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Abstract

Index insurance has been promoted as a promising solution for reduc-
ing agricultural risk compared to traditional indemnity-based insurance.
By linking payouts to an external variable instead of individual loss, index
insurance reduces monitoring costs, and alleviates the problems of moral
hazard and adverse selection. Despite its theoretical appeal, demand for in-
dex insurance has remained unexpectedly low in many developing coun-
tries, triggering a debate on the causes of the low uptake. Surprisingly,
there has been little discussion in this debate about the US experience, al-
though it is a unique case where both indemnity-based insurance and in-
dex insurance have been available for more than two decades. In this case
too however, actual take-up of index insurance is very low, never more
than 5% of insured acreage. Does this mean that we should give up on
index insurance?

In this paper, we investigate the low take-up of area-based insurance
using a field-level dataset for corn and soybeans obtained from satellite
predictions. While previous studies were either based on county means
or used relatively small farm-level dataset, our satellite-derived data gives
us a very large number of fields (close to 1,800,000) comprised within a
large number of index zones (600) observed over 20 years. To abstract
from moral hazard and adverse selection, we run a simulation experiment,
comparing the benefits of both insurance plans using a new measure of
farm-equivalent risk coverage of index insurance. Results indicate that
the simulated risk coverage of index insurance is higher than previously
thought, suggesting a higher theoretical take-up than observed in practice.
Our results reveal however an interesting paradox, where counties with the
highest temporal variability have also the highest spatial variability. This
implies that counties where insurance is the most needed are also the ones
where index insurance is the least effective. Based on this, we investigate
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how satellite data can help us design optimal insurances areas, instead of
relying on arbitrary county boundaries.

1 Introduction

Risk is ubiquitous in agriculture. Weather has an important influence on pro-
duction, yet remains difficult to predict. Likewise, agricultural prices are typi-
cally very volatile, as experienced for example during the price spike in 2007-
2008. This risk has several negative consequences on farmers. In presence of
risk, farmers reduce output, and opt for low-yielding low-risk technologies.
Further, in developing countries with missing credit markets, risk affects nega-
tively farmer’s ability to smooth consumption, and reduces both demand and
supply of credit (Boucher et al., 2008; Karlan et al., 2014).

Agricultural insurance is an important tool to reduce the risk faced by farm-
ers. Historically, initial insurance instruments focused on indemnity-based
schemes, where payouts are triggered when yields on a given field fall below
a certain percentage of the field’s expected yield. This field-based scheme suf-
fers however from multiple issues: 1) moral hazard, where being insured leads
to taking undue risk, 2) adverse selection, where the possible under and over-
evaluation of individual risk leads to adverse sorting of farmers, and finally 3)
high monitoring costs due to the requirement of assessing damage and the data
needed for pricing individual premiums. As a response to these issues, index
insurance offers an interesting alternative. Index insurance links the insurance
payout to low realizations of an external index, which is often defined based
on output (average yields in a given area) or inputs (weather variables such
as rainfall, temperature, etc). The advantages of index insurance are reduced
costs as monitoring individual fields is no longer necessary, absence of moral
hazard since farmers individual actions have no influence on the index, and
potentially reduced adverse selection.1 These advantages of index insurance
over traditional indemnity-based insurance have led to the implementation of
several schemes throughout the world, in particular in developing countries,
and to a sustained interest in the literature (see the reviews by Barnett and
Mahul, 2007; Miranda and Farrin, 2012; Carter et al., 2017).

Despite of the theoretical appeal of index insurance, success of the vari-
ous schemes implemented is rather limited, as summarized by Binswanger-
Mkhize (2012) paper title, Is There Too Much Hype about Index-based Agricultural
Insurance? In general, take-up is found to be very low, even at subsidized pre-
mium rates, questioning the sustainability of such schemes without public or
donor support. The main culprit lies in the principle itself of index insurance:
by de-linking payouts from individual losses, index insurance introduces basis
risk, i.e. the probability that a farmer experiences a loss whereas the index does
not lead to a payout. Ultimately, basis risk is a function of the index accuracy,
and hence depends on whether aggregate yields (for outcome-based indices)

1Note that adverse selection due to spatial or temporal variations in the accuracy of the index
is still possible, see Jensen et al. (2018).
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or specific rainfall variables (for input-based indices) predict well individual
yields. While basis risk is widely acknowledged as the main issue of index in-
surance, few studies have however been able to measure it in practice. Among
the few of those, Jensen et al. (2016) analyze a livestock index insurance pro-
gram in Kenya using four years of data, and conclude with a cautionary note,
finding a substantial basis risk.

In this paper, we take advantage of satellite data techniques to construct a
large dataset of field-level yields for corn and soybeans in the Corn Belt area
of the United States of America. This enables us to conduct an in-depth anal-
ysis of basis risk, and compare the suitability of index insurance over a large
number of zones. The US Corn Belt offers an interesting case to study for two
main reasons. Firstly, its large and rather uniform fields offer a particularly
favorable setting for satellite data, and accuracy of the satellite predictions is
currently higher than in many other countries. Second, the US hosts one of the
largest and possibly oldest index insurance scheme, based on county average
yields. Interestingly, and somehow underappreciated in the literature, lessons
from this scheme are not very encouraging as take-up is very low compared
to demand for the traditional indemnity-based schemes also offered in the US.
Obviously, many explanations for this low take-up of index insurance pertain
to peculiarities of the US context, yet we believe that the lessons from the US
case have a larger relevance in the global discussion on index insurance. In
particular, the US case provides probably an upper-bound for the suitability of
index insurance in general, as its relatively homogeneous production system
makes it well-suited for an output-based index insurance. We would expect
basis risk to be higher in developing settings characterized by larger hetero-
geneitydue to disparities in access to technology, information and credit.

