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Abstract

This study provides empirical estimates of the effects of changes in the farm labor
supply on fruit and vegetable production. The results are based on fixed-effects panel
regressions at the crop-county-year level of aggregation using crop production and
employment data in California. I use an equilibrium displacement model to derive
formulas for the estimation bias under different market scenarios, which reveal that
my empirical estimates should be interpreted as upper bounds. These bounds indicate
that a 10%decrease in the farm labor supply (in terms of the number ofworkers) causes
at most a 3.8% reduction in production in the top 10 producing counties, which together
produce 86% of the total value of hand-harvested crops in the state. Production effects
are channeled primarily through a reduction in harvested acreage, although there are
some effects on yield (the quantity harvested per acre). In the top 10 counties, a 10%
decrease in the farm labor supply causes at most a 2.4% reduction in harvested acreage
and at most a 1.4% reduction in the average yield per acre.



1 Introduction

Farm labor is an essential input in the production of many fruit and vegetable crops
because these crops typically need to be harvested manually. Recent studies document
what many view as a worrying decline in the farm labor supply. For instance, Richards
(2018) finds that there has been an "insufficient supply [of harvest workers] to meet the
demand from firms, even in the steady state equilibrium" and that this issue is "chronic
and not merely a feature of our current policy environment." Farmer surveys further
suggest that this situation has been exacerbated by recent changes in immigration policy,
including tighter border security and stronger internal enforcement (CFBF and UCDavis,
2019; Rutledge and Taylor, 2019). Reductions in the farm labor supply could have far-
reaching consequences, such as reducing the nation’s access to safe and healthy produce,
putting upward pressure on food prices, or causing farmers to suffer significant economic
losses.

But how much do changes in the farm labor supply really affect the production
of fruits and vegetables, and what impacts do they have on farm revenue? To answer
these key empirical questions, I estimate elasticities of hand-harvested fruit and vegetable
production with respect to the harvest labor supply using data from California spanning
the period 1990 to 2017. My empirical strategy deploys fixed-effects panel regression
models at the crop-county-year level of aggregation where the explanatory variable of
interest is a measure of county-level crop employment during the peak harvest season.
The identifying variation is generated from differences across counties in the evolution
of employment about the crop-county average.1 Because the main explanatory variable
measures actual employment, which is an equilibriumvalue andnot ameasure of the labor
supply (the variable of interest), I pay special attention to addressing potential threats
to identification. To gain insight into these threats, I use an equilibrium displacement
model to illustrate likely sources of bias and show why, in many respects, my empirical
estimates should be interpreted as upper bounds. In doing so, I am able to relate structural
parameters descriptive of the fruit and vegetable market to each potential source of bias in
a transparent fashion. For example, the model allows me to decipher how factor-neutral
changes in productivity or shifts in the supply of farm inputs, such as land or water, affect
the empricially estimated elasticity of output with respect to labor. Therefore, although
my regression analysis is reduced-form, it is directly linked to a structural model of fruit
and vegetable supply.

1In some cases the crop-county average differs from the county average because some crops are not
produced in all years. Two thirds of the crops produced within a county are produced in all years.
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My empirical results indicate that a 10 percent decrease in the farm labor supply
(in terms of the number of workers) causes at most a 3.8% decrease in hand-harvested
fruit and vegetable production in the top 10 labor-intensive crop producing counties,
which together produce 86% of the value of all labor-intensive crops in the state.2 My
findings further suggest that reduced production is primarily channeled through fewer
acres harvested, although there are some yield effects. In the top 10 counties, a 10%
decrease in the farm labor supply causes at most a 2.4% reduction in harvested acreage
and at most a 1.4% reduction in average yield. These results suggest that moderate
decreases in the farm labor supply could have meaningful impacts, but they would not
likely devastate California’s aggregate fruit and vegetable production. Falsification tests
run onmechanically-harvested field and nut crops deliver estimates that aremuch smaller
than those in labor-intensive crops and are never positive and statistically significant,
consistent with the hypothesis that labor supply shocks should have a smaller impact on
crops that do not rely heavily on labor inputs.

Over the past century, two major policy events have motivated economists to in-
vestigate the effects of farm labor supply shocks on U.S. agriculture. The first was the
termination of the Bracero Program in 1964, which ended an era of legal temporary
migration from Mexico. The second was the passage of the Immigration Reform and
Control Act (IRCA) in 1986, which, among other things, legalized the unauthorized farm
workforce. In each case, major shocks to the farm labor supply failed to materialize, and
aggregate crop productionwas not seriously affected (Shultz, 1965;Martin, 1966; Duffield,
1990; Gunter et al., 1992). Labor supply shocks were short lived in the post-Bracero years
due to a sustained inflow of unauthorized Mexican workers who could earn wages as
much as eight times higher in the U.S. (Martin, 2006). During the post-IRCA years, the
number of legalized farm workers who left for other sectors of the economy, the main
concern from a policy standpoint, was met by an equal (or greater) inflow of new farm
workers as a result of family reunification policies that granted visas to the spouses and
dependents of those legalized under the law (Boucher et al., 2007).

However, mounting evidence suggests that this historically abundant supply of
Mexican farm workers is shrinking as demographic and structural changes take place
in Mexico and border security becomes more stringent (Passel et al., 2012; Charlton and
Taylor, 2016; Zahniser et al., 2018). Increased border security has been accompanied
by higher coyote (smuggler) fees, which increases the financial cost of entering the U.S.
(Orrenius, 2004; Dickerson and Medina, 2017). And those who do attempt to cross the

2Throughout this study, a "labor-intensive" crop is defined as a fruit or vegetable crop that did not have
a viable automated harvest technology available during the period of study.
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border have been driven further into the desert to avoid apprehension, leading to an
increase in the number of fatalities (Jones, 2020). In some regions of the U.S., local
immigration enforcement policies have caused farm workers to leave local labor markets,
providing evidence that the threat of deportation may lead to a smaller farm workforce
(Ifft and Jodlowski, 2016; Kostanini et al., 2013).

Other labor market frictions result from the fact that domestic workers are unwilling
to perform farm work because of its physical nature and the fact that it does not pay well
(Taylor et al., 2012). To highlight this fact, during the great recession, when unemployment
rates were close to 10%, the United Farm Workers (UFW) launched the nationwide “Take
Our Jobs" campaign, which offered farm employment to any domesticworkerwhowanted
a job.3 Although the UFW received thousands of responses, the union’s president, Arturo
Rodriguez, said that only a fewdozendomesticworkers followed throughon the offer after
realizing that the work involved “back-breaking jobs in triple-digit temperatures that pay
minimumwage, usuallywithout benefits" (Smith, 2010). Consistentwith economic theory,
the shrinking farm labor supply is also putting upward pressure on wages. According to
the USDA’s Farm Labor Survey (NASS, 2020), real farmwages have increased by 10% over
the last decade, and estimates indicate that they will need to increase by an another 10%
over the next decade just to keep the labor supply constant (Charlton et al., 2019). Taken
together, this body of evidence points to a farm labor supply that is shifting inward and
becoming more inelastic.

To the best ofmy knowledge, only one recent study examines the effects of changes in
farm employment on labor-intensive crop production in the U.S. Zahniser et al. (2011) use
a computable general equilibrium (CGE) model to simulate how changes in immigration
policy could affect agricultural production, among other things.4 They find that a policy
aimed at increasing immigration enforcement would lead to a 3.4% reduction in farm
employment and a 2.0% (resp. 2.9%) reduction in fruit (resp. vegetable) production.
Since the reduction in farm employment is an equilibrium measure and not a measure of
the farm labor supply, this implies an upper bound for the nationwide elasticity of fruit
(resp. vegetable) production with respect to the farm labor supply of 0.58 (resp. 0.85).
However, their approach relies upon on a strong set of assumptions, whereasmy approach
only requires weak positive correlation between a single variable and the error term in a
reduced-form regression. Admittedly my strategy does not provide a point estimate of
the true effect. Nonetheless, it provides an upper bound, which estimates the “worst case

3The UFW is a farm worker union formerly led by Cesar Chavez.
4The first policy they consider simulates increased use of the H-2A visa program, and the second policy

simulates increased immigration enforcement across the entire U.S. economy.
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scenario," a measure that is still policy relevant. In addition, my bounds improve upon
the existing literature by narrowing down the range of potential effects compared to the
most recent estimates provided by Zahniser et al. (2011).

