether both ambient PM2.5 concentration and
excess mortality have a similar spatial distribution. Our analysis suggests a positive
association of ambient PM2.5 concentration on excess mortality in Northern Italy related to
the COVID-19 epidemic. Our estimates suggest that a one-unit increase in PM2.5
concentration (ug/m3) is associated with a 9% (95% confidence interval: 6% - 12%)
increase in COVID-19 related mortality.
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Introduction

With more than twelve million confirmed
COVID-19 cases and more than 550 thousand
related deaths globally as of the beginning of
July 20201, the novel coronavirus pandemic
has unquestionably caused dramatic health
and economic impacts. Despite the public
health benefits of the consequent COVID-19
mitigation measures adopted by the central
and the regional governments in Italy, one of
the most heavily impacted countries, there are
adverse socioeconomic effects of the lockdown
on top of what are already dramatic public
health impacts. Official morbidity statistics,
although complicated by the public health
interventions and the emergency status, reveal
a strong spatial clustering phenomenon across
administrative regions in Italy and provinces
and municipalities within each region. Such a
geographical concentration of both COVID-19
morbidity and mortality is most likely the result
of the interaction of multiple factors, among
which include the clustering of initially infected
individuals, different choices made about
testing and contact tracing in order to identify
community transmission, underlying population
demographic and prevalence of health status,
and the timely adoption of lockdown measures
to control the COVID-19 epidemic (Ciminelli &
Garcia-mandic6, 2020). Beyond such proximal
factors, however, additional contextual factors

may have played an important role in the health
impacts of COVID-19 in Italy.

The Northern Italian regions most affected

by the spreading of coronavirus (Lombardia,
Veneto, Piemonte, Emilia Romagna) are also
the most densely populated and heavily
industrialized and thereby the most heavily
polluted region of Italy. These four regions
together host 39% of the national population,?
and approximately one-half of the Italian GDP
is produced there. Such a spatial concentration
of economic activities involves the industrial
manufacturing sectors to the largest extent,
and the consequent high level of emissions

is at least in part responsible for poor air
quality in the region.3 In Brescia, among

the most affected cities in Lombardy, the
concentration of particulate matter (PM) and
ozone exceeded the allowable threshold in 150
days in 2018, making it the most polluted city
in Italy. Lodi and Monza follow, with 149 and
140 exceedance days, respectively. Milan and
Bergamo are sixth and ninth, respectively, with
135 and 127 days. Lombardy is also among
the most polluted regions in all of Europe
(European Environmental Agency, 2019). The
relatively higher air pollutant concentrations

in the Po Valley region of Italy contrasts
sharply with neighbouring alpine regions (van

1 Data from Johns Hopkins coronavirus resource center, updated July 10.

2  AtJanuary 1st 2019, source: Italian Bureau of Statistics - ISTAT.

Different components of gas emissions (e.g. nitrogen dioxide, carbon monoxide), derive from many activities like traffic congestion,
house heating, agricultural and husbandry practices, as well as industrial combustion. Concentrations are characterized by
seasonality, with high levels in Winter, and weather conditions, however the 2020 lockdown measures reduced substantially those
derived from traffic but not those derived from agricultural activities (ARPA Lombardia, 2020).
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Donkelaar et al., 2010) and stems from the
combination of two main factors (Carugno et
al., 2016; Larsen et al., 2012; Pozzer et al.,
2019). The first is the high concentration of
urban areas with their congested roads and
industrial belts. Source apportionment research
from the Lombardy region (Pirovano et al.,
2015) indicates that the major sources of PM, .
include residential heating (e.g., fuel), transport,
agriculture, background (including natural-
source sand long-range transport), and other
(including stationary industrial sources). The
second is the location in the orographic “bowl”
of the Po Valley, an extension of flat river lands
enclosed between the Alps and Apennines
mountains, which causes the stagnation of
pollutants due to low ventilation (Giulianelli et
al., 2014).

These factors help to characterize the Po
Valley’s peculiarity with respect to different
European areas with comparable urban and
industrial density levels (Eeftens et al., 2012).
Moreover, in addition to the urbanized and
industrial areas, the remainder of the valley
presents an intensive agricultural activity.

Local studies on emission sources highlight a
varying composition of the final concentration
values depending on the position of monitoring
stations and with different sources acting as
local or diffused ones (for instance having high
emissions from traffic close to cities, while
having background biomass burning diffused

in the whole region) (Bigi & Ghermandi, 2016;
Larsen et al., 2012). Indeed, given the EU
Ambient Air Quality Directives that sets the Air
quality standards for the protection of health at
25 ug/m3 for the averaging period of a calendar
year, the Po valley shows values consistently
near or above the threshold. These values often
range in the 25-30 yg/ms3 interval with peaks of

>30 pg/m3, which in Europe are only matched
in Southern Poland and other smaller Eastern
European clusters (EEA, 2019).

Compared to its overall representation in the
population, Lombardy is disproportionately
impacted by COVID-19 related mortality,

with approximately 53% of Italy’s COVID-19
deaths as of April 15, 2020 (Odone et al.,
2020). Lombardy is also the most impacted
[talian region as far as the total number of
deaths in excess in the first quarter of 2020
compared to the same period of the previous
years. Comparing the official COVID-19 death
data with registry deaths, it emerges that the
latter is almost 70% larger than the former

in Lombardy, 27% larger in Emilia-Romagna
and 18% and 16% in Veneto and Piemonte,
respectively. It is, therefore, imperative to
consider the role that PM may have played

in such disproportionate COVID-19 deaths in
Northern Italy.

There are a number of plausible pathways

by which airborne PM may impact COVID-19
related morbidity and mortality. Existing data
already finds a strong positive correlation
between viral respiratory infection incidence
and ambient PM concentrations (Ciencewicki
& Jaspers, 2007; Sedlmaier et al., 2009). One
plausible pathway for this phenomenon is the
fate and transport of the virus itself within
the environment. A recent position paper by
the Italian Society of Environmental Medicine
argues that PM may act as both a carrier and
substrate of the virus and thus influence the
virus’ fate and transport in the environment
and reaching susceptible receptors (Setti et
al., 2020). Another pathway is the increase in
susceptibility to COVID-19 mortality caused by
long term exposure to PM. Fine PM is already
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known to affect cardiovascular and respiratory
morbidity and mortality (Cakmak et al., 2018;
Jeong et al., 2017; McGuinn et al., 2017; Yin

et al., 2017). Moreover, among 1,596 Italian
COVID-19 patients who died in the hospitals,
and for whom it was possible to analyze clinic
charts, data showed substantial comorbidities
including ischemic heart disease (27.9%); atrial
fibrillation (22.4%); heart failure (15.6%); stroke
(10.9%); hypertension (70.6%), and chronic
obstructive pulmonary disease (17.9%) (Istituto
Superiore di Sanita, 2020). Biologically, long-
term PM exposure may be responsible for a
chronic inflammation status that causes the
hyper-activation of the immune system and the
life-threatening respiratory disorders caused by
COVID-19 (Shi et al., 2020).

