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Abstract
This study develops a dynamic discrete choice model to estimate the impact of

groundwater decline on crop choices in NM eastern High Plains. We take advan-
tage of the recently available high-resolution remote sensing agricultural land cover
data developed by the National Agricultural Statistics Service of USDA. The model
considers the forward-looking behavior of farmers who face changes in groundwater
level, market trends, and climate. The results show that farmers tend to respond to the
decline of the groundwater level by choosing high-value crops such as winter wheat
instead of switching to more drought-resistant crops like sorghum. Both winter wheat
and sorghum have been grown in the region historically. Therefore, switching cost
is unlikely to explain the result. On the one hand, when the groundwater resources
are in decline, farmers are forced to invest more to pump the same amount of water.
Choosing a high-value crop justifies such an investment decision. On the other hand,
this also reflects the common-pool resource problem of groundwater extraction. As
the common-pool resource shrinks, users tend to increase the rate of extraction as a
result of intensifying competition. This inflates the likelihood of choosing high-value
crops instead of more drought-resistant options.
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1. Introduction

Agricultural production has often been regarded as the main driver of groundwater de-
pletion in arid/semi-arid areas across the world (e.g. Haacker et al., 2016). Admittedly, the
productivity of crop production has seen a significant increase since World War II empow-
ered by advanced pumping and irrigation technologies (e.g. Hornbeck and Keskin, 2014).
In recent decades, however, a pressing issue faced by irrigated agriculture is groundwater
over-pumping that exceeds the recharge rate of many aquifers. The groundwater resources
are depleting and some are at the risk of disappearing. The key challenge to groundwater
management is the tragedy of the commons - the groundwater resource is over-extracted
due to competition and outdated governing institutions for water (e.g. Glennon, 2004).
The High Plains aquifer spanning between the US West and Midwest is a good example.
Sustainable groundwater resource management is often called upon as a solution, which
mainly concerns agricultural water use. Among policy recommendations, increasing the
efficiency of the irrigation system and managing cropping practice are the major ones (e.g.
Garcia-Vila et al., 2008; Wallander, 2017; Wang, 2019).

This study focuses on the relationship between groundwater decline and crop choice.
Crop choice is considered the main adaptation strategy at the intensive margin (holding the
total acreage in production given) in response to an irrigation water supply change. At the
intensive margin, farmers grow high-value crops (e.g. cotton and corn) when water supply
for irrigation is abundant; and switch back to drought-resistant crops (e.g. sorghum and
millet) when water supply becomes constrained or expensive. Crop rotation and market
prices are other important factors that can potentially influence farmers’ crop choice deci-
sions. In general, the literature has found that crop choice in irrigated regions is sensitive
to water cost and water supply in the long run (e.g. Kim et al., 1989; Wu et al. 1994; Ding
and Peterson 2003; Lamm et al., 2007; Kuil et al., 2018).

Understanding crop choice response is important for agricultural water management
and policy-making. And it can become essential for rural communities that rely on cash
receipts from crop production. As an adaptation strategy, adjusting crop choice can help to
smooth income shocks due to exogenous environmental changes such as climatic variabil-
ity and decline of groundwater level. Meanwhile, understanding how farmer crop choice
decision-making responds to (expected, in particular) exogenous environmental changes
provides valuable inputs in building drought-resistant rural communities. This study takes
advantage of remote-sensing cropland data and develops a dynamic discrete choice model
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of crop choice at the field level. Different from conventional multinomial choice mod-
els that treat crop choice in different years as independent decisions, the proposed model
explicitly accounts for historical decisions of farmers thus linking crop choice decisions
across adjacent years. Including dynamics has significant impacts on the likelihood of
choosing among different crops when farmers face a changing groundwater level.