This paper contributes to the literature in three ways. First, I extend in a useful
direction the existing farm labor literature, which has found evidence of farm labor short-
ages among harvest workers, by quantifying the impacts of such reduced harvest worker
availability on production and revenue (Richards, 2018; Hertz and Zahniser, 2012). Sec-
ond, I provide new upper bounds for a recent period of time, improving upon those
found in the literature, the most recent of which were generated nearly a decade ago. As
Duffield (1990) points out, if the structure of the farm labor market changes over time,
it is important to develop new estimates that reflect current conditions because optimal
policy strategies rely on the current structure of the farm labor market. Third, I add to
the larger labor literature a useful extension of the equilibrium displacement framework
of Muth (1964), which delivers new insights about the bias that may result from using an
equilibrium employment measure in place of a labor supply variable, a common problem
in labor economics (Card, 1990; Borjas, 2003; Jaeger et al., 2018; Mérel and Rutledge, 2020).

The rest of the paper is organized as follows: section 2 provides some background
on California crop production and labor, section 3 provides a theoretical framework to
better understand how the farm labor supply is related to crop production andwhat types
of bias may arise in the empirical analysis, section 4 describes the data and methodology
used in the analysis, section 5 discusses the main results, and section 6 provides some
concluding remarks.

2 Background

In terms of the value of production, California is the leading agricultural state in the
U.S., generating one third of all domestic vegetables and two thirds of the fruits and
nuts (CDFA, 2018). In 2017, California’s farms and ranches produced more than 400
commodities worth nearly $60 billion (NASS, 2018).5 Fruit, vegetable, and horticulture
(FVH) crop production accounted for 52% ($31.2 billion) of the value of all agricultural
production in the state and 68% of the non-animal production. Of the total FVH crop
value, 56% ($17.4 billion) was generated by fruits, 32% ($10.0 billion) by vegetables, and
12% ($3.8 billion) by horticulture (see Figure 1). California also employs the most farm

5This figure differs from the $50 billion in cash receipts due to the fact that some production, such as
cattle feed, is used on the farmwhere it is produced. However, the value of fruit and vegetable crops should
reflect cash receipts because these crops are not directly consumed by the farms that produce them.
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workers, with labor expenses accounting for nearly one third of the nation’s total (NASS,
2019). The state is also unique because each county has an agricultural commissioner who
compiles an annual report of the gross production andvalue of each commodity produced.
Each year, the California Department of Food and Agriculture collaborates with the U.S.
Department of Agriculture to consolidate all of the county-level data, providing a rich set
of quantitative crop production data that can be utilized by researchers. Together, these
factors make California an ideal setting to study how changes in the farm labor supply
affect fruit and vegetable crop production.

[Figure 1 about here.]

The statewide production of hand-harvested vegetables steadily increased from
about eight million to 10 million tons between 1990 and 2010 and then started to de-
cline (see Figure 2A). The upward trend in vegetable production prior to 2010 was driven
by higher yields rather than through an expansion in acreage, which may have resulted
from the the adoption of new cultivars or through changes in the types of vegetables being
grown (or both) (see Figure 2B). Other than a significant drop in production in 1991, which
was driven by awinter freeze that devastated orange crops (Brooks, 1991), hand-harvested
fruit production remained relatively stable at about eight million tons until 2010, after
which a noticeable expansion occurred.6 The contraction of hand-harvested vegetable
production after 2010 coincided with a considerable decrease in harvested acreage while
the increase in fruit production was driven mainly by higher yields instead of a large
expansion in acreage.7

[Figure 2 about here.]

In order to produce these labor-intensive crops, California farmers employ an armyof
workers, who can be classified into three broad categories: (i) those who are recruited and
hired directly by farmers (direct hires), (ii) those who are hired by farm labor contractors
(FLCs) and are brought to farms to perform certain tasks (e.g., pruning, weeding, or
harvesting), and (iii) non-FLC crop-supportworkerswho are contracted to perform certain
tasks, such as tilling the soil or providing mechanical harvesting services. The non-FLC
crop-support workers generally do not hand-harvest fruit and vegetable crops and, as a
result, are removed from the analysis. The direct hires and FLC workers do, however,
perform hand harvest labor and are the focus of this study.

6This number only accounts for crops that are hand harvested. Crops such as wine grapes, which are
both hand picked and mechanically harvested, have been removed from this calculation.

7Production data for horticulture crops is not available in the CDFA Ag Commissioners’ Reports.

5



In 2017, California crop farmers employed an average of 386,000workers eachmonth
(BLS, 2018). However, due to the seasonal nature of agriculture, the number of workers
employed at any given time fluctuates throughout the year. Figure 3A shows the average
crop employment for each month during 2017, broken down by type of worker, revealing
that statewide employment peaks during the summermonthswhen the bulk of the harvest
activities take place.

[Figure 3 about here.]

Figure 3B shows the evolution of the statewide average annual employment for each
type of worker between 1990 and 2017. The number of direct hires has been declining
since the early 1990s, while the number of employees hired through FLCs has increased.
However, these statewide averages mask significant heterogeneity among local labor mar-
kets, as can be seen in Figure 4. Importantly, my empirical strategy nets out any common
statewide effects (e.g., droughts) through year fixed effects and exploits variation in the
evolution of employment across counties about the crop-county average.

[Figure 4 about here.]

3 Theoretical Framework

3.1 The Model

To provide a theoretical framework that can be used to express the relationship between
changes in the farm labor supply and labor-intensive crop production, I adopt the equi-
librium displacement model of Muth (1964) and relate it to my setting. I develop an
extension to this model by deriving formulas for the bias of my empirical estimates under
three scenarios. These derivations reveal that the empirical estimates can be interpreted
as upper bounds for the parameters of interest in each case.

The model assumes that there is a group of producers who produce a single ho-
mogeneous good and that each firm has an identical production function that uses two
inputs: labor and a composite non-labor input. The production function is homogeneous
of degree one (i.e., it exhibits constant returns to scale), and firms are assumed to be price
takers in both the input and output markets. Adopting the notation of Muth (1964), I de-
fine & as California’s labor-intensive crop output (a composite fruit and vegetable good),
� as the labor input, and � as the non-labor input.

The model describes an industry equilibrium that is characterized by six equations
in six unknown variables (&, ?, �, �, ?� , ?�) that define the industry demand (1) and
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production (2) functions, two equations that equate the marginal value product of each
input to their respective prices (3) and (4), and two input supply functions (5) and (6) as
follows:

& = 5 (?) (1)

& = &(�, �) (2)

?� = ?&� (3)

?� = ?&� (4)

� = 6(?�) (5)

� = ℎ(?�), (6)

where ? represents the output price, ?� (resp. ?�) denotes the price of input A (resp. B),
and&� (resp. &�) denotes the partial derivative of the industry production function with
respect to input A (resp. B). By taking the total derivative of (1), (5), and (6) and dividing
each equation by its respective left-hand-side variable, one can derive equations (1’), (5’),
and (6’). Using the homogeneity assumption defined above, additional manipulation of
(2) - (4) outlined inMuth (1964) leads to the derivation of equations (2’) - (4’). Together (1’) -
(6’) define a systemof six equations in the six unknowns,where 3-∗ denotes thepercentage
change in some variable -, and the following variables are taken to be exogenous: � is
the elasticity of demand for the final output, :� (resp. :�) is the share of industry revenue
paid to (i.e., the production cost share of) factor � (resp. �), 4� (resp. 4�) is the elasticity of
supply of input � (resp. �), and � is the elasticity of substitution between inputs � and �.
Setting up this system of equations in matrix form and using Cramer’s rule allows for the
derivation of a solution to any of the unnkown variables (in terms of percentage changes).
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−1
�
3&∗ + 3?∗ = 0 (1’)