Using satellite data provides us with a very rich dataset compared to any
other study. Our dataset contains the majority of fields in each of the close
to 600 counties in nine states within the US Corn Belt.2 We observe corn and
soybeans yields over a fairly long period of 20 years (2000-2019), which is long
enough to comprise normal cropping years as well as exceptional events such
as the 2012 drought. Keeping only fields for which we have a high classifica-
tion accuracy as well as at least eight years planted to corn or soybeans, we end
up with 1.8 million fields, representing 2.8 M field-crop pairs. Previous studies
in the US used much shorter dataset, ranging from a few hundred fields in Mi-
randa (1991), Smith et al. (1994), Carriker et al. (1991) to above one thousand
fields in Deng et al. (2007). Barnett et al. (2005) have to our knowledge the
largest number of fields in the literature -60’000 corn producers- yet these are
spread out over ten states and contain hence only few fields per county, mak-
ing it difficult to conduct a comprehensive basis risk analysis. In developing
countries, dataset are even smaller, and contain typically one to two thousand
households, covering shorter time periods given the later implementation of
index insurance schemes (Jensen et al., 2016; Flatnes et al., 2018).

2The states are Iowa, Indiana, Illinois, Ohio, Michigan, Minnesota, Missouri, South Dakota and
Wisconsin.
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To analyze the suitability of index insurance, we proceed in two steps. We
first run an analysis at the individual level, comparing for every field the ex-
pected utility of 1) no insurance, 2) field-level insurance and 3) index insurance.
In a second step, we aggregate these measures at the county level, and using
Miranda (1991)’s framework, we compute county-level measures of basis risk.
We compare these various county-level metrics of index insurance suitability
to county characteristics such as temporal and spatial variance, seeking to pre-
dict which counties are the most suited for index insurance. Later on, we take
advantage of the spatially-explicit nature of our data to investigate whether
we can redesign zones in a more natural way instead of relying on arbitrary
administrative boundaries.

Our whole analysis is based on a simplified insurance scheme, where we
compute ex-post fair premiums and compute the benefits of insurance assum-
ing the farmer takes the product every single year. By doing so, we rule out
moral hazard and adverse selection, and abstract from the real-world intrica-
cies of the Federal Crop Insurance system. We do not seek either to factor in the
differences in costs between the different schemes, which are hard to measure
in practice. These abstractions are useful as they allow us to focus on the core
question, that of basis risk and suitability of index insurance per se. This also
alleviates the need to make strong assumptions and settle for specific models of
moral hazard or adverse selection. Taken all together, we are probably under-
estimating the benefits of index insurance from the insurer perspective, as we
are not modeling the benefits of lower monitoring costs and absence of moral
hazard.

The paper is organized as follows: in Section 2, we describe the Federal
Crop Insurance Program, and present our modeling approach. Section 3 presents
the dataset, its construction and validation. Finally, in Section 4, we show our
main results.

2 Context and conceptual model

2.1 The US Federal Crop Insurance Program

The US Federal crop insurance program has become since its inception in 1938
one of the largest programs of the Farm Bill, costing close to $8 billions a year,
second only to the nutrition program. These large costs can be explained by
the generous nature of the program: the government covers all operational
costs, and subsidizes a large share of the premiums (60% on average). These
high subsidy rates are deemed necessary to induce farmers to participate into
the program, given the relatively low initial participation rates in early years.
Participation is now high, with about 86% of eligible acres covered in 2015.

The Risk Management Agency (RMA) has offered a plethora of insurance
plans throughout the years, with evolving names and specificities. In a nut-
shell, these can be classified into plans insuring yields or revenue, and into
plans insuring at the farm-level or at the county-level. Yield insurance at the

4



Figure 1: Demand for insurance at various trigger levels

Source: Own computation from Risk Management Agency’s Summary of Business

farm level was historically the standard insurance plan. Area-based plans were
introduced in 1993 under the initial name of Group Risk Plan. This area-
based plan is an index scheme, where the index is the average county yield
as measured by official statistics collected by the US Department of Agricul-
ture (USDA). The general idea behind all these plans is that indemnities are
triggered whenever actual (farm or area) yield is below a certain percentage of
its expected value. This trigger level (called somehow ambiguously coverage
level in RMA termsis offered at various levels, ranging from 50% to 85% for
farm-level, and 65% to 90% for the area-based product. Premiums are heav-
ily subsidized, at an average rate of 60%, with the rate decreasing for higher
levels of trigger (see Table 1 ). Figure 1 shows the trigger levels selected by
the farmers for the farm- and area-based insurance over the 2011-2019 period
averaging over corn and soybeans. The figure shows also the so-called catas-
trophic trigger (CAT) which comes at lower cost yet delivers lower indemnity.
Strong differences appear between the farm and area-yield trigger selected. For
the area-based scheme, the vast majority chooses the maximum trigger level,
90%. On the other side, for the farm-based product, farmers choose either the
lowest trigger at 50%, or an intermediate value of 65%, while very few opt for
the maximum coverage at 85%.3 This difference between the trigger choice for
farm- or area-based coverage suggests that area-based provides only a partial
protection due to the basis risk.

