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Abstract 

We estimate random parameters for time preferences and groundwater service values with 

flexible taste distributions that allow for multimodal preferences.  Our data come from a choice 

experiment examining public preferences for long-term groundwater management in the 

Mississippi River Valley Alluvial aquifer.  Flexible mixing distributions for time preferences 

enable hyperbolic and quasi-hyperbolic discounting models to represent heterogeneity in the 

time parameter such that some individuals can take on values that approximate exponential 

discounting.  Discounting most closely exhibits a quasi-hyperbolic form.  Both time preferences 

and groundwater service values are not normally distributed, but instead multimodal.  One group 

of individuals takes on discount rates that approach zero, a second group takes on rates around 

40%, and a third group has discount rates larger than 80%.   
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Introduction 

The objective of this paper is to evaluate complex heterogeneity in the way that people 

value and discount groundwater services using data from a CE survey about the protection of 

groundwater in the Mississippi River Valley Alluvial Aquifer (MRVA).  The MRVA is the third 

most used aquifer in the United States (US) and supports extensive irrigated agriculture, 

especially water-intensive rice production (USDA-NASS, 2014).  We conduct our CE in the 

state of Arkansas, which is the largest consumer of water from the MRVA and produces half of 

all rice grown in the US (USDA-ERS, 2018).  Policy makers would benefit from greater 

knowledge about the value of groundwater services to help with informing optimal management 

among competing uses (NRC, 1997; Tentes and Damigos, 2015).  In aquifer regions such as the 

MRVA that support substantial irrigated agriculture and suffer from overdraft, voluntary 

incentive programs have targeted extractive agricultural users because they hold long-term 

financial interests linked to groundwater availability.  Aquifer depletion, however, continues and 

even accelerates in many cases despite current programs (Konikow, 2015; Schaible and Aillery, 

2012).  Evidence about the way that people value non-extractive or future groundwater services 

could help to bolster expanded incentive programs.  Since meaningful aquifer change occurs 

over decades, present value calculations are useful for valuation and policy deliberation related 

to groundwater.  An understanding of time preferences for the flow of groundwater services is 

necessary for those present value calculations.  The commonly held assumption that people apply 

the same time preferences to utility from different sources of consumption may not be true 

(Ubfal, 2016).  For example, an average person might be more impatient about the consumption 

of environmental goods such as groundwater services or foods than about money or other goods.  
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This makes the joint estimation of time preferences with the choice of a particular good valuable 

for policy makers managing the intertemporal flow of services from that good.  

Notable deficiencies exist among previous CE studies that examine groundwater 

preferences.  Typically, groundwater CEs oversimplify environmental scenarios either by 

limiting the range of services considered (e.g., Tempesta and Vecchiato, 2013), ignoring time 

discounting (e.g., Birol et al., 2010; Tempesta and Vecchiato, 2013; Koundouri et al., 2014a, b; 

Tentes and Damigos, 2015), or ignoring realistic temporal and environmental dynamics (e.g., 

Meyer, 2013a, b).  Consideration for temporal and environmental dynamics is especially 

important when jointly estimating time preferences.  Meyer (2013a, b) estimated discount rates 

through variation in the timing of river basin cleanup.  However, their CE considered only water 

quality and used unrealistic hypothetical scenarios that asked study participants to abstract from 

the reality of time lags and imagine that the river basin cleans inexplicably and then becomes 

unclean again with no delays.  We fill a need in the literature by jointly estimating time 

preferences and marginal WTP values for a range of groundwater services using a CE employing 

realistic temporal dynamics of the environmental benefits under consideration.   

We use choice models and an experimental design intended to address the deficiencies 

with groundwater preference studies, while providing new evidence about the nature and form of 

people’s groundwater service and time preferences using flexibly mixed random parameters.  We 

estimate and compare model specifications for the D-LML that assume exponential discounting, 

different forms of hyperbolic discounting, and a quasi-hyperbolic form to the time parameter.  

We randomly assign respondents to CE treatments that vary the timing of the payment period to 

identify implicit discount rates.  Treatments include perpetual payments beginning this year, 

perpetual payments beginning after a one-year delay, a lump-sum payment this year, or a lump-
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sum payment after a one-year delay.  Discounting most closely exhibits the quasi-hyperbolic 

form with large importance given to immediate utility, and Frederick et al. (2002) indicate that 

quasi-hyperbolic discounting explains procrastination behavior.  Policy makers might then 

design more effective programs to manage groundwater over the long term by thinking about 

ways to overcome procrastination such as the use of externally imposed or self-directed 

deadlines for conservation actions.   

Methods 

Intertemporal utility and time preference functions 

Individuals typically discount the utility they receive from future outcomes relative to the 

utility of current outcomes.  Samuelson (1937) developed the first discounted utility model for 

intertemporal choice commonly known as the exponential discounting model, estimating a single 

discount rate parameter.  This is the standard model for intertemporal utility, largely because of 

its simplicity (Meyer, 2013a; Frederick, 2002).  The exponential discounting function takes the 

form of 

𝑈𝑈(𝑐𝑐0, 𝑐𝑐1, … , 𝑐𝑐𝑇𝑇) =  �𝜓𝜓𝑡𝑡𝑢𝑢(𝑐𝑐𝑡𝑡),
𝑇𝑇

𝑡𝑡=0

 

where the discount factor for year t is 𝜓𝜓𝑡𝑡 =  � 1
1+𝜌𝜌

�
𝑡𝑡
 and 𝜌𝜌 is the discount rate. 