3&∗ − :�3�∗ − :�3�∗ = 0 (2’)

−3?∗ + :�
�
3�∗ − :�

�
3�∗ + 3?∗� = 0 (3’)

−3?∗ − :�
�
3�∗ + :�

�
3�∗ + 3?∗� = 0 (4’)

−1
4�
3�∗ + 3?∗� = 0 (5’)

−1
4�
3�∗ + 3?∗� = 0 (6’)

The elasticity of the industry’s labor-intensive crop output with respect to the labor input
�, defined as #, can be expressed as a function of the exogenous parameters �, :�, :�, 4�,
4�, and �

# ≡ %&∗

%�∗
=

:��(� + 4�)
�� + 4�(:�� − :��)

. (7)

Under the following commonly accepted assumptions: � < 0, :� , :� > 0, 4� , 4� > 0, and
� > 0, # is strictly positive. All else equal, a decrease in the amount of farm labor used in
production will necessarily lead to a decrease in the production of labor-intensive fruits
and vegetables.

The model also provides guidance about the range of values that # may fall into.
Assuming the industry is considered small enough to lack market power in the global
market, it can be considered a price taker.8 Under the price-taking scenario, industry
demand is considered perfectly elastic (i.e., ;8< � → −∞), and if inputs � and � are
not perfect substitutes (i.e., � < ∞), then −� ≥ �. Under these assumptions, the model
suggests that the lower bound for # should be determined by the cost share of the labor
input :�

− � ≥ � ⇐⇒ # ≥ :�. (8)

When inputs � and � are perfect complements (i.e., ;8< � → 0), industry output is unit
elastic with respect to the labor input

8In the empirical setting, the data are aggregated at the crop-county-year level, so each county is consid-
ered its own industry.
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;8<
�→0

# =
:��4�
:��4�

= 1. (9)

If empirical estimates reveal an elasticity of output with respect to the labor input that is
smaller than one, this provides evidence that, to some extent, labor can be substituted for
non-labor inputs. Furthermore, if the industry demand elasticity is non-positive and the
supply elasticity of the non-labor input is non-negative, then # is bounded above by the
value 1

� − 4� ≤ 0 ⇐⇒ # ≤ 1. (10)

Under these conditions, # should be bounded by the interval [:� , 1]. Martin et al. (2016)
estimate that :� ∈ [.2, .4], which implies that # should be bounded by the interval [.2, 1].9

Although one can estimate # with the available data, it is not the parameter of
interest because it only identifies how production responds to changes in the amount of
labor used, which is an equilibrium value. The true parameter of interest is the elasticity of
labor-intensive crop production with respect to the farm labor supply, although measures
of the farm labor supply are not available for use. A shift in the supply of input � (in
percentage terms) in the direction of the price axis at any given quantity on the supply
curve � can be defined as

� = − 1
4�
3�∗ + 3?∗� , (11)

which can be transformed into a shift in the direction of the quantity axis at any given price
on the supply curve (denoted �̄) bymultiplying � by the negative of the supply elasticity of
input �. Because �̄ is a percentage change, it can be expressed in logarithmic differential
form as 3;=(�′), where ;=(�′) represents the unavailable (log) farm labor supply variable.

�̄ = 3;=(�′) = −4��. (12)

The true parameter of interest, �1, is defined as10

�1 ≡
%&∗

%�̄
=
%;=(&)
%;=(�′) . (13)

9Additional special cases of # can be found in Appendix A.
10It is important to note that an increase in the supply of labor corresponds to a decrease in the price such

that � < 0 ⇐⇒ 3�∗ > 0. Therefore, the transformation in (12) implies that �̄ < 0 ⇐⇒ 3�∗ < 0.
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3.2 Bias of #

Understanding if# is an upward or downward biased estimate of �1 is important for infer-
ence. If # is biased upwards, it can be interpreted as an upper bound for �1. Fortunately,
the model provides a framework from which one can derive a formula for the bias of #
under a variety of scenarios. To extend the model in a useful direction while keeping
it tractable, I assume that the industry is a price taker (i.e., ;8< � → −∞). I define the
limiting case of # as � → −∞ as #̄ and start out with a derivation of the bias of #̄ under
the assumption that there are no omitted variables and then consider cases where there
are (i) unobserved factor neutral productivity shocks and (ii) unobserved factor neutral
productivity and non-labor input supply shocks. In the latter case, the reduced-form
equations for 3&∗ and 3�∗, can be expressed as

3&∗ =

�1︷          ︸︸          ︷[
:�(� + 4�)

�
′

]
�̄ +

�2︷          ︸︸          ︷[
:�(� + 4�)

�
′

]
�̄+

+
[
�(1 + :�4� + :�4�) + :�4� + :�4� + 4�4�

�
′

]
︸                                                    ︷︷                                                    ︸

�3

� (14)

and

3�∗ =

[
� + :�4�

�
′

]
︸        ︷︷        ︸

�1

�̄ +
[
:�4�

�
′

]
︸  ︷︷  ︸

�2

�̄ +
[
(� + 4�)4�

�
′

]
︸          ︷︷          ︸

�3

�, (15)

where

�
′
= � + :�4� + :�4� > 0. (16)

The variable �̄, which represents a shift in the supply of the composite non-labor
input (in percentage terms) along the quantity axis at a given price, can be expressed as
the logarithmic differential of the non-labor input supply variable �′ as follows:

�̄ = 3;=(�′) = −4��, (17)

where � represents a shift in the supply of the non-labor input along the price axis at a
given quantity

� = − 1
4�
3�∗ + ?∗�. (18)

Themodel also allows for factor neutral productivity shocks �, which increase themarginal
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product of both inputs by the same proportion and can be expressed in logarithmic
differential form as 3;=(�′)

� = 3;=(�′) = 3&∗� = 3&
∗
� , (19)

where & 9 represents the marginal product of input 9. To simplify the notation, the
coefficients on �̄, �̄, and � in equations (14) and (15) are denoted by �1, �2, �3, �1, �2, and
�3, and the transformations thereof, #̄,Λ, and Υ, are defined as11

#̄ ≡ �1
�1
=

[
:�(� + 4�)
� + :�4�

]
> 0 (20)

Λ ≡
[
�3�1 − �1�3

�1

]
=

[
(� + :�4� + :�4�)[� + 4�(:� + �:�)]

�
′(� + :�4�)

]
> 0 (21)

Υ ≡
[
�2�1 − �1�2

�1

]
=

[
:�(� + 4�)(� + :�4�) − :�:�4�(� + 4�)

�
′(� + :�4�)

]
> 0. (22)

3.2.1 Case I: Labor Supply Shock Only

First, I consider the case where there are no omitted variables. In this case �̄ ≠ 0, but
�̄ = � = 0. By using equation (15) to solve for �̄ and substituting the formula for �̄ into
(14), one can express the relationship between production and the labor input as

3&∗ = #̄3�∗. (23)

By transforming (23) into its logarithmic differential form and integrating, the production-
labor relationship can be expressed as

;=(&) = 0 + #̄;=(�), (24)

where 0 is the constant of integration. The production-labor relationship be estimated
empirically by using the following model via ordinary least squares (OLS) regression

;=(&) = 0 + #̄;=(�) + &, (25)

11I make use of the identity :� = 1 − :� in (21) and prove that Υ > 0 in Appendix B.
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where & is an 883 error term. The OLS coefficient on the (log) equilibrium employment
variable has a probability limit equal to

#̄$!( =

[
:�(� + 4�)
� + :�4�

]
= �1 +

[
:�:�4�(� + 4�)

(� + :�4�)(� + :�4� + :�4�)

]
︸                                   ︷︷                                   ︸

�1

, (26)

where �1 > 0 represents the bias from using an equilibrium employment measure to esti-
mate the effect of a change in the labor supply. Therefore, if there are no omitted variables,
#̄$!( can be interpreted as an upper bound for �1. The formula for the magnitude of the
relative bias is

�1
�1
=

:�4�

� + :�4�
, (27)

which should be small if one or more of the following conditions is met: (i) the supply
of labor is highly inelastic, (ii) the cost share of input � is small, (iii) labor and non-
labor inputs are highly substitutable, or (iv) the supply of the non-labor input is highly
elastic. In the casewhere the supply of labor is perfectly inelastic, there is no bias because a
horizontal shift in a vertical labor supply curve causes an equivalent change in equilibrium
employment (i.e., 4� = 0 =⇒ #̄ = �1). Similarly, there is no bias if the supply of input � is
not perfectly elastic (i.e., ;8< 4� 9 ∞) and either (i) the two inputs are perfect substitutes
(i.e., ;8< �→∞) or (ii) the supply of input � is perfectly elastic (i.e., ;8< 4� →∞).

