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Abstract

This study analyzes whether genetically modified (GM) corn with rootworm resistant

traits (GM-RW) decreases yield risk in the U.S. Central Corn Belt (CCB). A crop

insurance actuarial performance measure, the loss cost ratio (LCR), is the primary

variable used to represent yield risk. Since there are a large set of potential weather

and other control variables that can influence yield risk, high dimensional methods

are utilized in this study to maintain parsimony in the empirical specification, and

facilitate estimation. Specifically, we employ the Cluster-Lasso (cluster-least absolute

shrinkage and selection operator) procedure because it can produce uniformly valid

inference on the main variable interest (i.e., the GM-RW variable) in a high dimen-

sional panel data setting even in the presence of heteroskedastic, non-Gaussian, and

clustered error structures. After controlling for a large set of potential weather con-

founders using Cluster-Lasso, we find consistent evidence that GM corn varieties with

rootworm resistant traits reduce yield risk.
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1 Introduction

The United States (US) agricultural sector have benefited from technological advances over

the years and these innovations have contributed to steady increases in corn yields over

time. These technology-driven yield increases have been critical to feeding and clothing a

growing population that is expected to reach 10 billion by 2050 (Wheeler and von Braun

(2013), Godfray et al. (2010), McKenzie and Williams (2015), Armal et al. (2018)).

One of the key innovations that arguably have contributed to sustained corn yield

increases over the last twenty years are genetically modified (GM) varieties with traits

that confer resistance to various pests, and tolerance to herbicide applications (Moschini

(2008), Fernandez Cornejo et al. (2014)). As such, there have been numerous studies

that examined whether or not GM crop varieties have indeed increased mean yields over

time (e.g., a non-exhaustive list includes Nolan and Santos (2012), Shi et al. (2013), Xu

et al. (2013a), Chavas et al. (2014), Lusk et al. (2018)). The general consensus from this

literature is that GM crop varieties have made major contributions to the increase in mean

yields over the past few decades. However, it is important to note that some skepticism

still remains, and there have been arguments that GM crops have not played a significant

role in observed yield increases for major US commodity crops ( Gurian-Sherman (2009),

Foley (2014), Duke (2015), Hakim (2016)).

Aside from mean yield e↵ects of GM crops, there is also a robust literature that has

examined the e↵ect of GM crops on yield risk (i.e., the impact of GM crops on yield

variability and/or higher moments of the yield distribution) (Shi et al. (2013), Chavas and

Shi (2015), Sanglestsawai et al. (2017), Goodwin and Piggott (2019)). In particular, Shi

et al. (2013) and Chavas and Shi (2015) find that plot-level yield risk for GM corn with

various traits tend to be smaller relative to non-GM corn, though climate variables are not

controlled for in their specifications.1 A number of studies have also examined how crop

yield risk (specifically yield variability) is a↵ected by climate change, and most of these

studies find that crop yield risks are likely to increase under a scenario with increasing

heat and moisture stresses due to climate change (Urban et al. (2012), Urban et al. (2015),

Lobell et al. (2014), Tack et al. (2018)). Note that most of these “climate-change-focused”

1In addition, due to anecdotal evidence from Illinois farmers that GM crops su↵ered less yield loss from
a localized 2005 drought, Monsanto soon after spearheaded a study of field trial data in the Midwest that
indicates that planting GM crops result in lower yield risk relative to conventional varieties (Goodwin
and Piggott (2019). Findings from this study became the basis for the the Biotech Endorsement (BE)
introduced in 2008, which provides discounted crop insurance premiums to farmers who plant GM corn
varieties (i.e., the lower yield risk for GM merits a reduction in premiums). The BE was eliminated in
2012 based on the argument that nearly all corn planted in the US is GM.
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papers do not explicitly delineate between GM crops vis-à-vis non-GM crops, but since

the data coverage of most of these studies coincide with high GM adoption rates, the

implication has been that yield variability of GM crops has increased under climate change.

One notable paper in this literature is Lusk et al. (2018) where the authors explicitly

evaluated the e↵ect of GM corn adoption on mean yield and yield risk (e.g., yield variance

and skewness), while at the same time accounting for climate variables. Lusk et al. (2018)

argue that inferences on the yield e↵ects of GM corn may be misleading if weather and

climate variables are not accounted for in the empirical specification. A key remaining

question is how one would select the climate variables to include in the specification.

In their study, Lusk et al. (2018) do not find evidence that GM corn adoption leads to

lower yield risk (e.g., insignificant GM e↵ect on yield variance and skewness) when climate

variables like degree day measures and precipitation terms are included in the specification.

Overall, findings from the “GM-risk-climate-change” literature have largely been mixed

and there is still considerable debate on this issue.

The objective of this study is to examine the yield risk e↵ect of GM corn with root-

worm resistant traits (GM-RW), while explicitly controlling for selected climate variables

using the Cluster-Lasso (cluster least absolute shrinkage and selection operator) proce-

dure developed by Belloni et al. (2016). To achieve this objective, we utilize a long-run,

county-level panel data set from 1981 to 2015 with spatially consistent GM adoption, in-

put expenditure, and weather information for three US Central Corn Belt states—Illinois,

Indiana, and Iowa. In addition, county-level loss cost ratios (LCRs) are used as a measure

of yield risk given that this variable provides straightforward information about the cost

of providing a given level of risk protection when shortfalls in yields or revenues occurs

(Goodwin and Piggott (2019). The LCR as a risk measure has the benefit of theoretically

embodying the higher moment risk variables in one single risk indicator (i.e., rather than

having separate measures for the higher moments, such as having one measure for vari-

ance and one for skewness, we only have one risk measure with LCR). We find that the

Cluster-Lasso approach is a suitable procedure for selecting a parsimonious set of climate

variables to serve as controls in empirical specifications that examine risk e↵ects of GM

crop varieties. Results from our study suggest that GM-RW tends to have lower yield

risk relative to non-GM-RW after controlling for input expenditures and a large set of

potential weather confounders through Cluster-Lasso.

The present study contributes to the literature in three ways. First, we introduce a
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viable procedure that would allow for more systematic selection of climate variables to be

included as control variables in studies that examine how crop varieties (like GM corn)

influence mean yields and yield risk. Climate variables are typically “high dimensional”

such that there are a large number that can be chosen as controls. Mainly for parsimony

and ease of interpretation, Lusk et al. (2018) simply follows a common specification in

the climate change literature where degree day measures and precipitation terms are used

as the control climate variables (e.g., studies by Schlenker and Roberts (2006), Schlenker

and Roberts (2009), and Annan and Schlenker (2015) also use this type of specification).2

However, there are other studies that argue that vapor pressure deficit (VPD) measures,

drought indices, and/or minimum/maximum temperatures may be more appropriate con-

trols (see, for example, Yu and Babcock (2010), Xu et al. (2013a), and Lobell et al.

(2014)). In addition, some studies use climate variables for the full growing season, while

others use monthly measures of di↵erent climate variables. Given the interest in yield

impacts of extreme weather events, there has also been significant variation as to the

choice of climate variables (as well as the time dimension) used to represent “extreme

weather”. In general, the existing studies that have examined mean yield and yield risk

e↵ects of GM crops have largely used “ad hoc” methods for selecting climate variables

to be included in the empirical specification (e.g., following what has been done in past

studies, or based on some agronomic logic). Conceivably, the choice of weather controls

may greatly influence the inferences drawn on the variable of interest (i.e., the GM corn

in our case), and inadvertently excluding some important weather controls (for instance,

excluding an important month or a key climate variable itself) might create biased results.

The Cluster-Lasso procedure employed in this paper is a high dimensional method that

“lets the data speak for itself” when choosing climate variables to be used as controls in

the specification. A parsimonious specification can still be systematically established in

a high dimensional setting that minimizes the risk of overfitting, multicollinearity issues,

and noise from adding too many control variables.