Alternative functional forms of discounted utility have been developed in order to 

reconcile the many situations in which the exponential model does not fit behavior.  For 

example, inferred discount rates have been found to decline over time (Cairns and van der Pol, 

2000), fitting a functional form termed hyperbolic discounting.  Hyperbolic discounting in its 

most popular form is described by 

(1) 



6 
 

 𝜓𝜓𝑡𝑡 =  (1 + 𝛼𝛼𝛼𝛼)−𝛽𝛽/𝛼𝛼, where 𝛼𝛼,𝛽𝛽 > 0 

 (Loewenstein and Prelec, 1992).  As α approaches zero, this function becomes the exponential 

discounting function.  Harvey (1986) imposes a single-parameter structure on Equation 2 to 

facilitate estimation of the function by constraining α to be equal to one.  The hyperbolic form 

described by Harvey is then 

𝜓𝜓𝑡𝑡
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =  (1 + 𝛼𝛼)−𝜇𝜇 . 

Note that as 𝜇𝜇 approaches infinity, discounting approximates the exponential form.  Herrnstein 

(1981) and Mazur (1987) (HM) constrain the term, β/α, to be equal to one:  

𝜓𝜓𝑡𝑡𝐻𝐻𝐻𝐻 =  (1 + 𝜔𝜔𝛼𝛼)−1, 

and note here that it becomes the exponential form as 𝜔𝜔 approaches zero.  More recently, a 

quasi-hyperbolic discounting model has received attention in which especially large importance 

is placed on immediate utility as compared to deferred utility (Meyer, 2013a; Frederick, 2002).  

The functional form, developed by Laibson (1997), is given by 

𝜓𝜓𝑡𝑡 =  �
1 𝑖𝑖𝑖𝑖 𝛼𝛼 = 0 𝑎𝑎𝑎𝑎𝑎𝑎

𝛽𝛽 � 1
1 + 𝜌𝜌�

𝑡𝑡
 𝑖𝑖𝑖𝑖 𝛼𝛼 > 0

�  ,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 0 < 𝛽𝛽 < 1,𝑎𝑎𝑎𝑎𝑎𝑎 �
1

1 + 𝜌𝜌
�
𝑡𝑡

< 1. 

The quasi-hyperbolic model deviates from the exponential model only in that all future time 

periods are discounted by an additional β factor. 

We integrate the time preference functions from Equation 1 (exponential), Equation 3 

(Harvey), Equation 4 (HM), and Equation 5 (quasi-hyperbolic) into a D-LML model and 

compare estimated models for best fit similar to Meyer (2013a; 2013b) and Lew (2018).  Meyer 

(2013a; 2013b) assumes that discount rates are normally distributed in the population.  The 

purpose of this study is to use flexible distributional assumptions about discount rates to retrieve 

(2) 

(3) 

(4) 

(5) 
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time preferences with more realistic distributions because the flexible distributions allow for 

multimodality and asymmetry. 

Empirical model    

The Discounted Logit-mixed Logit (D-LML) model 

To analyze the discrete choice data involving intertemporal goods, let the additively 

separable utility through time period 𝑇𝑇 for an individual i for alternative j in choice situation k be 

given by 

𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  �𝜓𝜓𝑖𝑖𝑡𝑡�−𝜆𝜆𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + (𝜆𝜆𝑖𝑖𝜔𝜔𝑖𝑖)′𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡� +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖,
𝑇𝑇

𝑡𝑡=0

 

where 𝜓𝜓𝑖𝑖𝑡𝑡 is the individual discount factor for year t; 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 =  ∑ 𝜓𝜓𝑡𝑡𝜉𝜉𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡𝑇𝑇
𝑡𝑡=0  is the weighted sum of 

all instantaneous error draws weighted each period by the discount factor, 𝜓𝜓𝑡𝑡, and is assumed to 

be distributed iid extreme value; 𝜆𝜆𝑖𝑖 is a random scalar representing the cost/scale parameter; 

𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 denotes the individual cost of the policy alternative in year t; 𝜔𝜔𝑖𝑖 is a vector of estimated 

marginal WTPs; and 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 is a vector of observed groundwater service attributes for the 

alternative in year t.  Conditional on 𝜓𝜓𝑖𝑖 and the vector <𝜆𝜆𝑖𝑖, 𝜔𝜔𝑖𝑖>, the probability that person i 

makes a sequence of choices over K choice situations is the logit formula: 

𝑃𝑃𝑖𝑖(𝜓𝜓𝑖𝑖, < 𝜆𝜆𝑖𝑖,𝜔𝜔𝑖𝑖 >) =  �
𝑒𝑒𝑈𝑈𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑒𝑒𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝐽𝐽
𝑖𝑖=1

𝐾𝐾

𝑖𝑖=1

. 

The researcher does not observe the utility coefficients of each individual and knows that they 

vary over individuals.  The cumulative distribution function of (𝜓𝜓𝑖𝑖 , < 𝜆𝜆𝑖𝑖 ,𝜔𝜔𝑖𝑖 >) in the population 

is F(𝜓𝜓, < 𝜆𝜆,𝜔𝜔 >), which Train (2016) calls the mixing distribution.  We let F be discrete with 

(6) 

(7) 
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finite support set S.  The discretization is not a constraint because the support grid can 

approximate a continuous distribution to any degree of accuracy with a sufficiently broad and 

dense S (Train, 2016; Caputo et al., 2018b).  Let us denote the vector containing <𝜆𝜆𝑖𝑖,𝜔𝜔𝑖𝑖> and 𝜓𝜓𝑖𝑖 

for individual i as 𝜃𝜃𝑖𝑖.  The probability mass at any 𝜃𝜃𝐻𝐻 ∈ 𝑆𝑆 is expressed as an additional logit 

term, 

𝑃𝑃𝑒𝑒𝐶𝐶𝑃𝑃(𝜃𝜃𝑖𝑖 = 𝜃𝜃𝐻𝐻) ≡ W(𝜃𝜃𝐻𝐻|α) =  
𝑒𝑒𝛼𝛼′𝑧𝑧(𝜃𝜃𝑟𝑟)

∑ 𝑒𝑒𝛼𝛼′𝑧𝑧(𝜃𝜃𝑠𝑠)
𝑠𝑠∈𝑆𝑆

, 

where 𝑧𝑧(𝜃𝜃𝐻𝐻) is a vector-valued function of 𝜃𝜃𝐻𝐻 defining the shape of the mixing distribution and 𝛼𝛼 

is a corresponding vector of probability mass coefficients.1  The summation in the denominator 

of the additional logit terms assures that the probabilities sum to one (Train, 2016).   

