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Economic Efficiency of Food Safety Modernization Act: Preventing Illnesses from 

Contaminated Water 

 

 

Abstract 

 This paper provides a theoretical framework and a corresponding empirical analysis of food safety-

related irrigation water quality regulatory standard under the Food Safety Modernization Act (FSMA). The 

stochastic mixed integer price endogenous partial equilibrium model with recourse is used to examine the 

optimal irrigation water quality regulatory standard under various scenarios of the foodborne illness harm 

values, costs of implementing the regulatory standard, costs of irrigation, and other key parameters. The 

study explicitly examines tradeoffs between improved food safety and costs of regulation, taking into 

account producer response to regulatory requirements, the effectiveness of the prevention strategy, and 

implications for welfare in terms of economic surplus. Lettuce industries in California and Arizona are 

considered as a case study. We find that expected prices of “Head” and “Leaf and Romaine” lettuce under 

the FSMA proposed regulatory standard increase by 0.98% and 1.38%, respectively relative to the solutions 

with no regulatory standard. The results show that if average cost per foodborne illness is $4,000, the 

regulatory standard does not pass the cost/benefit test. If the cost of illness increases to $10,000 per case, 

then the standard is cost effective unless implementation costs exceed $2 million.  

 

Keywords: Food Safety Modernization Act; Partial equilibrium; Irrigation water quality. 

JEL classification: D61, D78, Q11, Q18 
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1. Introduction 

Food safety remains a major public health concern with significant implications for 

consumers as well as producers (Ollinger and Bovay, 2020; Bar and Zheng; 2019; Bellemare and 

Nguyen, 2018).1 Despite the economic importance of foodborne disease management and the 

reoccurring illnesses related to consumption of fresh fruits and vegetables, there has been relatively 

little research that examines the economic efficiency of ex ante regulatory stringency aimed at 

preventing food contamination in fresh produce sector. Nevertheless, policies aimed at improving 

food safety and preventing foodborne illnesses continue to attract significant attention. For 

example, in response to numerous foodborne disease outbreaks, the Food Safety Modernization 

Act (FSMA) was introduced in 2011 to improve the nations’ food safety by directing efforts 

towards prevention of foodborne illnesses with a particular focus on fresh fruits and vegetables.2 

The intent of the FSMA was to focus more on preventing food contamination related illnesses 

rather than reacting to those incidents after they occur. As part of the FSMA, the Food and Drug 

Administration (FDA, 2014) proposed preventative standards and guidelines for safe growing, 

harvesting, packing, and storage of fresh produce intended for human consumption without 

processing. According to FDA, agricultural water used during growing and harvest has the highest 

likelihood of introducing pathogens in fresh produce consumption. Therefore, reducing pathogens 

in irrigation water was proposed as a major component of foodborne disease prevention efforts 

(FDA, 2012).  

In this paper, we develop an economic model for foodborne illness control that examines 

the effectiveness of ex ante efforts taking into account the effects on both consumers and producers 

in a stochastic environment. First, we provide a theoretical framework for examining irrigation 

water quality assurance efforts. Conditions for optimal regulatory stringency of the microbial water 

 

1 Centers for Disease Control and Prevention (CDC) announced an outbreak of Escherichia Coli (E. coli) in 2018 

linked to romaine lettuce irrigated with contaminated water that affected 272 people in at least 16 states with 121 

hospitalizations and 5 deaths (CDC, 2018). In April 2020, 51 reported cases of outbreak of E. coli with 3 people 

hospitalized linked to Clover Sprouts were announced. In January 2019 another E. coli outbreak was linked to romaine 

lettuce. There were 167 cases with 85 people hospitalized in this outbreak (CDC, 2020 and 2019) 

2 The final FSMA rule went into effect in 2016 (the U.S. Food and Drug Administration, 2020). 
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quality requirements are derived as a function of irrigation costs, costs of regulatory efforts, illness 

severity, and consumers’ illness prevention efforts. Next, the optimality conditions are examined 

empirically using the lettuce market as a case study. The model is applied to the analysis of the ex 

ante regulatory standard for microbial quality of irrigation water and ex post required delays in 

harvest and storage when microbial quality standards are exceeded to allow for pathogen die-off 

as proposed by FDA.  

Several studies have addressed the FSMA. Ferrier et al. (2018) estimate the price and 

welfare effects of the FSMA using an equilibrium-displacement model for 20 vegetables and 18 

fruits. Their simulation results show that the FSMA increases farm and consumer prices by 1.46% 

and 0.49% for fruits respectively and 0.55% and 0.14% for vegetables, respectively. They also 

estimate that vegetable and fruit producers’ welfare will decrease by 0.59% and 0.86% respectively 

because of the costs of implementing of the FSMA rules. Bovay and Sumner (2017) use an 

equilibrium-displacement model to study the long-run economic effects of the FSMA in the North 

American fresh-tomato industry. Assuming that implementation of the FSMA leads to less 

frequent foodborne outbreaks and greater demand for safer produce, they show that the wholesale 

tomato prices increase by up to 2.4% due to the implementation of the FSMA if demand for safer 

produce increases slightly relative to a scenario with more foodborne outbreaks and no FSMA. 

The results also indicate that the small farms are disadvantaged due to economies of scale in 

implementing the FSMA directives relative to larger farms.  

Bovay (2017) uses an Inverse Almost Ideal Demand System to assess how adoption of 

collective food-safety standards by farmers in 2007 affected the demand for tomatoes in California 

and Florida. The results of the study do not support the hypothesis that food-safety policies have 

a positive impact on demand for fresh tomatoes. This study suggests that since demand is not likely 

to increase, growers’ profits are likely to decline because increased costs due to the FSMA 

regulations are not offset by a rise in the output price.  

Adalja and Lichtenberg (2018) use data from a national survey of fruit and vegetable 

growers and econometrically estimate the growers’ cost of complying with the FSMA across farms 

of various sizes. The results demonstrate economies of scale in the costs of implementing required 

food safety practices (e.g. employee training, tool and equipment sanitation, etc.). Larger farms 

bear lower costs of implementation per acre. Focusing on a narrower geographic scope and 

particular crops, Lichtenberg and Page (2016) estimate the cost burden of adopting food safety 
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practices like those required under the FSMA using data from a survey of 47 Mid-Atlantic tomato 

and leafy greens growers. The results show substantial economies of scale and a modest cost 

burden on farms of all sizes. They discuss that improvement in compliance with the FSMA for 

non-exempt and small farms that bear a large cost burden may be difficult. Bovay et al. (2018) use 

data from the 2012 Census of Agriculture to estimate the cost of the FSMA compliance by state, 

farm size, and commodity. Using FDA’s cost of compliance estimates, they show that the annual 

cost of compliance, expressed in terms of percentage of total sales, is higher for smaller size farms.   

To our knowledge this paper is the first attempt to examine the food safety-related 

irrigation water quality regulatory standards as a major component of the FSMA. The model builds 

on a unique framework that integrates a dose-response formulation consistent with the framework 

proposed by Lichtenberg (2010) and a stochastic partial equilibrium framework that can be applied 

in similar studies of food safety regulations. We contribute to prior literature with an explicit 

analysis of irrigation water quality control as an ex ante strategy for foodborne disease mitigation 

taking into account costs imposed on producers as well as consumers.  

Contaminated irrigation water can lead to illness if it comes in contact with the edible 

portions of vegetables or fruits that are consumed fresh. To address this risk, FDA proposed rules 

that require periodic testing of irrigation water and restrict the use of water that exceeds the 

maximum allowable amount of indicator microorganisms (Generic E. coli). Generic E. coli is 

found in more than 90% of human and animal feces as well as in non-fecal sources (FDA, 2014). 

Many irrigation water sources in the western U.S. exceed the standards of E. coli set by the FDA 

guidelines (Dadoly and Michie, 2010).  

According to the FDA guidelines, if a) the statistical threshold value (STV) of E. coli 

content exceeds 410 colony forming units (CFU) or b) moving geometric mean (GM) exceeds 126 

CFU per 100 ml of water from any 5 consecutive samples of surface water or 1 sample of ground 

water, then the irrigators have to either stop using water from the contaminated sources (unless 

treated), or extend the storage period and/or delay harvest to allow for microbial die-off (FDA, 

2014). The producers can extend the pre-sale period for up to four days. Produce that is not in 

compliance even after four additional days of microbial die-off, based on the 0.5 log rate reduction 

of CFUs per day, is to be discarded.  

