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The Impacts of African Swine Fever on Vertical and Spatial 

Hog Pricing and Market Integration in China 

                      

 

 

 

Abstract: This paper investigates the dynamic effects of a disease outbreak on vertical and 

spatial markets, with an application to the African Swine Fever (ASF) and its impact 

on Chinese hog markets. Relying on a flexible representation of vertical and spatial 

price dynamics, we investigate how ASF affected the pork cycle and price transmission 

across markets. We find that the ASF outbreak had larger long-term effects on spatial 

prices than on vertical prices, likely reflecting inter-regional trade bans imposed by the 

government. Our analysis indicates that ASF contributed to shortening the period of 

the pork cycle. We also provide evidence that the ASF outbreak affected cointegration 

relations across markets, especially among regional markets.  

Keywords: market integration, vertical pricing, spatial pricing, cycles, African Swine fever, 

China 

JEL: C32, Q11 
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The Impacts of African Swine Fever on Vertical and Spatial Hog 

Pricing and Market Integration in China 

 

1. Introduction 

The last few decades have seen a rise in contagious animal diseases across the globe 

(Otte et al., 2004; Thornton, 2010). Well-known examples include mad cow disease, foot-

and-mouth disease, avian influenza, swine fever, etc. The outbreaks of animal disease not 

only cause significant production loss but increase human health risk and can trigger public 

panic. With continuous growth in global meat demand and intensification of livestock 

production pattern, animal disease outbreaks have imposed an increasingly large economic 

cost on livestock industry and macroeconomy. For instance, the economic cost of mad cow 

disease outbreak was estimated to be £50 billion in the UK (Otte et al., 2004), and the total 

loss of a hypothetical outbreak of foot-and-mouth disease (FMD) in the US was reported 

to be $2.7-4.1 billion depending on disease situations (Paarlberg et al., 2008). The vast 

adverse impact of disease outbreaks implies a need to examine how it affects the 

functioning of markets.  

In August 2018, the African Swine Fever (ASF) was first detected in China and 

spread fast to almost all provinces in the country. As a highly contagious and deadly disease, 

ASF can cause very high mortality of domestic hogs (Gostard et al., 2013). Since its 

outbreak, the disease has been spreading speedily and had significant impacts on the 

Chinese hog sector, generating wide attention to its spread and market response (i.e., 
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quarantine and trade restriction, panic culling, surging prices, etc.). According to the 

Ministry of Agriculture of China, more than 1.08 million live hogs were slaughtered due 

to ASF disease control purposes, and the national live hog inventory was reduced by 

approximately 40 percent1. To reduce the spread of the disease, the Chinese government 

imposed restrictions on interregional live hog transportation. Though effective in 

controlling disease spread, these interventions triggered complex price changes and market 

responses in the Chinese hog market. As shown in Figure 1, both vertical and spatial price 

patterns changed after the disease outbreak. This indicates that ASF had large effects on 

hog pricing both along its supply chain and across space. The existence of cycles in the 

pork market makes this issue more complex, indicating a need to develop a joint 

investigation of market dynamics and cycles in the presence of a major disease shock. 

How do price cycles differ before and after the disease? What are its impacts on vertical 

and spatial market integration? This paper investigates these issues and provides answers 

to these questions.  

This is apparently the first paper to investigate the impacts of ASF on Chinese hog 

pricing and market integration among vertical as well as spatial markets. Our analysis relies 

on weekly data from 2008 to 2019. We develop a time series representation of the dynamics 

of vertical as well as horizontal prices, allowing for structural changes. In our case, the 

structural changes capture the dynamic effects of the ASF outbreak. Our approach 

generates a flexible representation of changes in vertical and spatial price dynamics caused 

by the ASF outbreak. Our analysis is applied to price transmission along the supply chain 
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(i.e., two stages of marketing channel) and across space (i.e., seven major regions in China). 

It investigates how ASF affects the stationarity of prices and the nature of price cycles. 

Using the error-correction representation of our time series model, we evaluate the disease 

effects in a multiple-product and multiple-region context, and obtain the cointegration 

relationships among prices at different stages of the marketing channel as well as across 

regions. We employ the Singular Value Decomposition (SVD) method proposed by 

Kleibergen and Paap (2006) to test the nature of cointegration in both the pre-disease 

regime and post-disease regime. Our econometric analysis provides new and useful 

information on how a major shock affects the dynamics of vertical and horizontal pricing.  

Our paper obtains three main results. First, it shows how the ASF outbreak affected 

market dynamics. For example, we present evidence that ASF contributed to shortening 

the period of the pork cycle, indicating that the shock induced producers to make 

production decisions in a timelier manner. We document the presence of cyclical patterns 

in both vertical and spatial price margins and examine how the ASF outbreak affected 

spatial price margins. Second, we find that ASF had larger long-term effects on spatial 

prices than on vertical prices, likely reflecting inter-regional trade bans imposed by the 

Chinese government. The ASF outbreak also had more significant impacts in production 

regions (as opposed to consumption regions). Third, we provide evidence that ASF affected 

cointegration relations and had adverse effects on the functioning of implicit markets.  

The rest of the paper is organized as follows. Section 2 gives an overview of the 

economics of contagious animal disease. Section 3 introduces our econometric approach. 
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After describing the data in section 4, the econometric results are presented in section 5, 

followed by a discussion of economic implications in section 6. Section 7 concludes.  

2. Economics of contagious animal disease  

The economic analysis of animal disease has been an important topic for academia, 

policymakers and industry stakeholders (McInerney, 1999; Bennett, 2003; Rich and 

Nelson., 2007). The outbreaks of animal disease can have significant impacts on livestock 

production and impose substantial costs to society. Bennett (2003) estimated and compared 

the economic costs of 30 different endemic animal diseases in Great Britain, concluding 

that mastitis has the highest costs for cattle with an annual estimate of £137-245 million. 

Rich and Nelson (2007) built an epidemiological-economic model to study the dynamic 

and spatial effects of foot-and-mouth disease (FMD) in South America and compared the 

net present value of six disease control options in the short-run and long-run. Knight-Jones 

and Rushton (2013) assessed the global impact of FMD, estimating the annual cost of 

production losses to be in the range of 6.5-21 billion US dollars. The large production 

impact and economic costs imply a need to understand better how a disease outbreak can 

affect the functioning of markets.  

Previous literature has studied the impacts of animal disease on meat consumption, 

production, trade and agribusiness. Park et al., (2008) found that the impacts of domestic 

and oversea animal disease crises on Korean meat markets typically last 13-16 months, and 

the severity of influence depends on disease type and supply chain. Zongo and Larue (2019) 

estimated how an animal disease can affect livestock trade flows. Schlenker and Villas-
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Boas (2009) evaluated the response of consumer and financial markets to warnings about 

mad cow disease, finding that the first-time announcement in 2003 triggered pronounced 

sales reduction and abnormal futures price drops. Henson and Mazzocchi (2002) assessed 

the impacts on UK agribusinesses of government announcement of human health risk from 

mad-cow disease; showing heterogenous abnormal returns among meat-related companies. 

Those studies provide valuable insights regarding the impacts of animal disease outbreaks 

on various aspects of the livestock market and macroeconomy. 

Much attention has focused on the effects of animal disease on market prices. This 

includes the effects of disease on both vertical and horizontal price transmissions. The 

economics of price transmission in agricultural markets has been of significant interest 

(Goodwin and Schroeder, 1991; Frackler and Goodwin, 2001; Barrett and Li, 2002; 

Abdulai, 2007). For animal disease impact on vertical price transmission, Hassouneh et al. 

(2010) used a regime-switching vector error correction model to assess the impact of BSE 

outbreaks on vertical price transmissions; they found that Bovine Spongiform 

Encephalopathy (BSE) food scares cause price adjustment in producer price but not in 

consumer price. Serra (2011) evaluated the impacts of a BSE outbreak on price 

transmission along the Spanish food marketing chain by using an STCC-GARCH model 

and analyzed the evolution of volatility patterns. For horizontal price transmission, Ihle et 

al. (2012) explored the occurrence of an animal health crisis on spatial interdependencies 

of European calf prices; they found that the bluetongue disease induced structural changes 

in prices with significant short-term adjustments. The literature discussed above provides 
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valuable insights into the price transmission effects caused by animal disease. Though 

informative, there is a need to investigate the disease effects considering both vertical and 

horizontal market integration. Doing so is a contribution of this paper.  

Another strand of literature relates to the cyclical price behavior exemplified in 

“livestock cycles” (e.g., Rosen et al., 1994; Parker and Shonkwiler, 2014). Rosen et al. 

(1994) examined the economic rationality of cattle cycles given the underlying dynamics 

of the breeder herd. In the context of the US pork market, Chavas (1999) documented that 

price dynamics were related to imperfections in the formulation of price expectations by 

pork producers. Holt and Craig (2006) used smooth transition autoregressive (STAR) 

model to analyze the US pork-corn cycles, and provided useful imformation on 

nonlinearity, regime-dependent behavior, and time-varying parameter change. Parker and 

Shonkwiler (2014) applied a dynamic unobservable time series model to the German hog-

feed price ratio and detected a four-year price cycle with increasing volatility over time. 

Focusing on China’s volatile pork industry, Gale et al., (2014) pointed out that Chinese 

pork cycles typically last three to four years depending on evaluation situations, and 

presented a discussion on the government policies attempting to smooth the pork cycles. 

Zhao and Wu (2015) employed the Threshould Autoregressive (TAR) model to analyze the 

nolinear dynamics of pork price in China, and characterized the changing process of pork 

prices into a “mild regime” and a “expansion regime”. But how does a major disease 

outbreak affect market cycles? At this point, the answer to this question is unclear. 

Addressing this issue is another contribution of this paper. Applied to the ASF outbreak in 
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the Chinese hog market, this paper provides an economic analysis of the dynamic impacts 

of a disease outbreak on vertical and spatial markets and on hog price cycles.  