Some preliminary evidence is now emerging
about COVID-19 that shows a positive
relationship between air pollution and morbidity
and mortality. Beyond qualitatively describing
the European Air Quality Index for Northern Italy
to argue the causal role of air pollution and the
relatively high COVID-19 mortality observed

in that region, Conticini et al. (2020) review
the most recent existing toxicological and
epidemiological literature. Based on existing
evidence from other empirical studies, they
clarify the relationship between air pollution,
prolonged inflammation and immune system
hyper-activation and immune suppression,

and the link between the latter and acute
respiratory distress syndrome, and respiratory
mortality. Their paper is important in that it
suggests a clinical and biologically plausible
explanation to our analysis, but does not
provide statistical evidence in support of the
hypothesis. A separate empirical analysis

by Becchetti et al. (2020) finds preliminary
empirical evidence that confirms such a

positive effect of air pollution on mortality in
Italy based on the analysis of death data at
the province level. Similarly, Wu et al. (2020)
show a positive association between long term
PM exposure and COVID-19-related death in
US counties. Ogen (2020) recently analysed
data from 66 administrative regions in France,
Spain, Italy, and Germany, and found that the
highest COVID-19 deaths in these regions were
associated with five regions of Northern Italy
that also corresponded with the highest levels
of atmospheric nitrogen dioxide (NO,). Cole et
al. (2020) estimate the same relationship using
Netherlands municipality data and find PM, .
positively associated with COVID-19 cases,
hospitalization, and deaths.

In this paper, we follow this emerging stream of
the empirical literature and test the hypothesis
that a higher average long-term exposure to
PM, ¢ is positively associated with the current
extraordinarily high death toll in Northern

Italy. We decided to focus on PM, . because,
given the complexity of air pollution, it is quite
common in air pollution epidemiology studies
to focus the analysis on a single pollutant (Wu
et al., 2020), although multipollutant analyses
are certainly warranted. We selected PM, ; for
a variety of important reasons, including policy
implications and evidence in the literature in
terms of chronic health effects. Regarding

its policy implications, we selected PM, ; as
opposed to PM,, because the former is more
correlated with human activities than the latter,
and it correlates with stronger health effects
than PM,, does. With respect to respiratory
mortality effects from the existing air pollution
literature, the most robust evidence points

to PM, . as opposed to other gaseous air
pollutants (Bowe et al., 2019).

FEEM REPORTS | 4



Mortality data are collected at the municipality
level for the period January-April 2020. Given
that mortality data are not disaggregated by
mortality cause, death counts are measured as
the difference from the last five-years mean to
reflect the abnormal number of deaths caused
by the spreading of the pandemic. Since PM, .
can be associated to generic mortality even

in the absence of the pandemic outbreak
(Dominici et al., 2003; Katsouyanni et al.,
2001; Samet et al., 2000), we also estimate
the impact of PM,  on the excess mortality in
the sample using 2019 data, a time in which
the coronavirus epidemic had presumably not
yet begun. Data on PM, . concentration at the
municipality level refer to the years prior 2020
to account for long-term population exposure.
We assign municipality PM, ; concentration

by a set of different methods of spatial
interpolation (kriging) of monitoring station data
related to the years 2015-2019.

We estimate a negative binomial model

of excessive deaths on historical PM, ¢
concentrations and a series of control
variables that may plausibly affect both
PM, . concentration and mortality, including
population density; the spatial concentration
of the industrial manufacturing sites; climatic
conditions observed during the first quarter

of 2020; and the demographic composition

of the municipal population among others. In
addition, we consider spatial heterogeneity

in the distribution of the number of deaths
related to regional and local unobservable
factors. We account for region-specific effects
because regions, in Italy, are the administrative
units in charge of managing the health
systems and the measures taken to trace

and contrast the spreading of the pandemic
varied greatly among even contiguous regions.
We also account for local effects common to
functionally linked clusters of municipalities
(the Local Labour Systems - LLS). We deem
this part of the identification strategy crucial
because the relationship between PM, ¢ and
COVID-19 mortality may be confounded by
several other factors, some of which were not
observable or measurable, but are nevertheless
intrinsically related to the geographical location
of the observed units.

The remainder of the paper is organized

as follows. The next section introduces the
empirical strategy and describes the dataset.
The results are presented and discussed in
section three, considering the total number

of (excess) deaths. Section four draws the
conclusions and highlights the limitation of the
study and the indications for future research.

FEEM REPORTS | 5



Empirical strategy and data

Our analysis is restricted to the study area of
Northern lItaly (Figure 1), which encompasses
the sub-regions of Valle D’Aosta, Piemonte,
Liguria, Lombardia, Emilia-Romagna, Veneto,
Friuli-Venezia Giulia and Trentino-Alto
Adige/Sudetirol. Official territorial data on
COVID-19 mortality in Italy are available at
the rather aggregate regional or provincial
level, corresponding to the levels 2 and 3,
respectively of the European nomenclature
units for territorial statistics (NUTS)%. In
addition, these official data refer to the deaths
of patients tested positive for severe acute
respiratory syndrome coronavirus 2 (SARS-

Figure 1- Italian regions included in the study

L]

4 https://ec.europa.eu/eurostat/web/nuts/background

CoV2) only and do not include (potential)
patients without COVID-19 diagnosis because
they were not tested and died at home or
elsewhere. Hence, the officially reported
deaths are likely underestimated. Because
testing policies vary among regions in Italy,
the induced measurement error is also non-
randomly distributed among the provinces.
Ciminelli & Garcia-mandico (2020) compare the
official COVID-19 fatality rates with historical
death data and report that deaths were higher
than official fatalities throughout the period of
COVID-19 epidemic.

Region:

I Emilia-Romagna
[ Friiva.

I Liguria

. Lombardia

. Piemonte

. Trentino A.A.
. Valle D'Aosta

. Veneto
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Working under the assumption that COVID-19
deaths are underestimated in Italy, the choice
is made in this paper to use the total deaths
from the official registries, accordingly, and

to scale the analysis at the municipality level,
the smallest administrative units, to have a
more granular representation of the spatial
dimension of the phenomenon. Since we

are interested in excess deaths, we take the

difference between the number of deaths in
the period January 1 - April 30, 2020, and the
average number of deaths in the same period
of the previous five years (ExDeaths) and use
this ExDeaths metric as the dependent variable
in our statistical model. Figure 2 displays

the geographical distribution of the above-
described data among the 4041 municipalities
for which data is available.

