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Abstract 

Using cross-sectional data from 835 rice-farming households in Senegal, we investigated the 

extent to which membership in farmers’ cooperatives affects farm technical efficiency. To do 

so, we combine the propensity score matching method with the sample selection stochastic 

frontier model (Greene, 2010) and the stochastic meta-frontier approach (Huang et al., 2014). 

The propensity score matching helps in mitigating biases from observable variables. The 

sample selection stochastic frontier framework was used to control for biases arising from 

unobserved characteristics in the production frontier. Using the meta-frontier approach, 

farmers’ technical efficiency were estimated and compared. Results show that cooperative 

membership contributes significantly in improving rice production. However, when 

considering group-specific frontiers (farmers operating in their own benchmark: members vs 

non-members), cooperatives members do not technically perform better than non-members. 

Furthermore, when considering the meta-frontier estimates, significant differences in technical 

efficiency between members and non-members can still be observed in favour of non-members. 
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1 Introduction

According to FAO statistics (FAO, 2019), rice in sub-Saharan Africa, is the most
important cereal in terms of production. Rice has become an economically important
crop and the main staple food of millions of people. Indeed, due to population growth
(4% per year) and a shift in consumption habits in favor of rice, the relative growth
of demand for rice is faster in sub-Saharan Africa than anywhere else in the world
(Balasubramanian et al., 2007; Seck et al., 2010).

In Senegal, rice occupies an important position nationally both in terms of
consumption and production. Average annual consumption over the last decade
(2007–2016) was more than 1.2 million 1 of tonnes of milled rice while the average
yearly production over the same period was only 358,357 tonnes 2. There is, there-
fore, a significant gap between production and consumption, which is filled with
large-scale rice importation every year. Milled rice imports have increased from
536,870 tonnes in 2000 to more than 973,000 tonnes in 2016, at an average annual
cost of about 315 million US dollars (FAO, 2019).

This gap between domestic production and consumption denotes a real food
security problem in Senegal. The country was hardly hit by the 2007–2008 food
crisis, with violent riots observed during the crisis (Seck et al., 2010; Diagne et al.,
2013). Besides, the heavy dependence on imports represents a serious burden on the
country’s trade and foreign exchange balance. Reducing Senegal’s dependence on
imported rice and meeting the population’s demand for rice are real challenges for
the Senegalese government. Hence, since 2009, priority has been given by the gov-
ernment to the domestic rice sector because of its potential to provide national food
security, support economic growth and alleviate poverty (République du Sénégal,
2009). The 2014-2017 revised National Program for Self-Sufficiency in Rice (”Pro-
gramme National d’Autosuffisance en riz - PNAR”) intended to increase rice pro-
duction in the country to reach self-sufficiency in 20173.

To achieve this goal and for the rice sector to express its full potential, rice farm-
ers need to have access to production inputs and technologies, which constitute,
however, general challenging factors for the agricultural sector in most develop-
ing countries (World Bank, 2007). According to Salifu et al. (2010), to overcome
these challenges and improve agricultural performance, policymakers regarded dur-
ing decades, collective action groups, such as cooperatives, as a high instrumental
tool. Nowadays, this agricultural development approach based on farmers’ groups
or cooperatives, prevails. However, such an approach is increasingly supported by
quantitative studies in which scholars try to evaluate the effective contribution of
agricultural cooperatives membership to various agricultural indicators.

Therefore, during the last decade, an important body of literature was dedicated

1Consumption here refers to apparent consumption and it is computed using data collected
from the FAOSTAT website. Consumption equals to paddy rice produced converted into milled
rice using a ratio of 0.67 plus imports and net of export

2Statistics compiled using paddy rice production data of FAOSTAT website (FAO, 2019), using
a paddy to milled rice conversion factor of 0.67 (ref.)

