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Background

The United States agricultural sector is subject to numerous risks arising from price fluctuations,
weather variability, and natural disasters. In order to mitigate losses due to these hazards the
Federal government offers a highly subsidized crop insurance program designed to indemnify
agricultural producers against yield losses, price fluctuations, and catastrophic loss. The program
is overseen by the Federal Crop Insurance Corporation (FCIC) and is operated through a public-
private arrangement whereby: Approved Insurance Providers (AIP) sell and service insurance
policies; the FCIC reinsures the policies and subsidizes premiums on behalf of farmers; and the
Risk Management Agency (RMA), a federal agency, establishes the actuarially fair cost of
premiums for the various crop insurance programs available, determines policy terms, and
regulates the AIPs.

The received literature observes that the Federal Crop Insurance program has expanded its
product offerings to producers while increasing subsidy rates and as a result participation rates
have soared (Belasco, Cooper and Smith 2020; Smith and Glauber 2012). Further, Coble and
Barnett (2013) and Annan and Schlenker (2015) argue that, from an input demand perspective, the
resulting moral hazard has producers adjusting their insurance coverage upwards in order to take
advantage of the expected increase in the crop insurance indemnity and that this may encourage
producers to oversubscribe for insurance coverage thus raising the cost of the federal crop
insurance program. Other studies argue (e.g., Goodwin and Smith 2012; Yu, Smith and Sumner
2017; Goodwin, Vandeveer and Deal 2004) that subsidizing crop insurance premiums induces
farmers to assume more risk thus resulting in changes and distortions in production practices,
characterized by an alteration in the quantity and allocation of factors of production, such as

acreage, fertilizers & chemicals, equipment and machinery in ways that would not have occurred



had the subsidy not been available. There is additional evidence in the literature indicating that
farmers may seek to obtain more coverage rather than engage in other possible adaptation
strategies that could mitigate risk (Coble and Barnett 2013; Annan and Schlenker 2015).

This study will evaluate the effect of Federal Crop Insurance premium subsidies on
allocative efficiency and technical efficiency, following crop insurance premium subsidies.
Technical efficiency is a measure of managerial performance that captures how effective producers
are at combining various inputs in order to maximize output. In this sense, any deviation from the
maximal frontier is considered technically inefficient. Allocative efficiency measures the degree
to which producers utilize the correct proportion of inputs given input prices or the extent to which
firms operate off their least cost expansion path (Schmidt and Lovell 1979). Alternatively,
allocative efficiency can be considered a component of productivity growth that measures how
well producers capture economies of input substitution (O’Donnell 2018).

This paper develops an empirical framework that combines input-output variables
alongside information on crop insurance coverage, and agronomic weather measures in order to
establish the overall cost efficiency generated by the availability of highly subsidized crop
insurance premium subsidies. The argument is that subsidized crop insurance coverage may create
a distortionary effect in how producers utilize the correct proportions of inputs in order to
maximize the corn production. The focus of this study will be on corn production as this received
the largest portion of insurance protection. Of the approximately 300 million acres insured under
the Federal Crop Insurance program in 2018, close to 75 million acres were dedicated to corn
production. In the counties, and across the years analyzed in this study corn acreage planted stood
at 335.2 million acres of which 290.8 million acres were covered under the Federal Crop insurance

Program. Similarly, total subsidies directed towards corn planted in these counties stood at $6.25



billion with producers paying an aggregate of 10.64 billion in premiums. Meanwhile, the estimated
total liabilities stood at $127.9 billion.

Empirical Strategy

The cost minimization problem that the producer faces takes on the following form:

(1) minw'x st q=f(x2z)exp(v—u)

Where w, x, z and q are vectors that represent the input price, conventional input, environmental
inputs, and outputs, respectively. Furthermore, v and u are a composed error term that capture
statistical noise and technical inefficiency, respectively. The function f(.) is an approximating
function that specifies the input-output relationship. The magnitude of allocative inefficiency is
captured by solving the system of first-order conditions for the cost minimizing problem above.
Input allocation is considered optimal only if producers allocate inputs in such a manner that

equates input price ratios to their marginal products, such that:

(2) £=—lVi =2,
i wm

A graphical illustration of allocative and technical inefficiency for the representative firm is
provided in Figure 1 below. Suppose output q is generated using inputs x; and x, combined using
proportions a, b or c. Input combination a far exceeds what is necessary to produce at level q. This
is the idea behind technical inefficiency. Input combination c, is also suboptimal because for a

given input Xx, relative to x; the deviation from the optimal condition is given by 7, such that if

er *p () w, then x, is under-utilized relative to x;. Conversely, if er P (M w,, then x, is

over-utilized relative to x;. The optimal input proportion is denoted at point b where the tangency

of the isocost line and isoquant is such that LA %
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Figure 1: Graphical illustration of allocative and technical efficiency

The cost minimizing framework above can be used to generate estimates of allocative and
technical efficiency. However, it is not possible to disentangle the contribution of allocative
inefficiency from that of technical inefficiency because the composed error term is intractable
(Kumbhakar and Lovell 2000). An alternative modeling strategy proposed by (Schmidt and Lovell
1979) reformulates the approximating function used to characterize the production technology into
a primal approach. Stochastic production frontiers have implications for determining the
magnitude of the distance from the frontier that firm operates, that is the level technical
inefficiency. By combining this information with information on allocative efficiency, then we can
shed some light on a decision making-units cost efficiency. The relationship between the input-

output variables involved in the production process is rewritten as:

(3) Ingy = f (e zie) + vie — uye



Where Inq;; is the log of output, f'is a function that approximates the production
technology, x;; represents conventional inputs, z;; denotes characteristics of the production
environment, and the subscripts i and t denote decision making-unit and period, respectively.
Finally, v;; and u;; are independent random variables that capture statistical noise and technical
inefficiency, respectively, with distributional properties v;;~N (0, 0;?) and u;;~ N*(0,02). The

approximating function used in this study is a Cobb-Douglas functional form expressed as:

M ]
(4) Ingy=¢;+6 + z Bm In X0 + z]’m Inzj;; + vy — we
m=1 j=1

Where ¢; and §; capture unobserved time-invariant and time-varying characteristics,
In q;¢, In X ¢, In Zjy¢, v and uy; are as defined above. Furthermore, (¢, 6, B, y) are parameters to

be estimated. Suppose that agricultural producers purchase x; units of crop insurance at unit
price(1 — 8)w,, where 8 € (0,1) is the per unit subsidy provided by government. The system of
first-order conditions for cost minimization can be estimated in a stochastic production frontier

framework denoted as:

(5) Infm _1n l’vm —ln’;—Tznm,szz,...,M

In the expression above, w,,, represents input prices for any other inputs, and 17,,, 1s a random error
term that captures allocative inefficiency, with distributional properties ()5, ..,1)~iid N(0,Z).
Values of 7, take on positive or negative values when relative input combinations are over- or
under-utilized. A firm is considered to be allocatively efficient in its input use when the value 1,,
equals zero. Firm-specific estimates of technical inefficiency and allocative inefficiency are
obtained from expression 4 and 5 above, respectively.

We are also interested in establishing the impact of technical and allocative inefficiency on

costs. Expression 4 has the convenient property that it is self-dual, thus parameter estimates, and



the residuals can be substituted into a system of input demand equations for x; and x,,, in order to
derive an expenditure function. This expenditure function can then be used to establish the impact

of allocative inefficiency and technical inefficiency on firms’ costs (Kumbhakar and Lovell 2000).

M M
_ ¢ 1 Bm 1 Vi Y

(6) lnEi—lnr—T—;lnl |1ﬁm+lelnwmi+;1nq—(7+7)+(A—lnr)

m= m=

Where A = % + 3 B M + [In By + 3 B exp(—n,)], and ¥ = XM _, B, measures the
returns to scale. The term u; /7 captures cost increases due to technical inefficiency, whereas (A —
In7) captures cost increases due to allocative inefficiency. Finally, one can generate a rank
ordering of cost efficiency across firms by using an expression that compares overall cost

efficiency for firm i at time t with that of firm k at time s:

CE; AE; TE;
= X .
CE,s AE,s TEy;

(7)

Data

The input-output data used is derived from the U.S. Department of Agriculture quinquennial
census of agriculture for the years 1997, 2002, 2007, 2012 and 2012. The data is at the county-
level and comprises 1011 counties spread across 12 states in the U.S. cornbelt!. Figure 2 provides
an illustration of the location of these counties. The input-output variables include corn bushels
harvested, acres of corn planted, value of machinery and equipment, expenditures on hired and
contract labor, and expenditures on intermediate materials (i.e., fertilizer, chemicals and fuel).
Information on value of machinery and equipment is used to construct a measure of a capital stock
variable using the perpetual inventory method. Using 1997 as the base year, the value of the capital

stock at the end of each period, K;, is a function of past investments weighted by its relative

