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Abstract

This paper studies the firm’s short-run strategic response to unexpected shocks in envi-

ronmental regulation. Our theoretical model suggests that firms strategically reduce their

environmental compliance effort when regulatory stringency declines in the short run. We

focus on coal-fired power plants in the United States, and use the EPA’s furlough during

the 2018 – 19 federal government shutdown as a natural experiment to test our theory. We

use two high frequency data sets to measure the pollution: EPA AMPD data set provides

daily SO2 and NOx emissions, and NASA satellite based aerosol optical depth (AOD) data

indicates the daily PM concentration with fine resolution. Our empirical results imply that

during the government shutdown, EPA’s furlough causes a negative shock on regulation

stringency, and coal-fired power plants significantly increase their PM emissions. On aver-

age, the local AOD surrounding the coal-fired power plants is raised by 15.43% during the

EPA’s furlough by temporally turning off PM pollution control devices. There is no signifi-

cant change in SO2 and NOx, because these two pollutants are under continuous monitoring,

so EPA’s furlough has small effect on the stringency of SO2 and NOx regulation.

Key words: government shutdown, air pollution, coal-fired power plant, aerosol optical

depth
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1 Introduction

Firms coordinate their technological capability and managerial strategies in response to regu-

latory schemes, especially the regulations tasked with environmental protection. For example,

firms adjust their emission, employment, capital stock and other characteristics responding to

EPA’s county non-attainment designation (Greenstone, 2002; Curtis, 2018; Gibson, 2019). Most

of the studies explain these effects in the long-run through three channels primarily: (i) Firms

change their emission and abatement strategies given the technology. Gibson (2019) finds firms

may substitute emissions from a plant in non-attainment county to another plant in attain-

ment county. (ii) Firms uses new abatement technologies. Zhou et al. (2020) shows firms may

upgrade their abatement technologies to reduce emissions after the implement of EPA’s 33/50

program. (iii) Firms manage their environmental initiatives and investment to pursue a lenient

regulatory burden. Decker (2002) and Li and Khanna (2018) show that regulator tends to

allocate its inspection resources according to firm’s environmental managerial strategies.

Firms also make quick responses in the event of an unanticipated temporary modification in

carrying out the enforcement actions. This unanticipated interruption typically occurs within

a short time span, resulting from exogenous reasons and leading to changes in the stringency

of the regulations. For instance, to address the emergency circumstances of hurricane, the

U.S. Environmental Protection Agency (EPA) waived requirements for certain programs and

issued no action assurances for facilities in impacted regions, with these waivers and no action

assurances expired after a short period.1 Besides of natural disasters, lapses in appropriation is

another typical scenario where the regulations can be interrupted. The lapses in appropriation is

often caused by government shutdown, when most enforcement activities are no longer required

and most of the employees will also be furloughed. As a consequence of these temporary policy

modifications, the environmental regulation becomes lenient, offering opportunities for polluting

firms not complying with the policy without being penalized.

This paper focuses on unanticipated and temporary changes in environmental regulations,

and we test whether and to what extent as well as by what means firms respond to such

changes within a short period of time. When facing such an unexpected and brief change in

regulatory enforcement, firms can not easily and quickly adjust their abatement technology and

1EPA archived the response to Hurricane Michael, Florence, Harvey, Irma, and Maria at here:
https://www.epa.gov/hurricane-response
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environmental investment because the period is too brief for a firm to alter them. It means

that, in contrast to the long run effects as we discussed above, any effects in the short-run stem

from the changes in firm’s emissions and abatement strategies.Moreover, Zou (2018) shows that

firms are able to strategically change their emission and abatement behaviors on a daily basis.

Then the remaining question becomes whether the firms take strategic changes immediately in

emissions and abatement behaviors in response to the regulation shocks. Our study aims to

answer that question by revealing the short-run effect of regulation shocks on firms’ emissions

and abatement behaviors.

We focus on the 2018–19 federal government shutdown, and ask an empirical question of

whether and to what extent this shutdown causes coal-fired power plant to emit more pollu-

tants. The 2018-19 federal government shutdown lasted from midnight on December 22, 2018

through January 25, 2019, in total 35 days, making it the longest federal government shut-

down in the history. Among many other impacts, the impact on environmental regulation is

thought to be significant because federal EPA employees do not carry out any duties such as

pollution inspection and monitoring during federal government shutdown.2 According to the

EPA contingency plan for shutdown both before (September 25, 2018) and during (December

31, 2018) the 2018 – 2019 shutdown, the shutdown activities were accomplished within only 4

hours, leaving the total number of agency employees from more than 14,000 to less than 1,000.3

Out of the retained employees during the shutdown, no one were necessary to perform activities

necessarily implied by law. This EPA’s furlough provides us an exogenously short-run shock in

environmental regulation, allowing us to use this most recent U.S. federal government shutdown

as a natural experiment to study firms’ short-run strategic behavior.

We implement an empirical strategy suggested by the theory proposed by Maxwell and

Decker (2006), in which a representative firm choosing its environmental effort in pollution

abatement to minimize the overall cost of emissions including expected violation penalties and

the cost of the environmental effort it devoted. The model indicates that a negative shock in

regulation stringency increases the probability of being inspected by the regulator, so that the

firm will invest more environmental effort to reduce the probability of triggering the pollution

violation, and at the same time to reduce its emission level.

2https://www.epa.gov/sites/production/files/2018-12/documents/agency shutdown faqs 12282018.pdf
3EPA Contingency Plan for Government Shutdown: https://www.epa.gov/lapse/us-epa-contingency-plans-

event-government-shutdown

3

https://www.epa.gov/sites/production/files/2018-12/documents/agency_shutdown_faqs_12282018.pdf
https://www.epa.gov/lapse/us-epa-contingency-plans-event-government-shutdown
https://www.epa.gov/lapse/us-epa-contingency-plans-event-government-shutdown


We implement a difference-in-difference framework to bound the causal role of the 2018–2019

United States federal government shutdown effect on coal-fired power plants’ emissions. The

treated group is coal-fired power plants’ emissions in 2018-19, the year when the government

shutdown took place. Because the government shutdown is a universal effect to all coal-fired

power plants in United States, there is no clearly defined control group available for estimating

the counterfactual. We use the average emissions of the same coal-fired power plant at same

dates during the previous 5 years, which are 2013-14, 2014-15, 2015-16, 2016-17, and 2017-18,

as the counterfactual of its own 2018-19 emissions. Our empirical results provide evidence that

during the government shutdown, coal-fired power plants temporally turned off their pollution

control device for particulate matters abatement and significantly increased their PM emissions,

which is consistent to our theory. However, we do not find any significant changes in coal-fired

power plants’ SO2 and NOx emissions. It is because both SO2 and NOx emissions of coal-fired

power plants are monitored continuously, so that the absence of EPA inspections have negligible

effect on the level of regulation stringency. Therefore, coal-fired power plants do not change

their emissions and abatement behaviors regarding to SO2 and NOx.

The time span poses a particularly challenging problem for the study because high fre-

quency data are often very scarce. To overcome this empirical difficulty, we use several high

frequency data sets including EPA’s Air Markets Program Data (AMPD), satellite based NASA

MODIS Aerosol Data (AOD), Parameter-elevation Regressions on Independent Slopes Model

Data (PRISM), and National Centers for Environmental Prediction -U.S. Department of Energy

Reanalysis II Data (NCEPRII). Our empirical analysis focuses on the most polluting industry

in U.S., the coal fired electricity industry, and AMPD data provides power plants’ daily emis-

sion of sulfur dioxide (SO2), nitrogen oxides (NOx), carbon dioxide (CO2), daily heat input and

daily electricity and steam production. The satellite based AOD data provides daily particulate

matters concentration of the surrounding area of power plants. PRISM data and NCEPRII

data provide daily weather information. We describe the details of these data sets in the data

part of section 3.

The paper proceeds as follows. In section 2, we present the theoretical model showing the

regulation shocks affecting firm’s environmental effort in pollution abatement as well as emission

levels. In section 3 we present our empirical model identifications and data details. In section
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4 we reports the baseline empirical results. In section 5 we check the robustness of baseline

results using placebo tests. We conclude our paper in the last section.

2 Theoretical Framework

We build a simple model with similar setting as Maxwell and Decker (2006) to understand firm’s

emission level and abatement approach in response to the regulation. In the model, we assume a

representative firm making decision in choosing their environmental effort, measured by amount

of investment in pollution abatement technology and management. The environmental effort

tends to lower both the probability of triggering a environmental violation and emission level.