Second, this study provides insights on the potential risk e↵ects of a specific GM-

trait—the rootworm resistant trait—rather than a bundle of di↵erent traits. As pointed

out by Lusk et al. (2018), the GM nature of a crop is not a “single” thing. Over the period

investigated in this study, some GM crops have one insect resistant trait (e.g., resistant

2Even though the studies cited here generally follow a specification that includes degree day and pre-
cipitation terms, it is important to note that the specific degree day variables and degree day thresholds
utilized varies across studies.
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to corn borer), some have herbicide tolerance only, and some GM crops are “stacked”

varieties with multiple traits. However, the risk e↵ects of GM rootworm resistant corn

is of particular interest because the root architecture of these varieties might be more

robust relative to corn varieties without this trait and, therefore, might be more resilient

to extreme climate conditions such as droughts (Ma et al. (2009), Goodwin and Piggott

(2019)).3 Hence, the present study will provide new insights on whether the GM-RW in

particular provides risk benefits when controlling for high dimensional climate variables.

Lastly, this article makes a contribution by utilizing spatially-consistent, county-level

GM corn adoption data that allows for inferences about the relative contribution of the

GM-RW to crop insurance LCR performance and yield risk. Note that the above men-

tioned paper by Lusk et al. (2018) uses a spatially-mismatched state-level GM corn adop-

tion data merged with county-level yield measures (mainly due to data-availability con-

straints), which forced them to use estimation approaches that account for this issue.

Other GM risk studies on the other hand use plot-level data sets without information on

weather controls (Shi et al. (2013)). Hence, although the present study does not still use

a panel data set at the finest level of aggregation (at the plot-level), it is still unique in

the sense that it utilizes a spatially-consistent data set at a reasonable level aggregation

and it has rich information on GM adoption and climate variables. In addition, the use of

LCR as the main risk measure also has the benefit of providing additional insights about

how the GM-RW per se has contributed to performance of the US crop insurance program

over time (vis-à-vis the weather contribution). This type of information may be useful

when there are concerns about adverse selection in the crop insurance program, and there

is interest in fine-tuning the premium-rating procedure to find farm level indicators that

better delineate lower-risk versus higher-risk producers.

The remainder of this paper proceeds as follows. First, the data sources used and some

descriptive statistics are presented in the next section. This is followed by a description

of the empirical approach that allows us to examine the GM-RW e↵ect on yield risk with

high-dimensional weather variables. The main estimation results are discussed in the

fourth section. Conclusions and implications are then presented in the last section.

3Though it should be noted here that, if there is no rootworm infestation, the root balls of crops with
rootworm resistant traits should theoretically have the same robustness as other varieties without rootworm
resistant traits. However, when there is rootworm infestation, it is reasonable to theoretically expect that
crops with rootworm resistant traits should be healthier and more robust than those without the trait.
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2 Data and Descriptive Statistics

The data used in this study comes from several sources and are discussed in turn below.

As mentioned above, the main dependent variable of interest in this study is the loss cost

ratio (LCR), which is widely considered a good measure of yield risk. In this study, LCR

is defined as the ratio of indemnities to liabilities—particularly for the Yield Protection

(YP) and Revenue Protection (RP) policies in US crop insurance.4 YP and RP are

the two biggest programs in US crop insurance and constitutes the majority of policies

chosen by farmers. The present study utilizes the Summary of Business data from the

Risk Management Agency (RMA), which has county-level information on indemnities and

liabilities (among other crop insurance related variables). The LCR data we use spans the

period from 1981 to 2015, and covers three US Central Corn Belt (CCB) states (Illinois,

Indiana, Iowa).

Given our interest in the risk e↵ects of GM-RW, the main independent variable of

interest in our empirical analysis is the county-level GM-RW adoption rate. In contrast to

Lusk et al. (2018), who used state-level GM adoption data from the National Agricultural

Statistics Service (NASS), we utilize a commercial GM adoption data set collected by a

private company called GfK Kynetec. Each year, GfK Kynetec conducts surveys through-

out the US of randomly sampled farmers about decisions pertaining to seed and pesticide

choices. This data set is considered one of the most comprehensive and detailed source

of GM adoption information. From these surveys, county-level aggregates of the acres

planted to particular GM crops is calculated, and this county-level GM data was the one

available to us. Note that GM corn became commercially available in 1996 (James (2016))

and we have GM corn adoption data for the period 1997–2015. As mentioned in the in-

troduction, GM corn varieties may have a single trait (e.g., corn that is only herbicide

tolerant) or they may have multiple “stacked” traits (e.g., corn that has herbicide toler-

ance plus, say, resistance to corn rootwoorm and european corn borer, has three traits).

Given our specific interest on the risk e↵ects of rootworm resistant traits, we created a

GM-RW variable that represents the proportion of acres in each county planted to GM

corn varieties with at least one rootworm resistant trait. That is, we count the number of

acres planted to any GM corn variety with at least one rootworm trait (regardless if the

GM corn has a single-trait or multiple-traits), and divide it by the total number of corn

4The YP policy was formerly called the Actual Production History (APH) policy prior to 2010. More-
over, note that YP only protects against yield shortfalls, while RP covers both yield and price losses.
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acres to get the GM-RW adoption rate variable of interest. Hence, we have a county-level

GM-RW adoption rate variable that ranges from zero to one for each year in our data set.

A key component of the empirics in this paper is the weather-related variables to be

considered as controls in the specification. As alluded to in the previous section, weather

variables are considered high-dimensional such that there are a large number of these

variables (at di↵erent time-scales) that can be included in the main estimation equation.

However, adding all of these variables in the specification can cause a number of di↵erent

econometric problems (i.e., more on this in the next section) and would not facilitate

interpretation of the parameters of interest. Moreover, point estimates and inferences

drawn may depend on what combination of weather variables the researcher chooses as

controls; hence, the need for a more systematic weather variable selection procedure that

can deal with high dimensionality.

In this study, we consider (and select among) the most commonly used weather vari-

ables that have been utilized in past literature. The first set of weather variables we

consider are degree day measures that have been used in the literature to allow for non-

linearities in the e↵ect of warming on yield outcomes (see Ritchie and Nesmith (1991),

Schlenker and Roberts (2006), Schlenker and Roberts (2009). A degree day measure is

typically defined as the number of degrees that the daily mean temperature is above a

threshold (or is within a range) per day, accumulated over a defined period of time (say,

summed over a month or over a growing season). Note that the threshold temperatures

used to define particular degree day measures can vary across studies.5 For example Ritchie

and Nesmith (1991) and Deschênes and Greenstone (2007) use 8°C as the lower threshold

for delineating the range of potentially yield damaging cold temperatures, and 32°C for

the upper threshold to delineate the range of potentially yield damaging high temperature.

Moreover, Ritchie and Nesmith (1991) discuss the possibility of using 34°C as a reasonable

upper threshold as well. On the other hand, Schlenker and Roberts (2009) set 8°C for the

lower threshold and 29°C for the upper threshold for corn. In their specification, Annan

and Schlenker (2015) include degree day measures for moderate temperatures defined as

between 10–29°C, and a degree day measure for extreme heat being above 29°C. In con-

trast, Lusk et al. (2018) and Tack et al. (2018) incorporated three degree day measures

in their empirical specification—one for yield damaging low temperatures (with threshold

5Most of the recent studies follow Schlenker and Roberts (2009)’s thresholds to create specific degree
day measures (e.g., degree days for moderate temperatures and degree days for yield-damaging heat).
However, one needs to keep in mind that changing environmental conditions and technological advances
can alter the appropriate thresholds for specific crops and locations.
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range between 0–10°C), one for moderate temperatures (with threshold range between

10-29°C), and one for yield damaging high temperatures (with a threshold above 29°C).

In the present study, we first consider two degree day measures along the lines of

Schlenker and Roberts (2009): (i) a growing degree day (GDD) measure consistent with

moderate temperatures, and (ii) a heating degree day (HDD) measure consistent with

potentially yield damaging high temperatures. The GDD measure is defined based on the

range of 8-29°C, and the HDD measure coincides with a high temperature threshold of

above 29°C. To account for degree day measures with alternative thresholds (Lusk et al.

(2018), Tack et al. (2018)), we also utilize a “low temperature” degree day measure (de-

fined based on temperatures between 0–10°C) and an alternative “medium temperature”

degree day indicator (defined based on the 10-29°C) akin to the aforementioned GDD

variable. All degree day measures used are accumulated for each month over the typi-

cal May to September corn growing season (i.e., 4 degree day measures ⇥ 5 months in

the growing season = 20 monthly degree day variables). In summary, the Cluster-Lasso

procedure utilized in this study chooses among four monthly degree day measures—one

“low temperature” degree day measure (0–10°C), two moderate temperature degree day

measures (i.e., GDD between 8-29°C, and “medium temperature” degree days in 10-29°C

range), and one “high temperature” degree day measure (i.e., HDD above 29°C).