Do farmers prefer area- or farm-based insurance? Figure 2 shows the per-
centage of each scheme in terms of total acreage covered, both for the yield and
revenue types. The demand for index insurance is very small, not more than
5% in each case compared to traditional indemnity-based insurance. These
results do not appear very encouraging for index insurance, casting doubt as
to whether index insurance should be promoted at all. One should bare in

3The fact that farmers select only intermediate coverage for the farm-value has been discussed
in various papers, see Du et al. (2016); Babcock (2015); Feng et al. (2020)
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Figure 2: Demand for area versus farm-based insurance

Source: Own computation from Risk Management Agency’s Summary of Business

mind however that it is difficult to compare directly the two products. Not
only are subsidy rates different, but there are plenty subtle differences that we
sidestepped for the sake of clarity.4 Interestingly, a similar product with both a
farm- and area-based option is offered by the USDA Farm Service Agency, and
there the conclusion is reversed: the area-based product is largely preferred
over the farm-based one (Schnitkey et al., 2015). This observation motivates
our approach below to evaluating the benefits of index insurance using a styl-
ized representation abstracting from many institutional peculiarities.

2.2 Conceptual model

We follow here the model of Miranda (1991) measuring the benefit of area-
based index insurance. We write yict as the yield for field i in county c at time t,
and write the annual county average yield as ȳ·ct, the long-term county average
yield as ¯̄y·c·, where the · notation indicates over which dimension the averaging
is done.5 The county-level payout is triggered whenever actual county yields
ȳ·ct are below their long term target τi ¯̄y·c·, where τi is the trigger level chosen by
farmer i. Miranda considers a simplified payout scheme,6 where the indemnity
is the difference between target county yields and actual county yields when-
ever actual county yields are below, i.e. Ic

ct = max(τi ¯̄y·c· − ȳ·ct, 0). Note that
for ease of exposition the indemnity is expressed in yields units, not scaled to
dollars units, which are here unnecessary given that our focus is on yield, not
revenue insurance. Turning to the farm-based insurance, we consider later on
the same indemnity scheme, simply replacing county yields by individual field

4Most notably, we did not discuss here the details related to the protection price for area-based in-
surance, nor the enterprise units for farm-based insurance, all with different subsidy rates. Likewise,
yield exclusion options allowing to exclude a particularly bad year from the farm-level premiums
increase the attractivity of farm-level products.

5As an example, ȳ·ct ≡ 1/nic ∑i∈c yict denotes the county mean over time.
6The actual indemnity scheme divides the difference by the trigger τi , and contains also a pro-

tection factor, which allows to scale up or down the indemnity payment. The RMA does to our
knowledge not provide data on insurance take-up by protection factor level, so we simply set it to
100%, to ease comparison with farm-level insurance. See Skees et al. (1997) for details.
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yields: IF
ict = max(ȳic·τi − yict, 0), where ȳic· is the field-level mean. Miranda’s

model is based on βic, the coefficient of a regression over time of individual
yields yict against county yields ȳ·ct:

yict = αic + βicȳ·ct + εict (1)

Intuitively, βic indicates how well a farmer’s yield is correlated to the county
yield. The term εict represents idiosyncratic farmer-specific shocks, that cannot
be insured by a county-level insurance scheme. Miranda analyses the benefits
of area-based insurance using a mean-variance framework. When premiums
are fair, the absolute difference in mean-variance utility between area-based
and no insurance amounts to the difference in variance. Miranda shows that
this variance reduction ∆ic is a function of the farmer’s own βic and a county-
level critical beta value β̃c: ∆ic = σ2

IC [βic/β̃c − 1], where σ2
IC is the variance of

the indemnity. The risk is reduced for all farmers above the critical beta, i.e.
βic > β̃c. Further theoretical refinements of Miranda’s model focusing on the
design of an optimal contract were made by Mahul (1999), Vercammen (2000)
and Bourgeon and Chambers (2003).

The use of a mean-variance utility function is however somehow controver-
sial. Jensen et al. (2016) argue in particular that the assumption of symmetry
in preference between positive and negative shocks is not very relevant for
the context of crop insurance, targeted at reducing negative shocks. Using a
general expected utility framework is more theoretically coherent, yet unfor-
tunately does not lead to simple analytical expressions. We can however use
a second-order Taylor approximation and still obtain analytical results. The
absolute difference in utility ∆uic becomes now: ∆ E[uic] ≈ −1/2u

′′
(µic)∆ic,

where µic is the expected value of the field-level mean ȳic· and ∆ic Miranda’s
variance reduction factor. Importantly, Miranda’s result that only farmers with
βic > β̃c will benefit from index insurance still holds. Given the difficulty
of obtaining analytical results in the general case, we will proceed below to a
simple empirical evaluation of utility of the various insurance plans based on
(simulated) yield data. Instead of expressing our comparison in utility units,
we use certainty equivalents (CE), which are expressed in yield metrics. The
certainty equivalent is the non-random value whose utility is the same as the
expected utility from a random lottery, where the lottery here is simply the set
of observed yields. That is, CE is the value such that u(CE) = E[U(y)] holds.
A higher CE is equivalent to a higher utility, and hence we simply compare
index insurance versus no insurance based on their ratio CEI/CEno. A ratio >1
implies a higher utility of index insurance, U I > Uno.