3. Model of Price Dynamics  

Consider the markets for 𝑛 commodities. Let 𝑝𝑖𝑡 ∈ ℝ be the market price at time 

𝑡  in the 𝑖 -th market, 𝑖 ∈ 𝑁 ≡ {1,… , 𝑛} . We are interested in investigating the 

determinants of the prices (𝑝1𝑡, … , 𝑝𝑛𝑡). These prices are market equilibrium prices set 

such that supply equals demand in all markets. In general, we expect prices to evolve over 

time reflecting the dynamics of supply/demand conditions along with price adjustments 

across markets. Following Zellner and Palm (1974), many representations of such price 

dynamics are possible. They include structural models reflecting supply-demand 

conditions, vector autoregression (VAR) models applied to all prices (𝑝1𝑡, … , 𝑝𝑛𝑡) as well 

as “final form” models applied to a subset of prices. As discussed in Zellner and Palm 

(1974), a final form model is a reduced-form model providing a valid representation of 

price dynamics in selected markets. Our analysis will rely on final form specifications of 

price dynamics in markets {𝑖, 𝑗}, 𝑖 ≠ 𝑗 ∈ 𝑁, allowing us to investigate the joint dynamics 

of (𝑝𝑖𝑡 , 𝑝𝑗𝑡). Focusing on two markets at a time will simplify the econometric analysis 

and facilitate the economic interpretation of the results.2 As discussed below, we explore 

price dynamics in all 𝑛 markets by conducting the analysis for different (𝑖, 𝑗) in 𝑁.  

For a given (𝑖, 𝑗), 𝑖 ≠ 𝑗 ∈ 𝑁, assume that the determination of market prices 𝒑𝑡 =

(𝑝𝑖𝑡, 𝑝𝑗𝑡) is given by the equation 
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𝒑𝑡 = [
𝑔𝑖(𝒑𝑡−1, … , 𝒑𝑡−𝑚, 𝒙𝑡, 𝒆𝑡

𝑔𝑗(𝒑𝑡−1, … , 𝒑𝑡−𝑚, 𝒙𝑡, 𝒆𝑡
] = 𝒈(𝒑𝑡−1, … , 𝒑𝑡−𝑚, 𝒙𝑡, 𝒆𝑡) (1) 

where 𝑚 ≥ 1 is the number of lags, 𝒙𝑡 ∈ ℝ𝑘 are exogenous shifters of 𝒑𝑡 ∈ ℝ2, 𝒆𝑡 ∈

ℝ𝑠 is a vector of 𝑠 i.i.d. random variables representing the effects of unobservable factors 

and 𝒈:  ℝ2𝑚 × ℝ𝑘 × ℝ𝑠 → ℝ2 . Equation (1) reflects market price determination in 

markets (𝑖, 𝑗) . The specification in (1) allows for general dynamics in prices 𝒑𝑡 , 

exogenous changes captured by 𝒙𝑡 as well as stochastic shocks reflected by the random 

variables 𝒆𝑡. It allows for own price dynamics (when 𝑝𝑖,𝑡−𝑘  affects 𝑝𝑖,𝑡 , 𝑘 ∈ 𝑀 ≡

{1,… ,𝑚}) as well as cross price dynamics (when 𝑝𝑗,𝑡−𝑘 affects 𝑝𝑖𝑡, 𝑗 ≠ 𝑖 ∈ 𝑁, 𝑘 ∈ 𝑀) 

reflecting economic adjustments across markets.   

Let 𝑷𝑡−1 = (𝑝𝑖,𝑡−1, … , 𝑝𝑖,𝑡−𝑚; 𝑝𝑗,𝑡−1, … , 𝑝𝑗,𝑡−𝑚). For the 𝑖-th market, assume that 

𝑔𝑖(𝑷𝑡−1, 𝒙𝑡, 𝒆𝑡) in (1) takes the form  

𝑔𝑖(𝑷𝑡−1, 𝒙𝑡, 𝒆𝑡) = 𝛼𝑖 + 𝛽𝑖 𝑷𝑡−1 + 𝛾𝑖 ℎ𝑖(𝑷𝑡−1, 𝒙𝑡) + 𝑠𝑖(𝒆𝑡).  (2) 

Equation (2) is linear in the parameters 𝛿 = (𝛼, 𝛽, 𝛾). For a given specification of ℎ𝑖 and 

conditional on (𝑷𝑡−1, 𝒙𝑡), the parameters 𝛿 in (2) can be consistently estimated using 

standard regression. Equation (2) provides a flexible way to investigate empirically the 

determination and evolution of mean prices in the 𝑛 markets. Importantly for our analysis, 

the parameters 𝛾𝑖 in (2) capture possible structural changes (when ℎ𝑖 depend on 𝒙𝑡) as 

well as changing dynamics (when ℎ𝑖 depend on 𝑷𝑡−1).  

Given 𝑷𝑡−1 = (𝑝𝑖,𝑡−1, … , 𝑝𝑖,𝑡−𝑚; 𝑝𝑗,𝑡−1, … , 𝑝𝑗,𝑡−𝑚) , equations (1) and (2) can be 

alternatively written as  
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[
 
 
 
 
 
 
 
 
𝑔𝑖(𝑷𝑡−1, 𝒙𝑡, 𝒆𝑡)

𝑝𝑖,𝑡−1

⋮
𝑝𝑖,𝑡−𝑚+1

𝑔𝑗(𝑷𝑡−1, 𝒙𝑡, 𝒆𝑡)
𝑝𝑗,𝑡−1

⋮
𝑝𝑗,𝑡−𝑚+1 ]

 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝛼𝑖 + 𝛽𝑖 𝑷𝑡−1 + 𝛾𝑖 ℎ𝑖(𝑷𝑡−1, 𝒙𝑡) + 𝑠𝑖(𝒆𝑡)

𝑝𝑖,𝑡−1 

⋮
𝑝𝑖,𝑡−𝑚+1

𝛼𝑗 + 𝛽𝑗  𝑷𝑡−1 + 𝛾𝑗  ℎ𝑗(𝑷𝑡−1, 𝒙𝑡) + 𝑠𝑗(𝒆𝑡)
𝑝𝑗,𝑡−1 

⋮
𝑝𝑗,𝑡−𝑚+1 ]

 
 
 
 
 
 
 
 

 

=  𝑮(𝑷𝑡−1, 𝒙𝑡, 𝒆𝑡) (3) 

Equation (3) is a difference equation of order 2𝑚 that provides a representation of 

price dynamics in markets (𝑖, 𝑗). Under differentiability, the effects of lagged prices at time 

𝑡 in (3) are given by the (2𝑚 × 2𝑚) matrix 𝐷𝐺(𝑷𝑡−1, 𝒙𝑡) =
𝜕𝑮

𝜕𝑷𝑡−1
(𝑷𝑡−1, 𝒙𝑡). For given 

(𝑷𝑡−1, 𝒙𝑡), let 𝝀 = (𝜆1, … , 𝜆𝑛𝑚) be the Eigenvalues (or roots) of 𝐷𝐺(𝑷𝑡−1, 𝒙𝑡), where 𝜆1 

is the dominant root. First, consider the case of a linear model where all roots are constant 

for any (𝑷𝑡−1, 𝒙𝑡). In this case, the dynamic system is globally stable if |𝜆1| < 1: when 

the dominant root has a modulus in the unit circle, then all prices converge to unique long 

run equilibrium (Simon and Blume, 1994). As such, according to Katok and Hasselblatt 

(1997), price dynamics would follow an exponential path toward the long run equilibrium 

when 𝜆1 is real and positive, an oscillatory path when the root 𝜆1 is real and negative, 

and cyclical patterns when 𝜆1  is complex (𝜆1 = 𝑎1 + 𝑏1 √−1 ) with a cycle of period 

[2 𝜋/arctan (
𝑏1

𝑎1
)]. Alternatively, having |𝜆1| > 1 means that price dynamics is unstable: 

there is no long run equilibrium and log(|𝜆1,𝑡|) measures the rate of divergence of prices 

along a forward path.  

Second, consider the case where 𝛾 ≠ 0   in (2)-(3) and the roots 𝝀𝑡 =

(𝜆1,𝑡, … , 𝜆𝑛𝑚,𝑡) depend on (𝑷𝑡−1, 𝒙𝑡). In this case, the above results still hold locally in 
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the sense that a linearized version of (3) can approximate price dynamics in the 

neighborhood of the evaluation point. Then, having |𝜆1(𝑷𝑡−1, 𝒙𝑡)| < 1 means that prices 

tend to converge along a forward path in the neighborhood of (𝑷𝑡−1, 𝒙𝑡). Alternatively, 

having |𝜆1(𝑷𝑡−1, 𝒙𝑡)| > 1  means that price dynamics is locally unstable, ln (|𝜆1,𝑡|) 

measuring the rate of divergence of prices along a forward path in the neighborhood of 

(𝑷𝑡−1, 𝒙𝑡). Below, we test empirically whether |𝜆1| is statistically different from one. It 

is well-known that this “unit root” test does not have a standard asymptotic distribution 

(Hamilton, 1994; Enders, 2014). On that basis, our unit-root test relies on bootstrapping.   

Equation (2) is expressed in terms of price levels. It can be equivalently written in 

terms of first differences. To see that, let 𝒑𝑡−𝑘 = [
𝑝𝑖,𝑡−𝑘

𝑝𝑗,𝑡−𝑘
]  and 𝒉(𝑷𝑡−1, 𝒙𝑡) =

[
𝒉𝑖(𝑷𝑡−1, 𝒙𝑡)
𝒉𝑗(𝑷𝑡−1, 𝒙𝑡)

]. Then equations (1)-(2) can be written as  

𝒑𝑡 = 𝐴 + ∑ 𝐵𝑗 𝒑𝑡−𝑗 + 𝐾𝑚
𝑗=1 𝒉(𝑷𝑡−1, 𝒙𝑡) + 𝑆(𝒆𝑡),  (7a) 

where 𝐴, 𝐵1, … , 𝐵𝑚 and 𝐾 are conformable matrices of parameters. Equation (7a) can be 

equivalently expressed as  

Δ𝒑𝑡 = 𝐴 + Π 𝒑𝑡−1 + ∑ Γ𝑗 Δ𝒑𝑡−𝑗 + 𝐾𝑚−1
𝑗=1 𝒉(𝑷𝑡−1, 𝒙𝑡) + 𝑆(𝒆𝑡),  (7b) 

where Δ𝑷𝑡 = 𝒑𝑡 − 𝒑𝑡−1 ,  Δ𝒑𝑡−𝑗 = 𝒑𝑡−𝑗 − 𝒑𝑡−𝑗−1 , Π = ∑ 𝐵𝑗 − 𝐼𝑛
𝑚
𝑗=1   and Γ𝑗 =

−∑ 𝐵𝑗
𝑚
𝑘=𝑗+1 , 𝑗 = 1,… ,𝑚 − 1 . When 𝐾 = 0 , equation (7a) is a standard vector 

autoregression (VAR) model (Hamilton, 1994; Enders, 2014). And when 𝐾 = 0, equation 

(7b) is a vector error-correction model (VECM) frequently used in the presence of a “unit 

root”. In this context of linear dynamics, the effects of 𝒑𝑡−1 on Δ𝑷𝑡 in (7b) are captured 

entirely by the matrix Π  and the cointegration (long term) relationships among 

http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Walter+Enders
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(𝑝1,𝑡, … , 𝑝𝑛,𝑡)  are associated with a reduced rank of Π  (Engle and Granger, 1987; 

Johansen, 1995). But when 𝐾 ≠ 0, price dynamics would depend on the evaluation point.  