The unconditional choice probability of the sequence of choices of individual i is then: 

𝑃𝑃𝑖𝑖(𝛼𝛼) = � W(𝜃𝜃𝐻𝐻|α) ∙ 𝑃𝑃𝑖𝑖(𝜃𝜃𝐻𝐻) =
𝐻𝐻∈𝑆𝑆

� �
𝑒𝑒𝛼𝛼′𝑧𝑧(𝜃𝜃𝑟𝑟)

∑ 𝑒𝑒𝛼𝛼′𝑧𝑧(𝜃𝜃𝑠𝑠)
𝑠𝑠∈𝑆𝑆

� ∙ ��
𝑒𝑒𝑈𝑈𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑖𝑖

∑ 𝑒𝑒𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖𝐽𝐽
𝑖𝑖=1

𝐾𝐾

𝑖𝑖=1

� ,
𝐻𝐻∈𝑆𝑆

 

containing one logit term for the probability that the decision-maker chooses a sequence of 

choices and a logit term for the probability that the decision-maker has coefficients 𝜃𝜃𝐻𝐻, a vector 

of marginal WTPs and a discount factor.   

Structure can be placed on the type of discounting using the formulas described in the 

section above about modeling intertemporal utility.  This allows us to avoid imposing the 

unrealistic data requirements necessary for estimating 𝜓𝜓𝑡𝑡 at any time t.  This specification also 

facilitates hypothesis testing between the functional forms for discounting (Meyer, 2013a).  We 

                                                           
1 Refer to Train (2016) and Caputo et al. (2017) for a thorough discussion of the options for specifying z variables. 

(8) 

(9) 
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estimate D-LML models, including random discount rate parameters that are flexibly mixed, for 

each of the four discounting structures: exponential, Harvey, HM, and quasi-hyperbolic. 

Model estimation strategy 

To estimate the model, the log-likelihood function for α is given by 

𝐿𝐿𝐿𝐿 =  �𝑙𝑙𝑎𝑎��W(𝜃𝜃𝐻𝐻|α) ∙ 𝑃𝑃𝑖𝑖(𝜃𝜃𝐻𝐻)
𝐻𝐻∈𝑆𝑆

�
𝐼𝐼

𝑖𝑖=1

. 

In order to evaluate a sufficiently large and dense S, we simulate the log-likelihood function by 

using random draws of 𝜃𝜃𝐻𝐻 for each individual.  Letting 𝑆𝑆𝑖𝑖 ⊂ 𝑆𝑆 be a subset of R randomly selected 

values of 𝜃𝜃, the simulated log-likelihood function is then, 

𝑆𝑆𝐿𝐿𝐿𝐿 =  �𝑙𝑙𝑎𝑎��𝑊𝑊𝑖𝑖(𝜃𝜃𝐻𝐻|α) ∙ 𝑃𝑃𝑖𝑖(𝜃𝜃𝐻𝐻)
𝐻𝐻∈𝑆𝑆𝑖𝑖

�
𝐼𝐼

𝑖𝑖=1

, 

where 𝑊𝑊𝑖𝑖 is the logit formula based on subset 𝑆𝑆𝑖𝑖: 

𝑊𝑊𝑖𝑖(𝜃𝜃𝐻𝐻|α) =  
𝑒𝑒𝛼𝛼′𝑧𝑧(𝜃𝜃𝑟𝑟)

∑ 𝑒𝑒𝛼𝛼′𝑧𝑧(𝜃𝜃𝑠𝑠)
𝑠𝑠∈𝑆𝑆𝑖𝑖

. 

The estimator selects the value of 𝛼𝛼 that maximizes the SLL function. 

We use splines in the form 𝛼𝛼′𝑧𝑧(𝜃𝜃) to flexibly define the mixing distributions.  Caputo et 

al. (2018b) compared LML models using splines, polynomials, and step functions and observed 

that polynomials and splines outperformed step functions in most cases in terms of overall model 

fit.2  In our own modeling analysis, the polynomials required substantially longer estimation 

                                                           
2 Splines, polynomials, and step functions all outperformed a MXL model using normally distributed random 
parameters (Caputo et al., 2017). 

(10) 

(11) 

(12) 
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times than splines while offering no clear advantage in terms of model fit or distributional 

smoothness.  We use a spline specification of z with 8 knots because it produced the smoothest 

distributions.3 

The support range, S, needs to be defined a-priori, and the extremes of the support range 

define the highest and lowest marginal WTP values or time parameter values in the parameter 

space. Train (2016) recommended using a range that spans two standard deviations (2SD) on 

either side of the mean estimated from a MXL model with normally distributed random 

parameters.  Caputo et al. (2018b) investigated the sensitivity of LML results to variations in the 

support range and suggested that the researcher can obtain guidance about the optimal range by 

visual inspection of the histograms showing the flexible mixing distributions.  In particular, the 

researcher can extend the upper or lower range limits whenever there is a high probability mass 

in the highest and/or lowest bin of the histogram (Caputo et al., 2018b).  High probability mass 

in the tails of the distribution suggests that some individuals predicted to have parameter values 

at the upper (lower) end of the range in fact have larger (smaller) values outside of the 

investigated support range (Caputo et al., 2018b).  We followed an estimation approach similar 

to Caputo et al. (2018b), beginning first by estimating D-MXL models with normally distributed 

random parameters.  The price/scale parameter, 𝜆𝜆𝑖𝑖, for the D-MXL models was distributed 

lognormal.  The lower range of the price/scale parameter we set equal to zero.  Then, using 

visual inspection we extended the upper (lower) range limit any time we observed a high 

probability mass in the highest (lowest) bin of the histogram.  The lower range of the price/scale 

parameter remained set to zero.   