As discussed in the beginning, basis risk is often considered the main issue
with index insurance. Basis risk is often defined as the risk that the farmer
experiences a loss, while the index does not leads to a payout. The reverse
situation of the farmer experiencing no loss yet receiving an indemnity is also
possible, but usually not taken into account, as the emphasis is on the ability of
an insurance scheme to reduce negative events, not to amplify positive ones.7

7It should be noted however that insurance windfalls have also an indirect negative impact by
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Following Elabed et al. (2013) we can consider the False Negative Probability
FNP:

FNP(θc, θi) ≡ P(ȳ·ct > θc|yict < θi)

Here θc is a county loss threshold, and θi is a farmer-specific subjective loss
threshold. This measure is however unsatisfying for multiple reasons. First
of all, it requires to define specific loss thresholds θc and θi, which is mostly
arbitrary given that yields are a continuous variable. Second, this is only a
probability between 0 and 1, and hence is not indicative of the amount of loss
experienced. An insurance missing a particularly catastrophic event yet deliv-
ering payouts for all other small loss events would be deemed to offer a low
basis risk despite not serving when it is the most needed.8 We adopt here an-
other definition of basis risk, related to the county yield regression (1). We look
at the variance of residuals σ2

ε normalized by the field-specific variance, that is
1− R2

ic. This represents the amount of idiosyncratic risk that can not be insured
by the index. A value of 0 indicates perfect correlation with the index, while a
value of 1 indicates that the variables are fully uncorrelated. In the latter case,
βic → 0 so that the reduction in variance ∆ic is negative, indicating that the
area insurance provides less utility than without insurance.9

The discussion so far focused on measuring the benefits of index insurance
versus no insurance. The next question to raise is how index insurance com-
pares to farm-based insurance, which is a more stringent and also more infor-
mative test. Noting that no-insurance is equivalent to a farm-based insurance
with a 0% trigger level, we seek to strengthen our comparison, comparing now
the utility of index insurance versus increasing levels of farm-based insurance.
We name such measure the farm-equivalent risk coverage, which we define as the
highest level of farm-based insurance for which index insurance is at least as
good or better. The higher this number is, the more protection index insurance
gives in terms of an ideal farm-based scheme. Formally, our measure is defined
as:

τ∗ ≡ max
τ∈{0.2,...,0.9}

τ such that Uarea
90% > U f arm

τ%

We set the value of 90% for the area insurance as this is the value most se-
lected by farmers, and search over a large set candidates values of {0.2, . . . , 0.85, 0.9}
which includes all values offered by the RMA (from 0.5 to 0.85). For an index-
insurance with a trigger of 90%, this measure will typically lie in the interval
[0%, 90%]. The upper bound comes from the fact that at equal trigger level, a
farm-based insurance is superior, as it covers also the idiosyncratic risk on top
of the systematic covered by the index insurance. We still include the value of

increasing premiums.
8See Clarke (see 2016); Barré et al. (see 2016) for an in-depth discussion of metrics for index

insurance.
9This is true for a mean-variance utility function, as well as for any utility function up to a

second-order approximation.
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90%, as in some cases, the index at 90% turns out be to better than the farm-
level insurance at 90% due to random chance.

A limitation of our measure is that it remains undefined in two cases. For
one, if index insurance is not even as good as no insurance, then it is clear
that it won’t be better than any level of farm-based insurance. In this case, we
attribute a τ value of 0%. The second limitation arises from the fact that we
can only observe the utility of farm-level insurance for those trigger levels at
which there is a yield fallout happening. If for a given field the minimum yield
observed is say at 70% of the average yield, then farm plans covering 50%
to 65% will not provide any protection, and hence will give the same utility
as the situation without insurance. If however index insurance is inferior to
the minimum observed relative yield, we only know that it lies in an interval
[0, ymin/ȳ[. These two limitations raise issues for the aggregation of our farm-
equivalent risk coverage at the county level. To address these two issues, we
consider rank statistics such as the median and the proportion of fields within a
county which have τi > 0.85, as well as τi > 0.50.10 These numbers correspond
to the highest and lowest levels of farm protection available. The 50% level
is also called catastrophic protection, so serves as a good benchmark for the
minimum protection level index insurance should provide. The 85% level on
the other side corresponds to the best possible farm-level protection, so any
field with a farm-equivalent risk coverage at 85% or above would strictly prefer
area-based insurance over far-based insurance.

To measure the direct benefit of index insurance both versus no insurance
and versus farm-insurance, we simply specify a-priori the same utility function
for all fields, and evaluate our measures based on the yields with or without
insurance. Following previous literature (Wang et al., 1998; Deng et al., 2008;
Flatnes et al., 2018) we use a constant relative risk aversion (CRRA) iso-elastic
utility function, with a parameter of 1.5. Fair premiums and indemnities are
computed ex-post from the data. By following this procedure, we make two
fundamental assumptions. Firstly, we are assuming that yields are the same
whether or not the farmer takes insurance. This means that we are ruling out
possible moral hazard. Second, we are computing ex-post fair premiums as-
suming the farmer takes the insurance every period, ruling out adverse selec-
tion. While this makes us depart from real-world characteristics in an impor-
tant way, this allows us to focus on our main topic of interest, the utility of
index insurance.