2. Model

2.1. The Conceptual Model

In irrigated regions, crop production involves key input decisions concerning land use,
crop choice, and irrigation water allocation. Land use change usually happens as a long-
run adjustment, especially when it entails adjustments such as land conversion or switching
between rainfed and irrigated land. Crop choice and irrigation water allocation, on the
other hand, are short-run adjustments. Farmers evaluate their decisions on crop choice and
irrigation from season to season. A major difference between the two is that irrigation
water use is often constrained at the regional scale (e.g. irrigation district or watershed).
Crop choice decisions happen at the field level.

This study treats each cropland field as a decision-making unit and its crop choice is
decided by the operating farmer - the decision-maker. The farmer receives flow utility
from income generated by crop production. We make two assumptions: (1) the farmer is
a price-taker; (2) the groundwater level under the given field is exogenous to the farmer.
However, the farmer has his/her own expectations about crop prices and the groundwater
level derived from historical observations. Similarly, climatic information in the growing
season is also exogenous to the farmer and he/she forms his/her own projections about
growing season temperature and precipitation. In addition, it is important to consider crop
rotation in crop choice decisions. We incorporate the crop rotation consideration into the
physical state space, which will be further discussed in detail. Our analysis focuses on the
impact of groundwater level on crop choice. All other factors, although important, act as
control variables. Overall, farmers are forward-looking with respect to their choices and
all time-varying variables that affect the value of crop production. Meanwhile, farmers are
also decision-makers with a short memory - what happens in the past several years affects
future decisions in a Markovian fashion.
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In year t at field i, the farmer receives a location and time-specific income that depends
on crop price, yield, and input costs. Given the context of our study region, the farmer’s
choice set is defined as: j ∈ J = {hay, corn, sorghum, wheat}. Ideally, we would need to
compute the return of each crop choice and assume that the farmer as a rational decision-
maker makes crop choice by comparing the expected returns of different crops. This
particular study uses a large scale remote-sensing data set covering thousands of irrigated
fields in NM High Plains. Practically, at the field level, crop yields and some of the input
costs data are unavailable. In the empirical modeling, we choose to focus on the key deter-
minants of crop return given the data availability. We include crop prices, growing season
temperature and precipitation (yield determinants), and groundwater level as a proxy for
irrigation water cost. Similar to Moore et al. (1994), the conceptual crop-choice decision
model represents a discrete choice depending on all crop prices, water cost, and climatic
variables:

d j = f j(p,g,x,h) (1)

where d j is a choice variable equal to 1 if crop j is chosen and 0 otherwise. p is a
vector of all crop prices; g is the groundwater depth at the given location reflecting the
cost of pumping water; x are climatic variables at the given location, h indicates the crop
grown in the last season to capture rotation effects. Given the conceptual choice model
in (1), we will develop a utility maximization framework that motivates the farmer’s crop
choice while considering all the dynamics. First, we discuss how to compute expectations
of all time-varying variables. This is more realistic than using actual observational values
because crop choice decisions are made at the beginning of the growing season.

2.2. Crop Price

The crop-specific price information is usually observed at the regional level only. That
is, the crop prices only vary temporally in this study. Therefore, an autoregressive (AR)
time-series model can be used to project crop prices. Here we use an AR(1) model; for a
given crop j its projected price in year t (p j

t ) is given as:

p j
t = ϕ

j
0 +ϕ

j
1Trend j

t +ϕ
j

2 p j
t−1 +ζ

j
t (2)
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where ϕ0, ϕ1, and ϕ2 are parameters to be estimated. Trendt is a year trend. ζt rep-
resents random shocks. Although more general and sophisticated time-series models can
be used such as ARIMA (autoregressive integrated moving average), the idea here is that
price projection is a simple process as part of farmers’ decision-making. Methodologi-
cally, the AR(1) assumption also facilitates the estimation of the transition probability to
be discussed.