! The 1011 counties are spread across Illinois, lowa, Indiana, Kansas, Michigan, Minnesota, Missouri, Nebraska,
North Dakota, Ohio, South Dakota, and Wisconsin.



efficiency, s;, such that, K; = )72, S, I;_,. The value s; is estimated using a hyperbolic efficiency

function (e.g., Ball et al. 2016; Ball et al. 1999)

@ s =

Where L is the service life of the asset, T is the age of the equipment, and () is the parameter of
efficiency. Following similar studies that use capital stock as one of the variables (Ball et al. 2008;
Ball et al. 1999) the service life of the asset, L, and the parameter of efficiency, (), are set at 7 years
and 0.5, respectively. The variable for labor hours is constructed by dividing aggregate labor
expenditures by the corresponding state-level hourly wage rate obtained from the U.S. Bureau of
Labor Statistics (BLS) Occupational Employment Statistics for farmworkers and laborers.
Monetary values are converted into constant 2017 dollars using deflators based on the producer
price index provided by the U.S. Department of Labor.

The data is augmented with information on crop insurance premiums and subsidies obtained from
the summary of business reports generated by the Risk Management Agency of the U.S.
Department of Agriculture for the years that correspond to the census of agriculture. Data on
characteristics of the production environment, which include temperature and precipitation, are
derived from the parameter-elevation regressions on independent slopes model (PRISM). These
data are used to calculated agronomic weather measures that include growing degree days, harmful
degree-days, cumulative precipitation, and vapor pressure deficit. Input price information which
includes cropland values per acre, interest rate expenses, and a fertilizer and chemical price index
for the corresponding census years are obtained from records maintained by the National
Agricultural Statistical Service. Fuel prices in equivalent British thermal units (Btu) are obtained

from the Energy Information Administration. These input prices are used to generate the primal



cost function as well as the factor demand equations discussed above. Table 1 provides a summary
description of the data used in this study.

Results

The parameters in the stochastic production frontier model given by equation 4 are estimated using
maximum likelihood methods with the standard errors clustered at the county-level. These
parameter estimates, which can be interpreted as elasticities are reported in Table 2. The f,,
parameters are all positive and significantly different from zero indicating that inputs are strongly
disposable. The y; estimates that measure the impact of observed weather variables, are also
significantly different from zero indicating that marginal increases in growing degree days and
precipitation lead to marginal increases in corn output. Conversely, marginal increases in harmful
degree days and vapor pressure deficit lead to marginal decreases in corn output. In addition,
estimates of, §;, and state-level fixed effects, ¢;, which capture unobserved time-varying and time-
invariant heterogeneity, respectively, are also reported. It is also noteworthy that the maximum
likelihood value for A = g,/0, is 2.16, thus providing evidence of substantial technical
inefficiency.

Assuming that the representative decision-making unit also seeks to minimize cost, then
one can estimate the extent to which any given county deviates from its least cost expansion path.
Estimates of allocative efficiency are obtained by exploiting the duality of the production frontier
and by utilizing the system of first-order conditions for cost minimization in equation 5. From the
system of equations in 4 and 5 one can derive the input demand equations for x,,, and subsequently,
an expenditure function. The results for the primal cost function are provided in Table 3. A
comparison of technical efficiency estimates for the stochastic production function and the primal

cost function are provided in Table 4, indicating that the average county generates corn output at



68% of its maximum production potential and approximately 24.8% above its minimal cost level.
An illustration of their density functions is provided in Figure 3.

As indicated above, the direction and scale of allocative inefficiency is given by the value,
Nm»> Which may take on the positive, negative or zero values characterizing over-utilization, under-
utilization or efficient use of any given pair of inputs. A summary of the estimates is provided in
Table 5. The mean value for 17,5 and 7,5, representing the allocative efficiency for the pair of
inputs capital and subsidies, and intermediate materials and subsidies, respectively, are both
negative revealing that capital and intermediate materials are under-used relative to premium
subsidies. Conversely, mean allocative efficiency estimates, 1,5 and 135, representing the input
pairs corn acres and subsidies, and labor and subsidies, respectively, are positive indicating that
on average corn acres planted and labor hours are over-used relative to the premium subsidies. A
graphical illustration of the density functions is provided in Figure 4. We can also establish the
impact of technical efficiency and allocative efficiency on overall costs. This is done by comparing
the expenditure function as given in equation 6, with and without technical, and allocative
inefficiency. A summary of the results is provided in Table 6. The results reveal that, on average,
costs are increased by 42.3% in the presence of technical inefficiency and by 5.2% when counties
deviate from their least-cost combination.