Second, we also consider a weather variable that represents accumulated precipitation

(in mm) summed over each month of the May to September corn growing season. A

squared precipitation term is also included to account for potential non-linearity in the

precipitation e↵ect. We primarily utilize data from the “Parameter-Elevation Regression

on Independent Slopes Model” (PRISM) for calculating the GDD, HDD, low temperature

degree day, medium temperature degree day, and precipitation measures used in this

study.6 PRISM is gridded 4km resolution data, which can then be aggregated to obtain

county averages. The PRISM data have been widely used in previous climate change

studies (for example, Schlenker and Roberts (2009)). All processed PRISM data are freely

available from the Ag-Analytics open-data platform (Woodard (2016))7.

The third set of weather variables considered in this study are a variety of moisture

measures and drought indices that have been used in past studies. We include a vapor

6PRISM was developed by the Spatial Climate Analysis Service at Oregon State University.
7The Ag-Analytics platform integrates, stores, and updates daily from a variety of sources, including

PRISM weather data, SSURGO soil data, POLARIS soil data, USDA NASS agricultural statistics, USDA
RMA crop insurance data, USDA ERS data, and CME futures price data, among many others. See:
https://ag-analytics.org/
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pressure deficit (VPD) measure (in kPA) that roughly represents the relative amount of

moisture in the air and is a function of air temperature and humidity (as is used in Lobell

et al. (2014)).8 Specifically, we use an average VPD measure for each month of the May to

September growing season. The drought indices considered in this study for each month

of the May to September growing season are the following: the Palmer Drought Sever-

ity Index (PDSI), the Palmer Hydrological Drought Index (PHDI), the Modified Palmer

Drought Severity Index (PMDI), the Palmer Z Index, and the Standardized Precipitation

Index (SPI). Specifically for SPI, we consider six di↵erent SPI measures that represent an

average SPI measure over the past month (SP01), the past two months (SP02), the past

three months (SP03), the past six months (SP06), the past nine months (SP09), and the

past twelve months (SP12).

All of the drought indices are typically standardized to the local climate and measures

relative dryness or wetness relative to local norms. Positive index values typically represent

wetness and negative values typically indicate dryness. As such, we categorize each drought

index into groups to represent the following: severe wetness, mild to moderate wetness,

near normal, mild to moderate drought, and severe drought. All indices are continuous

variables and reflect di↵erent levels of drought and wetness (as described in the previous

sentence). The thresholds and ranges used to create index categories for each drought

index measure are presented in Appendix Figure A.1. Data on the drought indices are

derived from the National Climatic Data Center (NCDC). Note that the drought indices

from NCDC are aggregated at the climate division level. Hence, counties in our data set

falling in one climate division have the same drought index values.

Lastly, we utilize several monthly temperature-related variables such as minimum tem-

perature, maximum temperature, and mean temperatures as the final set of weather vari-

ables considered in the study. At this point, it is important to note that we consider

monthly weather variables in our main estimation procedure in this study. Much of the

previous “yield-climate-change” literature (for example, Lusk et al. (2018)), only utilize

yearly weather variables that coincide with the growing season rather than having monthly

weather variables for each month in the season. However, there have been studies that

argue that accounting of the e↵ects of weather month-to-month is important since the

timing of the weather event likely a↵ects yield outcomes di↵erently. For instance, Thomp-

son (1986) found that the highest corn yields were associated with above-normal July and

8The VPD variable is created by following the procedure in Roberts et al. (2013), and using the PRISM
data.
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August rainfall, normal June temperature, and below-normal temperature in July and Au-

gust. McWilliams et al. (1999) has argued that the June to August months are the critical

months for corn growth. During this period, crop growth is frequently a↵ected by weather

stresses. Xu et al. (2013b) use monthly climatic variables of GDD, HDD and Palmer Z

index for the months May-September, and indicate that dry early growing season—May

and June—is optimal. Tannura et al. (2008) indicate that wet weather in May would delay

planting and consequently a↵ect yields at harvest. During the early part of the growing

season, dry weather in May and relatively wet weather in June was found to be the most

ideal for corn yields (Tannura et al. (2008)).

To summarize, we first have four degree day measures (e.g., monthly GDD, HDD,

low temperature degree days and medium temperature degree days), two precipitation

terms (e.g., monthly precipitation and precipitation squared), and three temperature terms

(e.g., monthly minimum, maximum and mean temperatures) for each growing season

month (May-September). We then have one VPD measure for each month in the May

to September period. We have a total of 250 drought index variables (e.g., ten drought

indices multiplied by five categories, then multiplied over five months (for each month

from May to September)). Therefore, a total of 300 weather variables are included in the

initial set of variables that one can choose from.9 Having 300 weather variables to choose

from as potential controls is consistent with having a high dimensional problem.

Aside from weather variables, there may also be other confounding factors that may

influence inference on the risk e↵ects of GM-RW if not properly controlled for in the spec-

ification. The level of input used (e.g., fertilizer, chemicals, etc.) may be one such factor.

Therefore, we examine specifications where we control for county-level per-acre input ex-

penditure data on the following: (i) fertilizer and chemicals, and (ii) seeds to account for

some portion of management practices. Input expenditure data was collected from the

the Bureau of Economic Analysis (BEA).10 Summary statistics for all the variables used

in this research are presented in Table 1 (with weather variables pertaining to the full

growing season, rather than monthly). Figures that show trends of some of these variables

over time are in Appendix, Figures A.2–A.6.

9Note that we also created growing season averages for each climate variable described here for use
in several other ad-hoc fixed e↵ects estimation of di↵erent specifications. For conciseness, the summary
statistics presented in Table 1 below only reflect the growing season averages for index variables, VPD,
minimum, and maximum temperature variables. Full summary statistics of all the monthly weather
variables are available from the authors upon request.

10The expenditure data used here represents expenditures not only for corn, but for all crops in the
county. The data can be accessed from: https://www.bea.gov/regional/.
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Table 1: Summary statistics of variables

Variable Mean SD Min Max
LCR (county avg. loss cost ratio) 0.066 0.116 -0.000 1.185
GM-RW (county avg. adoption of GM-RW) 0.139 0.266 0.000 1.000
HDD (harmful degree days in hundred, °C) 1.355 0.897 0.059 5.156
GDD (growing degree days in thousand,°C) 1.910 0.202 1.267 2.574
Precipitation ((mm) in thousand) 0.515 0.130 0.172 1.122
VPD (vapor pressure deficit) 68.937 8.797 46.728 107.346
Low temp. degree days (in hundred, °C) 1.522 0.009 1.469 1.530
Medium temp. degree days (in thousand, °C) 1.601 0.204 0.952 2.268
Minimum temp. (monthly min. temp, °C) 14.465 1.303 9.951 19.157
Maximum temp. (monthly max. temp, °C) 26.716 1.509 22.226 31.460
Palmer-Z (Palmer Z index) 0.354 1.328 -3.450 5.158
PDSI (palmer drought severity index) 0.790 2.126 -5.100 7.364
PHDI (palmer hydrological drought index) 0.977 2.205 -5.100 7.364
PMDI (modified palmer drought severity index) 0.789 2.077 -5.080 7.364
SPx01 (standardized precip. index, 1 months) 0.101 0.498 -1.504 1.642
SPx02 (standardized precip. index, 2 months) 0.177 0.664 -2.074 2.132
SPx03 (standardized precip. index, 3 months) 0.212 0.785 -2.522 2.340
SPx06 (standardized precip. index, 6 months) 0.263 0.961 -2.704 2.570
SPx09 (standardized precip. index, 9 months) 0.300 0.907 -2.472 2.714
SPx12 (standardized precip. index, 12 months) 0.333 0.870 -1.936 2.804
Fert.&Chemical exp. (p/a $ amount spent) 0.105 0.033 0.031 0.389
Seed exp. (p/a $ amount spent) 0.046 0.024 0.007 0.223
Observations 9484 9484 9484 9484

Notes: The weather variable values for degree day measures and precipitation variables
presented in this table are those that were accumulated for the corn growing months of May-
September. VPD, minimum and maximum temperatures, and index variables represent growing
season average.