Our analysis will rely on the specification and estimation of equation (7a) applied 

to both vertical and spatial commodity markets. The case of vertical markets arises when 

(𝑝𝑖, 𝑝𝑗) are commodity prices at different stages of a marketing channel (e.g., producer 

price versus retail price). Then, the investigation would involve examining the nature of 

dynamic price transmission in a marketing channel. The case of spatial markets arises when 

(𝑝𝑖, 𝑝𝑗) are commodity prices in different regions. Then, the analysis would focus on the 

dynamic determination of spatial prices for a given commodity. But what happens to the 

price determination process if the markets exhibit significant structural changes? This is a 

key question addressed in this paper. As shown below, our analysis provides new and useful 

information on how vertical and spatial markets adjust in the presence of a disease shock.  

Our econometric analysis will rely on the specification and estimation of the VAR 

model given in (7a). In the absence of serial correlation in the error terms, this provides 

consistent estimates of the parameters (Hamilton, 1994; Enders, 2014). This includes unit 

root processes where prices are nonstationary. In this case, it is useful to consider the 

equivalent vector error-correction model (VECM) given in (7b). The VECM allows us to 

distinguish between the short run and long run adjustments across markets. For active 

markets of a standard commodity, we can expect prices (𝑝𝑖, 𝑝𝑗) to be cointegrated. Indeed, 

under nonstationary, the long run difference between 𝑝𝑖 and 𝑝𝑗 may reflect the presence 

of arbitrage between the two markets (with arbitrage cost being processing cost in vertical 
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markets and transportation cost in spatial markets). In this case, the prices (𝑝𝑖 , 𝑝𝑗) would 

have a long run cointegration relationship that would reduce the rank of the Π matrix in 

(7b) (Engle and Granger, 1987; Johansen, 1995). In situations where 𝑟𝑎𝑛𝑘(Π) = 1, there 

would be a single cointegration relationship between 𝑝𝑖  and 𝑝𝑗 , with |𝑝𝑖 − 𝑝𝑗|  being 

stationary and the Π matrix reflecting the arbitrage cost between these markets.  

Note that cointegration relationships can become more complex in the presence of 

differentiated products. Indeed, under differentiated products, we expect long run 

commodity prices to reflect the shadow prices of the underlying product characteristics 

(Rosen, 1974; Chavas and Kim, 2005). In this context, the number of cointegration 

relationships would be the number of product characteristics in active markets. This 

indicates several possible scenarios for the rank of Π  in (7b): 1/ 𝑟𝑎𝑛𝑘(Π) = 0 : the 

markets 𝑖 and 𝑗 are not cointegrated and there is no active arbitrage between the two 

markets; 2/ 𝑟𝑎𝑛𝑘(Π) = 1 : markets 𝑖  and 𝑗  are cointegrated (e.g., the commodity is 

standard and there is active arbitrage between the two markets); and 3/ 𝑟𝑎𝑛𝑘(Π) = 2 : 

markest 𝑖 and 𝑗 are cointegrated and there are two cointegration relationships reflecting 

product differentiation and long run linkages with the shadow pricing of the underlying 

product characteristics). Which scenario is likely to develop? We see the relevance of each 

scenario to be largely an empirical issue (as the nature of cointegration can depend on the 

markets being analyzed). Our discussion also raises the question: Could a large shock affect 

the long run relationship between prices (and thus the nature of their cointegration)? These 

questions are being addressed in the analysis presented below. 
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Alternative approaches have been used in the investigation of cointegration 

relationships (Johansen, 1988, 1991; Kleibergen and Paap, 2006). In this research, our 

analysis of cointegration relationship and of the 𝑟𝑎𝑛𝑘(Π) relies on a rank test proposed 

by Kleibergen and Paap (2006, KP hereinafter). The KP test relies on a Singular Value 

Decomposition (SVD) of the matrix Π in (7b). Under non-stationarity, Kleibergen and 

Paap (2006) showed that the limiting distribution of the KP rank statistic is identical to that 

of the Johansen trace statistic. We relied on the KP rank test instead of the conventional 

Johansen test for three reasons. First, our analysis involves regime-switching together with 

complex interactions of disease and price dynamics, which makes it harder to test the 

𝑟𝑎𝑛𝑘(Π) using the indirect “concentrating out” approach proposed by Johansen (Johansen, 

1988, 1991). Second, the KP approach can accommodate the presence of market cycles (as 

there is strong evidence of market cycles in the hog market). Third, as discussed below, our 

model of price dynamics reflects both short-term and longer-term dynamics, which is more 

difficult to capture using the Johansen approach. All those arguments point to the more 

straightforward SVD-based KP test to test the 𝑟𝑎𝑛𝑘(Π) in our cointegration analysis.  

Our cointegration test proceeds using a two-step procedure. In step one, we obtain 

consistent estimates of the VAR model in (7a) and the associated Π matrix in (7b). In a 

second step, we use a singular value decomposition of Π and its two eigenvalues (𝐸1, 𝐸2) 

satisfying |𝐸1| ≥ |𝐸2| . In this context, we have 𝑟𝑎𝑛𝑘(Π)  equals 2 if |𝐸1|≥ |𝐸2| > 0 , 

equals 1 if |𝐸1|> |𝐸2| = 0, and equals 0 if |𝐸1|= |𝐸2| = 0. We use the KP approach to 

test |𝐸1| = 0 and |𝐸2| = 0, estimating the standard errors using bootstrapping obtained 
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from resampling 500 times from the sample data. This allows us to evaluate the 𝑟𝑎𝑛𝑘(Π) 

and its implications for the cointegration among prices. As discussed below, we use this 

approach to investigate how a large shock (due to disease outbreak) can affect the nature 

of cointegration relationships in both vertical and horizontal markets.  

4. Data 

The study investigates the effects of a major ASF outbreak in 2018 on pricing and 

market integration in the Chinese pork market. China is the largest pork producer and 

consumer in the world, with its self-sufficiency rate higher than 96 percent.3 Our analysis 

relies on weekly price data over the period from January 2008 to June 2019. The data were 

obtained from the Department of Market and Information, Ministry of Agriculture and 

Rural Affairs of China. The analysis is applied to both vertical markets and spatial markets, 

covering price information at two stages along the supply chain and in seven main regions 

in China. First, in each region, we investigate prices at two levels of the vertical supply 

chain: producer price (PP) and retail price (PR). The former refers to live hog price paid to 

producers in rural markets; the latter refers to the average pork price paid by consumers. 

Note that Chinese consumers have a preference for locally slaughtered pork (instead of 

frozen pork possibly slaughtered in different locations), implying active transportation of 

live hog between production regions and consumption regions. This may be important as 

the nature of the supply chain can affect the vertical and spatial pricing patterns observed 

in the Chinese pork markets. Second, our analysis examines the dynamics of producer and 
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retail prices in seven major regions in China: North, Northeast, East, Center, South, 

Southwest and Northwest.4  Among those regions, Northeast, North and Center are the 

main pork producing areas while South, Southwest and East are mostly pork consuming 

areas, implying the presence of significant amount of trade among Chinese regions. This 

raises the question on how the ASF disease outbreak affected pork pricing across space.  

Figure 1 reports the trajectories of producer and retail prices in seven regions over 

the period of January 2008 to June 2019. Several important features can be observed from 

the data plots showing regional producer prices, regional retail prices and regional price 

margins (defined using the maximum price minus the minimum price among the seven 

regions). First, Figure 1 shows that prices exhibit a succession of boom-bust periods, 

indicating the presence of pork cycles in the Chinese hog market (Gale et al., 2012; Zhao 

and Wu, 2015). This raises the question: How does the ASF disease outbreak affect the 

pork cycle? Our empirical analysis will answer this question. Second, the plots present 

similar price patterns of producer price and retail price, especially before the ASF disease 

outbreak (in August 2018). This suggests that Chinese pork markets are vertically 

integrated. But is that true across all regions? This is one of the hypotheses we investigate 

below. Third, the data plots in Figure 1 indicate some changes in spatial pricing patterns 

between pre-disease period and post-disease period. Moreover, the lower plot in Figure 1 

(reporting spatial price margins) indicates that the ASF outbreak was followed by a short-

term increase in the regional price margin. This raises questions about the dynamic nature 

of spatial price transmission in response to a major disease shock. Did the ASF outbreak 
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affect the cointegration relationships between spatial prices? Did such linkages vary across 

regions? Our empirical model will address these issues, providing useful information on 

how a disease outbreak can affect the functioning and dynamics of vertical and spatial 

markets exhibiting significant cycles.   

Table 1 reports the summary statistics of the data used in this study. The national 

average producer price and retail price during the sample period are 14.54 CNY and 23.69 

CNY, respectively. The corresponding marketing margin is 9.15 CNY on average. Among 

all seven regions, the main production regions (e.g., Northeast, North and Center) show the 

lower average prices, while the regions with higher average prices are the main 

consumption ones (e.g., South, Southwest and East). Next, we develop an econometric 

analysis of these data to investigate the dynamic price effects of the ASF disease outbreak 

in the Chinese hog industry.   

5. Econometric Analysis 

We start our investigation with the estimation of equation (2), with a focus on the 

evolution of conditional mean prices across markets. As discussed above, our analysis 

relies on a final form specification conducted “two prices at a time”. We used the Bayesian 

Information Criterion (BIC) to guide us in choosing a model specification. The ASF disease 

outbreak is measured by a dummy variable 𝐷𝑖. The variable 𝐷𝑖 equals one after the ASF 

outbreak on August 3, 2018; 𝐷𝑖 equals zero otherwise. Our choice of model specification 

involved the lag structure (including both own lag and cross lag effects), seasonal dummies, 
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disease dummy and interactions of disease dummy with lagged prices.5 Alternative model 

specifications were estimated and evaluated. They are reported in Table A1 in the Appendix. 