A defining characteristic of production in the Corn Belt is the practice of
rotation between corn and soybeans (see Hennessy, 2006; Seifert et al., 2017).
Given the large dataset we have, we observe almost every possible sequences
of corn and soybean (and other crops), from always corn, always soy, always
rotating to any other intermediate combinations. This raises a problem for the
computation of fair premiums. Our fair premiums are computed using county

10Using rank statistics will take care of the issue of aggregating over zero values. It will also
partially address the problem of undefined values, although there is still a small percentage of
fields with relative minimum above 85% (or above 55%) which would be miscounted. The total
percentage of undefined values is however relatively small, between 2% and 5%.
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yields for the whole period. This means that the premiums will be fair for
fields planting always corn (or always soy) over the whole period. But for
other fields, the premium might be exceptionally favorable (say field is planted
to corn only in drought year 2012 and receive huge indemnity) or very unfa-
vorable (field is planted to corn every year but 2012). This brings important
randomness in our data, making our comparisons blurred. To avoid this, we
decide to simulate yields, providing us with a sample of corn and soy yields
every year for each field. This has three further advantages. First of all, this
allows us to extend the time length of our sample, which we simulate using
NASS means from 1990 to 2018. Second, having more observations for each
field increases the probability of observing lower minimum values for each
field, attenuating the problem of undefinedness of our farm-equivalent mea-
sure, which is not defined if the observed relative minimum is too high. Fi-
nally, simulating data can be seen as a measurement error correction, where
we adjust our sample to match official county means. Yield is simulated based
on the field-to-county regression (1): for each farmer we estimate α̂ic, β̂ic and
σ̂2

ic. We then plug-in detrended NASS county means ỹNASS
ct from 1990 to 2018,

and simulate residuals from a N (0, σ̂2
ic), that is ŷict ∼ N (α̂ic + β̂icỹNASS

ct , σ̂2
ic).

To avoid simulating outlying observations, we actually simulate using a trun-
cated normal distribution, setting generous lower bounds of 10 [bu/acres] for
both crops, and upper bounds of 100 [bu/acres] for soy and 350 [bu/acres] for
corn.

3 Data

The yield data comes from the SCYM model developed by Lobell et al. (2015);
Jin et al. (2017); Deines et al. (2019a); Dado et al. (2019). The method pre-
dict yields based on a satellite-derived vegetation index.11 Parameters linking
the satellite-observed vegetation index to predicted yields are derived from
an agronomic crop growth model. In brief, the agronomic model is used to
simulate multiple realizations of pseudo yields and vegetation values. These
simulated pseudo values are used to estimate a regression between vegetation
index and yields. These estimated parameters are used in turn to predict yield
based this time on the satellite-observed vegetation index. The advantage of
this method is that it does not make use of ground data for calibration pur-
pose. When ground truth data is available, it can be used as true out-of-sample
validation. When validated against ground truth data for more than twenty
thousand corn fields, Deines et al. (2019a) find that the overall correlation for
corn is 0.67 at the field level, and increases to 0.85 when computed against
NASS county means. Accuracy for soybeans is typically lower. Different ver-
sions of this dataset have been already used in various studies, Lobell and Az-
zari (2017) look at increasing field heterogeneity over time, Seifert et al. (2018)

11The methods uses the so-called Green Chlorophyll Vegetation index (GCVI) which is similar
in spirit to the widely known normalized difference index, NDVI.
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study the effect of cover crops, Deines et al. (2019b) study the effect of conser-
vation tillage, Stigler (2019) estimates the effect of rotation and Stigler (2018)
measures the supply response to prices. We use here an updated version of
the dataset drawing on the developments by Deines et al. (2019a); Dado et al.
(2019). Previous versions of the dataset were predicting yields for those pixels
designated as corn and soybeans by the Cropland Data Layer (CDL) from Bo-
ryan et al. (2011). This crop map covers nine states of interest in the Corn Belt,
yet starts at different periods depending on the state, with starting dates rang-
ing from 2000 to 2008. To have a consistent sample, we use for 2000-2007 the
crop map of Wang et al. (2020), who use random forests to expands the CDL
from 2000 onwards for the nine states we consider here.

The SCYM dataset is at the pixel level, which is not very relevant to our
analysis here. We use a dataset of field boundaries, the Common Land Unit
(CLU). This dataset was last available for the year 2008, so field shapes might
have changed in the meanwhile. To address this, we select only fields for which
there is a good classification agreement throughout the years. That is, we com-
pute the frequency of the majority vote from the Cropland Data Layer (CDL)
pixel classification, and retain only fields that have on average 85% of classi-
fication agreement. Put differently, we require that for a given field, the CDL
consistently predicts either corn or soybean for 85% of the pixels throughout
the years. The pixel count is done by only considering pixels within a negative
30m buffer, avoiding contamination by mixed pixels lying on the border of the
field. Averaging of the SCYM yields within the field boundary is made using
the same subset of interior pixels.

We apply two filters on the initial set of available field boundaries. Besides
filter field boundaries to keep only those well classified, we also restrict the
sample ti consider field-crop pairs that have at least eight years of observa-
tions in corn or soybeans. This is to guarantee statistical accuracy when we
estimate the field-to-county regressions. This implies that we might observe a
field for only one crop or for both. Applying these two filters, we are left with
1.8 million fields in the 9 states we consider. Among these 1.8 millions fields,
for 54% of those we observe data on both crops (i.e. we have more than ≥ 8
observations for both corn and soybeans), while for 28% we observe only corn
and 18% only for soy, which gives us 2.8 million field-crop pairs. The sam-
ple runs from 2000 to 2019, and the total size of our sample is ∼ 30 million
field-crop-year observations.