3http://sakss.sn/programme-national-dautosuffisance-en-riz-pnar
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to the analyses of the impact of cooperatives on farmers welfare (Fischer and Qaim,
2012b; Mojo et al., 2017; Ahmed and Mesfin, 2017; Verhofstadt and Maertens, 2015;
Ito et al., 2012; Ma and Abdulai, 2016; Mishra et al., 2018), Commercialization and
marketing (Wollni and Zeller, 2007; Bernard et al., 2008; Bernard and Spielman,
2009; Barham and Chitemi, 2009; Bernard and Spielman, 2009; Francesconi and
Heerink, 2010; Chagwiza et al., 2016; Fischer and Qaim, 2012b), technology adoption
(Abebaw and Haile, 2013; Ma et al., 2018a). However, regarding the association
between cooperatives membership and farm productivity and efficiency, very few
researches have been done, especially concerning technical efficiency analysis.

A review of studies shows that cooperatives’ membership has a positive impact on
farmers’ yields and productivity (Ma et al., 2018a; Mishra et al., 2018; Francesconi
and Ruben, 2012). Concerning the impact of membership on technical efficiency, the
causal relationship between cooperatives and technical efficiency is not straightfor-
ward and not conclusive. Abate et al. (2014) showed that cooperatives through the
mechanism of easing access to productive inputs contribute significantly to mem-
bers’ technical efficiency. Contrarily, in Ghana, Addai et al. (2014) study indicated
no significant impact of maize farmers’ groups’ membership on technical efficiency.

These two authors used a combination of a matching approach and a frontier
approach with the assumption of similar technology for members and non-members.
However, this assumption generally cannot hold. Mostly farmers join cooperatives to
have access to improved technologies and to increase their productivity and technical
efficiency. The membership to a cooperative becomes then endogenous. Therefore,
it is crucial to take into account biases that arise from endogenous self-selection
and technological heterogeneity. These potential biases were then considered in the
two recent papers of Abdul-Rahaman and Abdulai (2018) and Ma et al. (2018b).
Where they used a propensity score matching approach and the sample-selection
stochastic frontier approach (Greene, 2010) to control for selection biases in the
production frontiers. They then designed two groups frontiers (members and non-
members) and compared farmers’ technical efficiencies from their respective group’s
frontiers. By doing so, these authors found that cooperatives members are more
technically efficient than non-members. However, the two groups of farmers are
operating against two different benchmarks, comparing their technical efficiency
estimates does not permit to estimate the real difference in the productivity of the
two groups of farmers (Villano et al., 2015; Henningsen et al., 2015). In addition to
the groups’ frontiers, a meta-frontier approach to evaluate the technical efficiency
of farmers would have been a more robust approach to compare farmers’ technical
efficiencies.

This paper has the objective to investigate the causal relation between coop-
eratives membership and farm efficiency in Senegal, by using a methodology that
combines three different approaches. First, to correct the selection bias, we used
a propensity score matching approach. Secondly, to take into account both tech-
nology heterogeneity and cooperatives membership when comparing the efficiency
between members and non-members, we use Greene (2010) sample selection frontier
to estimate two separated stochastic production frontiers. Finally, following Huang
et al. (2014) we built a stochastic meta-frontier that works as a benchmark against
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which the performances of different farms could be compared to. The remainder of
this paper is organized as follows. The next section describes the suggested econo-
metric framework. he third section presents the used data. The following section
presents the estimation results and their discussion. In the final section, results are
summarized with some policy recommendations.

2 Econometric Framework

The main objective of this paper is to investigate the effect that cooperatives’ mem-
bership has on farmers’ technical efficiency. To do so, we adopted an econometric
framework that combines three main approaches. To address the issue of selec-
tion bias arising from observables, we used the propensity matching approach. The
Greene (2010) sample selection stochastic frontier model helped us to address the
selection bias resulting from unobservables in the designed frontiers. To take into
account the technology heterogeneity that could result from cooperatives’ member-
ship, we used Huang et al. (2014)’s meta-frontier approach to derive the technology
gap and to compare efficiencies between members and non-members.