We assume that in the short-run (i) the firm takes the probability of receiving regulator’s

inspections and the violation penalties as given; and (ii) the firm is not able to change its

characteristics such as abatement technologies. The firm’s objective is to minimize the expected

cost due to emissions, which is the summation of expected penalties of being inspected with

violation and the cost of environmental efforts invested in the pollution abatement management.

Consider the model within a short-run time span t ∈ [1, T ]. A firm chooses its environmental

effort xt at time t, implying that the probability of environmental compliance is p(xt) ∈ [0, 1].

p(xt) is increasing along with xt at a decreasing rate (an increasing and concave function of

xt). 1 − p(xt) is the probability of violation. The cost of environmental effort is g(θt, xt). θt

is the firm’s characteristics at time t, and g(θt, xt) is an increasing and convex function of xt.

Let mt ∈ [0, 1] be the probability that firm will receive inspection from the regulator at time

t, and ft be the penalty if violations are found during each inspection. We define a shock of

environmental regulation as an exogenous changes in mt. At each time t, the firm’s objective

function is to minimize the expected total cost of environmental regulation:

min
x

E(Ct) = (1− p(xt))mtft + g(θt, xt). (1)

Recall that we assume regulator is not able to strategically change inspection choices and

violation penalties in response to firm’s environmental performance in the short-run period,

and firm can not strategically change their characteristics. We assume that mt, ft and θt are

exogenous and taken by firm as given. Firm will choose the optimal x∗t = x∗(mt, ft, θt) to
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minimize the expected cost of emissions, due to the first order condition:

mtft
∂p(x∗t )

∂x∗t
=
∂g(θt, x

∗
t )

∂x∗t
. (2)

The optimal compliance effort x∗(mt, ft, θt) increases in both the likelihood of being inspected

(mt) and penalty if any (ft).

Finally, we assume that firm’s emission e(θt, xt) at time t depends on firm’s characteristics θt

and compliance effort xt. e(θt, xt) is a decreasing function of xt. In addition, ∂e(θt,x
∗(mt,ft,θt))
∂mt

<

0, implying that in short-run period, a negative shock in environmental regulation decreases

firm’s compliance effort and increases emission.

3 Empirical Model

3.1 Identification

During the government shutdown, there is a negative shock on mt, because there is no inspec-

tion from EPA federal office. Our model implies that a negative change in mt decreases the

coal-fired power plants’ compliance effort x∗t , and increases their emissions e(θt, x
∗
t ). We target

coal-fired power plants, one of the most polluted sector, to test the following hypothesis:

Hypothesis: During the days when the U.S. federal government shut down, coal-fired power

plants increase their air pollutant emissions.

The EPA’s furlough timeline was slightly different from the official shutdown period, as

the EPA used its available fund to keep the regular operations for one additional week after

the shutdown, and reopened on the Monday after the weekend when the federal government

announced the end of shutdown. This makes the EPA employee furlough start from December

29, 2018 to January 27, 2019, 30 days in total, which was the time when the coal-fired power

plants made reactions to the EPA furlough.

Since the federal government shutdown is a universal event for all the plants, we do not have

a comparable sector serving as a valid counterfactual measurement. However, we could use the

emissions from the same group of power plants, but from different points of time to serve as
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their own counterfactual measurements. The underlying assumption is that the daily trend of

emissions from power plants do not vary dramatically year by year. However, using a single past

year is likely subject to some randomly occurred while unobserved events, so we use the previous

5 years data to smooth out any abnormal event if any. To be specific, we are using emissions on

the same month-day (December 29 – January 27) from the previous 5 years (2013–14, 2014–15,

2015–16, 2016–17, 2017–18) as counterfactual measurements. For simplicity, in the following

sections, we call December 29–January 27 the furlough days; 2018–19 the shutdown year ; and

2013–14, 2014–15, 2015–16, 2016–17, 2017–18 the previous 5 years.

We compare emission outcomes before and after the furlough days, between the shutdown

year and previous 5 years in a difference-in-differences framework. The time horizon of our data

is set on a daily basis from October 22 to January 27, including 61 days prior to the EPA’s

furlough and 30 furlough days. The model reads:

Yijt = αXijt + βDijt + Planti ×Weekst + Yearj + Weekdaysjt + Datet + εijt. (3)

where i is the plant-year index, j is the year index, and t is the date index. Yit is the daily

emissions. Dijt is the shutdown dummy with Dijt = 1 if the observation is in the time period

from December 29, 2018 to January 27, 2019, and Dijt = 0 otherwise. Xijt is vector of the

time-variant covariates including daily weather factors and electricity generation.

In addition to Xijt, a series of fixed effects are included to ensure that the remaining vari-

ations in the outcome variables are solely due to the EPA’s furlough, allowing us to isolate

β as the causal impacts of furlough on the outcome variable. The plant fixed effect captures

the time invariant plant specific characteristics. Weekdays fixed effect captures the potential

difference coming from the variations in electricity demand or other social economic activities

across weekdays. Date fixed effect is the time fixed effect, capturing the average time trend on

daily basis across different years. Year fixed effect captures both the differences across years

and the intercept difference between treated group and control group. In addition, our model

includes the interaction term, Planti ×Weekst, to allow plants having their own time trend on

a weekly basis. The definition of week is based on 2018–19, from Monday to Sunday.4 There

are in total 23 weeks, but the last week only contains one day.

4The starting date of our sample, October 22, 2018, is a Monday.
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3.2 Data

We create a plant-by-day data set that includes coal-fired power plants in the continental United

States. Compiled from multiple data sources, each power plant has daily information on air

emissions, operational data, and surrounding PM concentration and weather.

The list of coal-fired power plants is extracted from the U.S. Energy Information Adminis-

tration (EIA).5 As of April 2019, 303 out of total 9,047 power plants in the lower 48 states use

coal as their primary fuel source, out of which 233 are pure coal-fired power plants, using coal

as the only fuel source.

We obtain the daily emissions and operational data from the EPA’s Air Market Program

Data (AMPD) under the program of Clear Air Markets. The AMPD provides extensive daily

data of any power plants with capacity greater than 25 megawatts. The data we collect includes

electricity generation, steam production, heat input, as well as air emissions of SO2, NOx, and

CO2. The daily emission data is recorded by a continuous emission monitoring system and

a flow monitoring system installed in each coal-fired unit, which is required by EPA federal

regulation code.6 We were able to obtain data for 204 out of the 233 coal-fired power plants

over our study period: October 22 to January 27, each year from 2013 to 2019. Finally, for the

sake of robustness check, we extended our data for another 57 days after the EPA returned to

the active enforcement.

Another primary outcome variable of interest is PM concentration surrounding each power

plant. We take advantage of NASA’s satellite based measurements of AOD, a high-frequency

and high resolution measure retrieved by the Moderate Resolution Imaging Spectroradiometer

(MODIS) on NASA’s satellites. The literature has shown that AOD is a good predictor of PM of

different sizes: PM2.5 (size < 2.5µm) and PM10 (size < 10µm) (Liu et al., 2004; Donkelaar et al.,

2016). Higher AOD indicates worse air quality, and therefore higher PM pollution. Following

Zhang et al. (2020)’s method, we define the PM concentration outcome as a weighted average

AOD in a circular area of 3 kilometers radius around each power plant.

We control for weather variables of daily precipitation, daily temperature, daily dew point,

and wind speed, because they vary with air emission and output of power plants. First, it

5https://www.eia.gov/electricity/data/browser/
6https://www.ecfr.gov/, see title 40, chapter I, subchapter C, part 75.10. Not all coal-fired power plants are

required to install the continuous emission monitoring system (title 40, chapter I, subchapter C, part 75.2).
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accounts for the correlations between weather conditions and the electricity production. Second,

weather variables affect coal condition, such as the moisture level of the coal, which further

affects the heat content and emissions (Chandralal et al., 2014). Third, the weather variables

are critical confounders between the strong association between AOD and PM (Kumar et al.,

2007; Foster et al., 2009; Zhang et al., 2020).

We collected the daily precipitation, daily temperature, and daily dew point data from

Parameter – elevation Regressions on Independent Slopes Model (PRISM), a spatial climate

database.7 PRISM has a spatial resolution at 4 km2 grid, which is comparable with the AOD

data. Similar approach is used to calculate the daily value of these variables for the 3km

circular area around each coal-fired power plant. We extract the daily wind data from National

Centers for Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) Reanalysis

II (NCEPRII).8 The data is at resolution of 2.5 degree in latitude and longitude. We assign

wind speed value to each power plants depending on which 2.5 degree square the power plant

is located.

Table 1 summarizes all of the variables in our data by year. We observe a declining trend on

average SO2, NOx and CO2 emissions. AOD is in general declining, but rise back in 2018-19.