3.2.2 Case II: Unobserved Factor Neutral Productivity Shocks

Now I consider the case where there are unobserved neutral productivity shocks �. In this
case, �̄ ≠ 0 and � ≠ 0, but �̄ = 0. One can use equation (15) to solve for �̄ and substitute
the formula for �̄ into (14) to derive the following formula for 3&∗:

3&∗ = #̄3�∗ +Λ�. (28)

By transforming (28) into its logarithmic differential form and integrating, one can derive
the following equation:

;=(&) = 1 + #̄;=(�) +Λ;=(�′), (29)

where 1 is the constant of integration. The elasticity of labor-intensive crop production
with respect to the labor supply can be estimated empirically using (25), but in this case,
the error term & contains the unobserved term Λ;=(�′) and is not 883. Under this scenario,
the coefficient on the (log) equilibrium employment variable has a probability limit equal

12



to
#̄$!( = �1 + �1 +

[
cov(;=(�),Λ;=(�′))

var(;=(�))

]
︸                      ︷︷                      ︸

�2

, (30)

where cov(-,.) (resp. var(-)) denotes the covariance between two variables - and .
(resp. variance of the variable -), and �2 represents the bias that results from unobserved
factor neutral productivity shocks. By transforming (15) into its logarithmic differential
form and integrating, one can obtain formulas for ;=(�) and var(;=(�)) and substitute
them into �2. Under the assumption that labor supply shocks are not correlated with
productivity shocks (i.e., cov(;=(�′), ;=(�′)) = 0), �2 condenses to

�2 =

[
Λ�3var(;=(�

′))
�2

1var(;=(�
′)) + �2

3var(;=(�
′))

]
> 0. (31)

Therefore, #̄ will be subject to two sources of upward bias: one from the use of an
equilibrium employment variable in place of a labor supply variable (�1) and one from
unobserved factor neutral productivity shocks (�2). The magnitude of the relative bias
from latter source can be expressed as

�2
�1
=

[
Λ

�1

] [
�3var(;=(�

′))
�2

1var(;=(�
′)) + �2

3var(;=(�
′))

]
. (32)

All else equal, (32) will tend to be small if the elasticity of equilibrium employment with
respect to the productivity shocks is larger than one (i.e., �3 >> 1), if the labor supply
shocks (�′) are highly variable, or if the elasticity of equilibrium employment with respect
to the labor supply, which is bounded between 0 and 1, is closer to 1 (i.e., �1 ≈ 1). The
latter is likely to occur if the supply of labor is inelastic. If the supply of labor is perfectly
inelastic (i.e., if 4� = 0), then �1 = 1. The relative bias will also tend to be small if the
elasticity of production with respect to factor neutral productivity shocks is small relative
to the elasticity of production with respect to the labor supply (i.e., if Λ << �1).

3.2.3 Case III: Unobserved Non-Labor Input Supply and Factor Neutral Productivity
Shocks

Now I consider the case where there are unobserved non-labor input supply shocks �̄
and factor neutral productivity shocks �. In this case, �̄ ≠ 0, �̄ ≠ 0, and � ≠ 0. One can
use equation (15) to solve for �̄ and substitute the formula for �̄ into (14) to derive the
following formula:

13



3&∗ = #̄3�∗ + Υ�̄ +Λ�. (33)

By transforming (33) into its logarithmic differential form and integrating, one can derive
the following equation:

;=(&) = 2 + #̄;=(�) + Υ;=(�′) +Λ;=(�′), (34)

where 2 is the constant of integration. The elasticity of labor-intensive crop production
with respect to the labor supply can be estimated empirically using (25), but under this
scenario, the error term & contains the two unobserved terms Υ;=(�′) and Λ;=(�′) and is
not 883. In this case, the coefficient on the (log) equilibrium employment variable has a
probability limit equal to

#̄ = �1 + �1 +
[
cov(;=(�),Υ;=(�′) +Λ;=(�′))

var(;=(�))

]
︸                                     ︷︷                                     ︸

�3

, (35)

where �3 represents the two sources of omitted variables bias. By transforming (15)
into its logarithmic differential form and integrating, one can obtain formulas for ;=(�)
and var(;=(�)) and substitute them into �3. Under the assumption that factor neutral
productivity shocks are not correlated with input supply shocks and that labor supply
shocks are not correlated with non-labor input supply shocks (i.e., cov(;=(�′), ;=(�′)) =
cov(;=(�′), ;=(�′)) = cov(;=(�′), ;=(�′)) = 0) the formula for �3 condenses to

�3 =
Υ�2var(;=(�

′)) +Λ�3var(;=(�
′))

�2
1var(;=(�

′)) + �2
2var(;=(�

′)) + �2
3var(;=(�

′))
> 0. (36)

In this case, #̄ will be subject to three sources of upward bias: one from the use of an
equilibrium employment variable in place of a labor supply variable (�1) and two from
the unobserved non-labor input supply and factor neutral productivity shocks (�3). The
formula for the relative bias can be expressed as follows:

�3
�1
=

[
1
�1

] [
Λ�3var(;=(�

′)) + Υ�2var(;=(�
′))

�2
1var(;=(�

′)) + �2
2var(;=(�

′)) + �2
3var(;=(�

′))

]
.

(37)
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As onemight expect, themagnitude of the relative bias from the factor unobserved neutral
productivity shocks in this case depends on the same factors as those described in Case
II, although a higher variance of the non-labor input supply shocks (�′) and a larger
elasticity of equilibrium employment with respect to the non-labor input (�2) will also
tend to reduce this source of bias. The bias from the unobserved non-labor input supply
shocks will tend to be relatively small if the elasticity of equilibrium employment with
respect to the non-labor input suppply shocks, which is bounded by the interval [0, 1],
is close to one (i.e., �2 ≈ 1), if the labor supply shocks (�′) or factor neutral productivity
shocks (�′) are highly variable, or if either the elasticity of equilibrium employment with
respect to the farm labor supply (�1) or factor neutral productivity shocks (�3) is large.
Furthermore, if the elasticity of production with respect to the non-labor input supply
is small relative to the elasticity of production with respect to the labor supply (i.e., if
Υ << �1), then this source of bias will tend to be small.

4 Data and Methodology

4.1 Data

The data used for this analysis span the period 1990 to 2017 and cover 10 of the 44 fruit
and vegetable crop producing California counties. These 10 counties produce 86% of
the farm gate value of all labor-intensive crops in the state.12 The crop production data
were obtained from the California County Agricultural Commissioners’ reports, which
are available in .pdf and .csv format on the website of the USDA’s National Agricultural
Statistics Service (NASS, 2018). These data include the value (in U.S. dollars) and quantity
(in U.S. tons) of production, the number of acres harvested, and the average yield per acre
for each crop in each California county in each year. In a handful of cases, the source
.csv data files contained apparent data entry errors, which were detected by conducting a
visual examination of statewide production graphs for each commodity and investigating
outliers. When possible, these errors were corrected by entering the values from the
.pdf text reports.13 Observations were dropped in cases where errors were unable to be
reconciledwith values from the text reports.14 Data on the value of production (in dollars)

12There are a total of 91 labor-intensive crops used in the analysis. For a list of all the commodities used
in this analysis, see Appendix C.