                                                           
3 See Caputo et al. (2017) and especially the seminal paper by Train (2016) for a detailed discussion of specifying z 
variables for the mixing distribution. 
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We include alternative-specific constants (ASCs) in our models that represent labeled 

choice alternatives different from the reference status quo.  We estimate models with covariance 

in the marginal WTPs due to the probability of correlated WTPs.  The D-LML model accounts 

for scale heterogeneity, since each utility coefficient includes 𝜆𝜆𝑖𝑖 (Hess and Train, 2017).4  The 

results we believe are the best come from the D-LML models obtained using visual inspection to 

guide the choice of supports.  All model estimates come from MATLAB (version 2019a) using 

1000 Halton draws. 

Experimental design and questionnaire 

For eliciting groundwater and time preferences, we chose to conduct a CE involving 

MRVA outcomes.  Respondents choose among three groundwater management policy 

alternatives, including a surface water infrastructure (SWI) alternative, a cap and trade (C/T) 

alternative, and a status quo (SQ) alternative involving no change to current MRVA groundwater 

management.  There is little information available about people’s preferences for a C/T 

groundwater permits marketplace because it is not an alternative currently receiving widespread 

consideration.  However, stated preference methods are a valuable way to elicit preferences for 

new goods and services, so we chose to include it here to provide some evidence for 

consideration in the MRVA context.  Initiatives to expand surface water infrastructure are 

currently promoted within several critical areas of the MRVA along with other best management 

practices (BMPs).  We include the alternative focused on additional infrastructure to offer 

another alternative different from the SQ alternative that is grounded within current policy 

                                                           
4 When utility parameters are uncorrelated in a model, variation in λi can reflect whatever sources of correlation may 
be present beyond scale heterogeneity (Hess and Train, 2017).  Although our model estimates covariance between 
the marginal WTPs, we do assume the time parameter to be uncorrelated with WTPs in the model, and variation in 
λi may reflect sources of correlation between the WTPs and the discount rate. 
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frameworks operating in the MRVA.  Information about each alternative is clearly provided to 

survey respondents, and they must successfully answer comprehension questions about each 

alternative before advancing in the survey.    

We conducted a focus group to determine the most appropriate attributes for the CE 

design, collecting information about the socio-environmental services people value from MRVA 

groundwater.  Participants also reviewed survey questionnaire sections related to the MRVA and 

potential policy alternatives, discussing clarity, comprehension, and difficulty.  Feedback and 

conceptual frameworks for groundwater valuation (NRC, 1997) guided the selection of the CE 

attributes.  There are five main groundwater services, or attributes, that we identify contributing 

to the MRVA’s TEV: water quality for irrigated agriculture, the provision of jobs in the 

agricultural economy, the provision of habitat for maintaining wildlife, especially fish and 

waterfowl for local tourism, the avoidance of subsidence and its associated infrastructure costs, 

and the certainty of adequate water supply in case of drought (buffer).  We rely on existing 

hydrologic (Clark et al., 2013) and economic (Kovacs et al., 2015) simulation models to help in 

setting realistic attribute levels for the SQ alternative.  The attributes and levels in our CE are 

shown in Table 1. 

We express all attribute levels as percentage values in order to lessen the difficulty of 

comparing alternatives across multiple attributes.5  Levels indicate outcomes for the year 2050 

and appear in terms of a percentage of current levels, so that 100% indicates no change from 

current levels.  We include a cost attribute using an increase to state income taxes for the 

household as the payment mechanism.   

                                                           
5 Johnston et al. (2016) use this practice in a CE with three alternatives and six environmental attributes. 
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To identify time preferences, we employ a split-sample design and vary the timing of the 

expenses associated with the cost attribute.  Respondents are randomly assigned to specific 

treatments for the cost attribute that include perpetual annual payments beginning in the current 

tax year, perpetual annual payments beginning in the following tax year, a single lump payment 

for the current tax year, and a single lump payment for the following tax year.  By varying the 

onset and duration of the payment mechanism in the choice sets, endogenous estimation of the 

time preference parameters within the discount factor for the exponential, hyperbolic, and quasi-

hyperbolic functional forms is possible (Meyer, 2013a; 2013b; Lew, 2018).  The range of the 

lump payment cost attribute levels is similar to Meyer (2013a; 2013b) and Viscusi et al. (2008).  

Following Egan et al. (2015), we convert lump payment levels to perpetual payment levels using 

a 25% discount rate and rounding to equal-interval dollar amounts in order to present similarly 

scaled cost levels across treatments in the absence of known discount rates. 

We used a sequential Bayesian approach to construct the experimental design (Bliemer et 

al., 2008; Scarpa et al., 2007; Scarpa and Rose, 2008).  Using the software Ngene and 

uninformative priors, we constructed an efficient design for use in a pilot survey (Bliemer et al., 

2008).  Parameter priors from the pilot study (n=203) then updated a Bayesian efficient design 

(Scarpa and Rose, 2008).  We selected a design with 30 choice sets to achieve attribute level 

balance and grouped these into six blocks to reduce the number of choice sets each respondent 

must complete.  With six block groups, respondents answer five choice sets each.  The levels for 

the SQ alternative, including no additional household cost, are constant throughout the 

experimental design.   