Figure 2: Spatial distribution of cumulative excess deaths in sample municipalities, Northern Italy, January 1 - April 30, 2020

The variable is assumed to follow a Negative
Binomial distribution, a generalization of the
Poisson distribution that avoids the restrictive
mean-variance equality of the latter, and is
modelled as follows:

(1) ExDeaths, ~ NB(u;, 0)
log(u) = a+pPM,+0 X, +¢,

where 6 is the overdispersion parameter
to be estimated and w, is the municipality-
specific expectation conditional on the value

2020-Avg(2015; 2019)

100
75
50

g 25
0

of the covariates. Among the covariates, PM

is the concentration of fine particulate matter
in municipality i and f3 is the associated
parameter, which we expect positive and
statistically different from zero; X is a vector of
control variables that adjusts for the potential
confounding effects and includes the (log

of) total population as the offset while € is a
normally-distributed error term.

Our main source of PM, . data is the European

Environmental Agency’s (EEA) air monitoring
database, which is provided to EEA by the
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Institute for Environmental Protection and
Research (ISPRA). ISPRA conducts ground-level
air measurements of PM, . air concentrations
(Mg/m?3) collected at 268 monitoring sites
throughout Italy. Specifically, we use the EEA’s
Ela and E2a datasets, which are primary
validated assessment data and primary
up-to-date assessment data reported by

the European Member States, respectively.
Although the measurements come both in
hourly and daily averaging formats, we work
with daily values and use them to obtain yearly
aggregates for the years 2015, 2016, 2017,
2018, and 2019. However, because model

(1) does not include a time component, we
further compute a six-year averaging time to
obtain a metric of long-term (chronic) PM,
concentration levels throughout different
spatial units of Northern Italy. The number of

six years for the reference period is sufficiently
long to account for long-term exposure while
being not too long to be affected by the mobility
of people among municipalities, and it is in
line with existing literature assessing long-term
effects of PM exposure (Yorifuji et al., 2019).
Since the air monitoring stations provide only
partial spatial coverage for municipality-level
PM, . concentration data, we impute missing
observations using a spatial interpolation
model. Specifically, we fill in the gaps using

a mean stationary Ordinary Kriging (see
Bivand et al., 2013 p 209) defined through an
exponential covariance function with nugget,
partial sill and range parameters estimated
through (restricted) maximum likelihood
methods. Figure 2 displays the resulting PM, .
concentration datad.

Figure 3: Spatial distribution of PM2.5 concentration levels in the sample municipalities, simple kriging of monitoring stations,

average across years 2015-2019

Est. PM2.5 Level

25
20

15

5  We also replicate the analysis using other trend-stationary models (i.e. universal kriging) and different covariance functions; these

extensions are discussed in the robustness check section.
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Comparing figures 2 and 3, it is possible to
visually appreciate a spatial coincidence
between higher levels of excess mortality

and higher levels of PM, ., in particular in the
Lombardia region which notably is the region
with both the highest particulate concentration
and the highest number of excess mortality.

The hypothesis that PM, . concentration
affected COVID deaths, that is (,3’,>0), is tested
among several possible specifications. In
model (2) we include regional effects (4,). These
effects are expected to capture the aspects
related to the management of the outbreak,
which may have systematically influenced
COVID-19 mortality and that are common to all
the municipalities in the same region. Italy has
a national health system that ensures equal

Table 1: Number of LLS spatial clusters in each region.

Region N. LLS N. of municipalities
Emilia-Romagna 42 328 1
Friuli-Venezia Giulia i3 215 1
Liguria 17 234 1
Lombardia 57 1507 1
Piemonte 39 1181 1
Trentino-Alto Adige/ 27 291 1
Sudtirol

Valle d'Aosta 5 74 8
Veneto 49 563

The use of LLS captures the interlinkages
within neighbouring municipalities that may
have favoured the geographical spreading

of coronavirus around specific hotspots.
Mortality data are then expected to vary among
municipalities in different LLS, but differences
are expected to be non-systematic in this case.
In model (4) we include both the regional fixed
effects and the LLS random effects.

Smallest LLS (N. of
municipalities)

access to healthcare to all citizens. The system
is managed by regions at the local level, and,

in the specific case of this pandemic, regions
were responsible for defining the testing and
contact-tracing protocols and implementing the
necessary measures to contain the outbreak,
among which the measure to protect healthcare
workers. In model (3), we include LLS-specific
effects (e,). LLS are spatial clusters of
contiguous municipalities related by commuting
flows that share a common specialization in

a specific sector of manufacturing production
and correspond to the conceptualization of
Marshallian districts (Becattini, 2002). The
number of LLS clusters per-region and the

total number of municipalities belonging to
clusters are reported in table 1, along with the
minimum, maximum, and average cluster size.

Largest LLS (N. of
municipalities)

Average number of
municipalities by LLS

38 8

51 16
26 12
174 25
104 26
30 10
29 12
52 11

(2) ExDeaths, ~ NB(u;;, 0)

log(uy) = o+ PPM;+0 X;+ 4 +e;
(3) ExDeaths, ~ NB(u,, 0)
log(uy) = a+PPM;+0 X, +u,
U = &y + €
(4) ExDeaths, ~ NB(u,y, 0)
log(uy) = a+ ﬁPMl.jk +0 X+ A+ Uy
u.. =

ik Ei T €
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Control variables to be included in the model
were chosen to avoid any potential spatial
confounding effect and considering as well

the emerging literature on the impact of PM

on COVID-19 related deaths (Cole et al., 2020;
Wu et al., 2020). The population density and
per-capita income account for urbanisation
level. The most densely populated and wealthy
municipalities are among the most polluted due
to the spatial concentration of manufacturing
and service activities but are also the places
where the contagion could have been easier,
with a potential impact on mortality. In addition
to the density of population, the shares of
municipality area occupied by industrial sites
and the average size of manufacturing firms
are included in the regression because they
are related to pollutant concentration and
possibly to mortality. National measures

to stop the spreading of the viral infection
(lockdown) involved the service sector to the
largest extent while many manufacturing
activities, being considered necessary, were
left open and, in the absence of social distance
and individual protection measures, the
geographical concentration of these activities
in @ municipality with their complex logistics
and transport interconnections, and the size of
plants, may have influenced mortality. Average
temperature, for which an association with
COVID-19 deaths has also been found (Ma et
al., 2020), is also included in the regression®.
Moreover, COVID-19 incidence has proven to
be higher among men than women and people
aged 65 or more. Hence these two variables