13A report containing time series graphs for the statewide production of each of the crop used in the
analysis can be found at: https://www.zachrutledge.com/uploads/1/2/5/6/125679559/california_c
rop_production_graphs_v3.pdf.

14In a few cases, there were outliers that appeared consistent in the .csv and .pdf files but were an order
of magnitude different from adjacent observations in the data set. I dropped those observations out of an
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is available for all crops in all counties in all year, however in some cases one or more of
the production measures is missing for some crops in some years. In order to maintain
a consistent set of observations throughout the study, observations are also dropped if at
least one of the three production measures is missing. In order to determine the extent to
which missing observations might affect the empirical results, I calculate the share of the
total value that the missing production observations account for. The missing production
observations account for less than 1% of the total value of the labor-intensive crops in
any given year, so it is unlikely that the dropped observations significantly influence the
estimates.

The county-level crop employment datawere obtained from the public useQuarterly
Census of Employment andWages (QCEW) data files (BLS, 2018). These data include the
average quarterly employment measures for each county based on the North American
Industry Classification System (NAICS). To provide a measure of the hand harvest work-
force, I include all crop workers directly hired by farmers (NAICS code 111) and those
hired by farm labor contractors (NAICS code 115115). In certain counties, employment
measures for one of the NAICS codes have been suppressed for some years in order to
prevent the identification of individual employers. In these cases, observations corre-
sponding to that county-year are dropped from the analysis. However, I also estimate a
set of results using imputed data for the suppressed observations. The results from both
methods are qualitatively similar, although the analysis with imputed values delivers up-
per bounds that are larger in magnitude.15 The employment measure used in the analysis
corresponds to the average employment during each county’s peak employment quarter,
assumed to be the period of time when the majority of the harvest activities take place.
This “peak quarter" is identified separately for each county by determining the quarter
during which each county had its highest average employment over the time period 1990
to 2017. Once the peak quarter is defined for each county, the employment measures that
correspond to that quarter are assigned to each county for the entire sample period. For
example, in Imperial county, where winter lettuce is grown, the peak harvest activities
occur during the first quarter of the calendar year, and in San Joaquin county, they occur
in the second quarter. Assigning each county the employment measure during their peak
harvest season ensures that the analysis captures fluctuations in the local labor supply

abundance of caution as they appear to be data entry errors that carried over into both the .pdf text reports
and the .csv data files. Five data entry errors were updated with values from the .pdf files, and 14 were
dropped from the analysis.

15Values are imputed by estimating a quadratic trend with the non-suppressed observations (separately
for each county andNAICS code that has suppressed data) and assigning the predicted values to themissing
data. The results with imputed values are available upon request.
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during the period of time when farmers are particularly susceptible to labor availability
problems.

Weather data were obtained from the National Oceanic and Atmospheric Admin-
istration Climate Data Online website (NOAA, 2019). These data include information
about temperature and precipitation provided by weather stations located in each county
throughout the state. From these data, I generate 12 monthly county-level average tem-
perature variables and 12 monthly county-level cumulative precipitation variables. There
are no temperature data for Sutter county, and a few precipitation data points are missing
in Sutter county (which is only relevant for the falsification tests).

Table 1 shows the summary statistics for the variables used in the analysis. Note that
the production, harvested acres, and yield statistics are aggregated at the crop-county-
year level, and the employment and weather measures are aggregated at the county-year
level such that employment and weather values are repeated in the analysis when there
is more than one crop grown in a county in a given year.

[Table 1 about here.]

4.2 Methodology

As discussed in section 3, the main threats to identification when estimating the effect
of a change in the farm labor supply on labor-intensive crop production are the use of
an equilibrium employment measure in place of a labor supply variable and omitted
variables bias. In an ideal setting, one could deal with both of these threats by using
an instrumental variable that induces labor-supply driven variation in the equilibrium
employment variable but is uncorrelated with the omitted variables. Of course, instru-
ments that satisfy these conditions are rarely found in practice, therefore I rely upon the
following fixed-effects panel regression model:16

;=($82C) = #̄;=(�2C) + )82 + )C + 
21C2 + 

2
2C

2
2 +

12∑
<=1
(�<)4<?<2C + �<%A428?<2C) + &82C , (38)

where ;= denotes the natural logarithm, 8 denotes crop, 2 denotes county, and C denotes
year. The outcomes of interest $82C ∈ (&82C , �82C , .82C) are three measures of crop produc-
tion, where &82C is the amount of production of each labor-intensive fruit and vegetable

16I explored the use of several instrumental variables including some that were "imperfect" (i.e., instru-
ments that violate the exclusion restriction but are less correlated with the error term than the endogenous
regressor of interest) based on the methodology of Nevo and Rosen (2012). However, each instrument failed
to provide an improvement over the strategy presented below.
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crop in each county in each year, �82C is the number of acres harvested, and .82C is the
average yield (quantity harvested per acre). The main variable of interest ;=(�2C) is the
(log) number of crop workers employed at the county level during the county’s peak har-
vest time. In order to mitigate the bias that arises from unobserved productivity shocks
(as defined in section 3.2), the model contains a set of year fixed effects and a set of 24
weather control variables. The year fixed effects help control for productivity shocks that
are common to all counties, such as droughts, and the weather variables help control for
productivity shocks that arise from local weather events, such as regional freezes that may
destroy crops or spring rains that may inhibit pollination. The weather variables may also
help control for unobserved labor demand shocks because local weather conditions are
closely tied to the timing of the demand for labor (Fisher and Knutson, 2012). Each set
of weather control variables )4<?<2C and %A428?

<
2C consists of 12 (< = 1, ..., 12) monthly

county average temperature and cumulative precipitation variables. The quadratic county
trends C2 + C22 are included to help control for smooth, yet potentially nonlinear, temporal
changes that are specific to each county, such as urban expansion, which might affect the
amount of land that is available to produce crops on. Because land is one of the main
non-labor inputs, the inclusion of quadratic county trends should help mitigate the bias
that results from non-labor input supply shocks. The crop-by-county fixed effects )82 are
included to control for time-invariant unobserved factors that are differentiated by crop
and county, such as soil quality or geography. And &82C is the error term. Although this set
of fixed effects and control variables likely controls for a significant amount of the omitted
variables bias, they may not fully address the bias that results from using an equilibrium
employment variable in place of a labor supply variable (defined as �1 in section 3.2.1). As
a result, the point estimates may still suffer from upward bias, so I interpret the coefficient
on the equilibrium employment variable #̄ in this regression as an upper bound for �1.

In panel settings that have a natural regional clustering of observations (such as the
crop-county level data used in this analysis), it is common to use standard errors that are
clustered at the region level (Rogers, 1993). Clustering standard errors at the region level
corrects for heteroskedasticity and auto-correlation within geographic regions, which, if
present, renders inference based onWhite (1980)’s heteroskedastic-robust standard errors
invalid due to the violation of the error independence assumption. In order to conduct
valid inference with clustered standard errors, the errors must not be correlated across
clusters. However, the inter-cluster independence assumptionmay be difficult to justify in
certain settings, especially when the geographic regions under consideration are located
within close proximity to each other, such as the counties used in this study (see Figure
5).
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[Figure 5 about here.]