Short-term dynamics were captured by lagged prices up to 4 weeks, while longer-term 

dynamics were captured by own price lagged one-year (i.e., price lagged 53 weeks). The 

disease dummy 𝐷𝑖 was introduced as an intercept shifter along with interaction effects 

with lagged prices. These interaction effects will allow us to investigate how the disease 

outbreak affects market dynamics. As suggested by the BIC criterion, lagged prices 1 and 

2 weeks for both own and cross price effects provided a good representation of short-term 

dynamics, while the one-year own lagged price (i.e., price lagged 53 weeks) captured long- 

term dynamics for both producer price and retail price. Note that we did explore the 

presence of nonlinearities in price trasnmissions across markets, but the BIC criterion did 

not support such specifications.6  

Table 2a and Table 2b report estimation results for vertical market at national level 

as well as regional levels. As shown in the first column of Table 2a, in the producer price 

(PP) equation at national level, all own lagged prices are statistically significant at the one 

percent level, indicating the existence of both short-term and long-term price dynamics. 

Also, the two cross-lagged prices are statistically significant at the ten and five percent 

level, respectively, implying prices respond to each other in vertical markets. Consistent 

with existing literature (e.g., Gale et al., 2012; Zhao and Wu, 2015), there is seasonality in 

Chinese hog price suggested by the seasonal dummies being significant at the one percent 

level. Our estimates show that the disease variable 𝐷𝑖 has statistically significant price 
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effects at the one percent level, both as an intercept shifter and as a slope shifter (as it 

interacts with lagged prices). These interaction effects indicate that the disease outbreak 

affects market dynamics. The exact nature of these dynamic effects is further explored 

below. In the second column in Table 2a, similar results are obtained for the retail price 

(PR) equation. Again, there are important price dynamics at the retail level. And the disease 

variable 𝐷𝑖 and its interactions with lagged prices are statistically significant at the one 

percent level.  

The other columns in Table 2a and Table 2b report the estimation results at regional 

level. The findings of price dynamics and seasonality obtained at the national level also 

apply to regional markets. And the disease variable 𝐷𝑖  and its interaction terms are 

statistically significant in almost all regions. This suggests the ASF outbreak has important 

impacts on producer and retail pricing at both national and regional levels. The impacts on 

price cycles and market integration are analyzed in detail below.   

Next, the estimates on spatial markets are shown in Table 3a and Table 3b. We focus 

our attention on selected results relating main production regions and main consumption 

regions. The production regions considered include Northeast and North, and the 

consumption regions considered include South and Southwest. Thus, we report four pairs 

(represented by NE-SW, N-SW, NE-S, N-S) for both producer and retail prices.  

Table 3a shows the results for producer prices. In the first two columns, we find 

that the disease variable 𝐷𝑖 alone is statistically significant in NE equation, but not in SW 

equation. Recalling that NE represents a main production region and SW represents a main 
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consumption region, this result indicates that the disease outbreak has a larger impact on 

production than consumption, at least within the first year after the outbreak. This result is 

found to be valid in all four scenarios considered. This is our first important finding. It is 

consistent with the fact that ASF is a non-zoonotic disease (only infects hogs but not 

humans), thus affecting production but not demand, within the first year after the outbreak. 

Although the disease variable 𝐷𝑖 alone is not significant in the main consumer regions, 

most of its interactions with lagged prices are significant in both production and 

consumption regions. This suggests that the disease outbreak affects market adjustments.  

The findings discussed above also apply to the spatial analysis of retail prices. The 

disease variable 𝐷𝑖 alone is only significant in main production regions (and not the main 

consumption regions). However, the interaction terms with lagged prices are significant in 

both production and consuming regions. The difference highlights the heterogeneous 

impacts of disease outbreak in affecting markets in production versus consumption regions. 

It reflects that an outbreak of non-zoonotic animal disease has its largest effect on the 

supply of the market. But dynamic adjustments imply that a supply shock eventually affects 

prices in all markets. The case of the Chinese pork market provides a nice illustration of 

market responses.  

6. Economic implications 

Our econometric analysis provides useful information on the nature of dynamic 

adjustments in response to a major disease shock. Our discussion proceeds in two steps: 
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first, the analysis of price dynamics in a vertical sector; and second, an investigation of 

spatial adjustments across regional markets.  

6.1 Implications for vertical markets 

We start using our econometric estimates to study the nature of price dynamics. As 

discussed in section 3, the longer-term market dynamics is captured by the dominant root 

𝜆1 of the 𝐷𝐺 matrix, while the other roots (𝜆2, 𝜆3, …) capture shorter-term dynamics, 

with |𝜆1| ≥ |𝜆2| ≥ |𝜆3| ≥ ⋯. We calculated the characteristic roots associated with our 

vertical model.7 Given that lagged prices interact with the disease dummy 𝐷𝑖, the roots 

take different values in the pre-disease period (𝜆𝑝𝑟𝑒 when 𝐷𝑖 = 0) versus the post disease 

period (𝜆𝑝𝑜𝑠𝑡 when 𝐷𝑖 = 1). The modulus of the first two roots (𝜆1, 𝜆2) are reported in 

Table 4. Except in the South and Southwest regions in the post-disease period, the dominant 

roots are always complex. For the South and Southwest regions, it is found that the 

dominant root 𝜆1,𝑝𝑜𝑠𝑡  is real but the second root 𝜆2,𝑝𝑜𝑠𝑡  is complex. These results 

indicate that the presence of market cycles is pervasive. They also document the presence 

of multiple cycles (which is common as we find multiple complex roots).  

Table 4 shows that, at national level, the modulus of the dominant root in the pre-

disease period is |𝜆1,𝑝𝑟𝑒| = 0.994, while it is 𝜆1,𝑝𝑜𝑠𝑡 = 0.987 in the post-disease period. 

We conducted two statistical tests about these roots: 1/ a “unit root” test: is each |𝜆1| 

statistically different from 1?; and 2/ are |𝜆1,𝑝𝑟𝑒| and |𝜆1,𝑝𝑜𝑠𝑡| statistically different from 

each other? Under non-stationarity, these tests do not have a standard asymptotic 

distribution (Hamilton, 1994; Enders, 2014). We proceed conducting these tests using 

http://www.wiley.com/WileyCDA/Section/id-302475.html?query=Walter+Enders
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bootstrapping, resampling 500 times from the data. For the first test, we failed to reject the 

null hypothesis at the 5 percent significance level, concluding that price dynamics is non-

stationary and exhibits a unit root. This same test result was also obtained in the regional 

models. Thus, we find that price dynamics are globally unstable in both national and 

regional markets. Our second test involved testing the null hypothesis that the modulus of 

the dominant root is the same in the pre-disease period versus the post-disease period: 

|𝜆1,𝑝𝑟𝑒| = |𝜆1,𝑝𝑜𝑠𝑡|. Using bootstrapping, the test results are presented in Table 4, which 

reports strong evidence against the null hypothesis especially in the regional markets. It 

shows that |𝜆1| declined with the disease outbreak in the production regions (North and 

Northeast) but it increased in the other regions.8  

Recall that a complex root (𝜆 = 𝑎 + 𝑏√−1) implies cyclical price patterns with a 

cycle of period 𝑃𝑒𝑟 = [2 𝜋/arctan (
𝑏

𝑎
)]. The common presence of complex roots implies 

that Chinese pork markets exhibit cycles. The lower panel in Table 4 reports the estimated 

periods of the cycle along with statistical test results (using bootstrapping). At the national 

level, the cycle period before disease outbreak is 𝑃𝑒𝑟𝑝𝑟𝑒 =  173 weeks (3 years and 4 

months); it is statistically different from zero at the one percent significance level. These 

results are consistent with estimates from previous findings (Gale et al., 2012). In contrast, 

after the disease outbreak, the cycle reduces to 𝑃𝑒𝑟𝑝𝑜𝑠𝑡 =  110 weeks (2 years and 1 

month); it is statistically different from zero at the 10 percent significance level. Thus, we 

find that the disease outbreak has not eliminated the pork cycle in China. We also tested 

the null hypothesis that 𝑃𝑒𝑟𝑝𝑟𝑒 = 𝑃𝑒𝑟𝑝𝑜𝑠𝑡. At the national level, the results reported in 
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Table 4 show that the period of the cycle has declined with the ASF outbreak and that the 

decline is statistically significant at one percent level. This provides strong evidence that 

the ASF disease outbreak had major impacts on price dynamics and on the hog cycles.  

Table 4 also reports the pork cycle results at the regional level. Across regions and 

before the disease outbreak the cycle period 𝑃𝑒𝑟𝑝𝑟𝑒 ranges from 168 weeks (3 years and 

3 months) to 193 weeks (3 years and 9 months). These cycle periods are all statistically 

different from zero at the one percent significance level. These results indicate that similar 

market cycles existed in all regions. Table 4 also shows that the cycle period declined after 

the ASF outbreak in all regions. Testing the null hypothesis that 𝑃𝑒𝑟𝑝𝑟𝑒 = 𝑃𝑒𝑟𝑝𝑜𝑠𝑡 (using 

bootstrapping), we find that the decline in the cycle period 𝑃𝑒𝑟 is statistically significant 

at the 1 percent level. This is another important result: our analysis uncovers strong 

evidence that the disease outbreak contributed to a reduction in the cycle period. To the 

extent that the pork cycle is associated with a poorly-informed response of producers to 

price signals,9 we interpret this result as indirect evidence that pork producers adjusted 

their decision making in response to a large supply shock. This is a scenario where a disease 

outbreak may induce farmers to pay more attention to market conditions, inducing speedier 

supply adjustments which could explain the observed reduction in the cycle period. This 

scenario may also reflect resilient behavior of farmers: a large shock could improve the 

efficiency of production decisions, making farmers more resilient to market shocks. In turn, 

having supply adjusting faster to market conditions can increase the dynamic efficiency of 

markets. While we realize that this interpretation is tentative, we want to present it as an 
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interesting topic worth further investigation.     