are considered in the model, even though these

aspects are not necessarily connected with
the average PM, ; exposure in a municipality.
Underlying socioeconomic conditions can also

play a role in COVID-19 related mortality (Goutte
et al., 2020). Brandt et al. (2020) and Mukherji
(n.d.) have shown that, in the US, COVID-19

is more threatening for ethnic minorities,

and we believe that the share of migrants,
identified as non-EU citizens, can control for
this aspect influencing the observed excess
mortality. On the other hand, Mukherji (2020)
and Goutte et al. (2020) also find that places
with a higher share of the population with a

low level of education have higher deaths. In
our paper, given the lack of updated data on
education at the municipal level, we proxy it
with the percentage of university students on
the total population. The distance from the
closest airport is a proxy for the functional

and relational linkage between a municipality
and a place of highly frequent national and
international connections and potential sources
of coronavirus spreading. Finally, we consider
the number of hospital beds as a proxy for the
supply of health services to account for the fact
that many people died at home without being
diagnosed for coronavirus due to the shortage
of beds in public structures. The full details of
the variables in the model, including sources
and summary statistics, are presented in Table
2.

6  We omit average humidity because the variable shows a too strong linear correlation (rho=0.98) with temperature in our sample
observations, and its inclusion would cause severe imperfect collinearity in the model.
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Table 2: Description of model variables and summary sample statistics

Variable Description Mean Median SD

ExDeaths Number of deaths in the period January 1 - April 30 2020 - absolute 9.32 2 37.13
difference compared to the average of the past five years, source: ISTAT

PM2.5 Fine (2.5 ug/m3) particulate matter concentration obtained by spatial 19.67 20.85 4.15
interpolation of monitoring stations, average across the years 2015-
2019, source: European Environmental Agency

Pop. Density Population density computed as total population in number of inhabitants 34.44 14.69 58.19
on January 1 2020 over the total artificial area in Km2, sources: ISTAT
and European Environmental Agency - Corine land Cover data

PC Income Average per-capita income, source: Ministry of Finance, 2019 15658.46 15564.52 2497.44

% Ind. Land Share of industrial area on total municipality surface measures through 2.62 0.02 5.17
satellite observation, source: European Environmental Agency - Corine
land Cover data

% Small Ent Share of enterprises with less than 10 employees, source: Registro 94.26 94.44 3.80
statistico delle Unita Locali (ASIA - UL)

Temperature Average mean skin temperature during the death observation period, BN15 5.34 4.01
source: Copernicus ERAS 0.25°x0.25° grid resolution dataset.

Female/Male  Ratio between female and male population, source: ISTAT 1.01 1.02 0.06

% Over 65 Share of population older than 65, source: ISTAT 23.36 22.72 4.93

% non-EU Share of non-EU residents, source ISTAT 1.88 1.51 1.55

% Univ. Stud. Definition, source: share of University students over total population, 82.28 19.49 289.57
source: Ministry of University and Research

Dist. Airport Distance in meters to the closest Airport, source: our computation based 23255 21437.22 12823.72
on European Environmental Agency - Corine land Cover data

PC Hospital Number per-capita hospital beds in the municipality, source: Health 0.001 0.00 0.012

Beds Ministry

Population Total population, source: ISTAT 6710.32 2549 38814.47

Having accounted for the confounding effect
due to the omission of relevant information
from the empirical specification, we exclude
any other potential source of endogeneity
considered in similar papers. In particular,

we exclude endogeneity due to measurement
error in the outcome variable and the main
independent variable. Concerning the outcome
variable, the relationship between deaths and
cases with fine PM could be spurious because
more cases could be registered, and more
individuals tested in highly polluted areas as
people there are more likely to show COVID-19
symptoms due to the chronic inflammation
induced by PM. The high toll of deaths of
people diagnosed with COVID-19 would be a
natural consequence of that. In contrast, the
number of deaths in excess, used in this paper,
is not affected by testing problems since it
considers all the potential COVID-19 deaths.

Concerning the PM variable, measurement
errors are likely to occur when using satellite
data or modelled data. We preferred to use
PM, - levels observed from monitoring stations
to avoid such a measurement error. Some
caution is needed in the spatial interpolation
because the method chosen to fill the missing
data may underestimate the value in locations
farther from the monitoring stations. With this
concern in mind, we test the robustness of our
results using PM, . data obtained from different
interpolation approaches.
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Results

As indicated in Table 2, the overall average

of PM, . for the study area between 2015

and 2019 is roughly 20 pg/ms3, as most
municipalities in Norther Italian regions belong

to industrial and agricultural intensive locations.

The average mortality between 2015 and 2019
for the period of interest (January 1 - April 30)
was 25 deaths, while it grew to 34 in 2020.
That results in an average excess death of 9,
with standard deviation four times as larger.
(see Table 2).

Estimation results from the negative binomial

models are summarised in Table 3 for the four

different specifications of the model (1- no

geographical effects; 2 regional fixed effects;

3- LLS random effects; 4- regional fixed effects

and LLS random effects). In the lower part of the
table, the estimated overdispersion parameter,

the Akaike Information Criterion (AIC), and the

Moran’s test for the null hypothesis of absence
of spatial autocorrelation’ in the residuals

(Moran, 1950) are reported.

Table 3: Estimation result of main regressions, dependent variable: excess deaths during the period January 1 - April 30 2020,

municipalities in Northern Italy.

Model (1) Model (2) Model (3)
Estimate (SE) Estimate (SE) Estimate (SE)
Intercept -6.314 ***  (1.834) -6.862 ***  (1.717) -5.369 ** (1.844)
PM2.5 0.128 ***  (0.008) 0.085 ***  (0.009) 0.089 ***  (0.014)
Female/Male -1.451 ** (0.449) -0.726 (0.427) 0.213 (0.426)
% Over 65 0.076 ***  (0.006) 0.074 ***  (0.006) 0.066 ***  (0.006)
Temperature -0.064 *** (0.007) -0.046 ***  (0.007) -0.048 *** (0.011)
Pop. Density -0.011 (0.030) -0.099 ***  (0.028) -0.005 (0.029)
Ind. Land -0.009 (0.0006) -0.009 (0.005) -0.008 (0.005)
% Small Ent. -0.008 (0.007) -0.017 * (0.007) -0.009 (0.007)
PC Income -0.199 (0.166) -0.082 (0.157) -0.385 * (0.173)
% non-EU 0.015 (0.016) 0.020 (0.015) -0.018 (0.016)
% Univ. Stud. 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
PC Hospital Beds 0.418 (2.094) -1.001 (2.056) -0.517 (1.771)
Dist. Airport -0.159 ***  (0.028) -0.091 ***  (0.026) -0.087 * (0.039)
Regional Fixed Effects