Finally, we consider cost efficiency, which is a measure of how well producers have
minimized costs when output and the production environment are predetermined, and inputs are
chosen freely (O’Donnell 2018). Cost efficiency is calculated as the product of technical and
allocative efficiency. A summary of the cost efficiency is provided in Table 7. These results reveal
that cost efficiency for the average corn producing county was 45.9%. We also construct a measure

of cost efficiency index that compares the cost efficiency of county i at time t relative to county k
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at time s following equation 7. A rank ordering of cost efficiency is relevant to inform economic
policy in order to target public policy. Using Adams county, IL in 1997 as the reference vector we
can compare every other county in the data set in order to generate a relative ranking. An
illustration of this cost efficiency index is provided in Figure 7.
Concluding Remarks
This study analyzes cost efficiency, which is defined as technical efficiency: a measure of how
well producers combine various inputs in order to maximize corn production; and allocative
efficiency, which measures the degree to which producers utilize the correct proportion of inputs
given input prices. Using the duality of the stochastic production frontier, a primal cost model is
evaluated in order to generate estimates of technical and allocative efficiency. These estimates of
technical and allocative efficiency provide vital information for evaluating: (1) how effective
producers are at combining various inputs in order to maximize corn production; and (2) the over-
and under-utilization of various inputs relative to premium subsidies provided under the Federal
Crop Insurance program, and in turn how these two concepts impact overall costs.

The findings reveal that corn acreage under the Federal Crop Insurance program increased
over the years providing evidence of increased participation rates by producers. Secondly, a
comparison of the proportions of conventional inputs (i.e., land, labor, capital, and intermediate
materials) used relative to premium subsidies provide evidence of deviation from the least-cost
expansion path. Capital and intermediate materials were under-utilized relative to premium
subsidies, conversely acreage under corn and labor were over-utilized relative to premium
subsidies. Third, the relative under- and over-utilization of inputs had implications for overall

costs, resulting on average to a 5.2% increase in overall costs. Finally, we find that in general,
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counties produced corn at 75% of their maximum potential. This deviation from the maximal

frontier had the effect of raising overall costs for the average county by 42.3%.
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Table 1: Descriptive statistics of variables used in estimation

Variable Observations Mean Std. Dev. Min Max
Corn harvested (bushels) 4838.00 9,830,005.00 10,200,000.00 2,756.00  74,700,000.00
Conventional inputs

Corn acres planted 4837.00 69,295.48 61,505.78 31.00 396,552.00
Capital ($) 4840.00 128,000,000.00 95,200,000.00 2,487,000.00 8§22,000,000.00
Labor (hours) 4812.00 534,378.40 549,723.30 3,263.16 7,670,282.00
Fertilizer expenditures ($) 4840.00 9,739,775.00  9,072,815.00 32,000.00  80,800,000.00
Chemical expenditures ($) 4835.00 6,195,176.00  5,522,376.00 5,000.00  42,200,000.00
Fuel and lube expenditures ($) 4840.00 4,931,627.00  3,763,421.00 88,000.00  37,900,000.00
Corn acres insured 4840.00 60,079.97 55682.57 9.00 351,302.00
Insurance liabilities ($) 4840.00  26,400,000.00 34,800,000.00 310.00 277,000,000.00
Insurance premiums ($) 4840.00 2,199,055.00  2,682,895.00 84.00  29,100,000.00
Insurance subsidies ($) 4840.00 1,290,567.00  1,644,913.00 56.00  18,800,000.00
Insurance indemnity ($) 4840.00 2,827,947.00 8,114,861.00 -1402.00  140,000,000.00
Agronomic weather variables

Growing degree days 4840.00 2981.26 483.52 1,571.70 4,636.30
Growing degree days (April-May) 4840.00 548.32 190.61 66.45 1144.35
Growing degree days (June-July) 4840.00 1,306.38 157.57 807.40 1,676.35
Harmful degree days 4840.00 48.33 24.95 0.00 121.00
Harmful degree days (April-May) 4840.00 3.01 3.76 0.00 24.00
Harmful degree days (June-July) 4840.00 27.73 12.94 0.00 58.00
Precipitation (inches) 4840.00 20.23 6.10 3.56 46.86
Precipitation (April-May) 4840.00 7.54 3.57 0.71 24.89
Precipitation (June-July) 4840.00 6.49 3.10 0.58 29.99
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Vapor pressure deficit (min) (hPa)
Vapor pressure deficit (max) (hPa)