The empirical analysis in this paper relies on a stochastic two stage price endogenous 

partial equilibrium model with recourse. County level planting, irrigation, and delay decisions are 
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optimized with national supply constrained by aggregate county level production in the US plus 

net imports. The objective is to maximize consumer and producer surplus minus aggregate costs 

of E. coli-related illness incidents and costs of prevention efforts. The constraints include demand 

and supply balance, stochastic water quality equations, yield and irrigation relationships, harvest 

and storage delay constraints reflecting STV and GM standards, and illness dose-response 

specifications.  

The two-stage model explicitly examines the tradeoffs between improved food safety and 

costs of regulation, taking into account producer response to regulatory requirements in terms of 

planting and irrigation decisions, the costs and effectiveness of the prevention activities, and the 

implications for producer and consumer surpluses.3 In the first stage, before the stochastic E. coli 

content in irrigation water is determined, the producers make lettuce planting and irrigation 

decisions. In the second stage, harvesting and storage decisions are made subject to the FSMA 

regulations pertaining to acceptable microbial quality of irrigation water.  

The empirical results are consistent with the theoretical analysis and show that expected 

prices of “Head” and “Leaf and Romaine” lettuce increase by 0.98% and 1.38%, respectively 

relative to the solutions with no regulatory standard and more lettuce-related illnesses. We also 

find that considering the consumers and producers surplus impacts, the proposed water quality 

standard is excessively stringent. Also, the results show that if the cost of foodborne illness is 

$4,000, the FSMA regulatory standard does not pass cost/benefit test. If the cost of illness increases 

to $10,000 per case, the regulatory standard passes this test unless implementation costs exceed $2 

million.  

2. Theoretical Model 

The theoretical framework is consistent with a cost minimization balancing framework 

(Elbakidze and McCarl 2006, Hagerman et al. 2015). Conceptually, the economically efficient 

policy minimizes total costs comprised of ex ante costs of prevention and preparedness and ex 

posts costs of response to and damages from stochastic contamination events. Ex ante costs refer 

to costs of activities and policies implemented before the outbreak with the goals of preventing or 

 

3 In contrast, the FDA’s cost/benefit analysis did not include consumer and producer welfare implications (FDA, 

2014). 
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minimizing the risks of foodborne disease outbreaks and/or enhancing the capacity and 

effectiveness of response activities after the outbreak. These costs include direct implementation 

costs, like costs of water sampling and testing, as well as losses in consumer and producer surpluses 

as a result of potential decrease in supplies and increase in prices due to higher costs of production. 

Ex post costs refer to losses due to foodborne illnesses including medical treatment costs as well 

as producer and consumer surplus losses.  

For relatively less stringent ex ante regulation with high levels of maximum allowable E. 

coli concentration in irrigation water, the probability and/or severity of foodborne disease 

outbreaks is relatively high corresponding to high expected ex post costs which include expected 

losses in producer and consumer surpluses from potential outbreaks as well as costs of response 

activities like medical expenses, recalls, etc. On the other hand, ex ante losses in producer and 

consumer surpluses in the case of less stringent regulation are relatively low. At relatively more 

stringent ex ante regulatory standard, with low levels of maximum allowable E. coli concentrations 

in irrigation water, ex post expected losses from potential outbreaks are relatively low as the 

probability of foodborne disease outbreak is reduced due to strict water quality control. However, 

more stringent E. coli regulations imply higher ex ante costs in terms of direct costs of prevention 

activities and losses in consumer and producer surpluses due to increased costs of production and 

prices.  

Ex ante prevention efforts minimize the risks of foodborne disease outbreaks and/or 

enhance the capacity and the effectiveness of response activities. An increase (decrease) of ex ante 

investment in foodborne disease outbreak prevention decreases (increases) the ex post costs. 

Hence, an optimal strategy requires a balance of ex ante and ex post activities (Figure 1). Consistent 

with this rationale, we formulate a regulator’s social benefit maximization problem where the 

regulator maximizes consumer and producer surplus values from consuming and producing 

product Y, minus the cost of water, expected social costs of water contamination related foodborne 

illnesses and cost of maintaining clean water. Let 𝜇 denote the quality of irrigation water, with low 

(high) values of 𝜇 corresponding to better (worse) quality water. The water quality distribution is 

denoted by f(𝜇) with 𝜇 belonging to the interval between (k and z) (Figure 2). The inverse demand 

is P(Y(w), θ), where θ is the water quality standard truncating the left tail of water quality 

distribution. Y(w) is the production function and w is the quantity of irrigation water used in 

production of Y.  
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We write the problem of the regulator as 

 

Max
𝜃,𝑤

𝑆𝑊 = ∫ 𝑃(𝑌(𝑤), 𝜃)𝑑𝑤 − 𝑐𝑤 −
𝑌

0

 

 [∫ 𝑆(𝜇, 𝑌(𝑤); 𝛼)𝑓(𝜇)𝑑𝜇
𝜃

𝑘
− 𝑆(𝜃, 𝑌(𝑤); 𝛼) ∫ 𝑓(𝜇)𝑑𝜇

𝜃

𝑧
] − 𝑅(𝜃; 𝛽)                                    (1) 

 

where c is the cost of irrigation water, 𝑆(𝜇, 𝑌(𝑤); 𝛼) is the damages from foodborne illnesses as a 

function of water quality, consumption, and consumer prevention efforts 𝛼. The term in the square 

brackets represents the expected damages from foodborne illnesses. If microbial water quality is 

above the regulatory standard, 𝜇 ≥ 𝜃, then damages are expressed in terms of 𝜃 because regulatory 

standard prevents water quality from falling above 𝜃. On the other hand, if water quality does not 

exceed the regulatory standard, 𝜇 < 𝜃, then the damages are expressed in terms of  actual water 

quality 𝜇 (Figures 2a and 2b). 

  𝑅(𝜃; 𝛽) is the cost of maintaining water quality standard with 𝛽 as the cost shift 

parameter. We assume that 
𝜕𝑠

𝜕𝜃
> 0,

𝜕𝑠

𝜕𝑤
> 0,

𝜕2𝑆

𝜕𝜃2
> 0, and 

𝜕2𝑆

𝜕𝑤2
> 0. That is, an increase in the 

acceptable amount of pathogens in the irrigation water (less stringent regulation) and increase in 

the irrigation water use will increase social damages from contamination with an increasing rate. 

We also assume that 
𝜕𝑅

𝜕𝜃
< 0 and 

𝜕2𝑅

𝜕𝜃2
≥ 0, i.e. cost of maintaining water quality standard is 

increasing with more stringent (lower 𝜃) water quality standard with an increasing rate. The 

marginal costs of maintaining the microbial quality of irrigation is decreasing (i. e.  
𝜕2𝑅

𝜕𝛽𝜕𝜃
< 0). 

We assume that a decrease in the stringency water quality standard decreases demand (i.e. 
𝜕𝑃

𝜕𝜃
≤ 0) 

with a decreasing rate (
𝜕2𝑃

𝜕𝜃2
≤ 0). Also, an increase in water use increases production of Y (i.e. 

𝜕𝑌

𝜕𝑤
≥

0) with a decreasing rate (
𝜕2𝑌

𝜕𝑤2
< 0). We also assume that 

𝜕2𝑆

𝜕𝑌𝜕𝜃
< 0 which implies that marginal 

damage from additional consumption is decreasing. We assume that 
𝜕2𝑆

𝜕𝛼𝜕𝑤
< 0 which illustrates 

that an increase in consumers preventative efforts decreases marginal damages from additional 

water use and irrigation. We also assume that 
𝜕2𝑆

𝜕𝑤𝜕𝜃
> 0, i.e. less stringent water quality standard 

leads to a rise in marginal damages from additional water use and irrigation.   
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𝜕𝑆𝑊

𝜕𝜃
= ∫

𝜕𝑃

𝜕𝜃

𝑌

0
𝑑𝑌 +

𝜕𝑆

𝜕𝜃
∫ 𝑓(𝜇)𝑑𝜇
𝜃

𝑧
−
𝜕𝑅

𝜕𝜃
= 0\ 

 

 (2) 

𝜕𝑆𝑊

𝜕𝑤
= 𝑃[𝑌(𝑤), 𝜃]

𝑑𝑌

𝑑𝑤
− 𝑐 −∫

𝜕𝑆

𝜕𝑤
𝑓(𝜇)𝑑𝜇 +

𝜕𝑆

𝜕𝑤
∫ 𝑓(𝜇)𝑑𝜇
𝜃

𝑧

= 0
𝜃

𝑘

 (3) 

  

The first order conditions with respect to the water quality standard and irrigation 