Lombardia 0.784 ***  (0.081)

Emilia-Romagna 0.185 * (0.094)

Piemonte -0.024 (0.080)

Veneto -0.823 ***  (0.097)

theta 0.571 0.69 0.894 0.894

Observations 4041 4041 4041 4041

AlC 21045 205598 20397 20297

log-Likelihood -10509 -10281 -10183 -10129

Moran’s | Test [p-value in parenthesis]
0.276 [<0.001] 0.143 [<0.001] 0.005 [0.784]

Notes to table
*%*%* n<0.01, ** p<0.05, * p<0.1

7  Thetestis performed using queen-contiguity based spatial weights.

Model (4)
Estimate (SE)
-6.254 ***  (1.807)
0.089 ***  (0.014)
0.180 (0.422)
0.065 ***  (0.006)
-0.040 *** (0.010)
-0.016 (0.028)
-0.008 (0.005)
-0.011 (0.007)
-0.270 (0.170)
-0.013 (0.015)
0.000 (0.000)
-0.746 (1.769)
-0.068 (0.035)
0.598 ***  (0.139)
-0.013 (0.147)
-0.034 (0.136)
-0.894 ***  (0.149)
0.001 [0.596]
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The four specifications provide consistent
results in terms of the direction and
significance of PM, . coefficients. The overall
effect of PM, ; on COVID-19-related excess
mortality is positive and statistically significant

in all models. The estimated incidence rate
ratios, reported in Table 4 with their confidence
interval, for Model 1, 2,3 and 4 are 13.7%,
8.9%, 9.3%, and 9.3%, respectively.

Table 4: marginal effects of an increase in PM2.5 concentration on excess deaths in Northern Italy during COVID-19 outbreak

Estimate

Model (1): No territorial effect 1.137
Model (2): Regional FE 1.089
Model (3): LLS RE 1.093
Model (4): Regional FE and LLS RE 1.093

In model 2, the regional fixed effects
coefficients are statistically significant.

They indicate that other things being equal,
the number of deaths in municipalities in
Lombardy and Emilia Romagna has been
systematically higher compared to base
category® and in municipalities in Veneto it has
been systematically lower. The significance of
the coefficient for Emilia Romagna, however,
drops after including the random effects in the
model. Since the first three models are nested
into model 4 it is also possible to compare

the models in terms of AIC. Model 4 performs
substantially better than the other three. In
general, the inclusion of RE in models 3 and 4
leads to a decrease in the value of the AIC. In
models 1 and 2 the residuals appear spatially
autocorrelated, as the null hypothesis of no
spatial autocorrelation is rejected in both

2,50% 97,50%
1.119 1.154
1.069 1.109
1.064 1.122
1.063 1.123

cases (p<0.001). The introduction of the LLS
random effects appears to solve the issue of
autocorrelation.

Based on the estimates of model 4, we
compute the expected value of excess deaths
conditional on covariates (taken at the

average level) in the average city for varying
levels of PM, ¢ and show how the expected
number of deaths by region varies at different
concentration levels in figure 4. Notably, Emilia-
Romagna and Liguria are the regions in which a
a reduction of average fine PM from the highest
level to the lowest would have benefited the
most.

8 Theremaining regions in the base category are Liguria, Valle d’Aosta, Trentino Alto Adige e Friuli-Venezia Giulia. We performed the

analysis also including dummy variables for the remaining regions and the results do not change (the related coefficients are jointly

insignificant). Results are available upon request.
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Figure 4: Expected excess deaths in the average municipality against the observed value of PM2.5, by region
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Robustness checks

For robustness check of the PM, . metric used
in our study, we explored the influence that
other alternate PM, . metrics may have on

the direction and magnitude of the observed
associations. Figure 5 depicts the point
estimates and the 95% confidence interval for
the Incidence Rate Ratios (IRR)®. We find that
while data from satellite elaborations (MODIS™0
and DIMAQ?1), and monitoring stations’
interpolation EEA12 PM, . models result in
IRRs trending in the same direction, the point
estimates for IRRs are lower than our primary
analysis which was based on a combination of

18 20 22

24 26

ground monitoring and kriging. The lower IRR
point estimates are unsurprising because the
underlying data for the alternate PM, , metrics
do not have the same temporal coverage as
the ground-level monitoring data (2015-2019).
This lack of temporal coverage contributes to
non-differential exposure misclassification,
which, in turn, would lead to suppressing effect
estimates towards the null. Despite this, it is
encouraging to find that regardless of the PM, -
metric used, the direction of the observed
associations remains, and so does statistical
significance.

9 IRRs indicate the % change in Covid-related mortality for each one-unit increase in PM2.5 concentration.

10 Data elaborated from the "The Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR,
1998-2016" (van Donkelaar et al., 2018), for the annual 2016 concentration of PM 2.5 in ug/m3 with dust and sea-salt removed.

11 2016 Annual average concentration in ug/ms3 of Pm 2.5 processed from the Data Integration Model for Air Quality (DIMAQ)

(Shaddick et al., 2018) from the WHO website.

12 Monitoring Air quality data for PM2.5 annual average concentration for 2016 and 2017, interpolated in a ‘regression-interpolation-

merging mapping’ (EEA, 2020).
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Figure 5 - Robustness check: estimated IRR (PM variable only) for models (1)-(4) using spatially interpolated data and four alter-

native satellite measures of particulate concentration.

Estimated IRR using interpolated and satellite data: 95% C.l.s
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As previously anticipated, we re-estimate
model (4) using different specifications of the
Kriging interpolator. In particular, we first relax
the mean-stationarity assumption of Ordinary
Kriging by modelling the mean function of the
process through both a linear and a quadratic
trend in latitude and longitude. Next, we
replace the simple Exponential function with

a Spherical model and a more flexible Matérn
kernel with the characteristic parameter set at
3/2 (to preserve mean-square differentiability).
All these specifications still assume covariance
stationarity. Figure 6 and Table 5 in the
Appendix report the estimated Incidence

Rate Ratios (IRR) regression coefficients for

the PM variable in model (4) under these
multiple setups: both point estimates and 95%
confidence intervals indicate that there are no
substantive differences between using different
trend or covariance models, indicating that our
result is robust to alternative specification of
the interpolation method.
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Figure 6 - Robustness Check: estimated IRR (PM variable only) for PM in Model 4 using three different covariance functions and

three alternative trend models.