Prices

Cropland values ($/acre)
Interest expenses ($)
Wage rate ($/hour)
Fertilizer index
Chemical index

Fuel prices (equiv $/btu)

4840.00
4840.00

4840.00
4819.00
4840.00
4840.00
4840.00
4840.00

1.38
19.46

2,906.20
5,261,515.00
10.29

97.44

68.19

2.30

0.66
4.65

1,893.86
3,566,202.00
2.35

17.46

31.16

1.29

0.20
6.60

427.00
92,000.00
6.55
82.10
32.80
0.79

5.01
38.94

7,440.00
35,900,000.00
17.59

128.20

106.50

3.85
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Table 2: Parameter estimates of stochastic production frontier

Parameter/Variable Coefficient ~ Robust Std.
Error
B Corn acres 0.3990%x** 0.0160
B2 Labor hours 0.1225%%** 0.0220
B3 Capital 0.0784%** 0.0405
Ba Materials 0.4174 %% 0.0405
Bs Premium subsidies 0.3088** 0.0132
"1 Growing degree days 0.3979%x** 0.1119
Y2 Harmful degree days (Jun-Jul) -0.0997%x+* 0.0145
Y3 Precipitation (April-May) 0.0211%** 0.0160
Ya Vapor pressure deficit (Max) -0.0083 %+ 0.0038
Vs Vapor pressure deficit (Min) -0.0661%x* 0.0181
6, 1997 1.7346%** 0.0925
6, 2002 0.9799%xx* 0.0873
O3 2007 1.0735%%%* 0.0822
04 2012 0.9473%xx* 0.0858
s 2017 0.8691*x* 0.0869
o} Illinois 0.1947xx* 0.0577
b2 Indiana 0.24945xx* 0.0590
b3 Iowa 0.2496%x* 0.0507
o Kansas -0.1022 0.0624
s Michigan 0.0498 0.0631
de Minnesota 0.0967 0.0604
b Missouri -0.0555 0.0616
¢g Nebraska 0.2786%** 0.0556
oo North Dakota -0.8559%* 0.0751
b0 Ohio 0.2232%xx* 0.0562
b11 South Dakota -0.338 5% 0.0664
oy 0.2630%x* 0.0161
oy 0.5677*** 0.0248
o? 0.3915%x* 0.0251
2 2.1582xx 0.0358

wdk Rk ==> Significant at 1%, 5%, 10% level.
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Table 3: Primal cost estimates

Parameter/Variable Coefficient  Std. Error

Bo Constant -0.099 0.156

P Corn acres 0.720%* 0.014

B2 Capital 1.228%** 0.025

B3 Labor hours 0.027%#x* 0.001

Ba Materials 0. 157 0.002

Bs Premium subsidies 0.002 % 0.000

"1 Growing degree days -0.484 0.194

Y2 Harmful degree days (Jun-Jul) -0.056%** 0.029

Y3 Precipitation (April-May) 0.027 0.033

Ya Vapor pressure deficit (Max) -0.004 0.006

Vs Vapor pressure deficit (Min) -0.109%x** 0.032

6, 1997 0.875%* 0.048

6, 2002 -0.228#xx* 0.039

O3 2007 0.389#x* 0.042

O, 2012 0.630%*** 0.045

o} Illinois 0.42]#** 0.073
¢, Indiana 0.722%%* 0.070
b3 Iowa 0.215%** 0.067
o Kansas 0.456%** 0.078
s Michigan 0.292%#3* 0.068
b6 Minnesota 0.084 0.069
¢ Missouri 0.457 0.078
¢g Nebraska 0.77 15 0.071
oo North Dakota -0.794 % 0.078
b10 Ohio 0.347%#5* 0.068
b11 South Dakota 0.24 ] #x* 0.075
oy -1.887 0.699

oy -0.483 0.081
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Table 4: Summary of technical efficiency

Parameter/Variable Mean Std. Dev. Min Max

ﬁf’t TE - Production frontier model 0.680 0.149 0.264 0.973

uf, TE - Primal cost model 0.752 0.045 0.359 0.900

Table 5: Summary of allocative efficiency

Parameter/Variable Mean Std. Dev. Min Max
nis  Corn acres/Subsidies 2.656 2.366 -15.193 18.260
n,s  Capital/Subsidies -1.613 2.363 -18.259 4.354
nss  Labor/Subsidies 6.595 2.119 -9.322 15.495
N4 Intermediate/Subsidies -0.822 1.973 -14.843 7.959