The electricity production and heat input decreases from 2013-14 to 2015-16, and rise back

and stay stable from 2016-17 to 2018-19. The weather variables except wind speed show large

variations across years, which is consistent to the national weather pattern.9

4 Results

4.1 Evaluating identifying assumptions

Our key identifying assumption is that the emissions in the previous 5 years provide an appro-

priate counterfactual of the trend that the emission in the shutdown year would have had if

there were no government shutdown. A significant advantage of our study design is that, it is

plausible to assume emissions in the shutdown year and previous 5 years are similar in both

levels and trends over the same month-day after controlling electricity generation, given there

are 197 out of 203 plants that we observe over both the shutdown year and all/some of the

7http://prism.oregonstate.edu
8https://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
9https://www.ncdc.noaa.gov/cag/national/time-series
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previous 5 years.

Though there is no agreed-upon method to test the common trends assumption, following a

recent wisdom, we run the following regression to provide a suggestive evidence for the common

trends assumption:

Yijt = αXijt + Planti ×Weekst + Yearj + Weekdaysjt + Datet + Datet ×Groupj + εijt, (4)

where Groupj is the group fixed effect. Groupj = Treated if the observation is from the shutdown

year, and Groupj = Control otherwise. The interaction term Datet×Groupj captures the daily

difference between treated group and control group. We run equation 4 on a pre-shutdown

period (October 22 – December 28), and plot the estimations of Datet×Groupj for every single

day with 95% confidence interval. The standard error is clustered at plant level.

Figure 1, 2 and 3 plot the differences in SO2, NOx and AOD respectively between treated

group and control group on each single day during the pre-shutdown period. In order to make

equation 4 be identified, we need to set a reference level for each of the fixed effects as well as the

interaction terms Datet×Groupj . Let the reference level of interaction term be Datet0×Groupj ,

where t0 is an arbitrary date. Then Yearj + Datet0 ×Groupj becomes the intercept difference

between treated group and control group, because the group index is nested into the year

index. By defining the reference level of interaction terms with different arbitrary date t0, the

regression estimates different interception differences. The common trend is supported as long

as there exist a reference level with an arbitrary date so that after taking away the corresponding

estimated interception difference, there is no remaining difference between treated group and

control group. We use different reference levels in Figure 1, 2 and 3.

We find that for each of these three pollutants every day during the pre-shutdown period,

although the joint F tests are always significant due to the long time horizon, for every individual

day, the treated group is always not significantly different from the control group. These results

support the common trends assumption and validate the reliability of any causal relationship

we found in the following analysis.
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4.2 Main results

Table 2 reports effects of the shutdown on daily SO2, NOx and AOD. The column (1) to (3)

consider the full sample with a relative long pre-shutdown window (October 22 – December 28,

61 days), and column (4) to (6) shorten the pre-shutdown period to the similar length as the

shutdown period (December 1 – December 28, 28 days). The shorter time frame of pre-shutdown

is conducted as a sensitive analysis as relate to the validity of common trends assumption.

Because this shorter pre-shutdown window is short to permit and enhance the validity of the

common trends assumption, also long enough to serve as a pre-treatment window.

Additionally, sample sizes are smaller in the AOD regressions in column (3) and (6) because

AOD values are usually missing in winter season because of either heavy clouds, snow cover, or

high surface reflectance (Xiao et al., 2017). This would not be a concern to our analysis since

our sample spans from October 22 to January 27, overlapping with the winter season, and thus

the missing AOD value is a random and exogenous issue to the AOD measurement. For each

regression, we report standard errors both without and with clustering by plant.

Table 2 shows that our findings are indifferent when using different pre-shutdown periods.

We find weak evidence in the change of daily SO2 emission, as shown in column (1) and (4) that

the shutdown coefficient is positive significant only when the standard error is not clustered.

Besides, we do not find any significant change in daily NOx emissions, as shown in column (2)

and (4). In comparison, the results in column (3) and (6) show that the daily AOD surrounding

the plants significantly increased by about 0.018 – 0.022, which is on average 15.43% – 19.53%

above the counterfactual (as if there is no regulation shock).10

Thus, our results suggest that during the government shutdown, the coal-fired power plants

significantly increases their particulate matter emissions due to the EPA’s furlough. The results

of SO2 and NOx are not surprising, because they are continuously monitored. The insignificant

results suggest that thanks to the continuous monitoring device, the temporally absence of

EPA inspections does not affect the regulation stringency on SO2 and NOx emissions, so that

the their emission levels stay the same. In comparison, there is not such a device in power

plants to monitor PM emissions, so the regulation stringency of this unmonitored pollutant

can be affected by the inspections from the regulators. Therefore, the missing EPA inspections

10This value is calculated as the difference between the observed AOD and the average treatment effect.
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causes plants to strategically reduce their compliance effort and increase their particulate matter

emissions, so that we detect a significant raise in local AOD due to the EPA’s furlough.

In conclusion, the empirical results support the theory that when there is a shock weakening

regulation stringency, plants tend to take advantage of the less strict regulation to lower their

compliance efforts and emit more pollution.

4.3 Robustness check

Our main results identified a significant increase in particulate matter emissions due to the

EPA’s furlough. The findings may fail if there was an unconsidered incident happening around

the time of the EPA’s furlough contributed to coal-fired power plants’ emissions, considering the

following two cases: (i) an unconsidered incident occurred during the time of EPA’s furlough

and increased coal-fired power plants’ emissions; (ii) an unconsidered incident occurred prior

to the time of EPA’s furlough and reduced the coal-fired power plants’ emissions, suggestion a

violation of the common trends assumption necessary for identification.

Below, we present results using the same identification framework as in equation 3, in which

we either include a post-furlough period to detect the case (i) or artificially assign a placebo

“EPA furlough” before the true EPA furlough to detect the case (ii). This robustness analyses

rule out the two possibilities and do not lead us to alter our findings in the main analysis.

Robustness check 1: ruling out incident during the EPA’s furlough

We could run into two scenarios if there was an incident during the furlough that contributes

to the emission: First, an incident spanned from the EPA’s furlough to some point during the

post-furlough; second, this incident was nested in the time frame of the EPA’s furlough. To test

the first possibility, we extend our sample to March 25, bringing 57 days after furlough days.11

We test if there is any difference between treated and control group after the EPA returned

to the regular enforcement in relation to the pre-furlough group difference. An insignificant

difference (insignificant coefficient of the post-furlough dummy) not only rules out any incident

that spanned from the furlough to some point during the post-furlough, but also rules out any

lagged effects if any. Table 5 reports the estimation results with post-furlough dummy for both

full sample and the subsample with short time horizon. The results are insensitive to different

11March 24 for 2015 – 2016 data because of the leap year.
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samples. We do not find any significant effect on the post period of EPA’s furlough, suggesting

there is not such an incident failing our main results, and thus supporting the finding that the

increased AOD is solely driven by the EPA’s furlough. In addition, such result is consistent to

our theory that the plants restore their compliance effort and emissions immediately after the

regulation shock ends.

If our baseline results are driven by an unconsidered incident without lagged effect and

nested in the time frame of EPA’s furlough, we are not able to test it, because the same year

counterfactual is not available. However, such incident must have a national-wide effect on

all United States coal-fired power plants. Since we do not find any major incident happened

nationally related to power plants during EPA’s furlough period, we believe such case to be

highly unlikely.

Robustness check 2: ruling out incident prior to the EPA’s furlough

The possibility that there is an unconsidered incident prior to the EPA furlough can be ruled

out if the pre-shutdown period common trend assumption is valid. We show some evidence of

the pre-shutdown period common trend in the previous section. Here, we do additional placebo

test to in further make sure that there is no unconsidered incident during the pre-shutdown

period that falsify our findings.

First, we take the subset of the full sample in the pre-shutdown period, from November 22

to December 28, and assign a pre-shutdown placebo treatment from December 1 to December

28. The estimation results of the placebo treatment is reported in Table 6, column (1) to (3).

For all pollutants, the pre-shutdown placebo treatment coefficients are insignificant. We also

test the same pre-shutdown placebo treatment in the full sample. In the model, we include both

the true shutdown treatment and post-shutdown placebo treatment. The estimation results are

reported in Table 6, column (4) to (6). Again, none of pre-shutdown and post-shutdown placebo

treatment coefficients are significant. Second, we again use the pre-shutdown period data, both

from the full sample and the subsample with shorter time horizon. We assign multiple placebo

treatments during the pre-shutdown period, which are mostly defined on weekly basis. Table

7 reports the estimation results. The first three columns are based on the pre-shutdown data

of the subsample with shorter time horizon, and the last three columns are based on the pre-
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shutdown data of the full sample. We find none of these placebo treatments has significant

coefficient.