3 Empirical Framework

3.1 Estimation Strategy

The empirical context in this study allows for the possibility of using a numerous amount of

independent variables, primarily due to the availability of a large number of weather vari-

ables that can serve as controls. However, using a large number of explanatory variables

in a classical ordinary least squares (OLS) approach can cause several problematic issues.

First, “overfitting” can be an issue where the use of many covariates can produce good in-

sample fit (through high R-squareds), but results in inaccurate out-of-sample predictions

(James et al. (2013). Second, the use of a large number of independent variables typi-

cally adds a lot of “noise” to the estimation, which consequently results in higher variance

for the estimated parameters of interest (and inordinately high number of insignificant

variables). Third, multicollinearity issues may arise when the additional number of vari-

ables included are highly correlated and there are limited number of observations. Fourth,

adding more and more explanatory variables adds to model complexity such that ease of

interpretation of the estimated parameters and model parsimony are compromised.
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With all these issues associated with high dimensionality, researchers typically reduce

the number of controls based primarily on economic intuition and/or other ad hoc methods

(e.g., using controls that have been used by similar past studies). One problem with this

traditional approach is that inadvertently dropping the “wrong” control variable can result

in omitted variable bias. Another concern with unstructured selection of control variables

is the issue of exploring results using di↵erent control variable combinations, and only

presenting those that yield the expected (or best) results (i.e., the so-called “p-hacking”

problem in science). In our empirical context, this is related to the problem of getting

di↵erent results when using di↵erent combinations of weather controls.

To empirically deal with high dimensional control variables, an approach that is becom-

ing increasingly common in economics is the use of least absolute shrinkage and selection

operator (Lasso) procedures that has roots in the machine learning literature (Frank and

Friedman (1993), Tibshirani (1996)). The main idea with the Lasso approach is that re-

gression coe�cients are still chosen to minimize the sum of squared residuals (as is done in

OLS regression), but Lasso incorporates a penalization procedure to reduce the number of

explanatory variables in the specification. The penalization can be based on a number of

methods such as a data-driven approach (e.g., cross validation), a theory based approach

(e.g., rigorous penalization), and an information criteria approach (AIC, BIC, EBIC) (Bel-

loni et al. (2012). In practical terms, the penalization part of Lasso chooses the coe�cient

estimates that are set to zero, removing the corresponding “irrelevant” variables from the

model. However, the classical Lasso procedure is prone to two types of model selection

errors: (i) a variable may be considered relevant when in fact it has a zero coe�cient

(and thus has no true explanatory power), and (ii) a variable may be dropped from the

model despite truly having a nonzero coe�cient (see, for example, Belloni et al. (2014a)

Belloni et al. (2014b)). Over the years, several improvements to the classical Lasso pro-

cedure have been developed to partly address these model selection errors. Zou (2006),

Zou and Li (2008), Zou and Zhang (2009), Fan et al. (2014) employed adaptive weights

to improve model selection properties of classical Lasso. Belloni et al. (2012) suggest that

a theory-driven approach to setting the penalization parameter would also help alleviate

the first type of model selection error above. Given these improvements, Lasso has been

primarily viewed as a type of model selection or dimension reduction statistical technique

(Tibshirani (1996), James et al. (2013), Belloni et al. (2014b)).

With its roots in the machine learning literature, Lasso methods have also been his-
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torically used for the purpose of prediction rather than for causal inference. As such, one

of the earliest limitation of classical Lasso procedures (used purely for model selection

and prediction) is that it does not have the ability to produce reliable standard errors,

confidence intervals, and p-values for causal inference, which is likely the main reason for

its limited use in economics in the past. To overcome this shortcoming in terms of causal

inference, one simple “fix” is to first use Lasso only for the purpose of selecting the control

variables to be included in the specification. Then, in a second step, an OLS regression

can be run where the outcome variable is made a function of the selected variables in the

first step Lasso. Belloni et al. (2013) call this two-step approach for causal inference the

Post-Lasso procedure (or the post-single-selection method).

Notwithstanding Post-Lasso’s ability to facilitate causal inference by producing stan-

dard errors and p-values, there are still serious flaws in using this Post-Lasso approach for

causal inference. The Post-Lasso procedure tends to not select covariates with small coe�-

cients (Belloni et al. (2014a)). This issue comes about because Lasso minimizes prediction

error subject to the constraint that the model is not too “complex”, where “complexity”

is defined as the sum of the absolute values of all the coe�cients estimated. Parameter es-

timates with small magnitudes (even if the associated variable is theoretically important)

might be picked out (and excluded) by this constraint. That is, important independent

variables with small coe�cients (that theoretically should be included in the model) might

look similar to other variables with small coe�cients that do not belong in the model. In

addition, any variable that is highly correlated to the independent variable of interest

(also called the target variable(s)) (i.e., the GM-RW variable in the present study) may be

dropped. This is because including such a variable will not add much predictive power for

the outcome given that the target variable is already in the model (i.e., the variable(s) cor-

related with the target variable will likely have a small coe�cient). Therefore, mistakenly

excluding these kinds of variables (even if they have small coe�cients) can create bias in

the parameter estimates associated with the variable(s) of interest (see Leeb and Pötscher

(2008a,b), Belloni et al. (2014a)). Furthermore, Belloni et al. (2014b) show that Lasso

or Post-Lasso procedures in general do not produce root-n consistent and asymptotically

normal estimates of the parameter of interest (typically due to large omitted variable bias).

To address the aforementioned inference issues with classical Lasso and Post-Lasso,

Belloni et al. (2011), Belloni et al. (2014b), Chernozhukov et al. (2015) develop and demon-

strate how a “post-double-selection” estimator can be used for valid inference. The post-
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double-selection procedure has been shown to produce uniformly valid confidence intervals

for the variable of interest over a wide range of potential underlying distributions for the

data-generating-process. This approach is robust to the model selection errors and issues

associated with classical Lasso and Post-Lasso discussed above. The post-double-selection

method is conducted in three steps: (i) control variables are selected from a first-step

Lasso procedure where the outcome is a function of all control variables, (ii) a second-step

Lasso is conducted to select control variables that are strongly related with the variable

of interest (i.e., the GM-RW variable in our context), and (iii) an OLS regression is run

where the outcome variable is a function of the variable of interest and the union of the

selected control variables from the first two steps. In particular, the second “selection”

step is what makes the post-double-selection method robust to the model selection errors

in classical Lasso and Post-Lasso. This second step also helps address the issue where

Lasso tends to drop covariates that are strongly associated with the target variable, but

are truly important factors that determine the outcome variable. Using the union of se-

lected variables in the two selection steps greatly reduces the chance for omitted variables

in the third step. Overall, the post-double-selection estimator produces parameter esti-

mates associated with the target variable that are root-n consistent and asymptotically

normal.11

Belloni et al. (2016) build on the post-double-selection approach developed in Bel-

loni et al. (2014b), as well as the theory-driven penalization technique in Belloni et al.

(2012),12 by making these procedures applicable in panel data settings. This panel data

Lasso approach is usually called the Cluster-Lasso procedure. Cluster-Lasso accounts for

unobserved heterogeneity by “partialling out” the individual unit fixed e↵ects, and also

allows for clustering within individual units (i.e., allow for within-individual dependence

across years). Belloni et al. (2016) show that the econometric procedures in their model

result in uniformly valid inference for the parameter associated with the variable of in-

terest, for a wide variety of distributions that potentially underlie the data generating

processes (DGP).

11More formally, the post-double-selection estimator for the parameter of interest (↵̌) satisfies the fol-
lowing expression: ��1

n

p
n (↵̌� ↵0) = i+ oP (1) N(0, 1).