(equations 2 and 3) lead to the following propositions (derivation in Appendix 1): 

a) Increase in the cost of water increases irrigation water quality control efforts and 

decreases water use, i.e. 
𝜕𝜃

𝜕𝑐
≥ 0 and 

𝜕𝑤

𝜕𝑐
≤ 0; 

b) Increase in the cost of implementing the irrigation water quality regulatory standard 

results in less stringent standard and lower water use, i.e.  
𝜕𝜃

𝜕𝛽
≥ 0 and 

𝜕𝑤

𝜕𝛽
≤ 0; 

c) If consumers’ prevention efforts and regulatory stringency are complementary 

(𝑆𝜃𝛼>0), then increase in consumer led prevention efforts results in more stringent 

optimal water quality standard and lower water use, i.e. 
𝜕𝜃

𝜕𝛼
≤ 0 and 

𝜕𝑤

𝜕𝛼
≥ 0  

d) If consumers’ prevention efforts and regulatory stringency are substitutes (𝑆𝜃𝛼<0), 

then increase in consumer led prevention efforts has an ambiguous effect on 

optimal water quality standard and optimal water use, i.e. 
𝜕𝜃

𝜕𝛼
=? and  

𝜕𝑤

𝜕𝛼
=? 
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Ex ante stringency of water quality standard 

Figure 1: Cost minimization balance framework 

 

 

 

Figure 2a: Distribution of microbial water quality 

Figure 3b: Damages from foodborne illnesses  
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3. Empirical Model 

The empirical analysis relies on a two-stage stochastic price endogenous partial 

equilibrium model with random E. coli contamination in irrigation water. The model estimates a) 

ex-ante optimal water quality regulatory standard, planted acreage, and irrigation decisions; and 

b) ex-post harvest and storage delays in response to irrigation water contamination under 

mandatory testing of irrigation water according to the FSMA requirements. Two lettuce types are 

included in the model to allow for substitution in consumer demand. 

County level planting, irrigation, and delay decisions are optimized with national supply 

constrained by aggregate county level production in the US plus net imports/exports. The objective 

function maximizes consumers’ and producers’ surplus minus aggregate costs of E. coli-related 

illness incidents and costs of implementing the regulatory standard. The constraints include 

demand and supply balance, stochastic water quality equations, yield and irrigation relationships, 

harvest and storage delay constraints reflecting STV and GM standards, and illness dose-response 

specifications. Irrigation water quality is specified as a spatial randomly distributed parameter 

while the regulatory standard for minimum water quality is endogenously estimated.  

In this model states of nature depend on the stochastic water quality that varies spatially 

and across water sources. Assuming uniformly distributed states of nature, the model is formulated 

as follows:  

 

W= ∑
1

𝑁𝑛
(∑ [∫ 𝑝𝑖

𝑑(𝑥𝑛,𝑖
𝑑 )𝑑𝑥𝑛,𝑖

𝑑 −∫𝑝𝑖
𝑠(𝑥𝑛,𝑖

𝑠 )𝑑𝑥𝑛,𝑖
𝑠 ]𝑖 − 𝛿 ∗ 𝑖𝑙𝑙𝑛) − 𝜋 ∗

∑ 𝑡𝑒𝑠𝑡𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔 − 𝑐𝑤 ∗ ∑ 𝑎𝑓𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔 −∑ [(𝑀𝑓,𝐺𝑀 − 𝜉𝑓,𝐺𝑀 ∗ 𝜃𝐺𝑀) +𝑓

(𝑀𝑓,𝑆𝑇𝑉 − 𝜉𝑓,𝑆𝑇𝑉 ∗ 𝜃𝑆𝑇𝑉)] 

 

  (4) 

where 𝑝𝑖
𝑑(𝑥𝑛,𝑖

𝑑 ) and 𝑝𝑖
𝑠(𝑥𝑛,𝑖

𝑠 ) represent inverse demand and supply functions, respectively. The 

demand functions reflect the product cross prices effects to allow for substitution. 𝑥𝑛,𝑖
𝑑  and 𝑥𝑛,𝑖

𝑠  are 

quantities of demand and supply of crop i under state of nature n. The first two expressions 

represent the sum of consumers’ and producers’ surplus measures. 𝑡𝑒𝑠𝑡𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔  is 1 to represent 

testing irrigation water used for crop i, in farm type f (small, medium, and large), county ct, for 



 

11 

 

water source ws (ground or surface), and for irrigation event g. Irrigation event refers to individual 

crop irrigation occasion. 𝜋 is the cost per testing sample (in dollars), 𝛿 is average monetary loss 

value per each case of illness, 𝑖𝑙𝑙𝑛 is number of foodborne illnesses in each state of nature. cw is 

cost of irrigation water and 𝑎𝑓𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔 is number of acres planted across categories. The last two 

terms in the objective function represent the cost of implementing the regulatory standard. 𝑀𝑓,𝐺𝑀 

and 𝑀𝑓,𝑆𝑇𝑉 represent costs of the most stringent regulatory standard such that any amount of E. 

coli in irrigation water requires discarding the affected produce. 𝜉𝑓,𝐺𝑀 and 𝜉𝑓,𝑆𝑇𝑉 are marginal 

costs of implementing the microbial water quality regulatory standard, corresponding to GM and 

STV. 𝜃𝐺𝑀 and 𝜃𝑆𝑇𝑉 are GM and STV water quality standards, respectively. An increase in  𝜃𝐺𝑀 

and 𝜃𝑆𝑇𝑉 (i.e. less strict water quality standard) reduces the costs of implementation. These costs 

are interpolated using cost estimates of Bovay et al. (2018). N is total number of states of nature 

and W is expected value of social welfare. 

Following conventional partial equilibrium modeling methods, the supply and demand 

balance is represented is equation (5).  

𝑥𝑛,𝑖
𝑑 − 𝑥𝑛,𝑖

𝑠 ≤ 0       ∀𝑛, 𝑖  (5) 

First stage choices in our model correspond to the planting and irrigation decisions made 

prior to crop exposure to contaminated irrigation water. Following previous literature, the 

historical and synthetic crop mix constraints are used to represent crop rotation at county level 

according to technological, managerial and agronomic limitations (Chen and Onal, 2012; 

Elbakidze et al., 2012; Schneider et al., 2007; Adams et al., 2003). Equations (6) and (7) represent 

these constraints using the observed historical county crop mix patterns from prior t years and a 

synthetic crop mix.4 

 

4 Synthetic crop mix is used to overcome the shortcomings of the historical crop mix that limits acreage to vary only 

within the historically observed bounds. The limitation of relying solely on historical crop mix is that this specification 

limits the flexibility of the model needed to adjust to the conditions not observed in historical data. The synthetic 

planted acreage enables greater flexibility in the model by extending the feasible decision space and is estimated 

following the methodology presented in Chen and Onal (2012). The estimated acreage elasticity and hypothetically 

low price of lettuce are used to obtain the synthetic county level acreages. 
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∑ 𝑎𝑓𝑖,𝑓,𝑐𝑡,𝑤𝑠𝑓 = ∑ 𝑐𝑚𝑖𝑥𝑖,𝑐𝑡,𝑡 ∗ 𝜗𝑐𝑡,𝑡𝑡 + 𝑠𝑚𝑖𝑥𝑖,𝑐𝑡 ∗ 𝜏𝑐𝑡         ∀𝑖, 𝑐𝑡, 𝑤𝑠 (6) 

∑ 𝜗𝑐𝑡,𝑡𝑡 + 𝜏𝑐𝑡 = 1    ∀𝑐𝑡 (7) 

where 𝑐𝑚𝑖𝑥𝑐,𝑐𝑡,𝑡 is the historical planted acreage of crop i (including two types of lettuce and 

aggregated other-vegetables) in year t in county ct; 𝜗𝑐𝑡,𝑡 and  𝜏𝑐𝑡 are the choice variables between 

0 and 1 that represent the percentage of acreage in county ct planted according to the proportions 

observed in year t or in the synthetic acreage estimate. 𝑠𝑚𝑖𝑥𝑖,𝑐𝑡 is the synthetic crop acreage 

pattern. Constraint (7) forces a convex combination of historical and synthetic planted acreages. 

This constraint imposes crop rotation requirements for estimated crop acreage. We follow Chen 

and Onal, (2012) to generate synthetic crop mix that allows for greater flexibility in the model by 

extending the decision space. 

In the second stage, crop harvest and storage delay decisions are made according to the 

FSMA proposed regulatory standard. First and second stage acreage decisions are linked in 

equation (8), where as denotes second stage acreage decisions that reflect delays in harvest and 

storage, while af denotes first stage planting and irrigation decisions. 