These tests suggest that there is no significant difference between the shutdown year time

trend and previous years average time trend before the shutdown, and it is unlikely to falsify

our main results due to an unconsidered incident during the pre-shutdown period.

5 Explaining Emission Effects of Shutdown

A further development of this analysis is to examine by what means coal-fired power plants

are able to increase their unmonitored emissions when the federal government shutdown. In

practice, the coal-fired power plants may reduce their compliance efforts by taking three strategic

actions. First, they tend to switch to cheaper but more polluting grades of coal in the absence

of strict enforcement, because the unit price varies greatly across different types of coal.12

Although it is implausible to assume power plants to switch to a different coal provider from

another coal mining region in such short period, but it is still possible for them to get lower

grades coal from same coal provider, because coal grades are not only different across coal

mining regions in U.S., but also varies within the same region.13 The second strategic action

power plants might take is to start running a unit with lower efficiency. The low efficiency units

are used to be unprofitable to operate because they have higher production cost. The lower risk

of federal inspections and penalties during the shutdown reduces the expected emission cost,

which is a part of total production cost. Therefore, running these low efficiency units is more

likely to generate profit. The third strategic action is to temporarily turn off pollution control

devices as a cost saving measure.14

In the following text, we disentangle and test the three strategic actions separately. The

estimation is based on the identification framework in equation 3, with different model spec-

12According to EIA website, the national average unit price per short ton is $59.43 for bituminous and $13.64
for subbituminous (https://www.eia.gov/energyexplained/coal/prices-and-outlook.php) Within coal types, unit
price varies with the heat and sulfur content of the coal.

13For example, in Western Montana low-sulfur subbituminous coal has 0.39 lbs/MBTU sulfur content and 18.56
MBTU per short ton heat content whereas mid-sulfur subbituminous coal has 0.80 lbs/MBTU sulfur content and
17.05 MBTU per short ton heat content. Switching to coal from a different region or from bituminous to
subbituminous coal can result in even greater changes in sulfur and heat contents (EIA, 2018)

14According to https://www.eia.gov/electricity/annual/html/epa 09 04.html, average operation and mainte-
nance costs of scrubber is $2.15 per megawatthour in 2017. We can do some calculation: for example, in January
2017, the net generation from 359 coal-fired power plants is 115,332 thousand megawatthour, so the associated
cost-saving for one day on average is: $2.15 * (115,330,000/359plants/30days) = $22,645.

14

https://www.eia.gov/energyexplained/coal/prices-and-outlook.php
https://www.eia.gov/electricity/annual/html/epa_09_04.html


ifications for each of the three strategic action. The results are reported in Table 3 (the full

sample) and Table 4 (the short time horizon), both with the standard errors clustered at plant

level. The results remain insensitive across different samples.

First, we test whether coal-fired power plants switched to lower grade coal, using daily

CO2 emissions as the outcome variable. CO2 emission is neither regulated nor subject to

any pollution control devices, thus, conditioning on weather and heat input ensures that the

variation in CO2 emission is solely driven by burning different grades of coal, not production

efficiency or pollution control. We do not find significant changes in daily CO2 emissions, shown

in column (2) of Tables 3 and 4. This suggest that the increased AOD as we found in the main

analysis was not led by switching grades of coal.

Then, to test whether coal-fired power plants started to operate their lower efficiency units

temporarily, we use daily electricity production as outcome variable. We include weather, heat

input, steam production, and CO2 emissions as controls. According to energy conversion, heat

input should equal to the summation of electric energy produced, steam energy produced, and

energy loss. So conditioning on heat input and steam production, the lower electricity produc-

tion means higher heat loss, therefore implies lower efficiency.15 We control the CO2 emissions

because coal type affects the heat rate (Walsh et al., 2015). Since for same heat content, differ-

ent coal types have different CO2 emissions, holding heat input and CO2 constant excludes the

coal type variation. Reported in column (1) in Tables 3 and 4, we show that conditioning on

heat input and CO2 emissions, there is no significant change in the daily electricity production

during the shutdown period, which implies that the plants do not operate at lower production

efficiency in these days. In another words, the increased AOD during the EPA’s furlough was

not due to switching to lower efficiency units.

Finally, we test whether coal-fired power plants temporarily turn off pollution control de-

vices. We use daily SO2, NOx, and AOD as outcome variables. Our control variables include

the daily heat input and CO2 emissions, which allows us to simultaneously exclude the effects of

changing production efficiency and coal type, thus identifying the changes in pollution control.

Both daily SO2 and NOx emissions do not change, suggesting there is no change in pollution

control input with respect to SO2 and NOx. These results are consistent to the baseline results,

15Since steam production efficiency is also affected by the overall production efficiency, we estimate a lower
bound for efficiency loss.
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suggesting that we find insignificant change in daily SO2 and NOx emissions in baseline results

because nothing happens through all three mechanisms that may affect daily SO2 and NOx

emissions.

However, We find a significant increasing in AOD during the shutdown with the same

magnitude as the baseline results. Because the changes in pollution control mechanism raise

AOD at same level as the AOD increasing in the main results, all the AOD changes are coming

from the pollution control mechanism. These statistical evidences show that coal-fired power

plants temporarily turn off the particulate matter pollution control devices during the EPA

furlough.

6 Conclusion

Understanding polluters’ behavior in response to any changes in regulatory scheme is essential

for designing environmental policies. A central focus of the literature has been examining the

long run impact of environmental regulation on firms’ behavior through various mechanisms.

There is yet not an emphasis on firms’ responses in the event of an unanticipated and temporary

modification in environmental regulatory stringency. Using a theoretical model, we demonstrate

that for short-run period, a negative shock in environmental regulation stringency will make

firms immediately reduce their effort in pollution abatement, and as a result, plants increase

their emissions in order to minimize total emission cost.

We exploit the 2018–19 government shutdown, and assess whether this temporary inter-

ruption in environmental regulation causes increases in coal-fired power plants emissions. We

use a difference-in-differences framework to identify the causal relationship between the EPA’s

furlough and the increases in emissions. We define our treated group as every coal-fired power

plant’s emissions in 2018-19, the year when government shutdown took place. We use the emis-

sions from the same plant on the same date from previous 5 years as the counterfactual. We use

two high frequency data set to measure these emissions: EPA AMPD data set provides coal-

fired power plants’ daily SO2 and NOx emissions, and the satellite based aerosol optical depth

(AOD) data from NASA indicates the local PM concentration from coal-fired power plants PM

emissions. Our empirical results implies that during the government shutdown, coal-fired power

plants significantly increase their PM emissions and raise the local AOD, which is consistent to

16



the theory. On average, the local AOD within 3km surrounding the coal-fired power plants is

raised by 15.43% because of EPA’s furlough during government shutdown. However, there is

no significant change in SO2 and NOx. Although it seems to be contradicted to our theory, it is

not surprising. We believe insignificance is because these two pollutants are under continuous

monitoring, so that the absence of EPA inspections has very small effect on the stringency level

of SO2 and NOx regulation. Therefore, coal-fired power plants do not change their emissions

and abatement behaviors regarding to SO2 and NOx because of EPA’s furlough.

This paper contributes to the environmental regulation literature by filling the gap of study-

ing the short-run effect of environmental regulation shocks. We provide evidence that loosing

the regulation stringency will immediately causes firms to increase their emissions at daily basis.

Our results suggest that EPA inspections play an important role in regulating firm’s emissions.

We also show that without considering the monitoring cost, the continuous monitoring system

seems to be a very effective way of pollution regulation. Another contribution of this paper is

its novel application of satellite based air quality data. There are several papers exploring the

satellite based air quality data, but it is still relatively new in the economic research. Most of

the previous studies find some relationship between AOD and environmental policies, but none

of them use AOD to actually detect the emissions from a particular pollution source. Another

paper of us, Zhang et al. (2020), use AOD data to detect the point source emissions from shale

gas industry. This paper also use AOD data and successfully measure the changes in point

source emissions from coal-fired power plants.
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Table 1: Descriptive Statistics

2013-14 2014-15 2015-16 2016-17 2017-18 2018-19 Full Sample

SO2 (tons) 24.2637 19.9044 14.1759 14.0553 14.1111 13.9624 16.9137

(39.1076) (35.8647) (22.4849) (19.4454) (20.2046) (21.2217) (28.2134)

NOx (tons) 15.9075 13.8532 11.1687 11.7995 11.2345 11.1412 12.5922

(17.2749) (15.5208) (12.5850) (13.0558) (11.8005) (11.7257) (14.0176)

AOD 0.1281 0.1235 0.1111 0.1146 0.1120 0.1197 0.1180

(0.1506) (0.1240) (0.1201) (0.1393) (0.1198) (0.1408) (0.1330)