If there is cross-sectional or spatial correlation in the error term, the across-region
error independence assumption is violated and clustered standard error estimates are
biased, which leads to invalid inference. Using the Frees test, which is appropriate for
use in my setting17 (De Hoyos and Sarafidis, 2006; Frees, 1995), I test for cross-sectional
dependence in the error term to determine if the use of clustered standard errors is ap-
propriate.18 The Frees tests provide strong evidence of cross-sectional dependence, which
likely results from the close geographic proximity of the 10 labor-intensive crop producing
counties considered in the analysis, leading to spatial correlation across counties. To con-
duct inference that is robust to this type of cross-sectional dependence, I useDriscoll-Kraay
standard errors (see Driscoll and Kraay, 1998; Hoechle, 2007), which are robust to general
forms of cross-sectional dependence, heteroskedasticity, and error auto-correlation up to
a specified number of lags.19 I determine the value of @ in the"�(@) process by using the
heteroskedastic-robust Cumby-Huzinga general test for auto-correlation.20

5 Results

5.1 Labor-Intensive Crops

The results from equation (38) are shown in Table 2. The table consists of two sets of
results: one for the top 5 producing counties, and the other for the top 10 counties.
According to the data, the top 5 (resp. 10) counties produce 65% (resp. 86%) of the
value of all labor-intensive fruit and vegetable crops produced in the state. Within each
set of results is a subset of results for production, harvested acres, and average yield per
acre. Each column in the table displays estimates that include a different set of control
variables. When focusing on an individual row, columns (1) through (4) show estimates
that are similar in magnitude and level of significance. However, the results in column (5)

17The Frees test is appropriate for use with static panel models when the number of years in the data is
less than the number of observations in the cross sectional dimension and year fixed effects are included in
the model, which is the setting that fits my study (De Hoyos and Sarafidis, 2006)

18Inference based on clustered standard errors is also not valid in this case because the number of clusters
(�) must be large in order for the standard error estimates to be consistent. My analysis is based off of the
largest 10 producing counties (i.e., � = 10), which is too small for clustered standard errors to be reliable.
Cameron and Miller (2015) propose the use of the wild cluster bootstrap in cases where the number of
clusters is small, however inference based on the wild cluster bootstrap also requires the absence of error
correlation across clusters, which does not hold in my setting (see below).

19For reference, I also report clustered standard error estimates in the tables that follow.
20The number of degrees of error auto-correlation present in each regression can be found in Appendix

D.
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are mostly insignificant with coefficients that are substantially smaller than those in the
other columns. These smaller and often insignificant coefficients likely result from the fact
that this specification includes a full set of crop fixed effects interacted with each of the
24 monthly county-level weather variables, adding more than 2000 additional regressors
into the model. The inclusion of such a large set of control variables likely soaks up
the identifying variation in the main regressor of interest. In light of this, my preferred
specification is the model outlined by column (4), which includes the 12 monthly county-
level average temperature and 12monthly county-level cumulative precipitation variables
but appears to leave enough variation in the main regressor to identify meaningful upper
bounds.

[Table 2 about here.]

When focusing on the production results for the top 5 counties, the results indicate
that a 10 percent decrease in the farm labor supply causes at most a 5.3% decrease in labor-
intensive fruit and vegetable production. Reduced production is primarily channeled
through a decrease in the number of acres harvested, although there are some minor
effects on average yields. One potential explanation for yield effects is that farmers may
not be able to get workers to perform multiple rounds of harvesting on certain crops that
do not ripen uniformly. In the top 5 counties, a 10% reduction in the farm labor supply
in these counties causes at most a 3.5% reduction in harvested acres and at most a 1.8%
decrease in the average yield per acre.

As the effects are estimated across a larger set of counties, the coefficients become
smaller, although they generally remain significant. In the top 10 counties, a 10% reduction
in the farm labor supply causes at most a 3.8% reduction in production, at most a 2.4%
reduction in harvested acres, and at most a 1.4% reduction in yields.

5.2 Falsification Tests: Mechanically-Harvested Crops

Nut and field crops are harvested by machines and, therefore, do not require a substantial
amount of labor to bring to market.21 As a result, one should not expect to find effects of
a declining farm labor supply on the production of these crops as large as those found
on labor-intensive fruit and vegetable crops. In order to test this hypothesis, I estimate
the effects of changes in the farm labor supply on the production of these crops. The
results for nuts (resp. field crops) can be found in Table 3 (resp. Table 4). A review of
these tables reveals two important facts. First, the magnitude of the coefficients, when

21See Figures 6 (resp. 7) for a map of the top 10 field crop (resp. nut) producing counties.
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positive, are much smaller than those found in the fruit and vegetable crop analysis.
Second, in some cases, the coefficients are statistically significant and negative, indicating
that a smaller labor supply is associated with an increase in the production of these
crops, which could result from a switch out of the production of labor-intensive crops
into the production of those that are mechanically harvested. Although this is consistent
with anecdotal evidence (e.g., Ryssdal, 2017; Martin, 2019), one should use caution when
interpreting these negative coefficients as causal evidence because they are not statistically
significant in the top five nut (resp. field crop) producing counties, which is where the
main effects should be found, and in the set of counties where they are significant, they are
not robust to different model specifications. Nevertheless, the evidence from this analysis
is consistent with the hypothesis that effects of a declining farm labor supply are not large
and statistically significant in mechanically-harvested crops but are, instead, concentrated
in the sub-sector of agriculture that is particularly reliant upon labor inputs.

[Figure 6 about here.]

[Figure 7 about here.]

[Table 3 about here.]

[Table 4 about here.]

6 Conclusion

This studyprovides empirical evidence of the effects of changes in the farm labor supply on
labor-intensive crop production using a rich set of panel data from California, the leading
agricultural producer and employer in the U.S. The empirical results reveal economically
meaningful and statistically significant upper bounds for the effects on hand-harvested
fruit and vegetable production but not on mechanically-harvested field or nut crops.
The equilibrium displacement model suggests that the elasticity of labor-intensive crop
production with respect to the labor input should be bounded by the interval [.2, 1], and
the point estimates are consistent with this theory. Additional derivations reveal that
the empirical estimates are potentially biased upwards and can be interpreted as upper
bounds. The effects are perhaps best exemplified by focusing on the top 5 producing
counties. In those counties, the results indicate that a 10%decrease in the farm labor supply
causes at most a 5.3% reduction in labor-intensive crop production, which is primarily
channeled through a reduction in the number of acres harvested, and to some extent

21



lower average yields, perhaps due to constraints on the ability to get enough workers to
performmultiple rounds of harvesting on crops that do not ripen uniformly. These upper
bounds improve upon the most recent estimates provided by Zahniser et al. (2011), who
find an (implied) upper bound for the elasticity of fruit (resp. vegetable) production of
0.58 (resp. 0.85), indicating that the effects are perhaps smaller than previously thought.

Nevertheless, the bounds are economically significant. A 5.3% decrease in the pro-
duction of labor-intensive crops in the top 5 counties corresponds to 750,000 tons of fruits
and vegetables each year worth about $750,000,000. These results suggest that, although
a moderate decrease in the farm labor supply would not devastate the aggregate pro-
duction of fruits and vegetables in California, it could generate economically meaningful
reductions in the amount of hand-harvested fruit and vegetable crops that are produced
domestically and cause substantial revenue losses. Reduced production could potentially
put upward pressure on fresh produce prices and may lead to increased reliance upon
imports to meet consumer demand, although these results suggest that that the impacts
would not likely be large.

The results from this study also suggest that there is not a one-to-one relationship
between labor-intensive crop production and farm labor, which is an indication that, to
some extent, labor inputs can be substituted for other inputs. There are at least three
factors that likely contribute to this result.

First, the farm labor supply in this study only measures the number of workers and
does not account for adjustments on the intensive margin, such as changes in the number
of weeks worked per year or hours of work per week. Data from the NAWS indicate
that farmers have been employing farm workers for more weeks per year and more hours
per week. As a result, estimates based on the number of units of labor (e.g., hours of
work) rather than the number of workers could potentially be larger than those that are
uncovered by this analysis.