Estimated IRR using interpolated and satellite data: 95% C.l.s (Model 4)
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Discussion

In each of the four specifications presented,
the coefficient related to PM, . is always of

the hypothesized direction and statistically
different from zero. Precisely and consistently
with previous results for the original SARS-
Coronavirus during the 2003 outbreak (Cui et
al., 2003), an increase in air pollution exposure
is associated with increased mortality for
COVID-19. The first panel in Figure 4, as well as
Table 4, suggests that, when using interpolated
data from ISPRA monitoring stations, the
increase in mortality rate due to a one-unit
increase in PM, 5 concentration varies between
14% (model 1 - highest rate) and nearly 9%
(model 4 - lowest rate). The 95% confidence
interval for the point estimate in model 4 lies
between roughly 6% and 12%. Our findings

fall in line with both Wu et al. (2020) and Cole
et al. (2020) papers. Specifically, both papers
find a positive ecological relationship between
PM, . and COVID-19 mortality. In relation to a
1pg/ms increase in PM, ., Wu et al. find 8%
change in COVID-19 mortality, Cole et al. find
the same increase associated to additional 3
COVID-19 deaths (almost 17% if compared to
their sample mean), and our paper finds 9%
increase in COVID-19 related excess mortality.
Despite this similarity in results, the two key
differences between our study and the others
relate to the exposure assessment method and
the outcome assessment method. In our study
we use a spatial interpolation method (kriging)
from ground-level monitoring data, whereas
these other two studies utilize PM, 5 gridded
surfaces such as chemical transport modelling

in the case of Cole et al. and a hybrid approach
using chemical transport, aerosol optical depth
and land use regression modelling in the case
of Wu et al. With respect to COVID-19 mortality
data, Wu et al. use county-level data from the
Johns Hopkins University, Center for Systems
Science and Engineering Coronavirus Resource
Center, which is comprised of COVID-19 deaths
tabulated by the US Centers for Disease Control
and Prevention and State health departments.
In Cole et al., researchers obtained COVID-19
deaths by residential address and aggregated
these to the municipality level. The obvious
difference between their study and ours is that
we used a surrogate excess mortality measure
due to the issues of reliability for COVID-19
death data, as we have already discussed. The
other relevant difference between our study
and the Wu et al. and Cole et al. studies is

that we subsample the total cohort of Italian
municipalities to only regions with a very high
mortality rate, which are also the regions most
affected by the air quality problems. On the
other hand, when satellite data are used, our
estimate yields lower incidence ratios. Although
ground-level concentration metrics come

with fewer measurement errors, satellite data
proves nevertheless useful in corroborating
both the direction and the significance of

the effect of interest. This redundancy is
particularly relevant in light of the relatively
few stations capable of detecting the finest
particulate.

With reference to model (4) and the remaining
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covariates, we observe no effect related to
population density or income or the extent of
industrial areas in the municipality. Likewise,
there is no evidence suggesting significant
links between the share of non-EU residents,
the female to male ratio (which disappears
after we incorporate the random effects), and
the level of education (proxy by the percentage
of university students) on the dependent
variable of interest. On the other hand, our
results suggest a negative association between
temperatures and mortality due to COVID-19.
Finally, as expected, we find that municipalities
with higher shares of the population aged 65
or more have been most affected. The distance
from the closest airport, a measure of relational
connectedness that also proxy for the exposure
to the contagion process, deserves a last
comment. We find that municipalities closer

to an airport experience a higher number of
deaths in excess. We speculate that the result
could be related to a higher likelihood for these
municipalities to become clusters of contagion
in the initial phase of the pandemic, but a
causal link cannot be inferred based on our
result ad the topic needs more research to be
addressed adequately.

We conclude our analysis by checking

the consistency of our results to different
choices of the dependent variable. Existing
evidence (Dominici et al., 2003; Pascal et al.,
2014; Samet et al., 2000; Yin et al., 2017)
associates fine PM to severe cardiovascular
and respiratory diseases and mortality. In
European cities, in particular, an estimated
increase in the number of daily deaths of 0.7%
is associated with an increase of 10 pg/ms3 of
PM,, (Katsouyanni et al., 2001). This evidence
suggests that long term PM exposure may have
had an overall effect on deaths even before

the outbreak in the sample municipalities,
making it more difficult to isolate the real effect
on COVID-19 deaths. We thus run model (4)
using the total number of deaths in the same
observation period of 2019 as the dependent
variable to understand whether the effect of
fine PM, ; on mortality has been more severe
during the pandemic. We find no evidence of
an effect of PM, . on total deaths for 2019 in
the sampled municipalities, suggesting that
the effect of PM exposure on the mortality rate
is closely connected to the novel coronavirus
outbreak (see Table 6 in the Appendix).
However, since the dependent variable in

this “placebo” regression cannot be directly
compared to the excess mortality, we repeat
the test using total mortality for the year 2020.
Although the latter includes both COVID-19
related and unrelated deaths, these two
variables represent data generating processes
of the same nature. As expected, both the
regression coefficients and IRRs calculated
regressing total deaths in 2020 suggest a
positive and statistically significant effect of
exposure to fine particulate on mortality, even
though its magnitude is greatly reduced if
compared to the estimates in Tables 3 and

4 (see Table 7 in the Appendix). Presumably,
the effect of PM, ; concentration on COVID-19
related mortality becomes muted by the

noise introduced when accounting for other
causes of death. This would also explain the
non-significant PM, ; coefficient in the first
“placebo” regression.
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Conclusion

Italy is among the countries most severely
affected by the new coronavirus, with more
than 230 thousand confirmed cases and more
than 30 thousand deaths as of the end of
May. Yet, the spatial distribution of confirmed
cases and deaths suggest that the effects

of the viral infection spreading largely vary
across the regions of the country but also
within regions. In this work, we examined the
role of ambient PM, . in explaining the spatial
variation in deaths that occurred throughout
the most extreme time period of the epidemic.
The results in the paper, that suggest a positive
relationship between PM, ; concentration

and COVID-19 related excess mortality, are
robust to different specifications PM, . and
estimation strategies, even after controlling for
additional confounder factors. Coherently with
previous findings in the literature, we highlight
a strong positive correlation between viral
respiratory infection incidence and ambient
PM, ¢ concentrations and the increase in
susceptibility to COVID-19 mortality caused by
long term exposure to PM, ., consistent with
evidence for the original SARS-Coronavirus
during the 2003 outbreak. In fact, fine PM is
already known to affect cardiovascular and
respiratory morbidity and mortality.

However, we are aware that the phenomenon
and the cause and effect relationships are very
complex and that our work can only address
part of the problem. The cross-sectional nature
of the dataset and the use of geographically
aggregated information in the epidemiological

model does not allow concluding a causal
effect exists. In our opinion, the robust
evidence in the paper shows that the
relationship between PM, ; and COVID-19
related excess deaths goes far beyond a simple
geographical correlation, and further research
is needed to explore the causal effect more

in depth, when reliable time series data are
available.