4 Results

To start with, we compare the field-level variability over time of corn and soy-
bean. Figure 3a shows first the field-level time variance (expressed as coeffi-
cient of variation for ease of comparison) and 3b its idiosyncratic part, as mea-
sured by the 1 − R2 from the field-to-county regression. Interestingly, while
corn appears more variable than soybean, its variability is better captured by
co-movement with county averages, so that the idiosyncratic variability is much
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Figure 3: Field level total and idiosyncratic variability (raw data)

(a) Coefficient of variation

(b) Basis risk 1− R2

Source: Own computation from SCYM. We kept only fields that have at least 8
observation for each crop. The density is further computed by weighting fields by the
number of years available.

lower than for soybeans. In our simulated sample, average corn yields over
fields and years is 162 [bu/acre], and 51.7 for soy. Given the risk-aversion func-
tion we specified, this amounts to a certainty equivalent (CE) of 155 [bu/acre]
for corn and 51 [bu/acre] for soy. The difference between the average and CE,
called the risk premium, indicates the cost of risk. Here, risk induces a welfare
loss in yield metric of 7 [bu/acre] for corn and 0.6 for soy, amounting to 4.3%
and 1.2% in percentage.

We turn now to our two main measures of the utility of index insurance,
the utility of index insurance versus no insurance, and the farm-equivalent risk
coverage. Figure 4 shows the density of the risk premium reduction. This indi-
cates how the risk premium of no insurance is reduced with index insurance, a
higher reduction meaning higher utility from index insurance. We see clearly
that index insurance provides more risk reduction compared to soybeans. The
average reduction for corn is 43%, while that for soybeans is about 30%. The
proportion of fields for which the reduction is negative, i.e. utility from index
insurance is actually lower than without insurance, is also lower for corn, at
2.2% against 4.2% for soybeans. The better results for corn seems to be in line
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Figure 4: Comparing index insurance versus none: reduction in risk premium

with the findings from Figure 3b, which showed that the basis risk was lower
for corn.

Moving to the more stringent comparison between index insurance and
farm insurance, Figure 5 shows our measure of farm-equivalent risk coverage.
The category 0% indicates fields for which index insurance is not even as good
as no insurance. These are the same percentage as the ones in Figure 4. The
category undef corresponds to those fields for which our measure is undefined
due to the fact that the utility of index insurance is lower than the smallest
observed farm-equivalent category, yet higher than no insurance. Focusing
on the subset of well-defined values, it is apparent again that corn provides
a higher protection than soybeans. Looking at our measure of fields with at
least an equivalent coverage of 85%, this number is relatively high, at 40% and
30% percent respectively. This is an important result, as it suggests that index
insurance performs quite well relatively to the best available farm-level insur-
ance level. Another interesting level to compare to is the 50% trigger, which
is also the so-called catastrophic level offered at very low cost for farm-level in-
surance. There is now a large amount of fields for which index insurance is
at least as good as this 50% level, 95% for corn and 92% for soybeans.12 Note
that the 90% and 95% triggers are not offered by the RMA at the farm level,
and we would expect that index insurance at 90% does not perform better than
farm-level insurance at the same 90% trigger or even higher 95%. Computing
the farm-equivalent risk coverage for the 90% trigger is however informative on
the randomness of our simulation: had we simulated data for a longer period

12This number is possibly under-estimated due to the undef category, which corresponds to
fields whose farm-equivalent coverage is identifiable only over an interval. Likely, some of these
fields would have a value above 50%, yet are not counted as < 50% in this statistic.
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Figure 5: Comparing index insurance versus farm insurance

than 30 years, fields with index insurance better than the 90% farm-level trigger
would certainly shrink rapidly.

Concluding this first section, we find evidence in favor of index insurance,
although the metric we consider play an important role. When doing a raw
comparison versus no insurance at all, we find that a high number of fields,
98% of corn and 95% of soy fields, would benefit from index insurance. When
comparing against the more stringent criterion of farm-equivalent risk cover-
age, we find again that for a relatively large number of fields, index insurance
compares at least as well as the minimum catastrophic rate of 50% (95% and
72% for corn and soy). Finally, when subjected to the highest criterion compar-
ing it to the maximum available farm-level trigger level of 85%, a smaller yet
still large proportion of fields would still prefer index insurance, at 40% and
30%. Interestingly, this number is still much higher than the observed take-up
of index insurance (see Figure 1).

We proceed now to a cross-county comparison of the suitability of index
insurance, relating our measures of index insurance utility to characteristics of
the 597 counties in our dataset. We start by showing the spatial and temporal
variation of yields between counties. The county-average temporal variability is
computed as the mean of every field’s temporal variance.13 The county aver-
age spatial variability is computed as the variance of the field means. It basically
indicates how different are fields within a county, and is related to the con-
cept of local yield gap. Figure 6 shows these measures for each crop. The two

13Note that this county average of field-level temporal variance σ2
i is related yet distinct from

the variance of the county average, Var(ȳ·t) = 1/Nσ2
i + (N − 1)/Nρ̄, where ρ̄ is the average

correlation among fields.
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Figure 6: Corn: temporal and spatial variability

measures show clear spatial patterns with a core versus periphery pattern, where
variability is relatively low in the center of the Corn Belt, in particular in Iowa
(IA), North of Illinois (IL) and South of Minnesota (MN). On the other side,
bordering regions such as South Dakota (SD), Missouri, and South of Illinois
(IL), Indiana (IN), Ohio, Michigan (MI) and Wisconsin (WI), have markedly
higher variability. This spatial pattern is similar across crops or variables, with
a correlation between variables of 0.43 for corn and 0.36 for soy, while for the
same variability measure, the correlation between corn and soy is 0.5 for the
temporal variation, and 0.55 for the spatial variation.