Second, farmers are becoming increasingly reliant upon farm labor contractors and
the H-2A visa program to help reduce frictions in the farm labor market. The use of
farm labor contractors helps reduce the burden associated with finding harvest workers
(although the optimal number of workers may not always be available on short notice
when the farmer requests them), while the H-2A program ensures that enough harvest
workers will be available when the farmer needs them (although at a higher cost). The use
of the H-2A program has historically lagged behind in California, although it is gaining
momentum as the labor supply continues to tighten.

Third, farmers are making adjustments to their production practices to help miti-
gate issues stemming from reduced employee availability. Some farmers report delaying
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or reducing their pruning, weeding, or harvesting, while others report adopting labor-
saving technologies, although mechanical harvesters are currently not available for the
vast majority of fruit and vegetable crops, and those crops that can be mechanically har-
vested have been removed from this analysis (CFBF and UC Davis, 2019; Rutledge and
Taylor, 2019). Nevertheless, the fact that California is so well suited to produce high-value
specialty crops, coupled with the fact that farmers are actively making adjustments to
mitigate issues stemming from labor-availability problems, means that farmers will likely
continue producing fruits and vegetables into the foreseeable future even if fewer workers
are available.
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Figure 1: Value of FVH Crop Production in California, 1990-2017

Note: Values have been adjusted to real $2017 using the current CPI for the U.S. city average for all items
found at: https://www.bls.gov/cpi/data.htm.
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Figure 2: Labor-Intensive Fruit and Vegetable Production
and Harvested Acreage in California, 1990-2017

A: Production

B: Harvested Acres
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Figure 3: California Crop Employment by Worker Type

A: Average Monthly Employment, 2017

B: Average Annual Employment, 1990-2017
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Figure 4: Average Quarterly Employment During Peak Harvest Season (Q3)
for Monterey and Fresno Counties, 1990-2017

A: Monterey County

B: Fresno County
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Figure 5: Geography of Top 10 Labor-Intensive
Fruit and Vegetable Producing Counties in California

Note: The calculations that determine the top 10 counties exclude all fruit and vegetable crops that have a
viable option for mechanical harvest. After excluding those crops, these 10 counties produce about 86% of
the value of all hand-harvested fruit and vegetable crops in the state.
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Figure 6: Geography of the Top 10 Field Crop Producing Counties
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Figure 7: Geography of the Top 10 Nut Producing Counties
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Table 1: Summary Statistics for Top 10
Labor-Intensive Fruit and Vegetable Crop Producing Counties

Median Mean SD
Production (in U.S. tons) 15,546 60,780 133,616
Harvested Acres 1,480 5,066 9,486
Yield/Acre (in U.S. tons) 10.0 13.1 16.9
Obs. 6,364 6,364 6,364
Number of Workers 19,194 25,513 16,216
Ave. County Temperature (in Fahrenheit) 61.3◦ 62.4◦ 5.1◦
Ave. Cumulative County Precipitation (inches annually) 13.6 14.4 8.3
Obs. 279 279 279

Note: One U.S. ton is equal to 2000 pounds (or 907.18 kilograms). The production, harvested acres, and
yield statistics are aggregated at the crop-county-year level, while the employment and weather variables
are aggregated at the county-year level. The average county temperature and precipitation statistics
presented here are each constructed from 12 monthly variables.
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Table 2: Effects of a Change in the Farm Labor Supply
on Labor-Intensive Crop Production for the Top 5 and 10
Labor-Intensive Crop Producing California Counties

(1) (2) (3) (4) (5)
Top 5 Counties

Production
0.476∗∗∗ 0.549∗∗∗ 0.478∗∗∗ 0.531∗∗∗ 0.121
(0.106) (0.071) (0.087) (0.079) (0.208)
[0.275] [0.195] [0.238] [0.198] [0.199]

Harvested Acres
0.286∗∗∗ 0.340∗∗∗ 0.309∗∗∗ 0.352∗∗∗ 0.109
(0.053) (0.057) (0.047) (0.061) (0.121)
[0.181] [0.131] [0.116] [0.117] [0.173]

Yield
0.190∗∗∗ 0.210∗∗ 0.169∗∗ 0.179∗ 0.012
(0.066) (0.087) (0.067) (0.090) (0.180)
[0.102] [0.068] [0.127] [0.095] [0.151]

# 3,485 3,485 3,485 3,485 3,485
Top 10 Counties

Production
0.388∗∗∗ 0.370∗∗∗ 0.409∗∗∗ 0.381∗∗∗ 0.216∗∗∗
(0.072) (0.049) (0.061) (0.060) (0.071)
[0.157] [0.147] [0.147] [0.138] [0.087]

Harvested Acres
0.263∗∗∗ 0.239∗∗∗ 0.266∗∗∗ 0.244∗∗∗ 0.183∗∗
(0.028) (0.034) (0.040) (0.046) (0.070)
[0.103] [0.106] [0.095] [0.101] [0.090]

Yield
0.125∗ 0.131∗∗ 0.142∗∗ 0.137∗∗∗ 0.032
(0.063) (0.058) (0.056) (0.034) (0.058)
[0.080] [0.065] [0.090] [0.068] [0.079]

# 6,364 6,364 6,364 6,364 6,364
Year FE X X X X X
Crop-x-County FE X X X X X
Quadratic County Trends X X X X X
Monthly Temp. Controls – X – X –
Monthly Precip. Controls – – X X –
Crop-x-Temp. Controls – – – – X
Crop-x-Precip. Controls – – – – X

Significance levels are based on Driscoll-Kraay standard errors, which are reported in parentheses.
Standard errors clustered at the county-level are reported in brackets. ∗ ? < .1, ∗∗ ? < .05, ∗∗∗ ? < .01.
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Table 3: Effects of a Change in the Farm Labor Supply
on Nut Crop Production for the Top 5 and 10
Nut Crop Producing California Counties

(1) (2) (3) (4) (5)
Top 5 Counties

Production
0.155 -0.010 0.085 -0.031 -0.187
(0.218) (0.088) (0.223) (0.103) (0.175)
[0.071] [0.019] [0.113] [0.029] [0.108]

Harvested Acres
0.142 0.072 0.106 0.105 0.025
(0.103) (0.057) (0.105) (0.119) (0.088)
[0.136] [0.111] [0.176] [0.134] [0.130]

Yield
0.013 -0.082 -0.021 -0.137 -0.212
(0.204) (0.159) (0.196) (0.170) (0.183)
[0.118] [0.115] [0.180] [0.112] [0.131]

# 368 368 368 368 368
Top 10 Counties

Production
0.098 0.075 0.057 0.057 -0.000
(0.068) (0.063) (0.068) (0.043) (0.069)
[0.063] [0.078] [0.070] [0.058] [0.067]

Harvested Acres
0.008 -0.012 0.031 0.022 -0.009
(0.027) (0.036) (0.026) (0.026) (0.040)
[0.041] [0.047] [0.036] [0.048] [0.058]

Yield
0.090 0.087 0.026 0.035 0.009
(0.061) (0.061) (0.059) (0.052) (0.093)
[0.074] [0.088] [0.059] [0.054] [0.069]

# 772 772 760 760 760
Year FE X X X X X
Crop-x-County FE X X X X X
Quadratic County Trends X X X X X
Monthly Temp. Controls – X – X –
Monthly Precip. Controls – – X X –
Crop-x-Temp. Controls – – – – X
Crop-x-Precip. Controls – – – – X

Significance levels are based on Driscoll-Kraay standard errors, which are reported in parentheses.
Standard errors clustered at the county-level are reported in brackets. ∗ ? < .1, ∗∗ ? < .05, ∗∗∗ ? < .01.
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Table 4: Effects of a Change in the Farm Labor Supply
on Field Crop Production for the Top 5 and 10
Field Crop Producing California Counties

(1) (2) (3) (4) (5)
Top 5 Counties

Production
0.063 -0.027 0.050 -0.084 0.017
(0.159) (0.179) (0.152) (0.138) (0.174)
[0.210] [0.170] [0.182] [0.117] [0.163]