The survey questionnaire begins with a brief overview where we also collect information 

about topic familiarity and perception of water resources, environment, and society.  Using 

language to augment the perceived consequentiality of the study (Vossler et al., 2012), 

respondents read that their groundwater management preferences from the survey will be shared 
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with the Arkansas Natural Resources Commission and other stakeholders and might affect how 

Arkansas actually manages its groundwater resources.  Specifically, respondents read that their 

responses could be used as advice on whether to implement new groundwater management 

policies, and that the likelihood that a particular alternative occurs could increase with the 

number of “yes” votes for that alternative.  Respondents also read a bulleted list of information 

about groundwater and the MRVA.  This section includes a map depicting the current depth to 

MRVA groundwater across eastern Arkansas. 

Before completing the choice sets for the CE, respondents read that they will make a 

series of hypothetical voting decisions between two policy alternatives for managing 

groundwater resources and a SQ option representing no change to groundwater management 

policy.  The respondents also see detailed descriptions about the SQ, SWI, and C/T alternatives.6  

Instructions that follow describe the attributes and the payment mechanism in the choice sets.  To 

construct a groundwater scenario with realistic long-term dynamics, attribute levels presented for 

each alternative represent projections for the year 2050, and levels for the SQ alternative capture 

the evolving state of groundwater resources if no policy change occurs.  Respondents read that 

the rate of decline (or change) from the current (100%) levels to the 2050 levels is steady over 

the approximately 30-year time horizon, and the levels in 2050 then remain constant into the 

future.  This language is to minimize confounding factors by establishing a common reference 

point for all respondents.  Each must confirm that they understand the timing of the payment 

mechanism, read the consequentiality language again, and view an example choice set.  In 

addition, as previously mentioned, just prior to beginning the actual choice sets, we employ a 

                                                           
6 For reminder, these abbreviate the status quo, surface water infrastructure, and cap and trade alternatives, 
respectively. 
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“cheap talk” script to reduce hypothetical bias (Cummings and Taylor, 1999; Silva et al., 2011), 

and respondents have the option to review the detailed descriptions about the groundwater 

management alternatives again.   

Survey and data 

This study elicits preferences for long-term groundwater management policies 

implemented at the state level.  We concentrate on sampling voting-aged residents of Arkansas, 

where the dominant portion of the MRVA is located and the most groundwater use occurs.  

Between August 27th and October 17th of 2018, we administered a stated preference survey 

regarding long-term MRVA groundwater management and outcomes using the survey research 

firm, Qualtrics.  Our sample includes approximately 800 randomly selected adult residents of 

Arkansas. The survey is designed to be compatible with both traditional and mobile internet 

platforms.  Individuals receive financial incentive for participating in Qualtrics surveys.  

Qualtrics filters responses for quality to remove duplicates from a single individual or any 

observation with a total response time less than one-third the median total response time.  

Incomplete responses are dropped from the analysis, leaving 777 usable survey responses and 

data for 11,655 choice occasions (each person sees five choice sets, and each choice set includes 

three choice occasions because there are three alternatives for each choice set).  Table 2 

summarizes the choice selections by alternative and treatment. 

Overall, the sample is a close representation of the target population.  Relative to the 

general population of Arkansas residents, our sample shares characteristics for median income 

and unemployment rate while being slightly older (median age 42 compared to 38), more female 

(66% to 51.5%), and more educated (30.1% with bachelor’s degree to 23.4%) (US Census 

Bureau, 2018).  Statistics on voters and registered voters in the US suggest that the voting 
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electorate shares these same biases relative to the general population (File, 2018), supplying 

added confidence in the validity of the stated preferences for groundwater policies. 

The spatial distribution of the sample (based on self-reported Zip Codes) also closely 

represents Arkansas’s actual population density.  Comparing sample proportions across 

Arkansas’s 75 counties to the Census population proportions via the Mann-Whitney test shows 

no significant difference (p-value=0.259).  Most respondents (89%) indicated some degree of 

belief that their responses would be given consideration by Arkansas policy makers.  The 

perceived feasibility of the policy alternatives has a five-point scale where one represents “very 

unrealistic and infeasible” and five represents “very realistic and feasible.”  The mean feasibility 

score of the SWI alternative is 3.43 with just 6.3% who find it very unrealistic and infeasible.  

On the other hand, 17.1% find it very realistic and feasible.  For the C/T alternative, the mean 

feasibility score is 3.29.  A slightly larger percentage (7.9%) find it very unrealistic and 

infeasible when compared to the SWI alternative.  Similarly, a smaller percentage (14.9%) find 

the C/T alternative to be very realistic and feasible.        

Respondents were randomly assigned to treatments which varied the timing of the cost 

attribute.  We find balance in observable demographic characteristics across the treatments using 

one-way ANOVA (means) and the Chi-square goodness-of-fit test (proportions) (see Table 3).  

The treatments also exhibit no significant differences in terms of perceived consequentiality, 

question difficulty, answer certainty, or perceived feasibility of alternatives.7 

Results 

                                                           
7 Each was measured on a 5-point scale where 1 equals not at all difficult (certain, feasible, or taken into account by 
policy makers) and 5 equals very difficult (certain, feasible, or definitely taken into account by policy makers).  
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 Table 4 presents the results of the D-LML models estimated for each of the four 

discounting assumptions: exponential discounting (Model I.a), Harvey hyperbolic discounting 

(Model I.b), HM hyperbolic discounting (Model I.c), and QH discounting (Model I.d).  The time 

parameter estimated depends on the type of discounting assumed.  Utility estimates show mean 

marginal WTP in net present value (NPV) along with standard deviations for a 1% increase in 

marginal groundwater services and for the implementation of alternative groundwater 

management policies.  We scaled the cost of each alternative to improve estimation, so the 

marginal groundwater service valuations in Table 4 reflect tens of dollars.  We report bootstrap 

standard errors based on bootstrap 95% confidence intervals (CIs) (Table B1, Table B2, Table 

B3, and Table B4) and use these to guide our interpretation of model results.  Specifically, we 

interpret the β time parameter in the QH model to be significant when the bootstrap 95% CIs do 

not overlap with one, and we interpret all other estimates to be significant when CIs do not 

overlap with zero.  In the absence of a proper test for selecting the best performing LML or D-

LML models, we follow Caputo et al. (2018b) and use standard information criteria.  A lower 

Akaike Information Criteria (AIC) value indicates the better fit. 