Next, to investigate the nature of price dynamics, we conducted forward 

simulations of our estimated models. Figure 2 illustrates the simulated forward path of 

producer price and retail price under two scenarios: with versus without ASF outbreak. For 

producer price, the upper plot shows an obvious cyclical pattern under both scenarios, 

reflecting the existence of underlying market cycles. The forward price paths differ with 

and without disease outbreak. The ASF outbreak exerts complex impacts on hog cycle 

patterns, including a strong short-term price response to the ASF outbreak that shortens the 

cycle lengths and trigger cycle shifts. The retail price simulations present qualitatively 

similar results with a larger amplitude.  

Based on the disease outbreak effects on the producer and retail prices, what are the 

implications for the vertical price margins? We analyze this issue by reporting simulated 

national and regional price margins in Figure 3. The vertical price margin is defined as the 

price difference between retail price and producer price in region i at time t (𝑃𝑅𝑖,𝑡 − 𝑃𝑃𝑖,𝑡). 

As shown, the vertical price margins also present cyclical patterns. Interestingly, the 

trajectories with and without disease outbreak are not very different (compared with 

changes in spatial price margins presented below), indicating that the ASF outbreak had 

only mild effects on vertical price transmission.  

Table 5 reports cointegration results regarding the vertical market at both national 

and regional levels. As discussed in section 3, the analysis relies on the roots (𝐸1, 𝐸2) of 

the Π matrix in equation (7b). Using bootstrapping for hypothesis testing, Table 5 shows 
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that, at national level, both 𝐸1  and 𝐸2  are statistically different from zero at the one 

percent significance level, indicating that there exist two cointegration relationships among 

vertically-connected prices along the supply chain. We interpret this finding as indirect 

evidence of product differentiation and long-run linkages with the shadow pricing of the 

underlying product characteristics. Table 5 also reports that both eigenvalues remain 

significant at five percent level after disease outbreak, indicating that the impact of the ASF 

disease on vertical market integration was limited. But a very different picture emerges at 

the regional level. While 𝐸1  and 𝐸2  are still both statistically significant before the 

disease in all regions, their significance declines in several regions (e.g., N, NE, SW). In 

these cases, the 𝑟𝑎𝑛𝑘(Π) is reduced after the disease outbreak. We interpret this result as 

evidence that the ASF outbreak had adverse effects on the functioning of implicit markets 

for differentiated product characteristics in the Chinese pork market.   

6.2 Implications for spatial markets 

We now turn our attention to the functioning of spatial markets. Table 6 reports 

results on characteristic roots and price cycles applied to prices across regions. In a way 

similar to vertical markets, the dominant roots are found to be not different from a “unit 

root” in both pre-disease and post-disease regimes, indicating that the spatial systems are 

globally unstable at both national and regional levels. Consistent with vertical results, the 

cycle periods were significantly lower after the disease outbreak in all markets considered. 

Again, this is an important result that the disease outbreak triggered significant price 

changes captured by a shortened hog cycle.  
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The simulated forward paths of spatial price margins are reported in Figure 4. The 

spatial price margin is defined as the price difference between two regions (𝑖, 𝑗) at time t 

(𝑃𝑃𝑖,𝑡 − 𝑃𝑃𝑗,𝑡 and 𝑃𝑅𝑖,𝑡 − 𝑃𝑅𝑗,𝑡). In a way different from the vertical analysis, there are 

significant changes in spatial price differences between the two regimes, indicating that the 

ASF outbreak had large impacts on spatial price transmission. In response to the ASF 

disease, the Chinese government imposed transportation bans on hog trade among 

provinces. This had large effects on regional hog markets, creating a surplus in production 

areas and shortage in consumption areas. The reduction in interregional trade flows had 

negative effects on spatial market integration and increased spatial price differences (in 

contrast with the vertical results obtained in Figure 3).   

Table 7 reports cointegration test results applied to the spatial markets. In a way 

similar to the vertical results, we find evidence of two cointegration relationships before 

disease, as both 𝐸1 and 𝐸2 are statistically different from zero at the one percent level. 

But the KP test results after disease outbreak look very different. The cointegration 

relationship totally disappears in some cases: NE-SW and NE-S for producer price, N-SW 

for retail price. Table 7 also shows that the ASF outbreak reduces the number of 

cointegration relationships among spatial markets (e.g., in N-SW and N-S for producer 

price, and NE-SW and NE-S for retail price). By comparing the vertical results from Table 

5, we find that the disease outbreak had stronger adverse effects on long-run cointegration 

relationship in spatial markets than in vertical markets. We attribute these results as policy 

effects of interregional trade restrictions imposed following the ASF outbreak.  
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In summary, the ASF outbreak affected both vertical and spatial pricing (e.g., its 

effects on pork cycles). But our analysis shows its impacts on vertical and spatial markets 

were very different in at least two ways. The first difference relates to price margins: the 

disease triggered large rises on spatial price margins but with smaller impacts vertical price 

margins. The second difference concerns market integration: the disease outbreak had 

stronger adverse impacts on spatial cointegration than on vertical cointegration. We see 

these differences to be closely linked with the effects of interregional trade bans intended 

to restrict the disease spread. Though effective in controlling ASF spread, the trade 

restrictions present adverse effects on spatial market integration. To the extent that 

maintaining supply-demand balance is important, this identifies significant economic and 

policy tradeoff between reducing the spread of disease and creating market disruptions, 

especially across spatial markets.  

A related issue is the location of production activities. Over the last few years, the 

Chinese hog markets have seen a move toward greater specialization toward pork in the 

northern regions. This means that pork self-sufficiency in southern China has deteriorated 

and the southern regions have exhibited an increased reliance on imports from northern 

areas. A consumption preference and habit for locally-slaughtered pork also contributed to 

large-scale transportation of live hogs across regions in China. In the presence of major 

contagious diseases such as ASF, the large interregional trade was problematic. While the 

bans on live animals helped control the disease spread, it also had significant negative 

effects on interregional market integration.  
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7. Conclusion   

This paper has investigated the dynamic effects of animal disease on the functioning 

of vertical and spatial markets, with an application to the outbreak of African Swine Fever 

in the Chinese hog market. Base on a weekly dataset of producer and retail price in seven 

regions, this paper sheds new light on price dynamics, price cycles, market integration and 

their changes in response to a major disease outbreak.  

Our empirical analysis generates several important findings. First, we evaluate how 

the ASF outbreak affects market cycles. While the presence of a hog cycle is well-

established, much less is known about how a disease outbreak affects market cycles. Our 

forward-path simulations show that the ASF outbreak contributes to shortening the cycle 

period, indicating that a large production shock induced producers to improve their 

understanding of changing market conditions and adjust their production decisions in a 

timelier manner. We also document the nature and cyclical response of price margins to the 

disease outbreak. Our results show that the ASF outbreak triggered significant short-term 

rises in spatial price margins. 

Second, we show how the ASF outbreak has significant impacts on both vertical 

and spatial markets. Our analysis evaluates short-term as well as longer-term price 

adjustments. We find larger long-term effects of the ASF outbreak on spatial prices than on 

vertical prices. This result is exemplified by a stronger decline in market integration across 

regions, likely reflecting inter-regional trade bans imposed by the Chinese government in 

an attempt to reduce the spread of ASF. We also document how the ASF outbreak had a 
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more significant impact on pork prices in production regions (as opposed to consumption 

regions) during the first year after the outbreak. 

Third, we provide indirect evidence that pork is a differentiated product, with the 

shadow pricing of its underlying product characteristics evolving with market conditions. 

Associating the pricing of differentiated products with multiple cointegration relationships, 

we show that the ASF outbreak has contributed to a reduction in cointegration relationships, 

especially among spatial markets. This result indicates that a major shock contributes to 

some deterioration in the functioning of implicit markets.   

This study has developed a refined analysis of the dynamic impacts of a disease 

outbreak on vertical and spatial pricing. Our application focused on the recent outbreak of 

African Swine Fever in China. First, while ASF provides a great case study, we should 

keep in mind that our findings are conditional on the specific policy response to animal 

disease observed in China. It would be useful to expand our analysis to evaluate other 

diseases in other markets. Second, there is a need to investigate the effects of a disease 

outbreak on price volatility and on possible nonlinear price transmissions. Third, with the 

ASF outbreak occurring in 2018, there remains some uncertainty about its long-term 

impacts. Once information becomes available, there will be a need for further investigation 

of these long-term effects. These issues seem to be good topics for future research.  
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Table 1. Summary statistics.  

Variables Mean St. Dev. Min Max 
Variables 

(cont.) 
Mean St. Dev. Min Max 

PP 14.54 2.60 9.19 20.80  PR 23.69 3.67 15.36 31.56 

PP_N 14.44 2.53 9.48 20.91  PR_N 23.11 3.82 14.51 31.31 

PP_NE 13.98 2.75 8.48 21.13  PR_NE 22.26 4.06 14.03 31.61 

PP_E 14.59 2.58 9.34 20.96  PR_E 24.14 3.58 15.92 31.80 

PP_C 14.42 2.62 9.15 20.72  PR_C 23.90 3.70 15.81 31.69 

PP_S 14.56 2.57 9.56 21.21  PR_S 24.01 3.55 16.21 32.04 

PP_SW 14.87 2.86 8.40 20.60  PR_SW 24.41 3.87 14.97 31.64 

PP_NW 15.10 2.74 8.93 20.84  PR_NW 24.32 3.72 15.09 31.59 

Di 0.09 0.28 0 1  Q2 0.26 0.44 0 1 

Q1 0.26 0.44 0 1  Q3 0.24 0.43 0 1 
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Table 2a. Vertical market regression results 

 National N NE E 

 PP PR PP PR PP PR PP PR 

PP1 1.904*** 0.596*** 1.662*** 0.744*** 1.807*** 0.811*** 1.652*** 0.422*** 

 (0.075) (0.065) (0.068) (0.074) (0.079) (0.073) (0.070) (0.055) 

PP2 -0.919*** -0.563*** -0.672*** -0.683*** -0.788*** -0.660*** -0.684*** -0.393*** 

 (0.071) (0.061) (0.067) (0.073) (0.076) (0.069) (0.066) (0.051) 

PP53 -0.009***  -0.012***  -0.010**  -0.016***  

 (0.003)  (0.004)  (0.005)  (0.005)  

PR1 -0.131* 1.331*** -0.028 1.151*** -0.161** 1.037*** 0.013 1.318*** 

 (0.070) (0.062) (0.054) (0.061) (0.071) (0.068) (0.076) (0.063) 

PR2 0.139** -0.356*** 0.03 -0.191*** 0.144** -0.136** 0.005 -0.339*** 

 (0.065) (0.058) (0.051) (0.058) (0.063) (0.060) (0.073) (0.060) 