12The theory-driven approach to choosing the penalization parameter (also called the tuning parameter)
is a rigorous procedure that places high priority on controlling overfitting and allows for consistently
deriving the theoretical properties of this particular Lasso variant.
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More formally, consider the following compact panel data model:

yit = x
0
it� + ↵i + "it, i = 1, . . . , n, t = 1, . . . , T (1)

where yit is the response variable for individual unit i in year t, xit is the explanatory

variables, � is the parameter to be estimated, ↵i are the unobserved individual-unit fixed

e↵ects, and "it is the idiosyncratic error term (which is mean-zero conditional on the ex-

planatory variables). In the first step of the Cluster-Lasso method, unobserved individual

specific heterogeneity, which is treated as the fixed e↵ects in equation (1), are “partialled

out” of the model by time demeaning the dependent and independent variables, which

results in a time-demeaned specification as follows:

ÿit = ẍ
0
it� + "̈it, (2)

where ÿ and ẍ denotes the time-demeaned dependent and independent variables, � is still

the parameter to be estimated, and "̈ is the time-demeaned error term. The time-demeaned

specification in (2) is then used in a Lasso optimization to estimate the parameters of

interest as follows:

�̂CL = argmin
�

1

nT

nX

i=1

TX

t=1

�
ÿit � ẍ

0
it�
�2

+
�

nT

pX

j=1

�̂j |�j | (3)

where � is the penalization parameter and
n
�̂j

op

j=1
are the clustered-penalty loadings set

as:

� = 2c
p
n��1(1� �/(2p)) (4)

where � = o(1), and

�̂
2
j =

1

nT

nX

i=1

 
TX

t=1

ẍitj "̂it

!2

=
1

nT

nX

i=1

TX

t=1

TX

t0=1

ẍitj ẍit0j "̂it"̂it0 (5)

In contrast to the traditional Lasso formulation, within-individual dependence (across

years) is accounted for in the Cluster-Lasso method primarily through the cluster penalty

loadings defined in equation (5) and used in the Lasso optimization along with (4) in

equation (3).13 Moreover, simulations performed by Belloni et al. (2016) show that the

13It is important to note here that the penalty loadings for Cluster-Lasso are constructed after the
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Cluster-Lasso procedure perform better (i.e., lower bias and RMSE) than variable selection

procedures that do not allow for clustering. The authors indicate that this di↵erence in

performance suggests that additional modifications of Lasso-type procedures to account

for other dependence structures may be worthwhile.

The procedures embodied in equations (2) to (5) are utilized in the first two steps

of the post-double-selection method used in this study. In the final step, estimation and

inference proceed by OLS regression of ÿit as a function of ẍit, where ẍit includes the

variable of interest and the union of the set of control variables selected in the first two

steps.14

3.2 Empirical Specification and Identification Issues

We use the Cluster-Lasso procedure described above to estimate the following empirical

specification:

LCRit = �1RWit +W
0
it�w + ↵i + µt + "it, i = 1, . . . , n, t = 1, . . . , T (6)

where LCRit is the lost cost ratio for county i in year t, RWit is the county-level GM-RW

adoption rate, Wit represents a vector of control variables that include climate variables

(such as those discussed in the previous section) and input expenditure variables (e.g., seed,

and fertilizer and chemicals), ↵i is the unobserved county fixed e↵ects that controls for

time-invariant county-level factors that impact LCR (i.e., unobserved heterogeneity), µt

denotes year fixed e↵ects, and "it is the idiosyncratic error term for county i in year t (which

is mean zero conditional on covariates, and within-individual dependence is allowed). The

term �1 is our parameter of interest given the study objective of determining the yield

risk e↵ects of GM corn with rootworm resistant traits.

To operationalize the Cluster-Lasso procedure for the empirical specification in equa-

tion (6), the time-demeaning step needs to be implemented first in order to “partial out”

time-demeaning step. See Appendix in Belloni et al. (2016) for details on the algorithm to calculate "̂it

and
n
�̂j

op

j=1
. Also, one important condition in proving the favorable performance of the proposed model

is:
��̂j

nT > 2c
��� 1
nT

Pn
l=1

PT
t=1 ẍitj ✏̈it

��� for each 1 6 j 6 p holds with probability one under the condition

l�j 6 �̂j 6 u�j , with probability 1� o(1) for some ` ! 1 and u 6 C < 1, and the � set as in (4)
14Belloni et al. (2016) call this last step Post-Cluster-Lasso or post-double-selection using Cluster-Lasso

for the first two steps.
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the county-level fixed e↵ects:

¨LCRit = �1R̈Wit + Ẅ
0
it�w + µt + "̈it, i = 1, . . . , n, t = 1, . . . , T. (7)

In equation (7), note that the time fixed e↵ects are still included in the specification

to control for yearly time shocks that a↵ects all the counties similarly. Hence, these time

fixed e↵ects are not penalized in the estimation procedure.

After time-demeaning, the Cluster-Lasso procedure is used to estimate a function with

¨LCRit as the dependent variable, and R̈Wit and Ẅit as the explanatory variables. The

next step is to implement Cluster-Lasso again, but now estimating a function where R̈Wit

is the dependent variable and Ẅit as the independent variables. These two steps allow for

dimension-reduction to select the climate variables (as well as other covariates) to leave in

the specification. In particular, the union of the selected controls in the two Cluster-Lasso

estimations will then be used in a traditional OLS regression of equation (7). This results

in a more parsimonious model since it will only include selected control variables, and

allow inference on the variable of interest R̈Wit. Note that we use cluster-robust standard

errors (Arellano (1987)) in the the final OLS step in addition to cluster-robust penalty

loadings in the Cluster-Lasso.

Causal identification in our analysis relies primarily on the control of unobserved het-

erogeneity (e.g., unobserved time-invariant variables that a↵ect both the adoption of GM-

RW and the LCR outcome) through the time-demeaning transformation. We argue that

unobserved management ability (in this case at the county-level) is one of the “main” un-

observables that can be correlated with GM-RW usage and the LCR outcome, which may

then cause identification issues. However, unobserved ability can be reasonably assumed

as time-invariant and so the time-demeaning procedure that partials out the county-fixed

e↵ects take care of this issue. In addition, heterogeneous soil quality that varies across

counties can also be reasonably assumed as time-invariant and absorbed by the county

fixed e↵ects since soil quality measure does not change a lot from year to year (i.e., it takes

a long time to have substantial changes in soil quality). The geographical focus on the

Central Corn Belt states also mitigates this issue since soils in this region should be fairly

similar. Another potential source of endogeneity might be the year-to-year incidence and

degree of corn rootworm infestation. Unfortunately, we do not have rootworm infestation

data to use as controls (or valid instruments for it) but we believe that infestation lev-

els across space (i.e., across the “I” states) in our data is fairly homogeneous. As such,
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assuming corn rootworm infestation only varies considerably across time, then year fixed

e↵ects will soak up this potential confounding variation. In addition, year fixed e↵ects in

our model capture year-to-year changes in the federal insurance program that a↵ects all

counties in the sample similarly,15 as well as overall price changes.

4 Results and Discussion

4.1 Estimation Results

Before we discuss estimation results from the main Cluster-Lasso procedure, we first

present the estimation results using traditional panel data OLS fixed e↵ects estimation

techniques where the climate variables are chosen “ad hoc” based on what has been done

in previous studies (see Table 2). As seen in Table 2, there are substantial di↵erences

in the magnitudes and the statistical significance of the GM-RW variable, depending on

the set of climate variables included in the specification. For example, when only growing

season GDD, HDD, precipitation, precipitation squared, and input expenditures (fertil-

izer and seed expenditures) are used as controls (Model 1), results from the traditional

panel fixed e↵ects model (with county and time fixed e↵ects) suggests that GM-RW does

not have a statistically significant e↵ect on LCR (i.e., GM-RW has no risk e↵ects). In

contrast, when the specification includes growing season minimum temperatures, maxi-

mum temperatures, precipitation, and precipitation squared as control climate variables

(together with input expenditures), the estimates indicate that GM-RW has a strong sta-

tistically significant negative e↵ect on LCR, which indicates a risk reducing e↵ect (Model

2). Several other specifications are used in Table 2 and inference on the risk e↵ects of

GM-RW varies depending on what weather variables are utilized in the specification. In

Appendix, we also show that using di↵erent sets of degree day measures with varying

thresholds also substantially change the inference drawn from the parameter estimate of

GM-RW (Table A.1). Alternative combinations of drought indices also considerably alter

inferences drawn from the GM-RW variable (Table A.2).