Table 6: Summary of allocative and technical inefficiency impact on costs

Parameter/Variable Mean Std. Dev. Min Max
Technical inefficiency 0.423 0.030 0.183 0.525
on total cost

Allocative inefficiency 0.052 0.002 0.006 0.059

on total cost

Table 7: Summary of cost efficiency

Variable Mean Std. Dev. Min Max
Cost 0.459 0.166 0.034 0.899
Efficiency
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Figure 2: Counties represented in study
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Figure 3: Estimates of technical efficiency for: a) stochastic production frontier, and; b) primal cost function

< - o ]
m -
o
2 2
[}
m -
o- o T T — —
0 2 4 6 8 1 4 5 6 7 8 9
Technical Efficiency Technical Efficiency

19



Figure 4: Input allocative efficiency
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Figure 5: Illustration of cost efficiency index (CEI), technical efficiency index (TEI) and allocative efficiency index (AEI)

1.3
1.2
1.1

0.9
0.8

1.3
1.2
1.1

0.9
0.8

Adams, IL

1997

2002 2007 2012
= TE]l = = AE] e (CE]
York, NE

2017

1997

2012
= ¢+ «TEl = = AE] e (CE]

2002 2007

2017

1.9

1.7

1.5

1.3

1.1

0.9

1.05

0.95
0.9
0.85
0.8

21

Kossuth, IA
N =
~
1997 2002 2007 2012 2017
= TE] = = AE] e (CE]
White, IN
- -
- - = -
\ -

2002 2012
= + «TEl = = AEF] e CE]

2007

1997 2017



22



References

Annan, F., and W. Schlenker. 2015. “Federal Crop Insurance and the Disincentive to Adapt to
Extreme Heat.” American Economic Review 105(5):262-266.

Ball, E.V., F.M. Gollop, A. Kelly-Hawke, and G.P. Swinand. 1999. “Patterns of State
Productivity Growth in the U.S. Farm Sector: Linking State and Aggregate Models.”
American Journal of Agricultural Economics 81(1):164-179.

Ball, E.V., W.A. Lindamood, R. Nehring, and C. Mesonada. 2008. “Capital as a Factor of
Production in OECD Agriculture: Measurement and Data.” Applied Economics
40(10):1253-1277.

Ball, E.V., S.L. Wang, R. Nehring, and R. Mosheim. 2016. “Productivity and Economic Growth
in U.S. Agriculture.” Applied Economic Perspective and Policy 38(1):30—49.

Belasco, E.J., J. Cooper, and V.H. Smith. 2020. “The Development of a Weather-based Crop
Disaster Program.” American Journal of Agricultural Economics 102(1):240-258.

Coble, K.H., and B.J. Barnett. 2013. “Why Do We Subsidize Crop Insurance.” American Journal
of Agricultural Economics 95(2):498-504.

Goodwin, B.K., and V.H. Smith. 2012. “What Harm is Done by Subsidizing Crop Insurance?”
American Journal of Agricultural Economics 95(2):489-497.

Goodwin, B.K., M.L. Vandeveer, and J.L. Deal. 2004. “An Empirical Analysis of Acreage
Effects of Participation in the Federal Crop Insurance Program.” American Journal of
Agricultural Economics 86(4):1058-1077.

Kumbhakar, S.C., and C.A.K. Lovell. 2000. Stochastic Frontier Analysis. Cambridge University
Press.

O’Donnell, C.J. 2018. Productivity and Efficiency Analysis: An Economic Approach to
Measuring and Explaining Managerial Performance 1st ed. Springer.

Schmidt, P., and C.A.K. Lovell. 1979. “Estimating Technical and Allocative Efficiency Relative
to Stochastic Production and Cost Frontiers.” Journal of Econometrics 9:343-366.

Smith, V.H., and J.W. Glauber. 2012. “Agricultural Insurance in Developed Countries: Where
Have We Been and Where Are We Going.” Applied Economic Perspective and Policy
34(3):363-390.

Yu, J., A. Smith, and D.A. Sumner. 2017. “Effects of Crop Insurance Premium Subsidies on
Crop Acreage.” American Journal of Agricultural Economics 100(1):91-114.

23