CO2(1000 tons) 17626.1374 16198.3180 13706.0265 15541.9582 15458.6365 15662.2706 15731.7688

(15112.2997) (13796.3559) (12474.9668) (13736.2448) (13412.0796) (13605.6617) (13783.8914)

Electricity Productions (GWH) 17.0647 15.6763 13.0472 14.8966 14.8581 15.0859 15.1389

(15.6340) (14.2244) (12.7424) (14.1046) (13.8832) (13.9693) (14.1946)

Steam Prodiction (1000 lbs.) 4450.3207 3949.7323 3627.0441 3677.0374 3834.0095 3451.2717 3843.9745

(18470.1188) (17535.6550) (14191.8825) (14117.9891) (15238.5919) (14176.5329) (15796.8510)

Heat Input (1000 mmBtu) 170.0676 156.3668 132.6772 150.1145 149.5302 151.3600 151.9984

(143.6520) (131.6558) 118.6296 130.6641 (127.5920) (129.5645) (131.1914)

Precipitation (mm) 2.0016 1.8867 2.8105 1.9193 2.1358 2.8500 2.2577

(6.4248) (5.6563) (8.8509) (5.6107) (6.5245) (7.6026) (6.8678)

Temperature (Celsius) 0.8056 1.9111 4.7673 4.7824 2.4577 1.9828 2.7496

(8.6757) (8.3304) (8.0075) (8.5111) (8.4761) (7.8655) (8.4565)

Dew Point Temperature (Celsius) −5.0677 −3.9645 −1.0567 −1.3668 −3.7089 −2.5792 −3.0000

(8.5967) (8.3412) (8.4337) (8.6497) (8.7986) (8.0267) (8.6017)

Wind Speed (m/s) 5.5047 5.2665 5.5879 5.6941 5.4858 5.1938 5.4551

(2.8289) (2.7241) (2.9687) (2.9384) (2.8068) (2.8060) (2.8506)

Number of Plants1 200 202 203 200 198 197 204

Number of Observations (SO2 & NOx Regressions) 29,282 28,641 27,031 26,596 26,431 26,017 163,998

Number of Observations (AOD Regressions) 6,052 5,726 6,135 6,819 6,121 4,706 35,559

Different numbers of plants is because of the missing observations.
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Figure 1: SO2 common trend plot for pre-shutdown period, Dec. 4th is the reference date

Figure 2: NOx common trend plot for pre-shutdown period, Nov. 3rd is the reference date

Figure 3: AOD common trend plot for pre-shutdown period, Nov. 2nd is the reference date
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Table 2: Main results, with standard errors not clustered and clustered at plant level

Dependent variable:

Full Sample Short Sample

SO2 (tons) NOX (tons) AOD SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5) (6)

shutdown 0.445 0.094 0.018 0.774 0.156 0.022
(0.278) (0.104) (0.005)∗∗∗ (0.344)∗∗ (0.126) (0.006)∗∗∗

(0.550) (0.207) (0.008)∗∗ (0.533) (0.201) (0.009)∗∗

ppt −0.007 −0.005 −0.0005 −0.001 −0.001 −0.0002
(0.007) (0.003)∗ (0.0002)∗∗∗ (0.010) (0.004) (0.0002)
(0.005) (0.003) (0.0001)∗∗∗ (0.008) (0.003) (0.0002)

tmean −0.035 −0.038 −0.004 −0.065 −0.023 −0.006
(0.020)∗ (0.007)∗∗∗ (0.0003)∗∗∗ (0.027)∗∗ (0.010)∗∗ (0.0004)∗∗∗

(0.046) (0.024) (0.0004)∗∗∗ (0.040) (0.020) (0.001)∗∗∗

tdmean 0.028 0.019 0.003 0.050 0.007 0.004
(0.018) (0.007)∗∗∗ (0.0003)∗∗∗ (0.025)∗∗ (0.009) (0.0004)∗∗∗

(0.025) (0.027) (0.0003)∗∗∗ (0.027)∗ (0.020) (0.0004)∗∗∗

Wind −0.010 −0.003 −0.003 −0.030 −0.001 −0.004
(0.018) (0.007) (0.0003)∗∗∗ (0.024) (0.009) (0.0004)∗∗∗

(0.020) (0.008) (0.0003)∗∗∗ (0.021) (0.010) (0.0005)∗∗∗

k MWH 1.149 0.754 0.0003 1.118 0.759 0.0002
(0.008)∗∗∗ (0.003)∗∗∗ (0.0001)∗∗ (0.011)∗∗∗ (0.004)∗∗∗ (0.0002)
(0.186)∗∗∗ (0.049)∗∗∗ (0.0002)∗ (0.172)∗∗∗ (0.050)∗∗∗ (0.0002)

SLOAD..1000.lbs. 0.0002 0.0001 0.00000 0.0002 0.0001 −0.000
(0.00001)∗∗∗ (0.00000)∗∗∗ (0.00000) (0.00001)∗∗∗ (0.00000)∗∗∗ (0.00000)
(0.0001)∗∗∗ (0.00001)∗∗∗ (0.00000) (0.0001)∗∗ (0.00001)∗∗∗ (0.00000)

factor(Year)2014 −2.372 −0.766 −0.002 −2.927 −0.885 −0.008
(0.160)∗∗∗ (0.060)∗∗∗ (0.002) (0.215)∗∗∗ (0.079)∗∗∗ (0.003)∗∗

(0.764)∗∗∗ (0.301)∗∗ (0.003) (0.870)∗∗∗ (0.372)∗∗ (0.004)∗∗

factor(Year)2015 −5.051 −1.596 −0.016 −5.248 −1.545 −0.011
(0.166)∗∗∗ (0.062)∗∗∗ (0.003)∗∗∗ (0.222)∗∗∗ (0.081)∗∗∗ (0.004)∗∗∗

(0.895)∗∗∗ (0.364)∗∗∗ (0.003)∗∗∗ (0.985)∗∗∗ (0.379)∗∗∗ (0.004)∗∗

factor(Year)2016 −7.031 −2.299 −0.004 −7.356 −2.238 −0.011
(0.166)∗∗∗ (0.062)∗∗∗ (0.002)∗ (0.218)∗∗∗ (0.080)∗∗∗ (0.004)∗∗∗

(1.792)∗∗∗ (0.430)∗∗∗ (0.003) (1.907)∗∗∗ (0.454)∗∗∗ (0.004)∗∗∗

factor(Year)2017 −7.144∗∗∗ −2.957∗∗∗ −0.011∗∗∗ −7.291∗∗∗ −3.009∗∗∗ −0.002
(0.164)∗∗∗ (0.061)∗∗∗ (0.002)∗∗∗ (0.217)∗∗∗ (0.079)∗∗∗ (0.003)
(1.720)∗∗∗ (0.507)∗∗∗ (0.003)∗∗∗ (1.867)∗∗∗ (0.539)∗∗∗ (0.005)

factor(Year)2018 −7.133∗∗∗ −3.279∗∗∗ −0.013∗∗∗ −7.796∗∗∗ −3.334∗∗∗ −0.016∗∗∗

(0.188)∗∗∗ (0.070)∗∗∗ (0.003)∗∗∗ (0.283)∗∗∗ (0.104)∗∗∗ (0.004)∗∗∗

(1.610)∗∗∗ (0.689)∗∗∗ (0.004)∗∗∗ (2.004)∗∗∗ (0.643)∗∗∗ (0.005)∗∗∗

factor(weekday)Monday −0.046 0.052 0.002 −0.036 0.064 0.009
(0.177) (0.066) (0.003) (0.236) (0.086) (0.004)∗∗

(0.084) (0.039) (0.003) (0.107) (0.049) (0.005)∗

factor(weekday)Saturday −0.054 −0.073 0.002 −0.101 −0.074 0.003
(0.177) (0.066) (0.003) (0.236) (0.086) (0.004)
(0.094) (0.030) (0.003) (0.096) (0.035)∗∗ (0.005)

factor(weekday)Sunday −0.125 −0.041 0.002 −0.232 −0.031 0.010
(0.177) (0.066) (0.003) (0.237) (0.087) (0.004)∗∗

(0.104) (0.046) (0.003) (0.113)∗∗ (0.049) (0.004)∗∗∗

factor(weekday)Thursday 0.044 0.048 0.004 0.137 0.081 0.003
(0.177) (0.066) (0.003) (0.237) (0.087) (0.004)
(0.050) (0.027)∗ (0.003) (0.071)∗ (0.032)∗∗ (0.004)

factor(weekday)Tuesday 0.024 0.022 0.008 0.104 0.043 0.003
(0.177) (0.066) (0.003)∗∗∗ (0.235) (0.086) (0.004)
(0.076) (0.038) (0.003)∗∗∗ (0.097) (0.046) (0.004)

factor(weekday)Wednesday 0.033 0.033 0.004 0.101 0.038 0.006
(0.177) (0.066) (0.003) (0.237) (0.087) (0.004)
(0.064) (0.027) (0.003) (0.082) (0.038) (0.005)

Year FE & Date FE Y Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y Y

Observations 104,282 104,282 24,310 63,528 63,528 11,274
R2 0.716 0.848 0.245 0.702 0.850 0.308
Adjusted R2 0.707 0.843 0.151 0.693 0.845 0.189
Residual Std. Error 15.048 (df = 101322) 5.633 (df = 101322) 0.102 (df = 21621) 15.656 (df = 61623) 5.732 (df = 61623) 0.095 (df = 9620)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Each coefficient has two standard error, the first is the standard error without clustering, the second is the standard error with clustering at plant level.
For the first three columns, sample is from Oct. 22nd to Mar. 25th, each year of 2013-14, 2014-15, 2016-17 and 2017-18;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
For the last three columns, sample is from Dec. 1st to Feb. 24th, each year of 2013-14, 2014-15, 2015-16, 2016-17 and 2017-18.
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Table 3: Test the different mechanisms, long sample.