2.3. Climatic Variables

Climatic variability is typically measured by weather realizations. In this study, we use
monthly temperature and precipitation data provided through the PRISM project at Oregon
State University. The PRISM data have a resolution of 4 by 4 km, hence there is sufficient
spatial variation across the study region. In addition, because what matters is the climatic
variability in the growing season (different by crops), the climatic variables also vary by
crop choice. In other words, the climatic variables are alternative-specific variables. The
monthly data is then aggregated over the growing season. This study uses the growing
season average temperature (T ) and average precipitation (P). Similarly, we use an AR(3)
model to form annual projections of growing season temperature and precipitation plus a
year trend (Trendt) to capture the climate trend.

For field i in year t, the crop-specific climatic variable projections are given as:

Tjit = α
T
ji +β

T
ji0Trendt +β

T
ji1Tji,t−1 + ε

T
jit (3)

Pjit = α
P
ji +β

P
ji0Trendt +β

P
ji1Pji,t−1 + ε

P
jit (4)

where α ji = [αT
ji ,α

P
ji] capture crop-field fixed effects, β ji0 = [β T

ji0,β
P
ji0] are parameters

to be estimated. ε jit represents random shocks. For crops like winter wheat (grown in NM
High Plains), its growing season spans over two years. In this case, the year trend variable
takes the harvest year as the climatic conditions in the second year are more important to
crop yield. It is also consistent with the year of price information.
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2.4. Groundwater Level

The groundwater level is regularly and irregularly measured at different well loca-
tions. For any given year, these water level measurements scatter across the study region.
To generate a groundwater level map that is consistent with climatic variables and crop
choice data, the raw measurements are spatially interpolated across space. Therefore, the
groundwater level data varies by location and year, but not by crop. For field i in year t, its
groundwater level depth can be projected by an AR(1) model:

git = λi +θi1gi,t−1 +ηit (5)

where λi are field-specific fixed effects. θi1, is a parameter to be estimated. ηit repre-
sents white noise. The spatial interpolation of groundwater depth will be discussed in the
data section. Crop rotation variable h will be defined directly as part of the state space for
the dynamic model.

2.5. A Dynamic Discrete Choice Model

In the world with uncertainty, a farmer considers the future flow utility of income from
growing a given crop in the choice set. By assuming additive separability of utility over
time, the farmer’s lifetime utility is then the discounted sum of utility from each year.
His/her decision-making objective is to maximize the utility derived from the expected
lifetime income,

MAXdt∈J

T

∑
t=0

δ
t [ut(Xt ,dt)+ω(dt)] (6)

where dt is the farmer’s crop choice in year t and δ is the discount factor. ut(Xt ,dt)

is the flow utility in year t given a crop choice of dt . Xt denotes the vector of all state
variables for the farmer in year t. The state variables include crop prices, climatic vari-
ables, groundwater level, and a set of indicators capturing crop rotation. Similar to Bishop
(2012), the transition of the states is assumed to be Markovian, so that Xt+1 depends on
Xt and dt only. The transition probability of the state vector is denoted as q(Xt+1 | Xt ,dt).
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ω(dt) is a time-varying idiosyncratic component of utility that is assumed to follow an
independent and identically distributed (i.i.d.) Type I extreme value distribution. Such a
setup of dynamic discrete choice has been commonly adopted in the literature (e.g. Rust,
1987; Bishop, 2012; Ji et al., 2014).

2.6. State Space and Utility Function

Following Scott (2014), the state space in this paper is divided into two categories:
market state and physical state. The market state is represented by crop prices that follow
a Markov process by construction, given that prices are projected using an AR (1) process.
Climatic variables and groundwater depth in the physical state similarly follow a Markov
process by construction. The physical state also includes a set of four variables indicating
what was grown on the field in year t−1. Table 1 below summarizes the definitions:

Table 1: Summary of state variables
State Variable Definition Category

p jt crop-time specific price market state
git groundwater depth at field i physical state
Tit average growing season temperature at field i physical state
Pit average growing season precipitation at field i physical state

H1it hay grown on field i in year t−1 physical state
C1it corn grown on field i in year t−1 physical state
W1it winter wheat grown on field i in year t−1 physical state
S1it sorghum grown on field i in year t−1 physical state