 

∑𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 = 𝑎𝑓𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔     

𝑑

∀𝑛, 𝑖, 𝑓, 𝑐𝑡, 𝑤𝑠, 𝑔 
(8) 

Supply of crop i under state of nature n is constrained by the sum of production, yield 

(𝑦𝑖,𝑐𝑡,𝑔,𝑑) times acreage (𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑) across counties, irrigation intensity (g), and delay in 

harvest and storage (d) according to equation (9) where 𝑛𝑒𝑡𝑒𝑥𝑖 represents net export for crop i. 

𝑥𝑛,𝑖
𝑠 = ∑ 𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 ∗ 𝑦𝑖,𝑐𝑡,𝑔,𝑑 − 𝑛𝑒𝑡𝑒𝑥𝑖𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑     ∀𝑛, 𝑖 (9) 

Following the guidelines of the FSMA, equation (10) compares the Geometric Mean and 

Statistical Threshold Value criteria to impose the delay of up to four days between the last 

irrigation and end of storage based on daily 0.5 log reduction of microbial water contamination.  
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∑ 𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 =𝑑

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑0 𝑖𝑓 {

𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  100   ≤  𝜃𝐺𝑀  ≤ 𝑚𝑎𝑥

𝑎𝑛𝑑
𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  100 ≤  𝜃𝑆𝑇𝑉  ≤ 𝑚𝑎𝑥

                                           

 𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑1  𝑖𝑓 {

𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−0.5)   ≤  𝜃𝐺𝑀  ≤ 𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  100  

𝑎𝑛𝑑
𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠 ∗  10(−0.5)   ≤  𝜃𝑆𝑇𝑉  ≤ 𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  100

       

 𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑2   𝑖𝑓 {

𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−1.0)    ≤  𝜃𝐺𝑀  ≤ 𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−0.5)

𝑎𝑛𝑑 
𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠 ∗  10(−1.0)   ≤  𝜃𝑆𝑇𝑉  ≤ 𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−0.5)

 𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑3  𝑖𝑓 {
𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−1.5)    ≤ 𝜃𝐺𝑀  ≤ 𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−1.0)

𝑎𝑛𝑑 
𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠 ∗  10(−1.5)   ≤  𝜃𝑆𝑇𝑉  ≤ 𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−1.0)

  𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑4  𝑖𝑓 {

𝜃𝐺𝑀  ≤ 𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−1.5)

𝑎𝑛𝑑 
 𝜃𝑆𝑇𝑉  ≤ 𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠  ∗  10(−1.5)

                                                    

        

∀𝑛, 𝑖, 𝑓, 𝑐𝑡, 𝑤𝑠, 𝑔                    (10) 

 

The specification in (10) follows the FSMA regulatory standard, which requires a) 𝜃𝑆𝑇𝑉 of 

410 or less colony forming units (CFU) and b)  𝜃𝐺𝑀 of 126 or less CFU per 100 ml of water. If 

either of these criteria are violated, then the irrigators have to either stop using water from the 

contaminated sources (unless treated), or extend the storage period and/or delay harvest to allow 

for microbial die-off (FDA, 2014). The producers can extend the pre-sale period for up to four 

days. Produce that is not in compliance even after four additional days of microbial die-off, based 

on the 0.5 log rate reduction of CFUs per day, is to be discarded. Equations (11) and (12) are used 

to obtain the GM and STV values for produce from across counties and farm types in each state 

of nature consistent with Bihn et al. (2017). 

 

𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠 = 10
(∑ log(𝐶𝑃𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑡′)𝑡′ +∑ 𝑡𝑒𝑠𝑡𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑔′∗log(𝐶𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔′))/𝑛𝑔′≤𝑔        ∀𝑛, 𝑖, 𝑓, 𝑐𝑡, 𝑤𝑠 (11) 

  

𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠 =  10(𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠+1.282∗𝑆𝑇𝐷𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠)                      ∀𝑛, 𝑖, 𝑓, 𝑐𝑡, 𝑤𝑠 (12) 

 

where 𝐶𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔 is concertation of  Generic E. coli in water measured in terms of CFU/100 ml in 

state of nature n and 𝐶𝑃𝑛,𝑖,𝑐𝑡,𝑓,𝑤𝑠,𝑡′ is the concentration of Generic E. coli in the months prior to the 
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last month of growing season (t’).5 𝑆𝑇𝐷𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠 is the standard deviation of log(𝐶𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔′) and 

log(𝐶𝑃𝑛,𝑖,𝑐𝑡,𝑓,𝑤𝑠,𝑡′). 𝑔
′ refers to the irrigation events prior to the current irrigation. Generic E. coli 

content of irrigation water source (𝐶𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔) is stochastic and generated according to equation 

(13).  

𝐶𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔 = 𝑀𝑎𝑥(0,Ω(𝑘1, 𝑘2))         ∀𝑛, 𝑖, 𝑓, 𝑐𝑡, 𝑤𝑠, 𝑔 (13) 

  

where Ω is either Lognormal or Weibull distribution function and (k1, k2) are either mean and 

variance or the scale and shape parameters, respectively.6’7 Only specific types of E. coli, including 

E. coli O157:H7 cause foodborne outbreaks (CDC, 2020). Therefore, based on the availability of 

the data pertaining to the prevalence of O157:H7 relative to Generic E. coli, we focus on the E. 

coli O157:H7 as the strain that causes foodborne illnesses in the model. R is the ratio of E. coli 

O157:H7 to Generic E. coli (Pang et al., 2017; Ottoson et al., 2011; Muniesa et al., 2006). It is 

assumed that E. coli O157:H7 in irrigation water transmits to the irrigated crops according to 

equation (14) where CFUs from each irrigation g are aggregated reflecting die-off from delays in 

harvesting and storage. The volume of water consumed by the crop after irrigation is determined 

by irrigation efficiency (iref) (evapotranspiration divided by applied water per acre). Hence, the 

amount of E. coli present in the crop after irrigation is proportional to the consumptive use 

(Solomon et al., 2002). It is assumed that the crop is irrigated by Furrow irrigation technology as 

 

5 In this model we focus on irrigations that take place in the last month and assume that crops are irrigated every 6 

days (Smith et al., 2011). 

6 Density plots, Q-Q- plots that provide the empirical quantiles versus the analytical quantiles, and P-P plots that show 

empirical functions versus fitted distribution functions along with Akaike Information Criteria (AIC) and Schwarz’s 

Bayesian information criteria (BIC) are used to select the best fitted distribution function per county. However, the E. 

coli concentration level in ground water is only available for three counties. We obtain Weibull distribution functions 

for these three counties according to the NWIS and STORET Databases. To drive the distribution function of Generic 

E. coli concentration in ground water in other counties, we shifted the distribution function of Generic E. coli 

concentration in surface water in each county to the left by a shift parameter, based on this assumption that ground 

water is safer than surface water. The shift parameter is the averaged mean of the distribution functions of ground 

water quality in the counties that data was available for them.    

7 The data available at: www.waterqualitydata.us should provide more details. 

file:///C:/Users/mb0062/Downloads/www.waterqualitydata.us
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most common in California and Arizona (FDA, 2016). d represents days of delay in harvesting 

and storage.  

𝐶𝑁𝑛,𝑖,𝑓,𝑐𝑡,𝑑,𝑤𝑠,𝑔 =  ∑ (
𝐶𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔

100
) ∗ (𝑖𝑟𝑒𝑓) ∗ 𝑅 ∗ 0.96 ∗ 𝑒−

𝑡𝑔(𝑔′)

𝜖

𝜁

𝑔′≤𝑔 ∗

10−0.5∗𝑑  ∗η                            ∀𝑛, 𝑖, 𝑓, 𝑐𝑡, 𝑑, 𝑤𝑠, 𝑔\ 
(14) 

𝐶𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔 is divided by 100 to convert the unit of Generic E. coli concentration from CFU/100 

ml to CFU/ml. In the baseline scenario, it is assumed that 50 percent of Generic E. coli in water 

source remains in the applied irrigation water at the time of application (𝜂 = 0.5).8 The die-off 

function (𝑒−
𝑡𝑔(𝑔′)

𝜖

𝜁

) is assumed to have an exponential form (Brouwer et al., 2017). This function 

is used to allow for decay of E. coli between each irrigation event and the last event. The 

concentration of E. coli that transfers to the crop at each irrigating event is reduced by (𝑒−
𝑡𝑔(𝑔′)

𝜖

𝜁

) 

until the last event, where 𝑡𝑔(𝑔′) represents the time period between each irrigation event , 𝑔,′ and 

subsequent irrigation events.  

The FSMA regulation requires that farmers develop a microbial water quality profile 

(MWQP) which determines the required delay in harvesting and storage according to criteria in 

expressions (10, 11, and 12). The initial MWQP is based on at least 20 water samples for the 

untreated surface water and at least 4 samples for the ground water. The MWQP must be updated 

every year. Consistent with the FSMA, we assume that to create MWQP farmers have obtained 15 

samples of surface water and 3 samples of the ground water in the previous months with the 

remaining 5 and 1 sample obtained in the last month of each growing season (FDA, 2020). We 

assume that there are 5 irrigation events in the last month and total 15 irrigation events growing 

season. 