Dependent variable:

k MWH CO2 (tons) SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5)

shutdown −0.0591 24.9647 0.3214 0.0868 0.0181∗∗

(0.0458) (17.0567) (0.5170) (0.2006) (0.0076)

ppt 0.0004 −0.0545 −0.0065 −0.0048 −0.0005∗∗∗

(0.0007) (0.2503) (0.0052) (0.0032) (0.0001)

tmean 0.0025 0.2710 −0.0323 −0.0346 −0.0036∗∗∗

(0.0033) (0.9660) (0.0459) (0.0233) (0.0004)

tdmean −0.0063∗∗ 1.6192∗∗ 0.0167 0.0168 0.0031∗∗∗

(0.0026) (0.7567) (0.0234) (0.0260) (0.0003)

Wind −0.0014 −1.6051∗∗ −0.0085 −0.0036 −0.0033∗∗∗

(0.0016) (0.7794) (0.0198) (0.0075) (0.0003)

SLOAD..1000.lbs. −0.0001∗∗∗

(0.000002)

heat 0.0894∗∗∗ 104.1469∗∗∗ −0.0873 0.0908∗∗∗ −0.0001
(0.0082) (0.1893) (0.1454) (0.0349) (0.0004)

CO2 MASS..tons. 0.0002∗ 0.0020 −0.0001 0.000001
(0.0001) (0.0013) (0.0003) (0.000004)

factor(Year)2014 −0.0081 −7.1912 −2.3800∗∗∗ −0.7482∗∗ −0.0016
(0.0705) (16.3295) (0.7786) (0.3044) (0.0027)

factor(Year)2015 −0.1714∗∗ −3.7202 −5.2575∗∗∗ −1.6702∗∗∗ −0.0162∗∗∗

(0.0729) (15.9189) (0.9212) (0.3690) (0.0035)

factor(Year)2016 −0.1325∗ 17.2385 −7.2308∗∗∗ −2.3574∗∗∗ −0.0044
(0.0797) (24.4226) (1.7902) (0.4325) (0.0034)

factor(Year)2017 −0.1098 10.4224 −7.3046∗∗∗ −2.9962∗∗∗ −0.0110∗∗∗

(0.0847) (26.2125) (1.7232) (0.5063) (0.0032)

factor(Year)2018 −0.1271 −2.7263 −7.2878∗∗∗ −3.3433∗∗∗ −0.0128∗∗∗

(0.0964) (31.7673) (1.6273) (0.6779) (0.0036)

factor(weekday)Monday −0.0110∗ 2.5151 −0.0648 0.0454 0.0023
(0.0060) (2.5475) (0.0820) (0.0382) (0.0027)

factor(weekday)Saturday −0.0253∗∗∗ 3.5415 −0.0930 −0.0795∗∗∗ 0.0023
(0.0066) (2.4446) (0.0950) (0.0295) (0.0026)

factor(weekday)Sunday −0.0594∗∗∗ 8.2751∗ −0.2135∗∗ −0.0670 0.0017
(0.0095) (4.5321) (0.1011) (0.0450) (0.0027)

factor(weekday)Thursday −0.0038 −1.5017 0.0433 0.0426 0.0044
(0.0047) (1.8706) (0.0498) (0.0264) (0.0029)

factor(weekday)Tuesday −0.0032 0.7578 0.0196 0.0168 0.0081∗∗∗

(0.0057) (2.2079) (0.0758) (0.0391) (0.0025)

factor(weekday)Wednesday 0.0068 −1.7239 0.0441 0.0355 0.0035
(0.0052) (2.3948) (0.0636) (0.0277) (0.0028)

Year FE Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y

Date FE Y Y Y Y Y

Observations 104,282 104,282 104,282 104,282 24,310
R2 0.9957 0.9996 0.7143 0.8497 0.2450
Adjusted R2 0.9956 0.9995 0.7059 0.8453 0.1511
Residual Std. Error 0.9504 (df = 101321) 297.8518 (df = 101323) 15.0874 (df = 101322) 5.5955 (df = 101322) 0.1018 (df = 21621)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Long sample is from Oct. 22nd to Mar. 25th, each year of 2013-14, 2014-15, 2016-17 and 2017-18;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
Standard error is clustered at plant level.
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Table 4: Test the different mechanisms, short sample.

Dependent variable:

k MWH CO2 (tons) SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5)

shutdown −0.0287 8.4695 0.7135 0.1606 0.0224∗∗

(0.0445) (21.9723) (0.5273) (0.1945) (0.0092)

ppt −0.0002 0.2266 −0.0014 −0.0016 −0.0002
(0.0009) (0.4086) (0.0081) (0.0033) (0.0002)

tmean 0.0047 1.3461 −0.0627 −0.0183 −0.0060∗∗∗

(0.0037) (1.2908) (0.0397) (0.0193) (0.0006)

tdmean −0.0074∗∗ 0.8215 0.0379 0.0038 0.0040∗∗∗

(0.0029) (1.0062) (0.0257) (0.0196) (0.0004)

Wind −0.0009 −1.3668 −0.0278 −0.0018 −0.0039∗∗∗

(0.0021) (0.8747) (0.0207) (0.0096) (0.0005)

SLOAD..1000.lbs. −0.0001∗∗∗

(0.000002)

heat 0.0898∗∗∗ 104.1330∗∗∗ −0.1314 0.0821∗∗ 0.0003
(0.0077) (0.1968) (0.1432) (0.0339) (0.0006)

CO2 MASS..tons. 0.0001∗ 0.0024∗ −0.00001 −0.000002
(0.0001) (0.0013) (0.0003) (0.00001)

factor(Year)2014 −0.0191 −3.6156 −2.9502∗∗∗ −0.8759∗∗ −0.0079∗∗

(0.0825) (19.6408) (0.8841) (0.3697) (0.0040)

factor(Year)2015 −0.1429∗ 4.0980 −5.4299∗∗∗ −1.6103∗∗∗ −0.0107∗∗

(0.0768) (18.9690) (1.0097) (0.3867) (0.0043)

factor(Year)2016 −0.1305 16.2779 −7.5493∗∗∗ −2.3119∗∗∗ −0.0107∗∗∗

(0.0836) (24.8426) (1.9060) (0.4631) (0.0041)

factor(Year)2017 −0.0903 −6.5325 −7.3870∗∗∗ −3.0501∗∗∗ −0.0019
(0.0906) (26.2219) (1.8730) (0.5426) (0.0045)

factor(Year)2018 −0.1455 12.7860 −7.9961∗∗∗ −3.4195∗∗∗ −0.0158∗∗∗

(0.1006) (43.2329) (2.0154) (0.6422) (0.0054)

factor(weekday)Monday −0.0126 0.8867 −0.0515 0.0532 0.0088∗

(0.0083) (2.4839) (0.1044) (0.0480) (0.0045)

factor(weekday)Saturday −0.0238∗∗∗ 1.5181 −0.1334 −0.0854∗∗ 0.0027
(0.0081) (1.6582) (0.0939) (0.0360) (0.0046)

factor(weekday)Sunday −0.0578∗∗∗ 5.1999∗ −0.3111∗∗∗ −0.0647 0.0097∗∗∗

(0.0108) (2.9756) (0.1083) (0.0475) (0.0037)

factor(weekday)Thursday −0.0013 −3.9938 0.1457∗∗ 0.0769∗∗ 0.0029
(0.0053) (2.5923) (0.0706) (0.0322) (0.0037)

factor(weekday)Tuesday −0.0008 −0.6459 0.1062 0.0392 0.0028
(0.0076) (2.2945) (0.0954) (0.0469) (0.0036)

factor(weekday)Wednesday 0.0050 −4.5665∗ 0.1184 0.0382 0.0062
(0.0068) (2.7475) (0.0828) (0.0385) (0.0050)