All time parameters are significant in the models.  Each of the alternative discounting 

models provides a better fit than the standard exponential discounting model (AIC = 7129.6).  

Among the two hyperbolic discounting models, HM discounting (AIC = 7012.2) provides a 

better fit than Harvey discounting (AIC = 7039.9).  However, the QH discounting model (AIC = 

7005.9) offers the best overall fit, and β is significant at an estimated value of 0.613.  A β 

parameter value of one in the QH discounting model represents no departure from exponential 

discounting, and as the value of β deviates from one and becomes smaller, present-bias becomes 

larger.  With QH discounting providing the best overall model fit and β significant, we find 
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strong evidence for present-bias.  Hyperbolic discounting models also support a rejection of the 

exponential discounting assumption.  For example, the HM discounting case approximates the 

exponential form as the time parameter, w, approaches zero.  We estimate w to be much greater 

than zero (1.728) and observe an overall model fit nearly as good as with QH discounting.  We 

estimate the Harvey time parameter is 𝑢𝑢 = 1.352, which is in line with the value of 1.646 

estimated by Lew (2018).  Unlike Lew (2018) however, here Harvey discounting improves 

model fit relative to exponential discounting.  These results using flexible mixing distributions 

are counter to the findings of Meyer (2013a) and Lew (2018) who found no evidence to reject 

the exponential discounting assumption when using normally distributed and fixed time 

parameters, respectively.  Though it is not our preferred model, we estimate a mean annual 

exponential discount rate of 73.7%, larger than the 12.8% in Meyer (2013a) but smaller than the 

122% in Lew (2018).  Both previous studies used random parameters fit to a normal 

distribution.8  Comparing to studies using CV without random parameters, the exponential 

discount rate in our study is larger than the estimates from payment schedules in Kovacs and 

Larson (2008) and Bond et al. (2009).  Our use of a D-MXL model that imposes a parametric 

normal distribution indicates a smaller mean exponential discount rate (49.1%) and a much 

smaller standard deviation (0.001).   

Marginal groundwater service valuations vary across the different discounting types as 

with model fit, but there are similarities.  Each of the D-LML models shows significant and 

positive WTP for water quality, groundwater buffer, jobs from agriculture, and wildlife.  In both 

the exponential and the QH discounting models the WTP for the provision of infrastructure 

                                                           
8 Only Meyer estimated a random parameter for the time parameter. 
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integrity is not significantly different from zero.  Water quality provision has the largest WTP in 

each of the three best fitting models (Harvey, HM, and QH) and is third-largest in the 

exponential discounting model.  A preference for water quality is consistent with previous 

groundwater CEs that consider multiple groundwater services.  Birol et al. (2010) used a CE to 

estimate WTP for promoting aquifer recharge in Cyprus.  They estimated marginal WTP values 

for water quality, water quantity, agricultural employment, and habitat, and respondents 

displayed positive and significant WTP for each.  About a third of the sample was farmers and 

the other two-thirds was the general public.  Water quality was valued most by the general 

public, while farmers placed greater value on water quantity.  Studies by Koundouri et al. (2014) 

and Tempesta and Vecchiato (2013) also observed the largest values for water quality services. 

Looking only at groundwater services for the preferred QH discounting model, people on 

average will pay $9.32 for a 1% increase in water quality.  Respondents value wildlife services 

($8.92) second to water quality followed by jobs from agriculture ($6.64) and groundwater 

buffer ($5.22).  Standard deviations of the marginal WTPs are all significant, and most are large 

relative to the mean estimate, meaning some individuals have negative WTPs.  The exception is 

jobs from agriculture, where the WTP appears to be less variable in the population and restricted 

to positive values. 

Marginal WTP for the C/T groundwater policy alternative is not significant for any of the 

models and therefore not preferred over current management, groundwater services being equal.  

The WTP for the SWI alternative is significant and positive in the exponential and HM 

hyperbolic discounting models but is not significant in the preferred QH discounting model or 

the Harvey hyperbolic discounting model.   
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In the preferred QH discounting model, WTPs for groundwater buffer and infrastructure 

integrity correlate positively with WTP for the C/T policy alternative (Table 5), while the SWI 

alternative correlates positively with wildlife habitat provision.  People who like the C/T policy 

alternative also tend to like having the groundwater services that buffer agriculture against 

drought and prevent harm to infrastructure, and people who like the SWI policy want the 

groundwater services that provide wildlife, namely the duck hunting in the Mississippi flyway.  

The SWI alternative and the C/T alternative correlate positively with one another, meaning that 

people who like one policy alternative also tend to like the other policy alternative.  Among 

marginal groundwater services, WTP for infrastructure integrity correlates negatively with WTP 

for jobs from agriculture.  People who dislike the infrastructure integrity service that 

groundwater provides tend to like the support groundwater has for jobs in agriculture. 

A consistent difference between the magnitudes of the significant WTPs is apparent 

across the different discounting types (Table 4).  The values in the hyperbolic discounting 

models are smaller than either the QH discounting estimates or the exponential discounting 

estimates, sometimes by an order of magnitude.  Marginal WTPs in the QH discounting model 

are also consistently smaller than with exponential discounting.  Beyond the consistent 

differences in the magnitudes of the WTPs across discounting types, we also observe some small 

differences in the relative importance of the groundwater service attributes.  These observable 

differences across the different discounting types also run counter to the findings in Meyer 

(2013a) and Lew (2018).  Lew (2018) observed almost no differences in the magnitudes or 

rankings of marginal utilities across discounting types likely because the lone difference between 

models was discounting applied only to the cost term of the utility model.  Meyer (2013a) used a 

model that discounted costs and benefits but observed only very small differences in the 
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magnitude of the lone utility estimate across discounting types, potentially due to the absence of 

variability in the flow of beneficial services over time. Our models discount costs and benefits, 

and we assume a dynamic flow of benefits over a multi-decadal time scale consistent with 

aquifer change, potentially explaining some of the differences we observe in the WTPs and 

model fit across discounting types.  Since hyperbolic discounting weigh benefits less strongly in 

the present than exponential discounting, the lower WTP for hyperbolic discounting suggests the 

values for groundwater services change over time with values higher in the present and lower in 

the future. 