PR53  -0.002  -0.002  -0.002  -0.003 

  (0.002)  (0.003)  (0.003)  (0.003) 

Di 3.694*** 4.260*** 2.875*** 3.149** 2.002*** 1.480* 3.989*** 3.735*** 

 (0.688) (0.942) (0.785) (1.596) (0.689) (0.859) (0.879) (1.175) 

Q1 -0.051*** -0.024 -0.067*** -0.017 -0.057* -0.026 -0.060** -0.007 

 (0.019) (0.017) (0.025) (0.028) (0.031) (0.030) (0.028) (0.023) 

Q2 -0.014 -0.01 0.01 0.017 0.04 0.023 -0.011 0.003 

 (0.019) (0.018) (0.026) (0.029) (0.032) (0.031) (0.029) (0.024) 

Q3 0.018 0.027 0.021 0.071** 0.029 0.048 0.033 0.046* 

 (0.020) (0.018) (0.026) (0.030) (0.032) (0.030) (0.029) (0.024) 

PP1*Di -0.538***  -0.284**  -0.197**  -0.438***  

 (0.086)  (0.110)  (0.096)  (0.091)  

PP2*Di 0.358***  0.169  0.134  0.249***  

 (0.080)  (0.104)  (0.094)  (0.086)  

PP53*Di -0.085***  -0.100***  -0.092***  -0.087***  

 (0.018)  (0.028)  (0.031)  (0.025)  

PR1*Di  -0.752***  -0.463***  -0.286***  -0.554*** 

  (0.098)  (0.119)  (0.091)  (0.097) 

PR2*Di  0.629***  0.387***  0.260***  0.448*** 

  (0.086)  (0.110)  (0.089)  (0.088) 

PR53*Di  -0.054***  -0.057**  -0.038*  -0.038** 

  (0.014)  (0.028)  (0.021)  (0.019) 

Constant 0.180*** 0.133** 0.277*** 0.074 0.255*** 0.139 0.283*** 0.136* 

 (0.056) (0.053) (0.075) (0.088) (0.086) (0.085) (0.082) (0.073) 

Adj. R2 0.997 0.999 0.994 0.996 0.992 0.997 0.992 0.997 

Note: Standard errors are reported in parenthesis. *p<0.1; **p<0.05; ***p<0.01. N represents North; NE 

represents North-East; E represents East; C represents Center; S represents South; SW represents South-

West; NW represents North-West.   
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Table 2b. Vertical market regression results (cont.) 

 C S SW NW 

PP PR PP PR PP PR PP PR 

PP1 1.792*** 0.635*** 1.627*** 0.580*** 1.750*** 0.690*** 1.469*** 0.609*** 

 (0.068) (0.056) (0.051) (0.060) (0.058) (0.078) (0.062) (0.074) 

PP2 -0.817*** -0.574*** -0.643*** -0.517*** -0.765*** -0.650*** -0.475*** -0.552*** 

 (0.064) (0.052) (0.051) (0.060) (0.058) (0.078) (0.063) (0.074) 

PP53 -0.014***  -0.013***  -0.006***  -0.007***  

 (0.004)  (0.005)  (0.002)  (0.003)  

PR1 -0.115 1.166*** 0.01 1.020*** 0.054 1.257*** 0.200*** 1.295*** 

 (0.071) (0.060) (0.039) (0.052) (0.044) (0.061) (0.048) (0.059) 

PR2 0.128* -0.208*** -0.003 -0.064 -0.046 -0.289*** -0.198*** -0.340*** 

 (0.065) (0.055) (0.038) (0.050) (0.043) (0.060) (0.047) (0.057) 

PR53  -0.002  0.003  -0.001  -0.002 

  (0.003)  (0.005)  (0.002)  (0.002) 

Di 4.430*** 5.286*** 1.303*** 3.808** 0.591*** 0.316 2.489*** 3.747*** 

 (0.762) (1.183) (0.436) (1.566) (0.221) (0.417) (0.585) (0.921) 

Q1 -0.075*** -0.019 -0.068*** 0.003 -0.047*** -0.046** -0.054*** -0.049** 

 (0.025) (0.021) (0.026) (0.034) (0.014) (0.019) (0.018) (0.022) 

Q2 -0.038 -0.025 -0.017 -0.01 -0.029* -0.03 0.009 -0.006 

 (0.026) (0.022) (0.028) (0.036) (0.015) (0.021) (0.019) (0.023) 

Q3 0.037 0.042* 0.033 0.009 0.014 0.031 0.008 0.029 

 (0.026) (0.022) (0.027) (0.035) (0.015) (0.021) (0.019) (0.023) 

PP1*Di -0.514***  -0.407***  -0.326***  -0.248***  

 (0.087)  (0.086)  (0.072)  (0.095)  

PP2*Di 0.297***  0.286***  0.266***  0.119  

 (0.083)  (0.085)  (0.066)  (0.090)  

PP53*Di -0.111***  0.026  0.025**  -0.043***  

 (0.023)  (0.021)  (0.011)  (0.017)  

PR1*Di  -0.721***  -0.552***  -0.336***  -0.512*** 

  (0.103)  (0.132)  (0.087)  (0.101) 

PR2*Di  0.565***  0.403***  0.304***  0.408*** 

  (0.091)  (0.121)  (0.081)  (0.092) 

PR53*Di  -0.068***  -0.011  0.022  -0.046*** 

  (0.018)  (0.021)  (0.014)  (0.015) 

Constant 0.267*** 0.170** 0.274*** 0.059 0.121** 0.213*** 0.169** 0.268*** 

 (0.075) (0.067) (0.076) (0.111) (0.047) (0.066) (0.066) (0.081) 

Adj. R2 0.994 0.998 0.994 0.994 0.998 0.998 0.997 0.998 

Note: *p<0.1; **p<0.05; ***p<0.01.  
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Table 3a. Spatial market regression results for producer prices (𝑃𝑃) 
 

NE-SW N-SW NE-S N-S 
 

NE SW N SW NE S N S 

 (PA) (PB) (PA) (PB) (PA) (PB) (PA) (PB) 

PA1 1.668*** 0.092*** 1.600*** 0.127*** 1.612*** 0.173*** 1.537*** 0.205*** 
 

(0.046) (0.018) (0.045) (0.024) (0.050) (0.037) (0.046) (0.047) 

PA2 -0.682*** -0.071*** -0.611*** -0.106*** -0.614*** -0.120*** -0.544*** -0.158*** 
 

(0.048) (0.018) (0.046) (0.023) (0.052) (0.038) (0.048) (0.048) 

PA53 -0.012*** 
 

-0.011*** 
 

-0.010** 
 

-0.011*** 
 

 
(0.005) 

 
(0.004) 

 
(0.004) 

 
(0.004) 

 

PB1 -0.035 1.675*** 0.069 1.664*** 0.06 1.441*** 0.140*** 1.460*** 
 

(0.075) (0.037) (0.064) (0.038) (0.054) (0.050) (0.046) (0.051) 

PB2 0.041 -0.697*** -0.066 -0.685*** -0.067 -0.499*** -0.141*** -0.511*** 
 

(0.070) (0.035) (0.060) (0.036) (0.053) (0.048) (0.045) (0.050) 

PB53 
 

-0.003* 
 

-0.003* 
 

-0.012*** 
 

-0.012*** 
  

(0.002) 
 

(0.002) 
 

(0.004) 
 

(0.004) 

Di 1.735** -0.081 3.096*** 0.037 2.159*** -0.195 3.351*** 0.418 
 

(0.751) (0.280) (0.840) (0.262) (0.704) (0.493) (0.781) (0.459) 

Q1 -0.062** -0.031** -0.067*** -0.042*** -0.063** -0.034 -0.069*** -0.062** 
 

(0.031) (0.014) (0.025) (0.014) (0.031) (0.025) (0.025) (0.025) 

Q2 0.037 -0.038*** 0.016 -0.040*** 0.044 -0.005 0.009 -0.009 
 

(0.032) (0.015) (0.026) (0.015) (0.032) (0.026) (0.025) (0.026) 

Q3 0.033 0.011 0.011 0.009 0.011 0.025 0.005 0.022 
 

(0.034) (0.015) (0.029) (0.015) (0.031) (0.026) (0.025) (0.026) 

PA1:Di -0.175* 
 

-0.266** 
 

-0.161* 
 

-0.327*** 
 

 
(0.098) 

 
(0.110) 

 
(0.095) 

 
(0.109) 

 

PA2:Di 0.125 
 

0.143 
 

0.087 
 

0.193* 
 

 
(0.096) 

 
(0.104) 

 
(0.093) 

 
(0.103) 

 

PA53:Di -0.085*** 
 

-0.109*** 
 

-0.094*** 
 

-0.116*** 
 

 
(0.032) 

 
(0.029) 

 
(0.033) 

 
(0.030) 

 

PB1:Di 
 

-0.178** 
 

-0.226*** 
 

-0.325*** 
 

-0.352*** 
  

(0.075) 
 

(0.072) 
 

(0.083) 
 

(0.083) 

PB2:Di 
 

0.147** 
 

0.190*** 
 

0.267*** 
 

0.258*** 
  

(0.068) 
 

(0.066) 
 

(0.081) 
 

(0.082) 

PB53:Di 
 

0.045*** 
 

0.041*** 
 

0.078*** 
 

0.066*** 
  

(0.013) 
 

(0.012) 
 

(0.024) 
 

(0.023) 

Constant 0.271*** 0.078** 0.284*** 0.069 0.283*** 0.270*** 0.276*** 0.244*** 
 

(0.086) (0.039) (0.078) (0.043) (0.089) (0.074) (0.075) (0.074) 

Adj. R2 0.992 0.999 0.994 0.999 0.992 0.994 0.994 0.994 

 Note: *p<0.1; **p<0.05; ***p<0.01. For simplicity, we use PA to represent producer prices in production 

regions (NE, N), and use PB to represent producer prices in consumption regions (SW, S).   
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Table 3b. Spatial market regression results for retail prices (𝑃𝑅) 
 

NE-SW N-SW NE-S N-S 
 NE SW N SW NE S N S 
 (PA) (PB) (PA) (PB) (PA) (PB) (PA) (PB) 