Similar to Bishop (2012) and Ji et al. (2014), the flow utility at field i in year t,
uit(Xit ,dit), can be defined as:

6



uit(Xit ,dit) =



γh0 + γhp p jt + γhggit + γhxZit +ω jit i f j = hay

γc0 + γcp p jt + γcggit + γcxZit +ω jit i f j = corn

γs0 + γsp p jt + γsggit + γsxZit +ω jit i f j = sorghum

γw0 + γwp p jt + γwggit + γwxZit +ω jit i f j = wheat

γo0 + γo f Ft + γoxRit +ω jit i f j = others

(7)

where ω jit is the time-varying idiosyncratic component of utility. Zit is a vector con-
sisting of other control variables (climatic variables and rotation indicators). Similar to
crop prices, Ft is the regional average grazing fee for pasture and vacant cropland. Rit is a
vector consisting only of rotation indicators (i.e. Zit = [Tit ,Pit ,Rit ]). Note that the category
others includes pasture and cropland that is in fallow. The potential benefits of fallow are
captured through rotation variables in Rit . γh0, γc0, γs0, and γw0 represent fixed utility com-
ponent related to growing each of the four major crops. As pointed out by Ji et al. (2014),
the rotation indicators in the physical state capture possible income differences associated
with different types of crop rotations. Together with the climatic variables, these control
variables capture benefits and cost-saving effects related to each crop choice.

2.7. Estimation Strategy

The dynamic discrete choice model developed above has two essential assumptions:
(1) the evolution of market states and physical states is Markovian; (2) the additive separa-
bility of flow utility. These are common assumptions in the literature to make the decision-
making problem in equation (6) computationally feasible (e.g. Rust 1987; Bishop, 2012).
Given these assumptions, the Bellman equation for value function can be written as:

Vt(Xt ,ω(dt)) = MAXdt∈J [vt(Xt ,dt)+ω(dt)] (8)

where the value function vt(Xt ,dt) can be written as,
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vt(Xt ,dt) = ut(Xt ,dt)+δ

∫
∑

Xt+1

Vt+1(Xt+1,ω(dt+1))q(Xt+1 | Xt ,dt)dF(ω(dt+1)) (9)

or equivalently,

vt(Xt ,dt) = ut(Xt ,dt)+δE(Vt+1(Xt+1,ω(dt+1))) (10)

Since ω(dt) follows an i.i.d Type I extreme value distribution, replace the second term
on the right hand side of (9) and (10) with Logit inclusive value, which gives:

vt(Xt ,dt) = ut(Xt ,dt)+δ ∑
Xt+1

ln

[
J

∑
j=1

exp(vt+1(Xt+1,dt+1 = j))

]
q(Xt+1 | Xt ,dt) (11)

This is a recursive equation which makes its estimation computationally difficult. Fol-
lowing Hotz and Miller (1993), Arcidiacono and Miller (2011), and Bishop (2012), it can
be shown that,

8



vt(Xt ,dt = j(t)) = ut(Xt ,dt = j(t))

+δ ∑
Xt+1

ln
[
Pr(dt+1 = j(t+1) | Xt+1)

−1
]
×q(Xt+1 | Xt ,dt = j(t))

+δ ∑
Xt+1

[
ut+1(Xt+1,dt+1 = j(t+1))

]
×q(Xt+1 | Xt ,dt = j(t))

+δ
2

∑
Xt+1

∑
Xt+2

ln
[
Pr(dt+2 = j(t+2) | Xt+2)

−1
]

×q(Xt+2 | Xt+1,dt+1 = j(t+1))×q(Xt+1 | Xt ,dt = j(t))

+δ
2

∑
Xt+1

∑
Xt+2

[
ut+2(Xt+2,dt+2 = j(t+2))

]
×q(Xt+2 | Xt+1,dt+1 = j(t+1))×q(Xt+1 | Xt ,dt = j(t))