Year FE Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y

Date FE Y Y Y Y Y

Observations 63,528 63,528 63,528 63,528 11,274
R2 0.9957 0.9995 0.7011 0.8503 0.3077
Adjusted R2 0.9956 0.9995 0.6919 0.8456 0.1887
Residual Std. Error 0.9799 (df = 61622) 316.0176 (df = 61624) 15.6874 (df = 61623) 5.7173 (df = 61623) 0.0954 (df = 9620)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Short sample is from Dec. 1st to Feb. 24th, each year of 2013-14, 2014-15, 2015-16, 2016-17 and 2017-18.
Standard error is clustered at plant level.
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Table 5: Robustness check, including post shutdown period

Dependent variable:

Long Sample Short Sample

SO2 (tons) NOX (tons) AOD SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5) (6)

shutdown 0.521 0.058 0.018∗∗ 0.819 0.123 0.021∗∗

(0.543) (0.201) (0.008) (0.547) (0.196) (0.009)

post −0.364 0.281 0.006 −0.572 0.221 0.013
(0.556) (0.259) (0.007) (0.531) (0.258) (0.008)

ppt −0.008 −0.003 −0.0004∗∗∗ −0.005 −0.001 −0.001∗∗∗

(0.006) (0.003) (0.0001) (0.008) (0.003) (0.0002)

tmean −0.054∗∗ −0.019 −0.003∗∗∗ −0.088∗∗∗ −0.020 −0.006∗∗∗

(0.026) (0.014) (0.0004) (0.028) (0.015) (0.001)

tdmean 0.035∗∗ 0.011 0.003∗∗∗ 0.058∗∗ 0.011 0.004∗∗∗

(0.017) (0.016) (0.0003) (0.027) (0.013) (0.0004)

Wind −0.013 −0.008 −0.004∗∗∗ −0.019 −0.017∗∗ −0.004∗∗∗

(0.019) (0.007) (0.0004) (0.022) (0.008) (0.001)

k MWH 1.172∗∗∗ 0.751∗∗∗ 0.0004∗∗ 1.136∗∗∗ 0.747∗∗∗ 0.0002
(0.205) (0.050) (0.0001) (0.189) (0.050) (0.0002)

SLOAD..1000.lbs. 0.0002∗∗∗ 0.0001∗∗∗ −0.00000 0.0002∗∗ 0.0001∗∗∗ −0.00000
(0.0001) (0.00001) (0.00000) (0.0001) (0.00001) (0.00000)

factor(Year)2014 −2.757∗∗∗ −0.934∗∗∗ −0.006∗ −3.088∗∗∗ −1.154∗∗∗ −0.017∗∗∗

(0.761) (0.296) (0.003) (0.883) (0.363) (0.005)

factor(Year)2015 −5.066∗∗∗ −1.655∗∗∗ −0.017∗∗∗ −5.152∗∗∗ −1.636∗∗∗ −0.015∗∗∗

(0.868) (0.331) (0.004) (0.935) (0.347) (0.005)

factor(Year)2016 −7.286∗∗∗ −2.363∗∗∗ −0.014∗∗∗ −7.423∗∗∗ −2.450∗∗∗ −0.018∗∗∗

(1.751) (0.413) (0.004) (1.828) (0.426) (0.005)

factor(Year)2017 −7.111∗∗∗ −2.829∗∗∗ −0.017∗∗∗ −7.358∗∗∗ −3.048∗∗∗ −0.006
(1.702) (0.489) (0.003) (1.815) (0.507) (0.005)

factor(Year)2018 −7.286∗∗∗ −3.293∗∗∗ −0.017∗∗∗ −7.830∗∗∗ −3.469∗∗∗ −0.020∗∗∗

(1.616) (0.682) (0.004) (1.944) (0.647) (0.006)

factor(weekday)Monday −0.040 0.053∗ 0.001 0.034 0.066 0.006
(0.065) (0.030) (0.003) (0.077) (0.041) (0.004)

factor(weekday)Saturday −0.054 −0.079∗∗∗ −0.002 −0.098 −0.091∗∗∗ −0.005
(0.104) (0.027) (0.003) (0.104) (0.032) (0.004)

factor(weekday)Sunday −0.115 −0.034 −0.002 −0.177 −0.043 0.010∗∗∗

(0.136) (0.044) (0.003) (0.140) (0.052) (0.003)

factor(weekday)Thursday 0.080 0.052∗∗ −0.0001 0.153∗ 0.075∗∗ −0.0004
(0.061) (0.024) (0.003) (0.080) (0.031) (0.004)

factor(weekday)Tuesday −0.003 0.021 0.005∗∗ 0.120 0.026 0.004
(0.063) (0.028) (0.003) (0.087) (0.037) (0.004)

factor(weekday)Wednesday 0.018 0.025 0.001 0.100 −0.004 0.003
(0.064) (0.025) (0.003) (0.083) (0.035) (0.004)

Year FE Y Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Observations 163,998 163,998 35,559 93,796 93,796 15,988
R2 0.696 0.843 0.245 0.689 0.849 0.295
Adjusted R2 0.687 0.839 0.145 0.679 0.845 0.173
Residual Std. Error 15.780 (df = 159355) 5.627 (df = 159355) 0.123 (df = 31392) 16.211 (df = 91049) 5.668 (df = 91049) 0.111 (df = 13627)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the first three columns, sample is from Oct. 22nd to Mar. 25th, each year of 2013-14, 2014-15, 2016-17 and 2017-18;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
For the last three columns, sample is from Dec. 1st to Feb. 24th, each year of 2013-14, 2014-15, 2015-16, 2016-17 and 2017-18.
Standard error is clustered at plant level.
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Table 6: Placebo test, placebo shutdown is from Dec. 1st to Dec. 28th.

Dependent variable:

SO2 (tons) NOX (tons) AOD SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5) (6)

Placebo shutdown −0.726 −0.059 −0.011∗ −0.617 −0.125 −0.007
(0.785) (0.278) (0.006) (0.707) (0.266) (0.006)

Shutdown 0.869 0.128 0.022∗∗

(0.569) (0.201) (0.009)

Post −0.013 0.352 0.010
(0.490) (0.265) (0.008)

ppt −0.007 −0.003 −0.001∗∗∗ −0.008 −0.003 −0.0004∗∗∗

(0.005) (0.004) (0.0002) (0.006) (0.003) (0.0001)

tmean 0.005 −0.054∗ −0.003∗∗∗ −0.052∗ −0.019 −0.003∗∗∗

(0.063) (0.030) (0.0004) (0.027) (0.014) (0.0004)

tdmean 0.007 0.023 0.003∗∗∗ 0.034∗∗ 0.010 0.003∗∗∗

(0.035) (0.032) (0.0004) (0.017) (0.016) (0.0003)

Wind −0.011 −0.004 −0.003∗∗∗ −0.013 −0.008 −0.004∗∗∗

(0.024) (0.009) (0.0004) (0.019) (0.007) (0.0004)

k MWH 1.168∗∗∗ 0.753∗∗∗ 0.0002 1.172∗∗∗ 0.751∗∗∗ 0.0004∗∗

(0.183) (0.049) (0.0002) (0.205) (0.050) (0.0001)