In fact, our paper does not deal with the
spread of contagion and the dynamics

linked to it, also because, as we underlined,
such analysis would require time-series

data, a different econometric methodology,
and the identification of the exogenous
Coronavirus insurgence in Northern Italy. To
the latter purpose, the spread of the pandemic
incorporates two different dynamics: i) on the
one hand, the dynamics of the spread of the
contagion requires further information to be
investigated such as its genesis, the type of
virus, and setting of the first outbreak; ii) the
effects of the lockdown changed (or partially
blocked) the contagion in an asymmetric way.
In addition to this, of course, there are other
elements that should be investigated, such as
additional variables about health data, mobility,
and so forth.

Our results reinforce the need to adopt
environmental policies that would not only
reduce the impact of pollution on the health
of citizens and workers but would contribute
to smooth the negative effects of a (future)
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pandemics, avoiding collapses of health
systems. Indeed, recent studies show that

in addition to chronic lung inflammation,
environmental air pollutant concentrations

can exacerbate the effects of increasingly
frequent one-shot systemic shocks, which in
turn are also caused by environmental factors.
In this regard, sustainable and decarbonization
policies such as the Green New Deal, conceived
as long-term policies, should be accelerated.
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Appendix 1

Table 5: estimated regression coefficient (PM variable only) for Model 4 using nine Kriging specifications: three different covari-

ance functions (Exponential, Matérn and Spherical) time three alternative trend models (constant trend, linear trend and quadratic
trend). The table also includes the estimated regression parameters for Model (4) using Satellite and EEA data.

Method
Kriging

Satellite

EEA 2016-2017

Covariance

Exponential

Matern

Spherical

MODIS 2016
DIMAQ 2016
DIMAQ 2014-2016

Trend

No Trend
Linear
Quadratic
No Trend
Linear
Quadratic
No Trend
Linear

Quadratic

0.026

Estimate
0.089
0.091
0.09
0.082
0.085
0.085
0.083
0.084
0.084
0.02
0.02
0.02
0.01

Std. Err.
0.014
0.014
0.014
0.014
0.013
0.013
0.014
0.014
0.014
0.01
0.01
0.013
0.003

p-value
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
<0.001
0.013
0.068
0.148
20326

AIC

20296
20295
20295
20300
20296
20295
20300
20298
20298
20329
20331
20333
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Appendix 2

Table 6 - Estimation results for the placebo regression, dependent variable: total number of deaths during the period Jan1-April

30 2019, municipalities in Northern Italy

Intercept
PM2.5
Female/Male
% Over 65
Temperature
Pop. Density
Ind. Land

% Samll Ent.
PC Income

% non-EU

% Univ. Stud.
PC Hospital Beds
Dist. Airport

Lombardia
Emila-Romagna
Piemonte
Veneto

theta
Observations
AlC

Model (1)
Estimate (SE)
-5.072 ***  (0.806)
0.044 ***  (0.003)
-0.034 (0.202)
0.062 ***  (0.003)
-0.018 ***  (0.003)
-0.010 (0.013)
-0.004 (0.003)
-0.003 (0.003)
-0.215 ** (0.073)
0.006 (0.007)
0.000 (0.000)
0.723 (0.904)
-0.040 **  (0.012)
3,29 3,92
4041 4041
28517 28119

**% p<0.01, ** p<0.05, * p<0.1

Model (2) Model (3)
Estimate (SE) Estimate (SE)
-5.209 ***  (0.760) -5.5630 ***  (0.812)
0.034 ***  (0.004) 0.033 ***  (0.005)
0.304 (0.193) 0.669 ***  (0.193)
0.061 ***  (0.003) 0.057 ***  (0.003)
-0.013 ***  (0.003) -0.014 ** (0.004)
-0.048 *** (0.012) -0.001 (0.012)
-0.004 (0.002) -0.004 (0.002)
-0.006 (0.003) -0.002 (0.003)
-0.201 ** (0.069) -0.217 ** (0.076)
0.009 (0.007) -0.002 (0.007)
0.000 (0.000) 0.000 (0.000)
0.231 (0.863) 0.364 (0.827)
-0.014 (0.0112) -0.018 (0.016)

Regional Fixed Effects

0.317 ***  (0.036)

0.118 ** (0.04)

-0.026 (0.035)

-0.283 *** (0.041)

4,87 4,89

4041 4041

27971 27869

Model (4)
Estimate (SE)
-5.809 ***  (0.790)
0.031 ***  (0.006)
0.642 ***  (0.191)
0.057 ***  (0.003)
-0.010 * (0.004)
-0.008 (0.012)
-0.004 (0.002)
-0.003 (0.003)
-0.177 * (0.074)
0.000 (0.007)
0.000 (0.000)
0.223 (0.825)
-0.007 (0.014)
0.289 ***  (0.055)
0.072 (0.057)
-0.023 (0.053)
-0.274 ***  (0.057)
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Appendix 3

Table 7 - Estimation results for the placebo regression, dependent variable: total number of deaths during the period Jan1-April

30 2020, municipalities in Northern Italy

Intercept
PM2.5
Female/Male
% Over 65
Temperature
Pop. Density
Ind. Land

% Samll Ent.
PC Income

% non-EU

% Univ. Stud.
PC Hospital Beds
Dist. Airport

Lombardia
Emila-Romagna
Piemonte
Veneto

theta
Observations
AlC

Model (1)
Estimate (SE)
-3.876 ***  (0.280)
-0.001 (0.001)
.38 == | (QUOT )
0.056 ***  (0.001)
0.002 (0.001)
-0.014 ***  (0.003)
-0.002 * (0.001)
0.001 (0.001)
-0.238 ***  (0.025)
0.000 (0.002)
0.000 (0.000)
0.433 (0.365)
0.016 ***  (0.004)
3.29 3.92
4041 4041
27432 27327

*%% p<0.01, ** p<0.05, * p<0.1

Model (2)
Estimate (SE)
-3.748 ***  (0.277)
0.000 (0.001)
0.325 ***  (0.076)
0.054 ***  (0.001)
0.001 (0.001)
-0.012 ***  (0.003)
-0.002 ** (0.001)
0.000 (0.001)
-0.247 ***  (0.026)
0.002 (0.002)
0.000 (0.000)
0.349 (0.362)
0.017 ***  (0.004)
0.013 (0.013)
0.047 ***  (0.013)
0.076 ***  (0.013)
-0.035 * (0.014)
4.87 4.89
4041 4041
27269 27238