Given the inconsistent inferences on the GM-RW variable when one uses traditional

panel data econometric techniques and di↵erent sets of climate variables, we use Cluster-

15For example, the 1994 Crop Insurance Reform Act (CIRA) increased premium subsidy rates to an
average of about 40 percent and the 2000 Agricultural Risk Protection Act (ARPA) increased premium
subsidy rates to an average of 62 percent. Since then, crop insurance participation expanded, and farmers
enrolled more in the program. Since these types of program changes a↵ects all counties, then the year
fixed e↵ects account for this.
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Table 2: Estimates of the e↵ect of GM-RW on LCR using traditional panel data methods

Model 1 Model 2 Model 3 Model 4
GM-RW -0.015 -0.030⇤⇤⇤ -0.017⇤ -0.014

(-1.84) (-3.51) (-2.03) (-1.73)
HDD 0.128⇤⇤⇤ 0.120⇤⇤⇤ 0.137⇤⇤⇤

(20.86) (19.20) (19.70)
GDD -0.272⇤⇤⇤ -0.256⇤⇤⇤ -0.253⇤⇤⇤

(-9.01) (-8.57) (-8.23)
Precipitation -0.556⇤⇤⇤ -0.762⇤⇤⇤ -0.587⇤⇤⇤

(-9.19) (-12.18) (-9.27)
Precipitation sq. 0.685⇤⇤⇤ 0.786⇤⇤⇤ 0.699⇤⇤⇤

(13.68) (15.38) (13.67)
VPD -0.001⇤⇤

(-2.69)
Minimum temp -0.000

(-0.05)
Maximum temp 0.023⇤⇤⇤

(7.19)
Palmer-Z 0.007⇤⇤⇤

(4.41)
Palmer-Z sq. 0.009⇤⇤⇤

(13.67)
Fertilizer exp -0.177 -0.212⇤ -0.188 -0.184

(-1.76) (-2.15) (-1.88) (-1.85)
Seed exp 0.634⇤⇤ 0.669⇤⇤⇤ 0.653⇤⇤⇤ 0.623⇤⇤

(3.26) (3.58) (3.35) (3.22)
County Fixed E↵ects Y Y Y Y
Year Fixed E↵ects Y Y Y Y
Observations 9484 9484 9484 9484
Adjusted R

2 0.502 0.445 0.494 0.503
AIC -21718.571 -20678.507 -21564.467 -21725.128
BIC -21425.120 -20385.056 -21271.015 -21424.519
t statistics in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Notes: This table presents estimates of the e↵ect of genetically modified varieties with
corn rootworm traits (GM-RW) on the loss cost ratio (LCR) for a panel of 293 U.S. Central Corn
Belt (CCB) counties over the years 1981–2015. LCR is considered for the total of the two biggest
insurance plans: Yield Protection and Revenue Protection. Each column employs the OLS fixed
e↵ects, regressing LCR on GM-RW with di↵erent covariates as shown in the table with county

and time fixed e↵ects.

Lasso to have a more structured approach to select among a large set of monthly weather

variables (for parsimony) and arguably get more robust inference results. Results from the

Cluster-Lasso estimation indicates that GM-RW statistically reduces LCR at the 5% level

of significance, which is evidence of a risk reducing e↵ect (see Table 3). The magnitude

of the GM-RW parameter estimate suggests that one percentage point increase in GM-

RW adoption decreases LCR by 0.00017, on average. For the period of time studied in

this research, the average LCR in the CCB is 0.066. This means that a percentage point

increase in the adoption of GM-RW decreases LCR by about 0.26%. Because the U.S.

federal crop insurance program carries around $100 billion in liabilities annually, 0.26%

decrease in LCR might still provide important insights for policy makers. The result from

the Cluster-Lasso procedure provides evidence on the potential risk-reducing e↵ect of GM

corn varieties with the rootworm resistant trait after controlling for climate variables.
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Table 3: Estimates of the e↵ect of GM-RW on LCR using the cluster-lasso procedure

Estimator

Cluster-Lasso Post-Double Selection

GM-RW -0.017⇤
(-2.50)

Observations 9484
t statistics in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Notes: This table presents estimates of the e↵ect of genetically modified varieties with
corn rootworm trait (GM-RW) on the loss cost ratio (LCR) for a panel of 293 U.S. Central Corn
Belt (CCB) counties over the years 1981–2015. LCR is considered for the total of the two biggest
insurance plans: Yield Protection and Revenue Protection. LCR is regressed on GM-RW and
additional covariates (that were selected through Cluster-Lasso as described in the text). The

specification includes a full set of year and county fixed e↵ects and selected covariates. In the
specification, standard errors are clustered by county and they are robust to heteroskedastic and
clustered error structure.

For the main Cluster-Lasso run in Table 3, the weather variables eventually selected

by the procedure are presented in Appendix (Table A.3). In general, the selected weather

controls include several degree day measures across di↵erent months (HDD, GDD, low

and medium temperature degree days), minimum temperatures in the early months, and

a good number of drought indices for di↵erent months. Note that precipitation terms are

not among the selected variables. It is likely that the preponderance of the drought indices

selected (for di↵erent dryness and wetness categories across months) already accounts for

precipitation variables and some of the maximum temperature e↵ects. Nonlinearity in

the weather e↵ects are also likely accounted for through the di↵erent degree days and

wetness/dryness indices selected.

To augment the preferred model results in Table 3, we also explore whether inference

on the GM-RW changes based on the number of weather variables to initially choose from.

The Cluster-Lasso results in Table 3 is based on an initial set of 300 weather variables

that the procedure can choose from. Hence, we first implement a Cluster-Lasso on a

specification that does not include the 250 drought index variables. That is, the initial

set of weather variables to choose from only include 50 monthly degree day measures,

precipitation terms, VPD, and temperature variables (i.e., 10 weather terms for every

month in the 5 month growing season). Results from this Cluster-Lasso run supports the

risk reducing e↵ect of GM-RW, with the magnitude of the e↵ect similar to the one in

Table 3 (see Table A.4 in Appendix).

A second Cluster-Lasso run is then implemented for the case where only yearly growing-

season weather variables are the set to choose from. In this case, the weather variable
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choice set include 60 variables in total (e.g., 50 variables for the 10 drought indexes having

5 categories, and 10 variables for degree days, precipitation terms, VPD, and temperature

variables). Again, results (see Table A.5 in Appendix) from this Cluster-Lasso run still

provides evidence of a risk-reducing e↵ect and magnitude that is similar to the other

cluster-runs above.

4.2 Robustness Checks

In the previous sub-section, we already provided some evidence on the robustness of our

estimation approach when we examine whether inferences on the GM-RW variable changes

when we change the weather variable choice set. Below we conduct further robustness

checks to verify the strength and stability of our Cluster-Lasso results.

In the first robustness check, we consider a specification where we include crop in-

surance related variables in the control variable choice set. Since the outcome variable

is a crop insurance measure, it can be argued that it is important to account for crop

insurance related variables in the estimation.16 Specifically, we consider county-level crop

insurance participation rates and average county-level coverage level choice as potential

control variables.17 Results from this first robustness check is presented in the Model 2

column of Table A.6 (see Appendix).18 Inference from the Cluster-Lasso procedure that

considers crop insurance variables still supports findings from the earlier Cluster-Lasso

runs where GM-RW statistically reduces LCR.

The second robustness check conducted is where we exclude the input expenditure

variables from the control variable choice set that was used in Table 3 above. This is to

explore whether only including the complete set of 300 weather related control variables

(and not including input expenditure variables) will result in similar inferences. As seen

in Table A.6 (Model 3), the estimated parameter associated with the GM-RW variable is

consistent with the Cluster-Lasso runs that includes input expenditure variables as part

of the control variables to choose from.

Lastly, we perform a robustness check where we only consider LCR for the YP policy

16The idea is to sharpen identification and avoid omitted variable bias by including these crop insurance
variables. Though if county-level participation and coverage level choices are roughly homogeneous across
the three “I” States from year-to-year, then one can argue that the time fixed e↵ects can account for
not including these variables in the specification. The disadvantage of including these variables in the
specification is that some researchers may argue that adding these confounders may be endogeneous in
and of itself.