SLOAD..1000.lbs. 0.0002∗∗∗ 0.0001∗∗∗ −0.00000 0.0002∗∗∗ 0.0001∗∗∗ −0.00000
(0.0001) (0.00001) (0.00000) (0.0001) (0.00001) (0.00000)

factor(Year)2014 −2.212∗∗∗ −0.496 −0.003 −2.757∗∗∗ −0.934∗∗∗ −0.006∗

(0.822) (0.325) (0.003) (0.761) (0.296) (0.003)

factor(Year)2015 −5.160∗∗∗ −1.677∗∗∗ −0.026∗∗∗ −5.069∗∗∗ −1.656∗∗∗ −0.017∗∗∗

(0.901) (0.384) (0.004) (0.870) (0.331) (0.004)

factor(Year)2016 −7.202∗∗∗ −2.307∗∗∗ −0.007∗ −7.290∗∗∗ −2.363∗∗∗ −0.014∗∗∗

(1.768) (0.436) (0.004) (1.754) (0.412) (0.004)

factor(Year)2017 −7.327∗∗∗ −2.908∗∗∗ −0.020∗∗∗ −7.113∗∗∗ −2.829∗∗∗ −0.017∗∗∗

(1.690) (0.528) (0.004) (1.703) (0.489) (0.003)

factor(Year)2018 −6.834∗∗∗ −3.226∗∗∗ −0.012∗∗∗ −7.020∗∗∗ −3.239∗∗∗ −0.014∗∗∗

(1.384) (0.750) (0.004) (1.446) (0.714) (0.004)

factor(weekday)Monday 0.041 0.082∗ 0.004 −0.040 0.053∗ 0.001
(0.090) (0.050) (0.003) (0.065) (0.030) (0.003)

factor(weekday)Saturday −0.031 −0.064∗ 0.003 −0.051 −0.079∗∗∗ −0.002
(0.121) (0.037) (0.003) (0.105) (0.027) (0.003)

factor(weekday)Sunday 0.014 −0.032 0.003 −0.114 −0.034 −0.002
(0.117) (0.057) (0.003) (0.137) (0.044) (0.003)

factor(weekday)Thursday 0.077 0.027 0.007∗ 0.081 0.052∗∗ −0.0002
(0.061) (0.035) (0.004) (0.061) (0.024) (0.003)

factor(weekday)Tuesday 0.050 0.011 0.011∗∗∗ −0.003 0.021 0.005∗∗

(0.090) (0.046) (0.003) (0.063) (0.028) (0.003)

factor(weekday)Wednesday 0.031 0.006 0.005 0.018 0.025 0.001
(0.068) (0.035) (0.004) (0.063) (0.025) (0.003)

Year FE Y Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Observations 71,011 71,011 18,659 163,998 163,998 35,559
R2 0.718 0.847 0.228 0.696 0.843 0.245
Adjusted R2 0.709 0.842 0.135 0.687 0.839 0.145
Residual Std. Error 14.848 (df = 68893) 5.600 (df = 68893) 0.104 (df = 16661) 15.780 (df = 159354) 5.627 (df = 159354) 0.123 (df = 31391)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the first three columns, sample is from Oct. 22nd to Dec. 28th, each year of 2013-14, 2014-15, 2015-16, 2016-17 and 2017-18.
For the last three columns, sample is from Oct. 22nd to Mar. 25th, each year of 2013-14, 2014-15, 2016-17 and 2017-18;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year).
Standard error is clustered at plant level.
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Table 7: Placebo test, placebo shutdown is set for every weeks before government shutdown

Dependent variable:

Short Sample Long Sample

SO2 (tons) NOX (tons) AOD SO2 (tons) NOX (tons) AOD

(1) (2) (3) (4) (5) (6)

Placebo shutdown: Oct. 22nd - Oct. 28th 0.485 −0.409 −0.015
(0.595) (0.327) (0.022)

Placebo shutdown: Oct. 29nd - Nov. 4th 0.319 −0.195 0.010
(0.361) (0.214) (0.023)

Placebo shutdown: Nov. 5th - Nov. 11th 0.091 0.002 0.022
(0.500) (0.303) (0.022)

Placebo shutdown: Nov. 12th - Nov. 18th −1.171 −0.022 0.028
(1.028) (0.349) (0.023)

Placebo shutdown: Nov. 19th - Nov. 25th −1.661∗ −0.022 0.004
(0.958) (0.339) (0.021)

Placebo shutdown: Nov. 26th - Nov. 30th −1.044 0.304 0.004
(0.917) (0.335) (0.022)

Placebo shutdown: Dec. 1st - Dec. 7th −1.525∗ 0.291 −0.034 −1.592 0.297 −0.039∗

(0.822) (0.340) (0.021) (1.232) (0.365) (0.023)

Placebo shutdown: Dec. 8th - Dec. 14th −1.641∗ −0.408 0.013 −1.711 −0.406 0.019
(0.848) (0.369) (0.023) (1.335) (0.415) (0.021)

Placebo shutdown: Dec. 15th - Dec. 21st −1.250∗ −0.078 −0.014 −1.279 −0.137 −0.012
(0.690) (0.384) (0.024) (1.182) (0.479) (0.025)

Placebo shutdown: Dec. 22nd - Dec. 28th −0.329 −0.247 −0.003 −0.348 −0.243 0.007
(0.482) (0.305) (0.021) (1.102) (0.426) (0.022)

ppt 0.004 0.005 −0.0005∗ −0.007 −0.003 −0.001∗∗∗

(0.010) (0.004) (0.0003) (0.005) (0.004) (0.0002)

tmean −0.012 −0.044 −0.005∗∗∗ 0.001 −0.053∗ −0.002∗∗∗

(0.062) (0.029) (0.001) (0.061) (0.030) (0.0004)

tdmean 0.014 0.0003 0.004∗∗∗ 0.011 0.023 0.003∗∗∗

(0.045) (0.028) (0.001) (0.033) (0.032) (0.0004)

Wind −0.046 0.007 −0.005∗∗∗ −0.014 −0.005 −0.003∗∗∗

(0.032) (0.017) (0.001) (0.024) (0.009) (0.0004)

k MWH 1.130∗∗∗ 0.763∗∗∗ 0.0001 1.170∗∗∗ 0.752∗∗∗ 0.0002
(0.154) (0.050) (0.0003) (0.184) (0.049) (0.0002)

SLOAD..1000.lbs. 0.0002∗∗∗ 0.0001∗∗∗ −0.00000∗ 0.0002∗∗∗ 0.0001∗∗∗ −0.00000
(0.0001) (0.00001) (0.00000) (0.0001) (0.00001) (0.00000)

factor(Year)2014 −3.079∗∗∗ −0.314 −0.026∗∗∗ −2.210∗∗∗ −0.497 −0.004
(1.058) (0.450) (0.007) (0.823) (0.325) (0.003)

factor(Year)2015 −5.647∗∗∗ −1.624∗∗∗ −0.035∗∗∗ −5.155∗∗∗ −1.679∗∗∗ −0.027∗∗∗

(1.085) (0.432) (0.007) (0.899) (0.385) (0.004)

factor(Year)2016 −7.977∗∗∗ −2.253∗∗∗ −0.013∗∗ −7.195∗∗∗ −2.310∗∗∗ −0.008∗∗

(1.911) (0.499) (0.006) (1.765) (0.436) (0.004)

factor(Year)2017 −7.850∗∗∗ −2.967∗∗∗ −0.017∗∗∗ −7.319∗∗∗ −2.911∗∗∗ −0.021∗∗∗

(1.930) (0.613) (0.007) (1.687) (0.528) (0.004)

factor(Year)2018 −6.939∗∗∗ −3.116∗∗∗ −0.022 −6.316∗∗∗ −3.167∗∗∗ −0.019
(1.641) (0.731) (0.021) (1.287) (0.802) (0.021)

factor(weekday)Monday 0.201 0.149∗ 0.018∗∗ 0.044 0.082 0.004
(0.149) (0.082) (0.007) (0.090) (0.050) (0.003)

factor(weekday)Saturday −0.095 −0.038 0.007 −0.039 −0.057 0.003
(0.156) (0.058) (0.006) (0.118) (0.038) (0.003)

factor(weekday)Sunday −0.008 0.019 0.020∗∗∗ 0.006 −0.026 0.003
(0.165) (0.077) (0.006) (0.115) (0.058) (0.003)

factor(weekday)Thursday 0.332∗∗∗ 0.071 0.010 0.081 0.026 0.007∗∗

(0.117) (0.054) (0.006) (0.062) (0.035) (0.004)

factor(weekday)Tuesday 0.282∗ 0.044 0.006 0.052 0.011 0.011∗∗∗

(0.144) (0.074) (0.005) (0.090) (0.046) (0.003)

factor(weekday)Wednesday 0.209∗ −0.009 0.012 0.031 0.008 0.005
(0.108) (0.067) (0.009) (0.068) (0.035) (0.004)

Year FE Y Y Y Y Y Y

Week FE×Plant FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Observations 30,257 30,257 5,623 71,011 71,011 18,659
R2 0.692 0.849 0.296 0.718 0.847 0.230
Adjusted R2 0.681 0.844 0.150 0.709 0.842 0.137
Residual Std. Error 15.872 (df = 29191) 5.764 (df = 29191) 0.097 (df = 4658) 14.847 (df = 68884) 5.599 (df = 68884) 0.104 (df = 16652)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
For the first three columns, sample is from Dec. 1st to Dec. 28th, each year of 2013-14, 2014-15, 2015-16, 2016-17 and 2017-18. The reference date is Dec. 28th.
For the last three columns, sample is from Oct. 22nd to Mar. 25th, each year of 2013-14, 2014-15, 2016-17 and 2017-18;

and from Oct. 22nd to Mar. 24th, 2015-16 (because of the leap year). The reference date is Nov. 1st.
Standard error is clustered at plant level.
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