PA1 1.683*** 0.116*** 1.622*** 0.190*** 1.688*** 0.287*** 1.626*** 0.393*** 
 (0.040) (0.023) (0.044) (0.028) (0.038) (0.038) (0.040) (0.043) 

PA2 -0.704*** -0.088*** -0.640*** -0.155*** -0.711*** -0.250*** -0.654*** -0.351*** 
 (0.041) (0.024) (0.044) (0.028) (0.039) (0.039) (0.041) (0.044) 

PA53 -0.008**  -0.007**  -0.010***  -0.009***  

 (0.003)  (0.003)  (0.003)  (0.003)  

PB1 0.097* 1.587*** 0.115* 1.522*** 0.064 1.156*** 0.093** 1.108*** 
 (0.059) (0.039) (0.060) (0.042) (0.042) (0.047) (0.041) (0.048) 

PB2 -0.082 -0.616*** -0.101* -0.558*** -0.043 -0.197*** -0.067* -0.154*** 
 (0.056) (0.037) (0.057) (0.039) (0.041) (0.046) (0.040) (0.047) 

PB53  -0.002  -0.004*  -0.002  -0.004 
  (0.002)  (0.002)  (0.004)  (0.004) 

Di 2.213** -0.783 4.803*** -0.713 2.496*** 1.41 4.687*** 2.289 
 (1.057) (0.534) (1.767) (0.527) (0.956) (1.657) (1.710) (1.593) 

Q1 -0.076** -0.035* -0.054* -0.064*** -0.086** 0.014 -0.062** -0.026 
 (0.033) (0.021) (0.031) (0.020) (0.034) (0.035) (0.030) (0.033) 

Q2 0.048 -0.043* 0.036 -0.062*** 0.02 -0.003 0.003 -0.004 
 (0.035) (0.022) (0.032) (0.021) (0.037) (0.039) (0.034) (0.037) 

Q3 0.038 0.016 0.051 0.005 0.037 0.02 0.052 -0.004 
 (0.036) (0.022) (0.035) (0.022) (0.033) (0.036) (0.032) (0.035) 

PA1:Di -0.056  -0.347***  -0.102  -0.368***  

 (0.104)  (0.132)  (0.100)  (0.129)  

PA2:Di 0.011  0.230*  0.051  0.260**  

 (0.101)  (0.120)  (0.097)  (0.118)  

PA53:Di -0.063***  -0.093***  -0.070***  -0.095***  

 (0.024)  (0.031)  (0.024)  (0.031)  

PB1:Di  -0.106  -0.136  -0.348**  -0.361*** 
  (0.096)  (0.091)  (0.138)  (0.134) 

PB2:Di  0.095  0.122  0.248**  0.220* 
  (0.090)  (0.085)  (0.125)  (0.123) 

PB53:Di  0.049***  0.048***  0.039*  0.040* 
  (0.016)  (0.015)  (0.024)  (0.023) 

Constant 0.257*** 0.151** 0.248*** 0.182*** 0.256*** 0.177* 0.239*** 0.220** 
 -0.094 -0.061 -0.09 -0.06 -0.094 -0.107 -0.09 -0.104 

Adj. R2 0.996 0.998 0.996 0.998 0.996 0.994 0.996 0.994 

 Note: *p<0.1; **p<0.05; ***p<0.01. For simplicity, we use PA to represent retail prices in production 

regions (NE, N), and use PB to represent retail prices in consumption regions (SW, S).   
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Table 4. Characteristic roots and hog cycles in vertical models 

Statistics National N NE E C S SW NW 

Dominant 
roots 

|𝜆1,𝑝𝑟𝑒| 
0.994 

(0.136) 
0.996 

(0.228) 
0.996 

(0.236) 
0.992 

(0.104) 
0.994 

(0.998) 
0.994  

(0.122) 
0.994  

(0.118) 
0.996  

(0.232) 

|𝜆1,𝑝𝑜𝑠𝑡| 
0.987 

(0.319) 
0.998 

(0.406) 
1.006 

(0.292) 
0.987 

(0.152) 
0.989 

(0.755) 
0.978* 
(0.094) 

0.987 
(0.213) 

0.984* 
(0.087) 

|𝜆1,𝑝𝑟𝑒| − |𝜆1,𝑝𝑜𝑠𝑡| 
0.007* 
(0.095) 

-0.002*** 
(0.001) 

-0.010*** 
(0.001) 

0.005*** 
(0.001) 

0.005*** 
(0.001) 

0.016*** 
(0.001) 

0.007*** 
(0.001) 

0.012*** 
(0.001) 

Second roots 
|𝜆2,𝑝𝑟𝑒| 

0.966*** 
(0.001) 

0.963*** 
(0.001) 

0.963*** 
(0.001) 

0.968*** 
(0.001) 

0.967 
(0.001) 

0.964 
(0.126) 

0.962 
(0.133) 

0.956*** 
(0.001) 

|𝜆2,𝑝𝑜𝑠𝑡| 
0.972** 
(0.044) 

0.982 
(0.264) 

0.990 
(0.496) 

0.972* 
(0.073) 

0.973* 
(0.064) 

0.953 
(0.030) 

0.971* 
(0.054) 

0.982*** 
(0.002) 

Cycle period 
(weeks) 

𝑃𝑒𝑟𝑝𝑟𝑒 
173*** 
(0.001) 

173*** 
(0.001) 

170*** 
(0.001) 

168*** 
(0.001) 

174*** 
(0.001) 

171***  
(0.001) 

176*** 
(0.001) 

193*** 
(0.001) 

𝑃𝑒𝑟𝑝𝑜𝑠𝑡 
110* 

(0.085) 
113* 

(0.067) 
116 

(0.119) 
110 

(0.151) 
109 

(0.290) 
57 

(0.382) 
60 

(0.473) 
110** 
(0.034) 

𝑃𝑒𝑟𝑝𝑟𝑒 − 𝑃𝑒𝑟𝑝𝑜𝑠𝑡  
63*** 
(0.001) 

60*** 
(0.001) 

54*** 
(0.001) 

58*** 
(0.001) 

65*** 
(0.001) 

124*** 
(0.001) 

116*** 
(0.001) 

83*** 
(0.001) 

Note: The numbers in parentheses are the P-values corresponding to testing the null hypothesis |𝜆𝑖| = 1 (“unit root”) in the first, second, fourth and fifth 

row, testing |𝜆1,𝑝𝑟𝑒| = |𝜆1,𝑝𝑜𝑠𝑡| in the third row, testing 𝑃𝑒𝑟 = 0 in the sixth and seventh row, and testing 𝑃𝑒𝑟𝑝𝑟𝑒 = 𝑃𝑒𝑟𝑝𝑜𝑠𝑡 in the last row. All tests 

were conducted using bootstrapping. The periods were calculated using the estimated dominant root 𝜆1, except for 𝑃𝑒𝑟𝑝𝑜𝑠𝑡 in the South and Southwest 

where 𝜆2 was used (as 𝜆1 was real).  

 

 

Table 5. Cointegration test in vertical models 

Statistics Di Eigenvalues National N NE E C S SW NW 

Eigenvalue 

Di=0 
𝐸1𝑝𝑟𝑒 

0.049*** 
(17.136) 

0.076*** 
(17.135) 

0.182*** 
(32.369) 

0.063*** 
(25.478) 

0.085*** 
(50.820) 

0.081***  
(26.463) 

0.056***  
(14.126) 

0.075***  
(14.088) 

𝐸2𝑝𝑟𝑒 
0.007*** 
(9.470) 

0.010*** 
(13.409) 

0.009*** 
(12.743) 

0.010*** 
(7.624) 

0.011*** 
(13.360) 

0.009***  
(10.593) 

0.006***  
(12.604) 

0.007***  
(9.463) 

Di=1 
𝐸1𝑝𝑜𝑠𝑡 

0.294** 
(6.339) 

0.251** 
(5.689) 

0.245*** 
(8.625) 

0.328** 
(6.139) 

0.380*** 
(12.416) 

0.217***  
(9.984) 

0.076***  
(13.286) 

0.224***  
(17.115) 

𝐸2𝑝𝑜𝑠𝑡 
0.199** 
(4.902) 

0.164 
(2.115) 

0.109 
(1.799) 

0.164** 
(4.352) 

0.256*** 
(9.469) 

0.113*  
(3.667) 

0.026  
(2.453) 

0.163***  
(7.690) 

Note: the Kleibergen-Kaap rank test values are included in the parenthesis. E1 is the larger eigenvalue; E2 is the smaller eigenvalue. All tests were 

conducted using bootstrapping. The cointegration vectors are available from the authors upon request.   
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Table 6. Characteristic roots and hog cycles in spatial models (selected regions) 

Statistics 
PP PR 

NE-S N-S NE-SW N-SW NE-S N-S NE-SW N-SW 

Dominant 
roots 

|𝜆1,𝑝𝑟𝑒| 
0.996 

(0.216) 
0.997 

(0.301) 
0.995 

(0.202) 
0.996 

(0.267) 
0.992*  
(0.075) 

0.993  
(0.108) 

0.993 
(0.133) 

0.994  
(0.158) 

|𝜆1,𝑝𝑜𝑠𝑡| 
1.005 

(0.239) 
0.998 

(1.025) 
1.007 

(0.134) 
0.998 

(0.374) 
1.003 

(0.317) 
0.996 

(0.238) 
1.004 

(0.278) 
0.999 

(0.338) 

|𝜆1,𝑝𝑟𝑒| − |𝜆1,𝑝𝑜𝑠𝑡| 
-0.009*** 

(0.001) 
-0.001*** 

(0.001) 
-0.012*** 

(0.001) 
-0.002*** 

(0.001) 
-0.011*** 

(0.001) 
-0.003*** 

(0.001) 
-0.011*** 

(0.001) 
-0.005*** 

(0.001) 

Second 
roots 

|𝜆2,𝑝𝑟𝑒| 
0.974*** 
(0.001) 

0.974*** 
(0.001) 

0.962*** 
(0.001) 

0.962*** 
(0.001) 

0.963*** 
(0.001) 

0.960*** 
(0.001) 

0.992 
(0.122) 

0.993  
(0.142) 

|𝜆2,𝑝𝑜𝑠𝑡| 
0.989 

(0.367) 
0.982 

(0.202) 
0.989 

(0.370) 
0.983 

(0.331) 
0.988 

(0.472) 
0.980 

(0.114) 
1.001 

(0.305) 
0.993 

(0.413) 

Cycles 
(weeks) 