Another potential driver of the differences we observe between discounting types is the 

flexible mixing distributions.  Flexible mixing allows for individual parameter mass distributions 

that capture the clustering of individual WTP and time preferences and reveal modes of 

preference ‘types’ in the population.  Since the hyperbolic and QH discounting models can 

approximate the exponential discounting9, these discounting models can improve overall fit 

relative to the exponential discounting form with flexible mixing because they can flexibly allow 

some individuals to take on the preferences of an exponential discounter and leave other 

individuals to follow hyperbolic discounting.  This is an advantage when comparing D-LML 

models for evidence of heterogeneity in time preferences. 

Discussion and Conclusion 

 To learn more about how individuals make intertemporal decisions in non-market 

valuation questions, we estimate random time preference and groundwater preference parameters 

                                                           
9 A β value of 1 approximates exponential discounting for the QH discounting model.  A w value of 0 approximates 
exponential discounting for the HM hyperbolic discounting model.  Harvey hyperbolic discounting approximates 
exponential discounting as u approaches infinity.   
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with flexible mixing distributions using a D-LML model.  By allowing multimodality and 

asymmetry in the estimated parameter distributions, flexible mixing reveals valuable detail about 

preference heterogeneity and discounting behavior.  We find three modes for the annual 

exponential discount rate, r, in our baseline QH discounting model: two groups with smaller 

discount rates near 0% and 40%, and a third group with larger discount rates above 80%.  The β 

time parameter also reveals three groups of discounting types who exhibit increasing levels of 

present-bias.  By estimating models to evaluate complex heterogeneity in groundwater service 

preferences and time preferences, we contribute new policy insights.  For example, time 

preferences are multimodal, and a significant number of people have discount rates approaching 

zero.  This is valuable because governments operate under tight budget constraints and want to 

know the lowest-cost incentive likely to achieve desired policy outcomes. 

The D-LML enables hyperbolic and QH discounting models to improve fit relative to the 

exponential discounting model by representing heterogeneity in the time parameter such that 

some individuals can take on values that approximate exponential discounting.  Meyer (2013a) 

and Lew (2018) failed to reject the assumption of exponential discounting using normally 

distributed and fixed time parameters.  Like Lew (2018), we estimate time preferences by 

varying the payment schedule, and like Meyer (2013a), we model and discount the flows of both 

costs and benefits over time.  The only other empirical study to find evidence of hyperbolic 

discounting in stated preferences is Viscusi et al. (2008), who estimated time preferences from 

WTP for water quality improvements realized over varying time horizons.   

 Estimated WTPs for marginal groundwater services and alternative groundwater 

management show that people value the provision of water quality, buffer protection against 

long-term drought, provision of habitat that promotes fishing and duck hunting, and jobs from 
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irrigated agriculture; and they are willing to pay the most to ensure good water quality.  This 

finding and similar findings in previous groundwater CEs (e.g., Birol et al., 2009; Tempesta and 

Vecchiato, 2013; Koundouri et al., 2014) could suggest that people associate groundwater 

quality for irrigation with food safety, as other research finds that attributes related to food safety 

are consistently deemed the most important in stated preference studies (e.g., Lusk and 

Briggeman, 2009; Bazzani et al., 2018).  On average, respondents do not prefer new investments 

for surface water infrastructure or a groundwater permits marketplace over the SQ management 

alternative.  However, flexible distributions reveal groups of individuals who possess high values 

for both new alternatives.  Mean WTP is consistently smaller under hyperbolic discounting 

assumptions.  This suggests that respondents’ values for groundwater services change over time 

such that the values are higher in the present, when hyperbolic discounters weigh benefits less 

strongly than exponential discounters, and lower in the future.   

Our findings and those from other stated preference studies estimating time preferences 

contribute to discussion about the appropriate application of discounting in benefit-cost analyses 

for non-market goods.  Like most empirical studies (Frederick et al. 2002), we estimate discount 

rates much larger than commonly used in policy analysis (OMB, 2016).  Compared to Meyer 

(2013a), who estimated an annual exponential discount rate of 12.8% using variation in the 

benefits horizon, we estimate much higher rates of discounting, including a mean discount rate of 

73.7% under exponential discounting.  However, our flexible time parameter shows groups of 

individuals with smaller discount rates that compare to the exponential discount rates under 

varying payment horizons in CV studies that range from about 20% to as much as 70% (Bond et 

al. 2009; Kovacs and Larson 2008).  Lew (2018) estimated a fixed exponential discount rate of 

122%, larger even than the upper extreme of the finite D-LML support space that fit our data 
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best.  Our discount rate with the D-MXL model is close to 49% suggesting that bias can occur by 

imposing a normal distribution. 
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Table 1: Attribute Definitions and Levels 

Attribute Definition Levelsa,b 
Buffer Quantity The percentage of current acres with 

adequate groundwater for 5 consecutive 
drought years 

25%, 40%, 55%, 70% 

Water Quality The percentage of current acres with 
adequate groundwater quality for 
irrigation 

75%, 80%, 85%, 90% 

Jobs from Irrigated Agriculture The percentage of current (120,000) jobs 80%, 90%, 100%, 110% 
Wildlife Diversity & Abundance The percentage of current wildlife 

diversity and abundance 
75%, 80%, 85%, 90% 

Infrastructure Integrity The percentage of current infrastructure 
integrity 

75%, 80%, 85%, 90% 

Cost to Household (lump) The one-time dollar increase in state 
income taxes 

$0, $30, $90, $150, $210, $270 

Cost to Household (perpetual) The permanent dollar increase in state 
income taxes 

$0, $12, $24, $36, $48, $60 

Note.—The status quo levels are indicated in bold.  Levels indicate outcomes for the year 2050 
and 100% indicates no change from current levels. 
 