Turning now to the insurance utility measures based on the simulated data,
Figure 7 compares index insurance versus none by showing the percentage
difference in certainty equivalent (CE) of index insurance compared to no in-
surance. Interestingly, the benefit of index insurance is high in the periphery
regions that have a high variability. It is indeed particularly high in Missouri
(MO) and southern Illinois (IL), which are regions with both high temporal
and spatial variability. In contrast, index insurance seems to be of more limited
use in the core regions such as northern Iowa (IA) and southern Minnesota.
Figure 8 compares on the other side the index insurance to the farm-based in-
surance, using our measure of farm-equivalent risk coverage at 85%. The conclu-
sion is now reversed: counties in the periphery have a low farm-equivalent risk
coverage, while those in the core show much higher benefits from index insur-
ance. Most counties in Iowa (IA) have 40% or more of their fields which would
strictly benefit from index insurance even compare to farm-based protection at
85%.

The previous results reveal an interesting reversal: counties where index
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Figure 7: Utility comparison: area-plan versus no insurance

Figure 8: Farm-coverage equivalent of area insurance: percentage of fields
within county with coverage > 85%
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Figure 9: Utility of insurance according to county temporal and spatial vari-
ability

insurance appears to be the most useful when assessed against no insurance
turn out to be counties in which index insurance is the least beneficial in term
of farm-equivalent protection. This paradox stems from the fact that temporal
and spatial variability happen to be positively correlated, yet these have op-
posite effects on the usefulness of index insurance. To make this point clearer,
Figure 9 show the value of index insurance (compared to no insurance or to
farm insurance), projected in the spatial-temporal variability space. The index
insurance utility metrics were interpolated, and red dots indicate the actual
value of the near 600 counties in our sample. The first row shows the values
for the utility of index insurance versus no insurance. Highest utility is found
on the east side of the space, where temporal variability is highest. The gradi-
ent of utility along the temporal variability (x-axis) is so strong that it appears
to obscure the effect of spatial variability (y axis), which seems to have almost
no impact on the utility of index insurance. However, when looking at the util-
ity of index insurance compared to farm insurance on the second row, results
are reversed, much as we saw from maps 7 and 8. The highest utility of index
insurance is now on the south-west part of the graph, where spatial and tem-
poral variability are lowest. The east portion that was previously giving the
highest utility when compared to no insurance gives now almost the lowest
utility.

The reversal we document here leads to a puzzling paradox: those places
where risk is highest and hence where insurance is the most needed are also
those where index insurance is the least useful. Said differently, index insur-
ance leads to good farm-equivalent coverage only in those counties that have
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the lowest risk. Because of the positive correlation between temporal and spa-
tial variability, when average individual risk increases, so does the spatial vari-
ability, deteriorating the benefits of the index insurance. A direct consequence
of this is that selecting good zones for index insurance is a difficult task: for one,
easy available statistics such as the temporal variance of the zone average14 are
potentially misleading, leading to choose zones where index insurance offers
the lowest farm-equivalent coverage. What is clearly needed beyond the vari-
ance of county average is information on the spatial variability, which is much
harder to obtain in practice.

4.1 Towards better zone design?

Having investigated the suitability of index insurance in each county, the next
question we ask is whether there are gains to be made by redesigning these
county zones. The index insurance from RMA uses county boundaries. The
reliance on county boundaries is mainly done out of convenience, given that
this is the unit considered for official statistics. But there is no reason to believe
that these administrative boundaries represent homogeneous regions. Thanks
to the geo-referenced dataset we have, we can design more natural zones than
the arbitrary county boundaries. This is however challenging computationally,
given the huge size of our sample (1.8 M fields), making a full redesign of the
entire sample a very hard task. As a first step in this direction, we proceed to
a simpler exercise where we seek to split each county into two sub-clusters.
While ideally these county sub-clusters would contain spatially-contiguous
fields, we take the simpler approach to use standard cluster algorithms that
ignore spatial constraints. This will provide an upper bound on the usefulness
of sub-county clustering, given that imposing spatial restrictions will decrease
the homogeneity of clusters, and thereby likely reduce the improvement in util-
ity of insurance compared to the unrestricted sun-clusters. The exercise is also
run separately for corn and soybeans, which provides again an upper bound,
given that imposing the more realistic condition that the zone is the same for
both crop would further reduce the clustering effectiveness.

A concern about splitting counties into two might be that this is mechani-
cally increasing the usefulness of index insurance by reducing the size of the
pool, thereby increasing the weight of each own field in the mean. To make
sure our results are not driven by this mechanical artifact, we first did random
splits of each county. This gives us a benchmark against which to assess the
value of more sophisticated splits. Simulations indicate that this mechanical
effect is very small: only for counties with less than 50 fields does a random
split noticeably increase the respective R2, and beyond 100 there is really no
difference.