+δ
3

∑
Xt+1

∑
Xt+2

∑
Xt+3

ln
[
Pr(dt+3 = j(t+3) | Xt+3)

−1
]

×q(Xt+3 | Xt+2,dt+2 = j(t+2))×q(Xt+2 | Xt+1,dt+1 = j(t+1))×q(Xt+1 | Xt ,dt = j(t))

+δ
3

∑
Xt+1

∑
Xt+2

∑
Xt+3

[
ut+3(Xt+3,dt+3 = j(t+3))

]
×q(Xt+3 | Xt+2,dt+2 = j(t+2))×q(Xt+2 | Xt+1,dt+1 = j(t+1))×q(Xt+1 | Xt ,dt = j(t))

where Pr(·) is the conditional choice probability, which can be estimated in a prelimi-
nary step. j(t), j(t+1), j(t+2), and j(t+3) represent crop choices made in year t, t +1, t +2,
and t + 3, respectively. Given the Logit framework, the conditional choice probability is
defined as,

P(dt = j(t) | Xt) =
exp
(

vt(Xt ,dt = j(t))
)

∑ j exp(vt(Xt ,dt = j))

=
1

∑ j exp
(
vt(Xt ,dt = j)− vt(Xt ,dt = j(t))

)
An estimate of P(dt = j(t) | Xt), say P̂(dt = j(t) | Xt), can be used to replace the condi-

tional choice probability in value function vt(Xt ,dt = j(t)). Similarly, all transition prob-
abilities q(·) can also be replaced with empirical estimates in a preliminary step using
historical observations. The above lengthy value function vt(Xt ,dt = j(t)) can be further
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simplified using the fact that all state variables are Markovian. Given that the farmer only
has one period of memory, therefore the state dependence breaks after two periods. In the
value function, regardless of the choice made in year t, the farmer will be indifferent on the
current value of the choice he or she will make in year t +3. That is, given two different
current period choices, say j(t) = a and j(t) = b, we have,

vt(Xt ,dt = a)− vt(Xt ,dt = b)

= ut(Xt ,dt = a)−ut(Xt ,dt = b)

+δ ∑
Xt+1

ln
[
P(dt+1 = j(t+1) | Xt+1)

−1
]
×q(Xt+1 | Xt ,dt = a)

−δ ∑
Xt+1

ln
[
P(dt+1 = j(t+1) | Xt+1)

−1
]
×q(Xt+1 | Xt ,dt = b)

+δ ∑
Xt+1

[
ut+1(Xt+1,dt+1 = j(t+1))

]
×q(Xt+1 | Xt ,dt = a)

−δ ∑
Xt+1

[
ut+1(Xt+1,dt+1 = j(t+1))

]
×q(Xt+1 | Xt ,dt = b)

+δ
2

∑
Xt+1

∑
Xt+2

ln
[
P(dt+2 = j(t+2) | Xt+2)

−1
]

×q(Xt+2 | Xt+1,dt+1 = j(t+1))×q(Xt+1 | Xt ,dt = a)

−δ
2

∑
Xt+1

∑
Xt+2

ln
[
P(dt+2 = j(t+2) | Xt+2)

−1
]

×q(Xt+2 | Xt+1,dt+1 = j(t+1))×q(Xt+1 | Xt ,dt = b)

+δ
2

∑
Xt+1

∑
Xt+2

[
ut+2(Xt+2,dt+2 = j(t+2))

]
×q(Xt+2 | Xt+1,dt+1 = j(t+1))×q(Xt+1 | Xt ,dt = a)

−δ
2

∑
Xt+1

∑
Xt+2

[
ut+2(Xt+2,dt+2 = j(t+2))

]
×q(Xt+2 | Xt+1,dt+1 = j(t+1))×q(Xt+1 | Xt ,dt = b)