𝑃𝑒𝑟𝑝𝑟𝑒 156*** 
(0.001) 

164*** 
(0.001) 

175*** 
(0.001) 

169*** 
(0.001) 

187*** 
(0.001) 

202*** 
(0.001) 

184*** 
(0.001) 

193***  
(0.001) 

𝑃𝑒𝑟𝑝𝑜𝑠𝑡 115 
(0.109) 

113** 
(0.013) 

118 
(0.132) 

112* 
(0.075) 

114 
(0.208) 

113** 
(0.016) 

114 
(0.344)  

113  
(0.431) 

𝑃𝑒𝑟𝑝𝑟𝑒 − 𝑃𝑒𝑟𝑝𝑜𝑠𝑡 
41*** 
(0.001) 

51*** 
(0.001) 

57*** 
(0.001) 

57*** 
(0.001) 

73*** 
(0.001) 

89*** 
(0.001) 

70*** 
(0.001) 

80*** 
(0.001) 

Note: The numbers in parentheses are the P-values corresponding to testing the null hypothesis |𝜆𝑖| = 1 (“unit root”) in the first, second, fourth and fifth 

row, and testing |𝜆1,𝑝𝑟𝑒| = |𝜆1,𝑝𝑜𝑠𝑡| in the third row, testing 𝑃𝑒𝑟 = 0 in the sixth and seventh row, and testing 𝑃𝑒𝑟𝑝𝑟𝑒 = 𝑃𝑒𝑟𝑝𝑜𝑠𝑡 in the last row. All 

tests were conducted using bootstrapping. The periods were calculated using the estimated dominant root 𝜆1, except for 𝑃𝑒𝑟𝑝𝑜𝑠𝑡 in NE-SW and N-SW 

where 𝜆2 was used (as 𝜆1 was real).  

 

 

Table 7. Cointegration test in spatial models (selected regions) 

Statistics Di Eigenvalues 
PP PR 

NE-S N-S NE-SW N-SW NE-S N-S NE-SW N-SW 

Eigenvalue 

Di=0 
𝐸1𝑝𝑟𝑒 0.040*** 

(18.530) 
0.036*** 
(15.829) 

0.087*** 
(28.903) 

0.079*** 
(20.289) 

0.052*** 
(15.286) 

0.060*** 
(15.523) 

0.067***  
(26.784) 

0.078**  
(22.635) 

𝐸2𝑝𝑟𝑒 0.012*** 
(7.999) 

0.013*** 
(7.081) 

0.014*** 
(12.606) 

0.014*** 
(14.437) 

0.009*** 
(14.597) 

0.009*** 
(14.660) 

0.009***  
(11.323) 

0.009***  
(13.580) 

Di=1 
𝐸1𝑝𝑜𝑠𝑡 

0.163 
(1.795) 

0.255** 
(4.031) 

0.189  
(2.608) 

0.272** 
(5.078) 

0.140* 
(3.519) 

0.239 
(2.563) 

0.166**  
(6.413) 

0.252**  
(3.894) 

𝐸2𝑝𝑜𝑠𝑡 
0.010 

(0.459) 
0.019 

(1.327) 
0.048  

(0.908) 
0.090 

(1.990) 
0.009 

(0.355) 
0.004 

(0.068) 
0.090 

(2.921) 
0.139*  
(3.751) 

Note: the Kleibergen-Kaap rank test values are included in the parenthesis. All tests were conducted using bootstrapping. E1 is the larger eigenvalue; E2 

is the smaller eigenvalue.   
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Figure 1. Regional producer prices 𝑃𝑃, retail prices 𝑃𝑅 and spatial price margins  

 

Note: (1) the regional price margins in the third plot is defined using the maximum price minus the 

minimum price among seven regions. (2) the dashed vertical line shows the beginning of ASF disease 

outbreak. 

 

Figure 2. Forward paths of producer price 𝑃𝑃 and retail price 𝑃𝑅 at national level 
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Figure 3. Forward paths of vertical price margins (𝑃𝑅 − 𝑃𝑃) at national and regional level 

 

 

Figure 4. Forward paths of spatial price margins in selected regions 

           (a) producer price margins (𝑃𝑃𝑖 − 𝑃𝑃𝑗)  (b) retail price margins (𝑃𝑅𝑖 − 𝑃𝑅𝑗) 
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Appendix 

Table A1. Lag order selection for vertical models for national producer price 𝑃𝑃 and retail price 𝑃𝑅 

Variable  

Dependent variable: 

PP PR 

AR (1) AR (2) AR (3) AR (4) AR (1) AR (2) AR (3) AR (4) 

PL1 1.120*** 1.904*** 1.841*** 1.847*** 0.241*** 0.596*** 0.570*** 0.579*** 
 (0.020) (0.075) (0.084) (0.084) (0.023) (0.065) (0.074) (0.074) 

PL2  -0.919*** -0.810*** -0.898***  -0.563*** -0.536*** -0.607*** 
  (0.071) (0.141) (0.143)  (0.061) (0.121) (0.123) 

PL3   -0.036 0.306**   0.006 0.299** 
   (0.085) (0.147)   (0.073) (0.125) 

PL4    -0.265***    -0.239*** 
    (0.085)    (0.072) 

PL53 -0.016*** -0.009*** -0.009*** -0.009***     

 (0.004) (0.003) (0.003) (0.003)     

PP1 -0.087*** -0.131* 0.009 0.011 0.832*** 1.331*** 1.414*** 1.419*** 
 (0.015) (0.070) (0.088) (0.087) (0.016) (0.062) (0.081) (0.080) 

PP2  0.139** -0.16 -0.217  -0.356*** -0.519*** -0.623*** 
  (0.065) (0.140) (0.146)  (0.058) (0.129) (0.136) 

PP3   0.154** 0.118   0.076 0.142 
   (0.075) (0.141)   (0.068) (0.131) 

PP4    0.094    0.039 
    (0.075)    (0.068) 

PP53     -0.003 -0.002 -0.002 -0.002 
     (0.003) (0.002) (0.002) (0.002) 

Di 4.994*** 3.694*** 3.613*** 3.388*** 3.862*** 4.260*** 4.262*** 3.950*** 
 (0.978) (0.688) (0.696) (0.693) (1.479) (0.942) (0.942) (0.938) 

PL1*Di -0.250*** -0.538*** -0.545*** -0.530***     

 (0.050) (0.086) (0.104) (0.104)     

PL2*Di  0.358*** 0.370** 0.431**     

  (0.080) (0.171) (0.183)     

PL3*Di   -0.0002 -0.156     

   (0.100) (0.184)     

PL4*Di    0.092     

    (0.097)     

PL53*Di -0.102*** -0.085*** -0.084*** -0.079***     

 (0.026) (0.018) (0.018) (0.018)     

PP1*Di     -0.120*** -0.752*** -0.790*** -0.792*** 
     (0.046) (0.098) (0.116) (0.115) 

PP2*Di      0.629*** 0.711*** 0.854*** 
      (0.086) (0.190) (0.202) 

PP3*Di       -0.043 -0.338* 
       (0.107) (0.204) 

PP4*Di        0.163 
        (0.107) 

PP53*Di     -0.036 -0.054*** -0.054*** -0.051*** 
     (0.022) (0.014) (0.014) (0.014) 

Adj. R2 0.993 0.997 0.997 0.997 0.996 0.999 0.999 0.999 

BIC -82.094  -457.477  -446.125  -441.092  -27.056  -557.342  -541.454  -540.644  

Note: *p<0.1; **p<0.05; ***p<0.01. Only selected key variables are reported in this table. 
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Footnotes 

1 Source: Author’s calculation using information obtained from Ministry of Agriculture 

and Rural Affair of China.    
2 We also conducted the analysis based on a more general VAR specification applied to 

𝑛 prices. The results are available from the authors upon request. When 𝑛 becomes 

large, the number of parameters to estimate grows fast, making the estimation and 

interpretation of the model more difficult. This applies to our case where 𝑛 =

2 × 7 = 14, 2 being the number of vertical markets and 7 being the number of 

regions. As discussed in Zellner an Palm (1974), our “final form” specification 

applied “two markets at a time” remains valid, making the estimation and 

interpretation of our econometric analysis much easier.  
3 We classify regions according to the relative importance of production and 

consumption: a region is called a “production region” when it produces more than it 

consumes; and it is called a “consumption region” when it consumes more than it 

produces. In this context, the Southwest region is classified as a consumption region: 

although it is large producer, its consumption exceeds its production.  
4 A map and overview of these seven regions in China can be found at 

https://www.chinacheckup.com/blogs/articles/regions-of-china.  
5 Our analysis focuses on the Chinese domestic market. We do not examine the role of 

trade as trade is only a small part of the Chinese pork market. Indeed, pork imports 

currently constitute less than 4 percent of Chinese pork consumption according to 

Department of Statistics of China.  
6 In our exploration of alternative specifications, we considered nonlinear effects and 

other interaction effects between the disease dummy and lagged prices. The BIC 

criterion indicated that these specifications were “not better” than the one reported in 

Tables 2 and 3. In particular, we did not find strong evidence of threshold effects in 

price dynamics. In other words, the specification reported in tables 2-3 was found to 

provide the “best fit” to the data at the national level as well as for most regions.   
7 Note that our vertical model includes two prices (𝑃𝑃, 𝑃𝑅) with prices lagged 1, 2 and 

53 periods. From equation (3), this means that 𝑚 = 53 and the 𝐷𝐺 matrix is of 

dimension (106 × 106), implying that each estimated model has 106 roots.  
8 Note that, while |𝜆𝑖,𝑝𝑟𝑒| and |𝜆𝑖,𝑝𝑜𝑠𝑡| depend on the parameters of lagged prices 𝑃𝑡−𝑗 

and of the interaction variables 𝐷𝑖 × 𝑃𝑡−𝑗, the term [|𝜆𝑖,𝑝𝑟𝑒| − |𝜆𝑖,𝑝𝑜𝑠𝑡|] depends 

only on the parameters of 𝐷𝑖 × 𝑃𝑡−𝑗. It means that the statistical significance of 

[|𝜆𝑖,𝑝𝑟𝑒| − |𝜆𝑖,𝑝𝑜𝑠𝑡|] comes from the high statistical significance of the interaction 

variables 𝐷𝑖 × 𝑃𝑡−𝑗.  
9 For evidence of “naive” response of hog producers to price signals, see Chavas (1999). 

 