17We calculate the insurance participation as the ratio of insured acres of corn to total planted acres of
corn, which is also called an empirical insurance participation measure. Note that the data for coverage
level is only available after 1988 (and so runs with this variable only includes data from 1989 onwards).

18Note that the Model 1 column is the same as that for our preferred model in Table 3.
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(i.e., excluding the data from the RP policies) (see Table A.7 in Appendix). The idea is

that only a YP-type insurance plan existed for the early part of our data (1980s) and so

we would like to see if the inferences from the Cluster-Lasso procedure will change if only

the losses from these YP plans are considered. However, note that RP-type plans came

about in the mid-1990s and has become the predominantly chosen plan for corn since the

mid-2000s. Nevertheless, using Cluster-Lasso only for the YP losses (i.e., and utilizing

the same 300 weather variables plus other controls in Table 3) still produces the same

inference where counties with higher levels of GM-RW adoption tend to have lower risk

(as measured by LCR).

5 Conclusions

This study aims to explore how GM corn varieties with rootworm resistant traits (GM-

RW) a↵ect yield risk while accounting for a large number of potential climate variables

that can serve as controls (e.g., the high dimensionality problem). Yield risk in this case

is measured using a loss cost ratio (LCR) variable from crop insurance. A county-level

panel data set was constructed for Illinois, Indiana, and Iowa covering the period 1981 to

2015. To accomplish the underlying aim of this study, the Cluster-Lasso procedure is used

to handle the high dimensional nature of the climate variables, as well as the panel data

structure of the county-level data utilized.

Our findings consistently indicate that counties with high levels of GM-RW adoption

tend to have lower LCRs when Cluster-Lasso is used to deal with high dimensional weather

control variables. This is evidence that GM-RW adoption in the Central Corn Belt has

reduced yield risk associated with corn production. These results are consistent with some

of the earlier studies that have shown that GM crops tend to reduce yield risk (Shi et al.

(2013), Goodwin and Piggott (2019)). In addition, this risk reducing finding for GM-RW

generally supports the idea behind the Biotech Yield Endorsement implemented in crop

insurance from 2008 to 2012 where premium discounts are given to farmers adopting these

type of GM varieties. Along these lines, the main empirical insight from this study may

be useful when there are concerns about adverse selection in the crop insurance program,

and there is a need to find farm level indicators that better delineate lower-risk versus

higher-risk producers.

Moreover, the implementation of the Cluster-Lasso procedure in this study demon-

strates its potential as a viable econometric approach when researchers are faced with
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the challenge of choosing among a large number of control variables in estimation. High-

dimensional regressors could arise for di↵erent reasons in agricultural economics and other

disciplines (e.g., a large set of potential weather confounders in our case). Hence, the

Cluster-Lasso procedure utilized in this study is a potential new tool for researchers to

use when they are unsure about the exact set of control variables to include in a model

and there are a large number of controls to choose from. In existing studies that have

examined yield e↵ects of various agricultural technologies and practices (e.g., precision

technologies, fertilization practices, soil health practices, etc.), especially where weather

variables need to serve as controls to help assure identification, researchers normally just

use “ad hoc” methods to maintain parsimony in the specification (e.g., following what has

been done in past studies, or based on some agronomic logic). We show that “ad hoc”

choice of weather controls can substantially influence the eventual inferences drawn on the

variable of interest (i.e., GM-RW in our case). In this case, the Cluster-Lasso procedure

can serve as a more structured alternative for researchers and economists seeking to esti-

mate panel data production functions with high dimensional weather variables as controls.

It can complement intuition based choices and can provide uniformly valid inference in

the presence of unobserved individual specific heterogeneity under high-dimensional panel

data settings.

Notwithstanding the contributions of this article to empirical understanding of the

risk e↵ects of GM crops and in highlighting the potential of Cluster-Lasso as a means to

deal with high dimensionality, it is important to recognize the limitations of the study

and mention promising opportunities for future research. First, although we strived to

avoid potential omitted variable bias in the estimation and assure proper identification

of the GM-RW e↵ect, it is possible that there are still time-varying and county-varying

unobservables that cause endogeneity in the GM-RW variable. For instance, if rootworm

infestation levels vary substantially across time and space, then not having this variable

in the specification may a↵ect inferences from our estimation. Even if there are Lasso

procedures that allow for instrumental variables to address the endogeneity described

above (see Chernozhukov et al. (2015)), we do not have valid instruments to implement

this procedure. We leave this potential extension for future research. Second, we only

utilize county-level data for three corn belt states in the analysis. Future research may

explore the use of individual farm-level data and evaluate the risk e↵ects of GM-RW for a

wider geographical area. Lastly, the focus in this paper is specifically on corn production
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and the rootworm trait. A such, future studies may consider the yield risk e↵ects of various

GM traits for other crops (like soybeans).
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Appendix

Degree days and Palmer indices

Our results also indicate that using di↵erent thresholds for the di↵erent degree day mea-

sures also change the statistical significance of the GM-RW variable. If cooling degree

days and heating degree days are used instead of HDD and GDD, then the inference on

GM-RW may change. In its simplest form, growing degree days are calculated in the same

way as cooling degree days, but the threshold temperatures are di↵erent. Heating degree

days (HeDD) is calculated as the average temperature on a day subtracted from 65°F and

cooling degree days (CDD) is calculated as the average temperature minus 65°F. Both

degree days come from from NCDC-NOAA. Additionally, we also show that results vary if

low-temperature degree days (0–10°C), medium temperature degree days (10–29°C), and

high temperature degree days (above 29°C) are employed in the specification instead of

HDD, GDD, HeDD and CDD. Table A.1 below shows the results for these specifications.

Although it is trivial to select the most suitable set of degree day measures via our model

selection approach (cluster-lasso), our point here is to show that inferences from traditional

panel OLS methods are sensitive to the selection of degree day measures used.19

Further, note that some researchers prefer include Palmer Z drought index as water

stress variable without separately breaking out the wetness and dryness categories (e.g.,

nonlinearity in the simplest definition).20 In Table A.2, we also show that there are

di↵erences in the magnitudes and the statistical significance of the GM-RW variable based

on drought indices (say Palmer Z and PDSI) in the econometric specification. Significance

of GM-RW changes based on what index variable is used (PDSI vs Palmer Z) and how it

is incorporated.

19One needs to keep in mind that the changing environmental conditions and technological advances
might change the di↵erent thresholds used to determine the degree day measures. Hence, we wanted to
show robustness of the cluster-lasso approach when choosing among degree day measures with di↵erent
thresholds.

20Note that in our main model specification, we further consider more flexibility of index variables by
incorporating di↵erent specifications for wetness and dryness (i.e., severe, moderate)
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Table A.1: Estimates of the e↵ect of GM-RW on LCR: Alternative degree day thresholds

Model 1 Model 2 Model 3
GM-RW -0.015 -0.021⇤ -0.003

(-1.84) (-2.48) (-0.39)
HDD 0.128⇤⇤⇤

(20.86)
GDD -0.272⇤⇤⇤

(-9.01)
Precipitation -0.556⇤⇤⇤ -0.751⇤⇤⇤ -0.793⇤⇤⇤

(-9.19) (-13.05) (-13.94)
Precipitation sq 0.685⇤⇤⇤ 0.771⇤⇤⇤ 0.800⇤⇤⇤

(13.68) (15.71) (16.44)
Low temp DD -0.673⇤⇤⇤

(-4.82)
Medium temp DD 0.001

(0.05)
High temp 1.286⇤⇤⇤

(13.91)
HeDD 0.033⇤⇤⇤

(7.75)
CDD 0.344⇤⇤⇤

(14.90)
Fertilizer exp -0.177 -0.243⇤ -0.194⇤

(-1.76) (-2.51) (-2.05)
Seed exp 0.634⇤⇤ 0.657⇤⇤⇤ 0.602⇤⇤⇤

(3.26) (3.68) (3.40)
County Fixed E↵ects Y Y Y
Year Fixed E↵ects Y Y Y
Observations 9484 9484 9484
Adjusted R