Note that, the above value function difference appears in the standard choice probabil-
ity of the Logit model. In a Logit model, it is the relative values (between choices) that
matter, hence the above simplified result can be used to construct a log-likelihood func-
tion. Given the simplification, all of the structural parameters in the flow utility function
u(·) become linear, which also makes the estimation of the model more computationally
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feasible. In addition, all of the conditional choice probabilities and transition probabil-
ities can be replaced by some empirical estimates say P̂r(·) and q̂(·), respectively. The
log-likelihood is given by

L(γ,δ ) = ∑
i

∑
t

ln
(

exp(vit(Xit ,dit = l))
∑ j∈J exp(vit(Xit ,dit = j))

)
(12)

or equivalently,

L(γ,δ ) = ∑
i

∑
t

(
vit(Xit ,dit = l)− ln ∑

j∈J
exp(vit(Xit ,dit = j))

)
(13)

where l is the observed crop choice made at field i in year t.

3. Data

This study assembles estimation data from four sources: (1) crop choice data from the
30*30 meter resolution Cropland Data Layer (CDL) developed by USDA National Agri-
cultural Statistics Service; (2) groundwater level data from USGS National Water Infor-
mation System database; (3) temperature and precipitation data from the PRISM project at
Oregon State University; (4) crop price information from the New Mexico Annual Statis-
tics Bulletins available up to 2018. We choose a study period of 2008 - 2018. 2008 is the
first year that the CDL data is available for New Mexico. Figure 1 shows the study area
(spans over four major crop production counties) and the recoded CDL raster for 2008.

The CDL data consists of a large panel of field-level crop choices, which is the de-
pendent variable in this study. Most of New Mexico’s crop production is located in the
eastern High Plains (mainly in three counties: Curry, Quay, and Roosevelt). This study
covers four major field crops in the region including hay, corn, sorghum, and winter wheat
(the top crop). The original CDL data classifies land uses into more than 200 codes. This
study recodes and keeps only the relevant land use: 1 = hay; 2 = corn; 3 = winter wheat; 4
= sorghum; 0 = idle land/pasture. All other small crops are excluded from the study given
the small number of observations. The final data set only consists of pixels that have a
value from {0,1,2,3,4} in any year during the study period.

11



Fig. 1. The study area and CDL raster (recoded) for 2008
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The groundwater depth measurements scatter across different wells in the study re-
gion. The USGS database tends to record different wells from year to year. To derive the
depth of groundwater at each pixel, we spatially interpolate the depth using surrounding
measurements for each year. The inverse distance weight is used for the interpolation,
which is commonly adopted in hydrogeological studies. The range of spatial interpolation
is chosen between 50km and 100km.

The growing season temperature and precipitation data are derived from the 4*4 km
PRISM data. According to the New Mexico Annual Statistics Bulletins, the growing sea-
sons for hay, corn, winter wheat, and sorghum are April to November, April to November,
November to June, and May to December, respectively. These time frames are used to
compute monthly average temperature and precipitation. All crop prices are recorded at
the regional level. To match with CDL crop choice data, the climatic data are down-scaled
to 30*30 meter resolution.

4. Estimation Procedure and Results

The empirical estimation carries out in two stages. The First stage is a spatial bootstrap
process which randomly selects a panel of pixels from the raw data to reduce computa-
tional difficulty. Otherwise, a maximum likelihood estimation over billions of (30*30 me-
ter) cells is computationally exhaustive. The second step is to repeat the first step enough
times and compute empirical standard errors for all coefficient estimates. In the litera-
ture, spatial aggregation and random selection have been used to reduce the number of
observations in estimation (e.g. Scott, 2014; Ji et al., 2014).