We adopt a dose-response approach developed by Pang et al. (2017) and consistent with 

the framework proposed by Lichtenberg (2010). Serving size (𝑆𝐸𝑅𝑉𝑖) and pathogen concentration 

per gram of produce after delay in harvest and storage are used to estimate pathogen content 

(𝐷𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑) per contaminated serving (equation 15). A dose-response relation (16) estimates 

the probability (𝑝𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑) of illness per contaminated serving, where 𝜌 and 𝜔 denote dose-

 

8 In the sensitivity analysis we examine the influence of this parameter. 
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response parameters (Pang et al. , 2017). Probability of illness per contaminated serving is used 

to estimate the number of expected illnesses per state of nature (16). Since yield is calculated in 

hundred weights, it is multiplied by 50,802.3 (grams/CWT) in equation (17) to obtain the number 

of illnesses per state of nature. In equation (16) 𝛼 represents consumers effort. 𝛼 is used to examine 

the impact of consumers effort on optimal water quality standard.9  

  

𝐷𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 = ∑ 𝐶𝑁𝑛,𝑖,𝑓,𝑐𝑡,𝑑,𝑔,𝑤𝑠 ∗ 𝑆𝐸𝑅𝑉𝑖𝑤𝑠,𝑡ℎ                           ∀𝑛, 𝑖, 𝑓, 𝑐𝑡, 𝑤𝑠, 𝑔, 𝑑 (15) 

𝑝𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 = [1 − (1 + 
𝐷𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑

𝜔
)
−𝜌
] ∗ (

1

𝛼
)                       ∀𝑛, 𝑖, 𝑓, 𝑐𝑡, 𝑤𝑠, 𝑔, 𝑑 (16) 

𝑖𝑙𝑙𝑛 = ∑ 𝑝𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 ∗ 𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 ∗ 𝑦𝑖,𝑐𝑡,𝑔,𝑑 ∗
50,802.3

𝑆𝐸𝑅𝑉𝑖
𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑              ∀𝑛 (17) 

  

4. Data 

Our empirical analysis focuses on the microbial irrigation water quality in lettuce industry 

as prescribed by the FDA standard. Lettuce is of particular interest in terms of food safety because 

all lettuce is consumed fresh without further processing. Several recent foodborne diseases 

outbreaks have also been traced to contaminated lettuce (see footnote 1). We focus on California 

and Arizona as the major lettuce producing regions in the US.  

Data on production, consumption, planted acreage, price, import, export, and applied 

irrigation water for lettuce production are obtained from U.S. Department of Agriculture, 

Economic Research Service (USDA)/Economic Research Service (ERS), and USDA/National 

Agricultural Statistics Service (NASS). Data are collected from 43 counties in Arizona and 

California. Farms are categorized into three types: small, medium, and large.10 The model includes 

two types of lettuce: “Head” and “Leaf and Romaine”. In 2017, approximately 18,194 acres of 

 

9 The formulation in equation (16) implies substitution between consumers’ prevention efforts and regulatory 

stringency (𝑆𝜃𝛼<0). The model can be solved with an alternative formulation 𝑝𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 = [1 − (1 +

 
𝐷𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑

𝛼∗𝜔
)
−𝜌

], to represent complementary (𝑆𝜃𝛼>0). Since this scenario is unlikely in our context, we focus on the 

substitution case in the empirical model. 

10 Small farms are considered to be farms with less than 50 acres, medium farms are assumed to be farms with acres 

between 50 and 500, and large farms are farms with more than 500 acres consistent with USDA (2017). 



 

17 

 

lettuce were planted in California, and 48,964 acres in Arizona. California and Arizona produced 

nearly all of the U.S. “Head” and “Romaine and Leaf” lettuce in 2017 (USDA, 2018).  

Demand and supply functions are formulated using own-price elasticity of demand, cross-

price elasticities of demand, and own-price elasticity of supply (Table 1). Elasticity estimates are 

obtained from prior literature. 

 

Table 1: Own and cross elasticities of demand and own-price elasticity of supply of “Head” and “Leaf and Romaine” lettuce 

Elasticity  Lettuce Type “Head"  “Leaf and Romaine”  

Elasticity of demand 
“Head”  -0.84 0.035 

“Leaf and Romaine”  0.015 -0.84 

Elasticity of supply 
“Head”  0.56 - 

“Leaf and Romaine”  - 0.56 

Note:  

Own-price elasticity of demand is obtained from Okrent and Alston (2012); Own-price elasticity of supply is obtained 

from Lohr and Park (1992); Cross-price elasticities of demand are obtained from Ferrier et al. (2016). We use the 

average of the cross-price elasticities between “Head” and “Leaf” and “Head” and “Romaine” as the proxy for the 

cross-price elasticity between “Head” lettuce and the combined “Leaf and Romaine” lettuce. We apply a similar 

assumption for the cross-price elasticity of “Leaf and Romaine” lettuce with respect to “Head” lettuce. 

 

Past spatial microbial water quality data are obtained from the National Water Quality 

Monitoring Council (USGS-EPA, 2020). The data contains historical and current water data from 

over 1.5 million sites in different states and locations. This database includes water quality data 

from the USGS National Water Information System (NWIS), the EPA STOrage and RETrieval 

(STORET), and the USDA ARS Sustaining the Earth’s Watersheds-Agricultural Research 

Database System (STEWARDS). Water quality data, including Generic E. coli concentrations, are 

available for various ground and surface water sources. Number of observations for Generic E. 

coli concentration varies across counties from 32 in San Joaquin county to 5,931 in Ventura 

county. These data are used to form county specific Lognormal and Weibull probability density 

functions for Generic E. coli concentrations in irrigation water. The parametrized county specific 

probability density functions are used in five hundred random draws in each model solution. Mean 

values of CFU/100 ml of water quality distributions across counties are provided in Appendix 2. 

An explanation of the variables and parameters and their units is provided in Tables A1 and A2 in 

Appendix 3.  
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5. Results 

For validation and calibration purposes, the empirical model is used to reproduce prices 

and quantities observed under baseline conditions with no E. coli contamination. Model solutions 

reproduce lettuce prices and quantities that are comparable to the observed data (See appendix 

Table A3). Quantities, prices, and corresponding supply and demand function parameter 

specifications from 2016 for “Leaf and Romaine” lettuce, and 2008 for “Head” lettuce, the years 

with the largest observed outputs respectively, are used for the base case to allow for greatest 

flexibility in solutions in terms of supply. The solutions of the base case are within 2% of observed 

quantities and within 3% of prices observed in the respective years. 

To examine the cost effectiveness of the water quality regulatory standard as proposed by 

FDA, we compare the values of social welfare obtained under the FSMA standard and the 

corresponding value with no regulation of water quality and no management of contaminated 

produce. Under the no regulation scenario, sufficiently high values of  𝜃𝐺𝑀 and 𝜃𝑆𝑇𝑉 (680 CFU/100 

ml for GM and 2,214 CFU/100 ml for STV)  are chosen so that constraint 10 produces no delay in 

harvesting and storage and the costs of implementing the regulatory standard (∑ [(𝑀𝑓,𝐺𝑀 − 𝜉𝑓,𝐺𝑀 ∗𝑓

𝜃𝐺𝑀) + (𝑀𝑓,𝑆𝑇𝑉 − 𝜉𝑓,𝑆𝑇𝑉 ∗ 𝜃𝑆𝑇𝑉)]) are zero. The results in Table (2) show that with $4,000 per case 

as the cost of foodborne illness the FSMA regulatory standard is not cost effective. However, if 

the cost of illness increases to $10,000 per case, the results show that the FSMA is cost effective 

unless implementation costs exceed $2 million.    

 

Table 2: Regulatory standard, welfare, and price of two types of lettuce 

Scenario 

 Regulatory Standard 

(CFU/100 ml) 

 Social Welfarea ($)  Price of Lettuce ($) 

 
GM  STV  

 Cost of 

Illness=$4,000 

Cost of 

Illness=$10,000 

 
“Head”  

“Leaf and 

Romaine”  

FSMA  126 410  2.385B 2.343B  23.4 16.6 

Optimal Base Case Scenario   214.2 697  2.388B 2.344B  22.9 16.4 

No FSMA  680 2,214  2.387B 2.341B  22.7 16.2 

a The reported values exclude costs of regulatory standard implementation. 