Harvested Acres
0.073 -0.051 0.089 -0.078 0.076
(0.134) (0.139) (0.109) (0.113) (0.150)
[0.174] [0.171] [0.143] [0.137] [0.168]

Yield
-0.010 0.025 -0.039 -0.006 -0.059
(0.056) (0.065) (0.059) (0.058) (0.075)
[0.048] [0.049] [0.052] [0.059] [0.090]

# 1,525 1,525 1,525 1,525 1,525
Top 10 Counties

Production
-0.168 -0.131 -0.237∗∗ -0.210∗ -0.073
(0.108) (0.126) (0.110) (0.107) (0.092)
[0.110] [0.111] [0.126] [0.126] [0.162]

Harvested Acres
-0.110 -0.079 -0.132 -0.126 -0.015
(0.083) (0.114) (0.107) (0.100) (0.083)
[0.075] [0.079] [0.083] [0.088] [0.121]

Yield
-0.058 -0.051∗ -0.105∗∗∗ -0.083∗∗∗ -0.058∗
(0.037) (0.028) (0.029) (0.024) (0.030)
[0.050] [0.047] [0.047] [0.044] [0.054]

# 3,529 3,025 3,347 2,959 2,959
Year FE X X X X X
Crop-x-County FE X X X X X
Quadratic County Trends X X X X X
Monthly Temp. Controls – X – X –
Monthly Precip. Controls – – X X –
Crop-x-Temp. Controls – – – – X
Crop-x-Precip. Controls – – – – X

Significance levels are based on Driscoll-Kraay standard errors, which are reported in parentheses.
Standard errors clustered at the county-level are reported in brackets. ∗ ? < .1, ∗∗ ? < .05, ∗∗∗ ? < .01.
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A Other Special Cases of #
If labor is the only input (i.e., ;8< :� → 1), then industry output is unit elastic with respect
to labor:

;8<
:�→1

# =
�(� + 4�)
�(� + 4�)

= 1. (A-1)

If input � is perfectly elastic (i.e., ;8< 4� → ∞), then industry output is inelastic with
respect to labor:

;8<
4�→∞

# =
:��

:�� − :��
< 1. (A-2)

If the supply of the non-labor input � is perfectly inelastic (i.e., ;8< 4� = 0), the output
elasticity with respect to the labor input is equal to :�, the cost share of input �:

;8<
4�→0

# =
:���

��
= :�. (A-3)

B Proof that Υ > 0
Let Υ be defined as

Υ ≡
[
�2�1 − �1�2

�1

]
=

[
:�(� + 4�)(� + :�4�) − :�:�4�(� + 4�)

�
′(� + :�4�)

]
. (B-1)

In order to prove that Υ > 0, it is sufficient to show that

:�(� + 4�)(� + :�4�) > :�:�4�(� + 4�). (B-2)

Dividing both sides of (B-2) by :�4� delivers the following inequality:[
(� + 4�)
4�

]
︸       ︷︷       ︸

�

(� + :�4�) > :�� + :�4� , (B-3)

which holds because� > 1 > :� and thus�� > :�� and�:�4� > :�4�. Therefore,Υ > 0.

C List of Labor-Intensive Commodities Used in Analysis
[Table C.1 about here.]
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D Lag Length Used in Driscoll-Kraay Standard Errors
[Table D.1 about here.]

[Table D.2 about here.]

[Table D.3 about here.]
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Table C.1: List of Commodities

ANISE (FENNEL) LETTUCE BULK SALAD PRODUCTS
APPLES ALL LETTUCE HEAD
APRICOTS ALL LETTUCE LEAF
ARTICHOKES LETTUCE ROMAINE
ASPARAGUS FRESH MARKET LETTUCE UNSPECIFIED
AVOCADOS ALL LIMES ALL
BEANS FRESH UNSPECIFIED MELONS CANTALOUPE
BEANS LIMA GREEN MELONS CASABA
BEANS SNAP FRESH MARKET MELONS CRENSHAW
BERRIES BLACKBERRIES MELONS HONEYDEW
BERRIES BLUEBERRIES MELONS UNSPECIFIED
BERRIES BOYSENBERRIES MELONS WATERMELON
BERRIES BUSHBERRIES UNSPECIFIED MUSHROOMS
BERRIES LOGANBERRIES NECTARINES
BERRIES RASPBERRIES OKRA
BERRIES STRAWBERRIES FRESH MARKET OLIVES
BERRIES STRAWBERRIES PROCESSING ONIONS GREEN & SHALLOT
BROCCOLI FOOD SERVICE ORANGES NAVEL
BROCCOLI FRESH MARKET ORANGES UNSPECIFIED
BROCCOLI PROCESSING ORANGES VALENCIA
BRUSSELS SPROUTS PARSLEY
CABBAGE CHINESE & SPECIALTY PEACHES CLINGSTONE
CABBAGE HEAD PEACHES FREESTONE
CABBAGE RED PEACHES UNSPECIFIED
CAULIFLOWER FOOD SERVICE PEARS ASIAN
CAULIFLOWER FRESH MARKET PEARS UNSPECIFIED
CAULIFLOWER PROCESSING PEAS EDIBLE POD (SNOW)
CELERY FOOD SERVICE PEPPERS BELL
CELERY FRESH MARKET PEPPERS CHILI HOT
CELERY PROCESSING PERSIMMONS
CHERRIES SWEET PLUMCOTS
CITRUS UNSPECIFIED PLUMS
CORN SWEET ALL POMEGRANATES
CUCUMBERS PUMPKINS
CUCUMBERS GREENHOUSE QUINCE
DATES RADICCHIO
EGGPLANT ALL RAPPINI
ENDIVE ALL SALAD GREENS MISC.
ESCAROLE ALL SQUASH
GRAPEFRUIT ALL SWISS CHARD
GRAPES TABLE TANGELOS
GREENS TURNIP & MUSTARD TANGERINES & MANDARINS
KALE TOMATILLO
KIWIFRUIT TOMATOES CHERRY
KUMQUATS TOMATOES FRESH MARKET
LEMONS ALL
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Table D.1: Degree of Serial Correlation in the Error Term for Table 2

(1) (2) (3) (4) (5)
Top 5 Counties

Production 6 6 6 6 2
Harvested Acres 6 6 6 6 3
Yield 3 3 3 3 2

Top 10 Counties
Production 6 6 6 6 3
Harvested Acres 6 6 6 6 0
Yield 4 0 4 4 1
Year FE X X X X X
Crop-x-County FE X X X X X
Quadratic County Trends X X X X X
Monthly Temp. Controls – X – X –
Monthly Precip. Controls – – X X –
Crop-x-Temp. Controls – – – – X
Crop-x-Precip. Controls – – – – X
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Table D.2: Degree of Serial Correlation in the Error Term for Table 3

(1) (2) (3) (4) (5)
Top 5 Counties

Production 6 6 6 6 4
Harvested Acres 7 7 7 7 6
Yield 0 0 0 0 0

Top 10 Counties
Production 7 7 7 7 6
Harvested Acres 8 7 7 8 4
Yield 2 4 2 2 0
Year FE X X X X X
Crop-x-County FE X X X X X
Quadratic County Trends X X X X X
Monthly Temp. Controls – X – X –
Monthly Precip. Controls – – X X –
Crop-x-Temp. Controls – – – – X
Crop-x-Precip. Controls – – – – X
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Table D.3: Degree of Serial Correlation in the Error Term for Table 4

(1) (2) (3) (4) (5)
Top 5 Counties

Production 5 5 4 5 1
Harvested Acres 6 6 6 2 1
Yield 1 1 1 1 1

Top 10 Counties
Production 5 5 5 5 2
Harvested Acres 0 6 6 6 1
Yield 0 3 3 3 1
Year FE X X X X X
Crop-x-County FE X X X X X
Quadratic County Trends X X X X X
Monthly Temp. Controls – X – X –
Monthly Precip. Controls – – X X –
Crop-x-Temp. Controls – – – – X
Crop-x-Precip. Controls – – – – X
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