Model (3)
Estimate (SE)
-3.641 *** (0.295)
0.000 (0.002)
0.357 ***  (0.079)
0.053 ***  (0.001)
0.001 (0.001)
-0.006 (0.003)
-0.002 ** (0.001)
0.001 (0.001)
-0.260 ***  (0.028)
0.002 (0.003)
0.000 (0.000)
0.469 (0.354)
0.017 ** (0.005)

Model (4)
Estimate (SE)
-3.667 ***  (0.292)
0.002 (0.002)
0.354 ***  (0.079)
0.053 ***  (0.001)
0.000 (0.001)
-0.006 (0.003)
-0.002 **  (0.001)
0.000 (0.001)
-0.258 ***  (0.028)
0.002 (0.003)
0.000 (0.000)
0.439 (0.85'3
0.017 ***  (0.005)
0.002 (0.019)
0.028 (0.019)
0.071 ***  (0.018)
-0.039 * (0.02)
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Appendix 4

Data comparison from different
official sources

Table 8 reports the excess deaths data as
reported by the Italian Bureau of Statistics
(ISTAT) along with the official covid19 statistics
as indicated by Protezione Civile Italiana (PC).
ED-I stands for Excess deaths reported by
ISTAT, calculated as the sum of deaths (from

all causes) between January 1 and March 31
(column 1) or April 30. 2020 (column 3) with
respect to the average value in 2015-2019
(same months). The difference between column
1 and column 2 involves the sampling base.

In fact, as long as ISTAT was upgrading the
deaths data, it was both enlarging the sample
of municipalities and correcting the past
figures; see column 4 to 6: TD-I (a) stands for
Total deaths reported by ISTAT as the sum of
total deaths from January 1 to March 31, 2020
in the initial sample (column 4),TD-I (b) for the
updated sample (column 5) and TD-I (c) for the
latter release. It turned out that the number of
ISTAT excess deaths increased by 97% with this
revision (compare column 1 and column 2). It
further increased by 52% on April 30 (compare
column 2 and column 3) due to corrections,
enlargement and new cases.

D-PC stands for number of deaths with or from
Covid-19 reported by the national department
Protezione Civile Italiana (Italian Civil Protection,
which is a department of the Presidency of

the Italian Council of Ministers) over January
1-March 31, 2020 (column 7) and January
1-April 30, 2020 in column 8. The official D-PC
data are available only at the regional level

and they are officially released by the health
departments of the Regional administrations. In

the period March 31 and April 30, PC registered
a 119% increase in Covid-19 deaths

ISTAT and PC department therefore collect data
independently. The key difference between
ED-I and D-PC lies in how PC recognizes
fatalities as Covid-19 related: only patients
known to have tested positive to SARS-COV-2
got registered under this nomenclature. On

the other hand, ED-l is just a mathematical
construct that takes into account all deaths

in a given municipality, regardless the cause.
Due to difficulties in providing timely screenings
and accurate testing during the peak of the
pandemics, it is likely that official figures from
PC might have been underestimated between
early January and mid-April. This is particularly
true for the most affected areas. Consequently,
the discrepancies between ED-l and D-PC can
be either moderate or strong, as we observe
for Lombardy (where ED-I is roughly 69% higher
than D-PC) and Trentino Alto-Adige. Last, the
unlikely event of ED-I lying below D-PC is due
the fact that ISTAT initially collected figures for
only a subsample of municipalities (i.e. those
recording a percentage of excess deaths in
2020 greater than 20%) leaving out quite

a lot of statistical units (for example, Friuli-
Venezia Giulia, which had initially the biggest
discrepancy (ratio 0,39) reported data for a
very small number of municipalities to ISTAT).
However, with some delay, ISTAT has been
upgrading the sample, such that in June it
covered about all municipalities.

In our paper, we use the updated data ED-I

1J-30A (column 3), disaggregated at the
municipality level. Column (9) shows that the
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ratio of total ED-l and D-PC is about 1.09,
with mean ratio equal to 0.74 and standard
deviation equal to 0.4. Underestimation of
cases in the initial sampling base concerned
all Northern Italian regions except Emilia
Romagna, Lombardy and Veneto (the biggest
regions in terms of population and Covid-19
cases).

The ratio of total ED-I (b) and D-PC (b) in
column (10) is about 2.1, with a mean ratio
equal to 1.89 and standard deviation 0.6.
One month later, the total ratio decreases to

Table 8: Regional comparison of death data from different sources

(1) (2) (3) 4)
Regions ED-1(a) ED-I(b) ED-I(c) TD-I(a)
1J-31M 1J)-31M 1J-30A 1J-31M
Emilia- 1874 325155 4525 8433
Romagna
Friuli-Venezia 44 55 255 858
Giulia
Liguria 65 837.75 1454 3982
Lombardy 8539 15771.75 23329 26749
Piemonte 816 2216.75 3547 5566
Trentino-Alto 132 416.25 1048 551
Adige
Valle d'Aosta 25 117 128 184
Veneto 529 1002 1723 4884
total 12024 23668 36009 50702
municipalities  n.a. 6866 7270 n.a.

(5)

TD-1 (b)
1J-31M

16879

1596

6187
40969
12637
1737

541
12645
93191
6866

1.5 - column (11) - with mean ratio 1.24 and
standard deviation 0.27. In the latter case, a
slight underestimation of the registered cases
concerns only FVG and Valle d’Aosta.

In any case, since Lombardy has the biggest
discrepancy on April 30 (ratio 1,69) we also ru

n

our regressions excluding Lombardy (i.e. taking

all Lombardy municipalities off) and the results
are robust, reporting a significant higher-than-1
relative risk ratio for the exposure variable. The

latter results are available upon request.

(6) (7) (8) (9) (10) (11)
TD-1(c) D-PC D-PC @@ @y@  38y(8)
1J-30A 31M 30A

22142 1644 3551 114 1.98 1.27
5332 113 289 0.39 0.49 0.88
9193 428 1167 0.5 1.96 1.25
58882 7199 13772  1.19 2.19 1.69
21931 854 3066  0.96 2.60 1.16
4286 240 693 0.55 1.73 1.51
622 56 137 0.45 2.09 0.93
18248 477 1459 111 2.10 1.18
140636 11011 24134  1.09 2.15 1.49
7270 - - - - -

Note: ED-l (a) = excess deaths reported by ISTAT January 1-March 31 2020 with initial sample. ED-I (b) = excess deaths by ISTAT

January 1-March 31 with enlarged sample. ED-I (c) = excess deaths by ISTAT, latest release. TD-I (a) = total deaths by ISTAT Janu-

ary 1-March 31 with initial sample. D-PC = number of deaths with or from Covid-19 registered by Protezione Civile Italiana (PC).

Total municipalities in Northern Italy: 7904.
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