 Results also show that the optimal water quality standard is less stringent than the proposed 

standards in the FSMA. While the FDA’s analysis of the regulatory standard did not explicitly 

factor in surplus losses for consumers and producers, our model account for these costs. As a result, 



 

19 

 

we obtain a less stringent regulatory standard. Table (2) also shows that expected prices of “Head” 

and “Leaf and Romaine” lettuce increase by 0.98% and 1.38%, respectively in the optimal base 

case scenario relative to the solutions with no FSMA regulatory standard and more E. coli 

outbreak. This result is similar to the results of Bovay and Sumner (2017) who show that wholesale 

tomato prices would increase by 2.4% due to the FSMA.  

As shown in proposition (a), costlier irrigation water can decrease irrigation and reduce the 

optimal stringency of microbial water quality regulatory standard. We examine this effect 

empirically by varying cost of irrigation water across five scenarios in Table (3). In the base 

scenario, cost of irrigation water per irrigation event per acre is zero. Costs increase in the 

subsequent scenarios from $3.8 per irrigation event per acre for small and medium farms and $6.0 

for large farms (USDA, 2013) to $114 and $180, respectively. As expected, the results show that 

as cost of irrigation water increases water use decreases and optimal water quality standard 

stringency decreases. These results are consistent with the expectations because increase in cost of 

irrigation water and consequent decrease in water use reduces the amount of E. coli transferred to 

crops and results in fewer cases of foodborne illness. With fewer foodborne illnesses, stringency 

of optimal water quality standard decreases. 

 

Table 3: Impact of increase in cost of irrigation water on optimal water quality standard and water use 

Scenario Lettuce Type 

Cost of irrigation water 

($/acre-irrigation) 

 
Water Usea 

GM Standard 

(CFU/100 ml) 

STV Standard 

(CFU/100 ml) 

Small and 

Medium Farm 

Large 

Farm 

 
   

Base Scenario 
“Head”  

0 0 
 622,447 

214.2 697 
“Leaf and Romaine”   628,420 

        

Scenario 1 
“Head”  

3.8 6 
 622,447 

214.2 697 
“Leaf and Romaine”   628, 420 

        

Scenario 2 
“Head”  

38 60 
 622,447 

214.2 697 
“Leaf and Romaine”   622,266 

        

Scenario 3 
“Head”  

76 120 
 620,095 

252 820 
“Leaf and Romaine”   617,519 

        

Scenario 4 
“Head”  

114 180 
 614,654 

287 933 
“Leaf and Romaine”     616,883 

a Irrigation water use is measured in terms of irrigation events times irrigated acreage. 
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As discussed in the theory section, if consumers’ illness prevention efforts and regulatory 

stringency are substitutes, then increase in consumer’s efforts has an ambiguous impact on the 

optimal water quality standard and optimal irrigation water use. Such substitute behavior may arise 

when consumers receive information about the stringency of water quality standard. For example, 

when consumers are informed that the water quality standard is strict enough to minimize 

contamination due to irrigation, they may exert lower effort to wash fresh vegetables. In such a 

circumstance, the consumer’s effort and regulatory stringency can be used as substitutes to reduce 

food contamination related illnesses. This case is similar to Roe (2004) showing that when 

consumers’ and firms’ effort are substitutes, additional firms’ effort leads to less consumers’ effort. 

For instance, if consumers are informed that the industry is taking some actions to decrease the 

level of pathogens in food, then consumers might believe that their efforts have less impact and 

may decrease their efforts.   

 

Table 4: Impact of increase in consumers’ effort on optimal water quality standard and water use 

Scenario Lettuce Type Water Usea 
GM Standard 

(CFU/100 ml) 

STV Standard 

(CFU/100 ml) 

Base Scenario 
“Head”  622,447 

214.2 697 
“Leaf and Romaine”  628,420 

     

Scenario 1 
“Head”  642,605 

264.6 861 
“Leaf and Romaine”  634,387 

     

Percentage Change (%) 
“Head”  3.2 

23.5 23.5 
“Leaf and Romaine”  0.9 

a Irrigation water use is measured in terms of irrigation events times irrigated acreage.  

 

In the empirical analysis we assume that an increase in consumers effort reduces the 

probability of foodborne illness. The results (Table 4) indicate that an increase in the consumer’s 

effort by a factor of ten reduces stringency of optimal water quality standard and increases water 

use for irrigating “Head” and “Leaf and Romaine” lettuce by 3.2% and 0.9%, respectively. These 

results are consistent with expectations based on the assumption that when consumers exert more 

effort to prevent foodborne outbreaks, the probability of illness and the number of foodborne 

illnesses decrease. As a result, production increases and stringency of water quality standard 

decreases. Note that the empirical formulation is a special case of the theoretical model. Given the 

assumptions in the damage formulation and the relationship between damages, consumers’ 
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prevention effort, irrigation water use, and water quality standard, we obtain a clear result for the 

impact of consumers’ effort on optimal water quality standard and irrigation water use.  

To examine the relationship between stringency of regulation and costs of implementation 

we vary the costs of implementation according to the scenarios outlined in Table 5. Consistent 

with the theoretical analysis, the empirical results (Table 5) show that an increase in the cost of 

implementing the regulatory standard reduces the optimal stringency of the standards. Less 

stringent standard reduces delay in harvest and storage and increases foodborne illnesses. As a 

result, optimal production decreases so that marginal costs of additional illnesses are balanced 

against marginal benefits of additional lettuce supply in terms of consumer and producer surplus.  

 

Table 5: Impact of increase of cost of implementation of the FSMA on optimal water quality standard and water use 

Scenario Lettuce Type 

Marginal cost of implementation 

of the FSMA-GM ($) 

 Marginal cost of 

implementation of the 

FSMA-STV ($) 

 
Water 

Usea 

GM Standard 

(CFU/100 ml) 

STV Standard 

(CFU/100 ml) 

Small 

Farm 

Medium 

Farm 

Large 

Farm 

 Small 

Farm 

Medium 

Farm 

Large 

Farm 

 
   

Base Scenario 
“Head”  

1.3 8.9 12.3 
 

0.06 0.25 0.35 
 622,447 

214.2 697 
“Leaf and Romaine”    628,420 

             

Scenario 1 
“Head”  

2.6 17.8 24.6 
 

0.12 0.5 0.7 
 621,575 

364.1 1,184.9 
“Leaf and Romaine”    628,311 

             

Scenario 2 
“Head”  

3.9 26.7 36.9 
 

0.18 0.75 1.05 
 621,575 

407.0 1,324.3 
“Leaf and Romaine”    624,949 

a Irrigation water use is measured in terms of irrigation events times irrigated acreage. 

 

5.1. Sensitivity Analysis 

We examine the sensitivity of the results to variation in the key parameters by varying one 

parameter value at a time while keeping other parameter values at their base value. The range of 

values for monetary value of foodborne illness damages (𝛿), persistence of Generic E. coli found 

in source water and delivered via irrigation (η), and number of days between irrigation events (tg) 

in the sensitivity analysis are provided in Table (6). Scenario 3 is the base case. Table (7) presents 

the results of sensitivity analysis in terms of the ratio of the optimal standard stringency and the 

stringency of the standard as proposed by FDA (GM=126 and STV=410). The key finding from 

the sensitivity analysis is that the FDA water quality standards are not optimal over a wide range 
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of parameter values. An increase in the cost of foodborne illnesses and the proportion of E. coli in 

water source that remains in the applied irrigation water increase stringency of the optimal water 

quality standard. These results are consistent with the expectations. An increase in the cost of 

foodborne illnesses and greater transmission of E. coli increase marginal benefits of water quality 

standard stringency. Increase in time between irrigation events decreases optimal standard 

stringency because of greater die-off of E. coli. After last irrigation, the cumulative E. coli 

concentration in the crop is lower when number of days between irrigation events is higher, which 

decreases foodborne illnesses.  

 

Table 6: Values of parameters for sensitivity analysis 

Scenarios 𝛿 η 𝑡g 

1 1500 0.3 4 

2 3,000 0.4 5 

3 (base) 4,000 0.5 6 

4 5,000 0.6 7 

5 6,500 0.7 8 

 

 

Table 7: Results of the sensitivity analysis in terms of the ratio of optimal water quality standard and the FSMA standard 

Scenarios 𝛿 η 𝑡g 

1 2.4 2.0 1.5 

2 2.4 2.0 1.5 

3 (base) 1.7 1.7 1.7 

4 1.5 1.5 2.0 

5 0.9 1.5 2.0 

 

6. Conclusions and Policy Implications 

This study examines the economic efficiency of the FDA guidelines in response to the 

FSMA pertaining to irrigation water quality focusing on the proposed standards for microbial 

quality of irrigation water and the required delays in harvest and storage when microbial quality 

standards are exceeded. We first provide a theoretical analysis of the optimality of water quality 

assurance efforts. The FDA proposed regulatory standard is examined empirically using the lettuce 
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market as a case study. To our knowledge this paper is the first attempt to examine the food safety-

related irrigation water quality regulatory standard as proposed by FDA using an economic 

framework that includes a detailed exposure and dose-response formulations. The empirical 

analysis uses a stochastic two stage price endogenous partial equilibrium model with recourse. E. 

coli contamination of irrigation water is treated as a spatially explicit stochastic parameter based 

on the Lognormal or Weibull probability density functions obtained using historical water quality 

data.  