2 0.502 0.455 0.529
AIC -21718.571 -20855.315 -22248.948
BIC -21425.120 -20561.863 -21948.339
t statistics in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Notes: This table presents estimates of the e↵ect of genetically modified varieties with
corn rootworm traits (GM-RW) on the loss cost ratio (LCR) for a panel of 293 U.S. Central Corn
Belt (CCB) counties over the years 1981–2015. LCR is considered for the total of the two biggest
insurance plans: Yield Protection and Revenue Protection. Each column employs the OLS fixed
e↵ects, regressing LCR on GM-RW with di↵erent covariates as shown in the table with county

and time fixed e↵ects.
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Table A.2: Estimates of the e↵ect of GM-RW on LCR: Alternative drought indices

Model 1 Model 2 Model 3 Model 4 Model 5
GM-RW -0.015 -0.017⇤ -0.019⇤ -0.014 -0.013

(-1.84) (-2.03) (-2.45) (-1.69) (-1.57)
Palmer-Z 0.019⇤⇤⇤ 0.007⇤⇤⇤

(13.57) (4.41)
Palmer-Z sq 0.009⇤⇤⇤

(13.67)
Wet-Palmer-Z 0.043⇤⇤⇤

(22.93)
Dry-Palmer-Z 0.040⇤⇤⇤

(14.56)
PDSI 0.009⇤⇤⇤ 0.003⇤⇤⇤

(12.90) (5.55)
PDSI sq 0.003⇤⇤⇤

(16.33)
Fertilizer exp. -0.175 -0.188 -0.092 -0.167 -0.175

(-1.77) (-1.88) (-0.98) (-1.73) (-1.79)
Seed exp. 0.565⇤⇤ 0.653⇤⇤⇤ 0.574⇤⇤ 0.552⇤⇤ 0.578⇤⇤

(3.09) (3.35) (3.15) (3.10) (3.10)
County Fixed E. Y Y Y Y
Year Fixed E. Y Y Y Y
Observations 9484 9484 9484 9484 9484
Adjusted R

2 0.470 0.494 0.503 0.465 0.484
AIC -21127.338 -21564.467 -21729.355 -21036.245 -21368.202
BIC -20841.044 -21271.015 -21435.903 -20749.950 -21074.750
t statistics in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Notes: This table presents estimates of the e↵ect of genetically modified varieties with
corn rootworm traits (GM-RW) on the loss cost ratio (LCR) for a panel of 293 U.S. Central Corn
Belt (CCB) counties over the years 1981–2015. LCR is considered for the total of the two biggest
insurance plans: Yield Protection and Revenue Protection. Each column employs the OLS fixed
e↵ects, regressing LCR on GM-RW with di↵erent covariates as shown in the table with county

and time fixed e↵ects.

Table A.3: Selected Variables through Cluster-Lasso

tmin6 tmin9 HDD5 VPD5 low temp5
HDD6 VPD6 med temp6 GDD7 HDD7
med temp7 HDD8 low temp9 may zndx wet s
may zndx n jul zndx wet s jul zndx dry s
sep zndx n may phdi wet s aug phdi dry s
sep phdi n sep phdi dry m may pmdi n
jun pmdi wet m sep pmdi wet m
may sp01 wet s may sp01 wet m jun sp01 wet m
jun sp01 dry m jun sp01 dry s sep sp01 dry m
may sp02 n jun sp02 wet m jun sp02 n
jun sp02 dry s jul sp02 wet s
jul sp02 dry m aug sp02 wet s
aug sp02 n jun sp03 wet s jun sp03 wet m
jun sp03 dry s aug sp03 wet s aug sp03 n
aug sp03 dry s jun sp06 wet m jul sp06 dry s
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aug sp09 dry m jul sp12 wet s aug sp12 wet m
sep sp12 wet m sep sp12 dry m seed exp
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Table A.4: Estimates of the e↵ect of GM-RW on LCR: 50 monthly weather variables

Estimator

Cluster-Lasso Post-Double Selection

GM-RW -0.020⇤⇤
(-2.64)

Observations 9484
t statistics in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Notes: This table presents estimates of the e↵ect of genetically modified varieties with
corn rootworm trait (GM-RW) on the loss cost ratio (LCR) and employs the Cluster-Lasso
method as used in the main result, Table 3. Note that instead of full 300 weather variables,
only monthly weather variables without drought indices, which are 50 in total are used to select.
LCR is regressed on GM-RW and additional covariates selected among 50 weather and two
expenditure variables. The specification includes a full set of year and county fixed e↵ects and

selected covariates. In the specification, standard errors clustered by county and they are robust
to heteroskedastic and clustered error structure.

Table A.5: Estimates of the e↵ect of GM-RW on LCR: 60 yearly weather variables

Estimator

Cluster-Lasso Post-Double Selection

GM-RW -0.016⇤
(-2.12)

Observations 9484
t statistics in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Notes: This table presents estimates of the e↵ect of genetically modified varieties with
corn rootworm trait (GM-RW) on the loss cost ratio (LCR) and employs the Cluster-Lasso
method as used in the main result, Table 3. Note that instead of full 300 weather variables, only
growing season weather with growing season index weather variables, which are 60 in total are
used to select. LCR is regressed on GM-RW and additional covariates selected among 60 weather
and two expenditure variables. The specification includes a full set of year and county fixed e↵ects

and selected covariates. In the specification, standard errors clustered by county and they are
robust to heteroskedastic and clustered error structure.
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Table A.6: Estimates of the e↵ect of GM-RW on Loss Cost Ratio: Adding crop insurance
related variables and excluding input expenditure variables

Model 1 Model 2 Model 3

GM-RW -0.017⇤ -0.014⇤ -0.015⇤
(-2.50) (-2.08) (-2.32)

Observations 9484 9484 9484
t statistics in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Notes: This table presents estimates of the e↵ect of genetically modified varieties with
corn rootworm trait (GM-RW) on the loss cost ratio (LCR) for a panel of 293 U.S. Central
Corn Belt (CCB) counties over the years 1981–2015. LCR is considered for the total of the two
biggest insurance plans: Yield Protection and Revenue Protection. Each column employs the

same Cluster-Lasso methods with slightly di↵erent set of variables. In each specification, LCR is
regressed on GM-RW and additional covariates (selected variables through the Cluster-Lasso as
described in the text). The first column provides our main results with the same set of variables
used in Table 3. The second column adds insurance variables to the specification in the first
column. The third column excludes the input expenditure variables from the first column. Each

specification includes a full set of year and county fixed e↵ects. In each specification, standard
errors clustered by county and they are robust to heteroskedastic and clustered error structure.

Table A.7: Estimates of the e↵ect of GM-RW on Loss Cost Ratio only for YP

Cluster-Lasso Post-Double-Selection

Yield Protection

GM-RW -0.017⇤
(-2.38)

Observations 9484
9484
t statistics in parentheses
⇤ p < 0.05, ⇤⇤ p < 0.01, ⇤⇤⇤ p < 0.001

Notes: This table presents estimates of the e↵ect of genetically modified varieties with
corn rootworm trait (GM-RW) on the loss cost ratio (LCR) for a panel of 293 U.S. Central Corn
Belt (CCB) counties over the years 1981–2015. LCR is considered for only Yield Protection. LCR
is regressed on GM-RW and additional covariates same as in the Table 3 as described in the text.
The specification includes a full set of year and county fixed e↵ects and selected covariates. In
the specification, standard errors clustered by county and they are robust to heteroskedastic and
clustered error structure.
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Figure A.1: Thresholds used for the drought index variables used in the study

 

                                                       Weather Indices Range 
 

PHDI, PDSI, PMDI    Palmer-Z 

Range                               Category   Range                                                     

> 3.00           Severe wetness               > 2.50 

1.50,  2.99            Mild to moderate wetness     1.00,  2.49 

-1.49,  1.49           Near normal                  -1.24,  0.99 

-1.50, -2.99           Mild to moderate drought    -1.25, -1.99 

< -3.00                  Severe drought                <-2.75 

               
SPxx    

 Category      Range                                                     

Severe wetness                  > 1.50 

Mild to moderate wetness       1.00,  1.49 

Near normal                    -0.99,  0.99 

Mild to moderate drought      -1.49, -1 

Severe drought                  <-1.50 
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Figure A.2: Loss Cost Ratios
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Figure A.3: GM Adoption
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Figure A.4: Degree Days Measures
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Figure A.5: Weather Variables
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Figure A.6: Index Variables
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