 

 

 

Table 2: Summary of Choice Selections by Treatment 

Alternative Perpetual Perpetual delayed Lump Lump delayed 
SWI 373 358 381 343 
C/T 266 319 290 286 
SQ 296 313 304 356 
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Table 3: Demographic Summary and Sample Balance 

Characteristic Perpetual Perpetual 
delayed Lump Lump 

delayed F, χ² p-value 

N 187 198 195 197   
Age, mean 45.2 44.3 44.0 43.7 0.74 0.389 
Household size, mean 2.89 2.92 2.74 2.89 0.22 0.643 
Household income     4.80 0.851 
   $0 - $39,999 46.5% 50.5% 45.6% 41.1%   
   $40,000 - $69,999 18.7% 19.7% 22.6% 22.8%   

   $70,000 - $99,999 17.1% 15.2% 15.9% 16.8%   
   $100,000+ 17.6% 14.6% 15.9% 19.3%   
Female 65.8% 65.2% 67.2% 66.0% 0.19 0.979 
Education     5.81 0.445 
   High school or less 26.2% 31.8% 24.6% 29.9%   

   Some college 44.4% 41.4% 44.6% 36.5%   
   College graduate 29.4% 26.8% 30.8% 33.5%   
Married 58.8% 60.1% 54.9% 57.4% 1.21 0.750 
Unemployed 4.8%  3.5%  3.6%  5.6%  1.39  0.707 
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Table 4: Simulated Maximum Likelihood Results of the D-LML Models in WTP-space (Best 

Supports) 

Parameter   I.a (Exp.)     I.b (Harvey)     I.c (HM)     I.d (QH) 
ASC1 (C/T)  1.157   (0.883)   0.794   (0.795)   2.050   (0.914)   1.312   (0.851) 
St. deviation (SD)  6.823* (0.424)   5.316* (0.378)   5.760* (0.443)   7.440* (0.488) 
ASC2 (SWI)  3.845* (0.686)   2.185   (0.815)   2.748* (0.864)   2.956   (0.743) 
SD  5.601* (0.334)   5.092* (0.333)   5.371* (0.412)   8.864* (0.668) 
Buffer  1.291* (0.365)   0.262* (0.095)   0.120* (0.056)   0.522* (0.385) 
SD  1.954* (0.171)   0.400* (0.045)   0.253* (0.029)   2.396* (0.265) 
Quality  1.056* (1.099)   0.314* (0.081)   0.493* (0.078)   0.932* (0.659) 
SD  5.923* (0.610)   0.393* (0.038)   0.428* (0.038)   3.483* (0.372) 
Jobs  0.331* (0.034)   0.197* (0.002)   0.164* (0.119)   0.664* (0.007) 
SD  0.189* (0.017)   0.009* (0.001)   0.025* (0.002)   0.036* (0.003) 
Infrastructure -0.768   (1.040)   0.295* (0.134)   0.164* (0.119)   0.605   (1.119) 
SD  5.651* (0.523)   0.663* (0.091)   0.746* (0.080)   4.444* (0.616) 
Wildlife  1.545* (1.191)   0.086* (0.020)   0.088* (0.120)   0.892* (0.420) 
SD  6.643* (0.675)   0.081* (0.009)   0.679* (0.080)   2.206* (0.204) 
𝜆𝜆 (scale)  0.700* (0.124)   1.963* (0.226)   1.375* (0.205)   0.120* (0.009) 
SD  0.458* (0.079)   1.265* (0.141)   1.145* (0.102)   0.078* (0.006) 
r  0.737* (0.049)        0.626* (0.047) 
SD  0.249* (0.025)        0.265* (0.024) 
u    1.352* (0.085)     
SD    0.439* (0.053)     
w      1.728* (0.044)   
SD      0.210* (0.023)   
β        0.613* (0.042) 
SD        0.176* (0.022) 
Log L -3448.8  -3403.9  -3390.1  -3377.9 
AIC 7129.6  7039.9  7012.2  7005.9 
N 11655  11655  11655  11655 

Note.—WTP values are tens of dollars.  Multiply by 10 to obtain dollar amounts.           
Bootstrap Standard Errors given in parentheses were obtained using 250 Bootstrap samples.   
*Significant based on 95% CI (tests for β are against 1, all others are against 0) 
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Table 5: Correlations Between Marginal WTPs in the D-LML Models (Best Supports) 
 

SWI Buffer Quality Jobs Infra. Wildlife 
C/T 
 

0.7148*** 
(6.6297) 

0.5663*** 
(3.2833) 

0.1994       
(0.9949) 

0.0246       
(0.1335)     

0.3324*     
(1.9098) 

0.1333       
(0.6509) 

SWI  0.4212**   
(2.1897) 

0.3080       
(1.6354) 

-0.0901     
(-0.4779) 

0.4188**   
(2.3620)    

0.3744*     
(1.8120) 

Buffer   0.1039       
(0.4604) 

0.0359       
(0.1897) 

0.0254       
(0.1220) 

0.1826       
(0.8817) 

Quality    0.0159       
(0.0786) 

-0.1681     
(-0.7689) 

-0.0083     
(-0.0364) 

Jobs     -0.4152** 
(-2.1679) 

0.0074       
(0.0403) 

Infra.      0.0904       
(0.3925) 

Note.—T-statistics are given in parentheses. 
* p < .10 
** p < .05 
*** p < .01 

 