We find that the expected prices of “Head” and “Leaf and Romaine” lettuce increase by 

0.98% and 1.38%, respectively relative to the solutions with no FDA regulation and more 

foodborne illness cases. This result is consistent with Bovay and Sumner (2017) who show that 

the price of tomatoes increases by 2.4% due to implementation of the FSMA. We also find that 

after considering the regulatory standard’s impact on consumers’ and producer’ surplus, the FDA 

proposed water quality standards are not optimal and should be less stringent. We also observe 

that optimal water quality standard may depend on the scarcity of water. When water is scarce, 

reduced irrigation and production can lead to less stringent standard being more preferred then the 

more stringent standard. Also, the results show that if the monetary value of damages per 

foodborne illness is on average $4,000 per case, then the regulatory standard as proposed in the 

FSMA is not cost effective. If the cost per illness case increases to $10,000, then the FDA 

regulatory standard is cost effective unless implementation costs exceed $2 million.  

These results are important from policy point of view because tradeoffs between food 

safety and food prices are often difficult to assess and represent a significant reason for the 

challenging nature of food policy debates. We observe that the balance of investment in ex ante 

regulatory stringency versus ex post costs of illness incidents requires a detailed examination of 

economic factors linked with exposure and dose-response formulations. Using such a model, and 

the assumed values for key parameters, we observe that for the case of lettuce the FSMA guidelines 

for irrigation water quality as proposed in 2014 are excessively stringent. This study points to the 

importance of considering producers and consumers surplus implications for determining the 

stringency of food safety related regulatory standards. Lower stringency of standards reduces the 

costs borne by the producers and decrease prices relative to higher stringency standards. However, 

lower stringency results in greater number of illnesses and associated costs. The design of the food 

safety regulation, including microbial irrigation water quality standard, requires balance of 
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marginal damages from illnesses and marginal consumer and producer welfare values. This 

conclusion is in line with other studies that have highlighted the importance of consumer and 

producer welfare values in food safety-related regulations. For example, Wilson and Anton (2006) 

provide optimal set of the Application of Sanitary and Phytosanitary (SPS) Measures taking into 

account the net welfare effects. They find that considering consumers’ and producers’ surplus and 

total welfare into the analysis, there are a set of measures that increase national welfare relative to 

the measures suggested in the guidelines (measures such as vaccinations, culling animals, tariffs 

or bans). 

We close by explaining some of the limitations of this study. As proposed by FDA, Generic 

E. coli is used as indicator microorganism in the water. However, only specific types of E. coli, 

including E. coli O157:H7, cause foodborne outbreaks. E. coli O157:H7 is the most prevalent kind 

of E. coli in North America (FDA, 2012) which causes severe illness. Therefore, our analysis is 

based on the prevalence of E. coli O157:H7 as the strain that causes foodborne illnesses. There are 

other types of pathogens that can cause foodborne illnesses. FDA has identified six other types of 

E. coli that cause foodborne illnesses including: E. coli O26, O45, O103, O111, O121, and O145 

(Bertoldi, et al. 2018). Inclusion of other pathogens can improve cost effectiveness of the 

regulatory standard.  
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Appendix 1  

Proposition 1 is derived from the following equations. From the first order conditions in 

equations (2) and (3) we can derive the hessian matrixes as 
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)∫ 𝑓(𝜇)

𝜃

𝑧
𝑑𝜇 +

𝑑𝑌

𝑑𝑤

𝜕𝑃

𝜕𝜃
≤ 0         (A3) 

|𝐻21| =
𝜕

𝜕𝜃
(
𝜕𝑆𝑊

𝜕𝑤
) =

𝜕

𝜕𝜃
(
𝜕𝑆

𝜕𝑤
) ∫ 𝑓(𝜇)

𝜃

𝑧
𝑑𝜇 +

𝑑𝑃

𝑑𝜃

𝑑𝑌

𝑑𝑤
≤ 0         (A4) 

 

Then we use the hessian matrixes to derive the impact of the parameters of interest on the 

optimal water quality standard and optimal irrigation water use. 

  

(1) The effect of water cost (c) 

[
𝐻11 𝐻12
𝐻21 𝐻22

] [
𝜕𝜃

𝜕𝑐
𝜕𝑤

𝜕𝑐

] = [
−
𝜕

𝜕𝑐
(
𝜕𝑆𝑊

𝜕𝜃
)

−
𝜕

𝜕𝑐
(
𝜕𝑆𝑊

𝜕𝑤
)
] = [0

1
]                                                                    (A5) 

𝜕𝜃

𝜕𝑐
=

|
0 𝐻12
1 𝐻22

|

𝐻11𝐻22−𝐻12𝐻21
=

−𝐻12

𝐻11𝐻22−𝐻12𝐻21
≥ 0           (A6) 

𝜕𝑤

𝜕𝑐
=

|
𝐻11 0
𝐻21 1

|

𝐻11𝐻22−𝐻12𝐻21
=

𝐻11

𝐻11𝐻22−𝐻12𝐻21
≤ 0           (A7) 

 

(2) The effect of cost of implementation of the FSMA (𝛽) 

[
𝐻11 𝐻12
𝐻21 𝐻22

] [
𝜕𝜃

𝜕𝛽

𝜕𝑤

𝜕𝛽

] = [
−
𝜕

𝜕𝛽
(
𝜕𝑆𝑊

𝜕𝜃
)

−
𝜕

𝜕𝛽
(
𝜕𝑆𝑊

𝜕𝑤
)
] = [

𝜕

𝜕𝛽
(
𝜕𝑅

𝜕𝜃
)

0
]                                                            (A8) 
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𝜕𝜃

𝜕𝛽
=

|
𝜕

𝜕𝛽
(
𝜕𝑅

𝜕𝜃
) 𝐻12

0 𝐻22
|

𝐻11𝐻22−𝐻12𝐻21
=

𝜕

𝜕𝛽
(
𝜕𝑅

𝜕𝜃
)𝐻22

𝐻11𝐻22−𝐻12𝐻21
≥ 0               (A9) 

𝜕𝑤

𝜕𝛽
=

|
𝐻11

𝜕

𝜕𝛽
(
𝜕𝑅

𝜕𝜃
)

𝐻21 0
|

𝐻11𝐻22−𝐻12𝐻21
=

−
𝜕

𝜕𝛽
(
𝜕𝑅

𝜕𝜃
)𝐻21

𝐻11𝐻22−𝐻12𝐻21
≤ 0           (A10) 

 

(3) The effect of consumer’s efforts (𝛼) 

[
𝐻11 𝐻12
𝐻21 𝐻22

] [
𝜕𝜃

𝜕𝛼
𝜕𝑊

𝜕𝛼

] = [
−
𝜕

𝜕𝛼
(
𝜕𝑆𝑊

𝜕𝜃
)

−
𝜕

𝜕𝛼
(
𝜕𝑆𝑊

𝜕𝑤
)
] = [

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃

∫
𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
)𝑓(𝜇)𝑑𝜇+

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃

𝜃
𝑘

]                    (A11) 

𝜕𝜃

𝜕𝛼
=

|

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃 𝐻12

∫
𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
)𝑓(𝜇)𝑑𝜇+

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃

𝜃
𝑘 𝐻22

|

𝐻11𝐻22−𝐻12𝐻21
=

𝐻22
𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) ∫ 𝑓(𝜇)𝑑𝜇−𝐻12[∫

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
)𝑓(𝜇)𝑑𝜇+

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃

𝜃
𝑘 ]

𝑧
𝜃

𝐻11𝐻22−𝐻12𝐻21
                                        (A12) 

Depending on the sign of 𝑆𝛼𝜃, the first term on the right-hand side in the numerator can be 

negative or positive while the second term is positive. This indicates that whether the impact of 

consumer’s effort on optimal water quality standard is positive or negative depends on the sign of 

𝑆𝛼𝜃.  