We use various variables to cluster our counties. We consider first clus-
tering on the yields. This should provide the best split, and hence we would

14Remember that our measure of temporal variability used here is derived from the average
field-level variance, which is not equal to the variance of the average.
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Figure 10: Pre- and post-split county utility of insurance: percentage of fields
with farm-equivalent coverage above 85%

expect higher improvements from this method. In some contexts with less
data, clustering on yields might difficult, so we consider also clustering based
on a soil data. We take the soil data from the SSURGO survey, which covers
the whole US. We consider their National Commodity Crop Productivity Index
(NCCPI) variable, as well as the root zone available water storage.

A last concern about the clustering exercise is that the simulated data is
simulated under the Miranda’s model with one single mean and i.i.d. idiosyn-
cratic errors.15 Under this model, clustering units should not lead to much im-
provements in homogeneity. Even clustering low and high betas (fields with
low or correlation to the mean) would have little impact, as each subgroup is
still constructed to be (weakly) correlated to the same average. To address this
issue, we use here the raw data, enforcing premiums to be fair at the field level
instead of county level.

Figure ?? shows the results from the clustering exercise, using yields as clus-
tering variable. The black line shows the pre-split county percentage of fields with
farm-equivalent coverage of at least 85%. The value of the metric is displayed
over the x-axis, and counties are ordered along the y-axis. Dots indicate the
post-split average measure, that is the average across the two sub-clusters. A
dot on the right size of the black line indicates an improvement from splitting.
Surprisingly, some counties see a deterioration from splitting, although most
of them (∼ 90%) see an improvement. Without surprise, the largest improve-

15In fact, the covariance matrix of the data simulated under the i.i.d. model has a so-called spiked
structure, with on one dominant eigenvalue, and further eigenvalues explaining little remaining
variation.
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ments tend to happen for the counties that have the initial lowest measures.
Conversely, counties with very good farm-equivalent coverage tend to see lit-
tle improvements. Dots are colored according to whether the state is part of
the so-called 3I states (Iowa, Illinois and Indiana) or the six others. The 3I are
a weak proxy for the core states we described, and tend indeed to have higher
initial metric.

Overall, results from the splitting exercise are rather disappointing: the av-
erage improvement is just 2% for each crop, indicating that with 2% more of
fields would strictly prefer index insurance even over the highest farm-level
insurance at 85%. Results for our other metrics (percentage of fields above
50%, or CED ratio of index insurance versus none) are similarly low. These
results are particularly disappointing keeping in mind that the clustering is
made for each crop separately, and without spatial contiguity. Adding these
additional constraints would reduce further the benefits from sub-clustering.
https://www.overleaf.com/project/5e5482789438140001249d50

5 Conclusion

In this study, we investigate the suitability of crop insurance in the US using
a unique dataset of close to 1.8 million fields observed over 20 years through
satellite remote sensing. We run a large-scale simulation seeking to replicate
observed yields as closely as possible, yet abstracting from moral hazard or
adverse selection issues. We develop several metrics of suitability of index
insurance based on expected utility theory, comparing index insurance to no
insurance but also to farm-level insurance. Thanks to the very large scale of
our dataset spanning close to 600 index insurance zones, we investigate then
what are the characteristics of the counties which make insurance more bene-
ficial. We finally investigate whether basis risk can be reduced through a zone
redesign, splitting each county into two sub-clusters.

Our current results bring both hope and concern about index insurance.
On the positive side, our simulations show that absent adverse selection and
moral hazard, index insurance brings a positive improvement for almost all
fields. When expressed in our new measure of farm-equivalent coverage, in-
dex insurance is at least as good as a 50% farm coverage for a majority of fields,
indicating that it can serve the basic function of protecting against catastrophic
events. Furthermore, when assessed against the highest-available level of 85%,
30% of the fields still benefit more from an index insurance at the 90% coverage
level. On the negative side, our results comparing county characteristics and
index insurance suitability indicate that where those areas where risk is high-
est turn out also to be those where index insurance is the least beneficial. This
result is explained by the fact that temporal and spatial variability tend to be
correlated at the county level, so that counties with highest needs for insurance
(high temporal variability) are those where index insurance is the least effective
(high spatial variability). As a second negative result, we find that our hope to
be able to reduce basis risk by redesigning index zones is met with little suc-
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cess. Trying a simple yet unfeasible procedure that provides an upper bound
on the actual benefits from zone redesign, our strategy to split counties into
two sub-clusters leads to a modest 2% increase ink the number of fields which
would prefer index insurance to the highest available farm insurance. This is
certainly not enough to advocate for such an approach in practice, although it
might still be useful in other contexts where initial zones are less homogeneous
than the Corn Belt counties.

This study could be extended in several ways. For one, we assumed away
adverse selection and moral hazard, and relaxing each of these assumptions
would be interesting on its own, although it will require in turn to make stronger
assumptions for modeling each component. In this regard, it is important to
emphasize that we constructed the premiums to be fair ex-post, which implies
that no adverse selection is possible. Predicting ex-ante premiums, following
the large literature based on Harri et al. (2011), would be a worthwhile ex-
tension, opening the door to models of adverse selection following Just et al.
(1999). Finally, besides relaxation of the current model, progress should be
made on the methodological side to simulate yield data, as well as to cluster
fields.
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Table 1: Subsidy rate for farm- and area-based plans, yield protection

Subsidy rate

Coverage type Coverage Level Farm yield Area yield

Catastrophic 50% 100%

Additional

50% 67%

55% 64%

60% 64%

65% 59%

70% 59% 59%

75% 55% 59%

80% 48% 55%

85% 38% 55%

90% - 51%
Source: RMA Insurance Handbook

A Appendix

A.1 Supplementary figures
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