The preliminary results are presented in Tables 2 and 3. Here we ignore some of
the control variables including crop prices and climatic variables, which all have expected
impacts. For instance, an increase in the crop price will increase the likelihood of choosing
that crop. The discussion of the results focuses on groundwater level and crop rotations,
which are more policy-relevant. Note that for rotation variables, we focus on the two main
crops: wheat and sorghum. This reduces the computational burden. Table 2 presents the
estimation results with the groundwater depth (measured as water level, feet below land
surface) spatially interpolated using well observations within a 100km radius. Note that
the coefficient estimates here should be interpreted relatively. Over the study period from
2008 to 2018, the groundwater level has on average declined by 2.5 feet per year. The
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estimates across different crops suggest that, facing the decline of groundwater level (i.e.
the increase of groundwater depth), high-value crops are more responsive. Looking at the
two major crops (wheat and sorghum) in the study region, the likelihood of growing wheat
is much higher than growing more drought-resistant sorghum. A potential explanation is
that when the cost of irrigation by pumping groundwater increases, the farmers are more
likely to choose high-value crops such as wheat.

Table 2: The impact of groundwater level on crop choices
Crop Choice

Variables Hay Corn Wheat Sorghum
git 0.0027 (0.0005) 0.0027(0.0003) 0.0031 (0.0001) 0.0017 (0.0002)

W1 -0.8774 (0.0825) 1.1130 (0.0393) 2.0651 (0.0156) 1.8945 (0.0278)
S1 -2.2417 (0.2265) 0.5452 (0.0591) 0.4016 (0.0248) 2.2769 (0.0314)

# of obs 117,480
Note: (1) Standard errors are reported in parentheses and computed as the standard de-
viation of estimates from all random draws. (2) The estimates for H1 and C1 cannot be
converged due to a lack of variation. Hay and corn take a small percentage of the total
crop acreage in the study region.

Table 3 presents estimation results using the annual change of groundwater level. The
idea is to incorporate the fact that groundwater depth has a lot of spatial heterogeneities
due to the complicated hydrogeological conditions in the region (Rawling and Rinehart,
2017). Using the annual change of groundwater level as an explanatory variable can help
to effectively difference out the spatial heterogeneity. The estimation results confirm the
observation from previous results - farmers tend to respond to the decline of groundwater
level by choosing high-value crops such as winter wheat instead of switching to more
drought-resistant and water-saving crops such as sorghum.
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Table 3: The impact of groundwater level change on crop choices
Crop Choice

Variables Hay Corn Wheat Sorghum
4git 0.0022 (0.0004) 0.0022(0.0002) 0.0016 (0.0001) 0.0004 (0.0001)
H1 6.7740 (0.1242) 3.3629 (0.1526) 0.7401 (0.0976) 1.1686 (0.1564)
C1 2.3538 (0.2001) 4.7587 (0.0797) 1.2441 (0.0497) 1.5372 (0.0778)
W1 1.2996 (0.1218) 2.6323 (0.0666) 2.1453 (0.0160) 2.0093 (0.0292)
S1 -0.0761 (0.2435) 2.0525 (0.0799) 0.4760 (0.0250) 2.3874 (0.0327)

# of obs 117,480
Note: standard errors are reported in parentheses and computed as the standard deviation
of estimates from all random draws.

5. Conclusion

In this study, we develop a dynamic multinomial discrete choice model to estimate
the impact of groundwater decline on crop choices in NM eastern High Plains. We take
advantage of the recently available high-resolution remote sensing agricultural land cover
data developed by the National Agricultural Statistics Service of USDA. The results show
that farmers tend to respond to the decline of the groundwater level by choosing high-value
crops such as winter wheat instead of switching to more drought-resistant crops such as
sorghum. Both winter wheat and sorghum have been grown in the region historically.
Therefore, switching cost is unlikely to explain the result. On the one hand, when the
groundwater resource declines, farmers are forced to invest more to pump the same amount
of water. Choosing a high-value crop justifies such a decision. On the other hand, this also
reflects the common-pool resource problem of groundwater extraction. As the common-
pool resource shrinks, users tend to increase the rate of extraction as a result of intensifying
competition. This inflates the likelihood of choosing high-value crops instead of more
drought-resistant options.
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