𝜕𝜃

𝜕𝛼
{
=?     , 𝑖𝑓  

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) < 0 

≤ 0    , 𝑖𝑓  
𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) > 0  

            (A13) 

 

𝜕𝑤

𝜕𝛼
=

|
𝐻11

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃

𝐻21 ∫
𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
)𝑓(𝜇)𝑑𝜇+

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃

𝜃
𝑘

|

𝐻11𝐻22−𝐻12𝐻21
=

[∫
𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
)𝑓(𝜇)𝑑𝜇+

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝑤
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃

𝜃
𝑘

]𝐻11−𝐻21
𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) ∫ 𝑓(𝜇)𝑑𝜇

𝑧
𝜃

𝐻11𝐻22−𝐻12𝐻21
                    (A14) 
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Similarly, the first term on the right-hand side in the numerator is positive, while the second 

term can be positive or negative (depending on the sign of 𝑆𝛼𝜃). This indicates that the sign of 𝑆𝛼𝜃 

determines whether the impact of consumer’s effort on optimal water use is positive or negative. 

𝜕𝑤

𝜕𝛼
{
=?     , 𝑖𝑓  

𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) < 0 

≥ 0    , 𝑖𝑓  
𝜕

𝜕𝛼
(
𝜕𝑆

𝜕𝜃
) > 0  

                                                                               (A15) 
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Appendix 2 

 

Figure A1: Average Generic E. coli concentration per 100 ml for surface and ground water in Arizona and California generated 

by 500 random draws. 

  

a) Surface water b) Ground water  
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Appendix 3 

Table A1: Summary of variables used in the empirical model 

Symbol Variable Unit 

W Expected value of social welfare $ 

𝑝𝑖
𝑑(𝑥𝑛,𝑖

𝑑 ) Inverse demand function - 

𝑝𝑖
𝑠(𝑥𝑛,𝑖

𝑠 )  Inverse supply function - 

𝑥𝑛,𝑖
𝑑   Quantity demanded of crop i  CWT 

𝑥𝑛,𝑖
𝑠   Quantity supplied of crop i CWT 

𝑖𝑙𝑙𝑛  Number of illness cases  

𝑎𝑓𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔 Ex ante planted acreage Acres 

𝑎𝑠𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔,𝑑 Ex post planted acreage Acres 

𝑐𝑚𝑖𝑥𝑖,𝑐𝑡,𝑡  Historical percentage of planted acreage of crop i Acres 

𝜗𝑐𝑡,𝑡  Convex hull choice variable  - 

𝑠𝑚𝑖𝑥𝑖,𝑐𝑡,𝑚 The synthetic crop acreage pattern Acres 

𝜏𝑐𝑡,𝑚 Convex hull choice variable - 

𝑦𝑖,𝑐𝑡,𝑔,𝑑  Yield of crop i CWT 

𝑑𝑒𝑙𝑖,𝑓,𝑐𝑡,𝑤𝑠  Delay in harvesting after last irrigation Days 

𝐶𝑁𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑡ℎ,𝑛  Concentration of E. coli in crop after delay in harvesting CFU/ml 

𝐷𝑖,𝑓,𝑐𝑡.𝑛  Dose per contaminated serving  CFU/serving 

𝑝𝑖,𝑓,𝑐𝑡,𝑛  Probability of illness per serving Probability/ serving 
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Table A2: Summary of parameters used in the empirical model 

Symbol Parameter Baseline Values Unit Source 

𝑡𝑒𝑠𝑡𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔   Water quality testing  - - - 

𝑅  Ratio of E. coli O157:H7 to Generic E. coli 10−1.9 - Pang et al. (2017); Ottoson 

et al. (2011) 

𝐶𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠,𝑔 Concertation of Generic E. coli in water - CFU/100 ml USGS and EPA (2020) 

𝐶𝑃𝑛,𝑖,𝑐𝑡,𝑓,𝑤𝑠,𝑡′ Concertation of Generic E. coli in water in the previous months - CFU/100 ml USGS and EPA (2020) 

𝐺𝑀𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠 Geometric mean - CFU/100 ml Model estimation 

𝑆𝑇𝑉𝑛,𝑖,𝑓,𝑐𝑡,𝑤𝑠 Statistical Threshold Value - CFU/100 ml Model estimation 

𝜃  Water quality standard GM:126; 

STV:410 

CFU/100 ml FDA (2016) 

FDA (2016) 

𝑆𝐸𝑅𝑉𝑖  Serving size of crop i 85 Gram FDA (2015) 

𝜔  Dose-response function parameter  229.3 - Pang et al. (2017) 

𝜌  Dose-response function parameter 0.267 - Pang et al. (2017) 

𝑡𝑔(𝑔)  Number of days between irrigation events  6 Days  Smith et al. (2011) 

𝜁  Die-off function parameter  2.1 - Brouwer et al. (2017) 

𝜖  Die-off function parameter  0.59 - Brouwer et al. (2017) 

𝜋  Cost per testing sample 87.3 $ FDA (2015) 

𝛿  Economic losses per illness 4,000 $ USDA (2019) 

η Proportion of E. coli in water source that remains in the applied    

irrigation water 

0.5 - Authors assumption 

iref  Irrigation efficiency 0.7 - USDA (2013) 

𝛼  Consumers effort 1 - Authors assumption 

cw Cost of irrigation water  Small farm: 3.8; 

Medium farm: 3.8; 

Large farm: 6.0 

$/Acre/irrigation  USDA (2013) 

𝜉𝑓,𝐺𝑀  Marginal cost of implementation of the FSMA based on GM  Small farm: 1.3; 

Medium farm: 8.9; 

Large farm: 12.3 

$ Authors calculations based 

on Bovay et al. (2018) 

𝜉𝑓,𝑆𝑇𝑉 Marginal cost of implementation of the FSMA based on STV Small farm: 0.06; 

Medium farm: 0.25; 

Large farm:0.35 

$ Authors calculations based 

on Bovay et al. (2018) 

𝑀𝑓,𝐺𝑀  Costs such that any amount of E. coli requires discarding the irrigated 

produce based on GM  

Small farm: 3076.8; 

Medium farm: 11,696; 

Large farm: 16,174 

$ Authors calculations based 

on Bovay et al. (2018) 

𝑀𝑓,𝑆𝑇𝑉 Costs such that any amount of E. coli requires discarding the irrigated 

produce based on STV 

Small farm: 2,807; 

Medium farm: 10,671; 

Large farm: 14,756 

$ Authors calculations based 

on Bovay et al. (2018) 
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Table A3: Comparison of simulations for all historical years and the base case with the observed data for “Head” and “Leaf and Romaine” lettuce 

   a)      Observed Data 

                             Lettuce Type 
        Year            Base Case 

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017  2008 2016 

Quantity (1,000 CWT) 
"Leaf and Romaine"  31,720 30,731 37,203 36,599 37,481 36,139 34,405 35,352 40,962 40,838  - 40,962 

"Head" Lettuce 51,357 49,517 49,331 49,275 50,106 44,588 46,160 43,526 45,914 42,905  51,357 - 

Price ($/CWT) 
"Leaf and Romaine"  25.24 31.33 28.26 31.42 25.15 13.63 13.88 22.95 14.74 17.21  - 14.74 

"Head"  20.25 22.4 20.85 22.29 16.83 24.97 22.45 26.51 24.5 32.17  20.25 - 

               

   b)      Model Solution 

                                           Lettuce Type 
        Year            Base Case 

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017  2008 2016 

Quantity (1,000 CWT) 
"Leaf and Romaine"  31,720 30,811 37,203 36,598 37,481 36,139 34,405 35,352 40,962 40,838  - 40,365 

"Head"  50,899 49,081 48,310 49,028 49,862 44,437 45,932 43,381 45,148 42,905  51,257 - 

Price ($/CWT) 
"Leaf and Romaine"  25.48 31.5 28.45 31.65 25.24 13.65 13.93 23.08 14.74 17.26  - 15.1 

"Head"  19.96 22.08 21.15 22.03 16.64 24.75 22.31 26.28 24.84 32.19  20.56 - 

               

   c) Percentage Change   

                                           Lettuce Type 
        Year            Base Case 

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017  2008 2016 

Quantity (%) 

"Leaf and Romaine"  0 0.26 0 0 0 0 0 0 0 0  - -1.46 

"Head"  -0.89 -0.88 
-

2.07 
-0.5 -0.49 -0.34 -0.49 -0.33 -1.67 0 

 
-0.19 - 

Price (%) 

"Leaf and Romaine"  0.95 0.54 0.67 0.73 0.36 0.15 0.36 0.57 0 0.3  - 2.44 

"Head"  -1.43 -1.43 1.44 
-

1.17 
-1.13 -0.88 -0.62 -0.87 1.39 0.06 

 
1.53 - 

 