2.1 Modeling Cooperatives membership

Cooperatives membership can be modeled within the random utility framework. In
this framework, a household chooses to a member of a cooperative if the expected
utility gained from cooperative membership (Mi1) is larger than the one from non-
membership (Mi0). This means that a household is a member of a cooperative if
the expected net utility (Mi1 − Mi0) is greater than zero. This utility gain can
be specified as a function of observed covariates (Z) in a latent variable model as
follows:

M∗
i = α

′
zi + wi, Mi = 1 if M∗

i > 0, (1)

where Mi is a binary variable that takes the value 1 for a household i member of
cooperatives and 0 otherwise; α is a vector of parameters to be estimated; zi is a
vector of exogenous farm and household characteristics, and wi is an error term. For
many researchers, participating in an agricultural cooperative increases the adoption
level of new agricultural technologies, through various mechanisms (see e.g. (Fischer
and Qaim, 2012b,a; Abebaw and Haile, 2013). Then, the frontier production function
might differ between cooperatives members and non-members due to technology
accessibility and adoption. It becomes therefore intuitive to design two different
production functions for cooperatives members and non-members, and statistically
compare and test their parameters. However, proceeding so is complicated because of
the self-selection in cooperatives membership and the following choice of technology
((Mayen et al., 2010).
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2.2 Stochastic Frontier Approach

We adopt the stochastic frontier analysis (SFA) framework to estimate the pro-
duction frontiers and measure the technical efficiency of farmers. The standard
stochastic production frontier model is specified as:

yi = f(xi, β) exp(vi − ui), (2)

where yi denotes the output for the ith farm (i = 1, ..., N), xi is a vector of inputs, β
are parameters to be estimated, vi is a two-sided stochastic term that accounts for
statistical noise, ui is a non-negative stochastic term representing inefficiency, and
εi is the composite error term (εi = vi− ui). Generally, it is assumed that vi and ui
are identically and independently distributed, ui follows a half-normal distribution
with variance σ2

u and vi follows a normal distribution with variance σ2
v . This model

is usually estimated using the maximum likelihood estimator as suggested by Aigner
et al. (1977). After the estimation of the frontier model, following Jondrow et al.
(1982) (JLMS thereafter) one can calculate the farm-specific technical efficiency.

2.3 Correcting for selection bias

Following Ma et al. (2018b); Abdul-Rahaman and Abdulai (2018), we first use the
Propensity Score Matching method to match members with non-members in the
sample. Then we use the sample selection frontier approach to correct for selectivity
bias in the production frontier.

2.3.1 Propensity Score Matching (PSM)

PSM uses observable characteristics of units in the sample to generate a control group
that is as similar to the treated group as possible except for treatment status, here
the cooperative membership (Rosenbaum and Rubin, 1983). PSM works under two
main assumptions. The first is the conditional independence or unconfoundedness,
stating that observable characteristics must be independent of potential outcomes,
which implies that the cooperatives membership decision is only based on observable
characteristics of households. The second is the common support or overlap con-
dition that needs to be satisfied, i.e. the distributions of observable characteristics
between members of cooperatives (the treated) and non-members (the untreated)
have to overlay (Jelliffe et al., 2018).

2.3.2 Sample Selection Stochastic Production Approach

Sample selection bias arises when there is a correlation of the unobservables in the
production function equation with those in the sample selection equation. In recent
years, the literature reveals two main alternative applications of the sample selection
modeling in the stochastic frontier model. Kumbhakar et al. (2009) suggested a
model framework in which the selection mechanism operates through the one-sided
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error (ui). Greene (2010) proposed a framework where the selection mechanism
is operated through the error term vi. The first model requires computationally
demanding log-likelihood functions ((Villano et al., 2015). Therefore, in this paper,
we follow Greene (2010) approach, designing for farmers two simultaneous equations:
a selection equation and a production function equation. The specification of this
model is derived as follows:

Selection equation : Mi = 1
[
α
′
zi + wi > 0

]
, wi ∼ N [0, 1]

SFP function : yi = f(xi, β) + εi, εi ∼ N
[
0, σ2

ε

]
(yi, xi) observed only when Mi = 1.

(3)

Error structure : εi = vi − ui
ui = |σuUi| = σu|Ui| where Ui ∼ N [0, 1]

vi = σvVi where Vi ∼ N [0, 1]

(wi, vi) ∼ N2

[
(0, 1), (1, ρσv, σ

2
v)
]
,

where Mi is a dummy variable of farmers i(i = 1, .., N)), that takes the value of 1
for cooperatives members and 0 for non-members, zi is a vector of covariates in the
sample selection equation, wi is the error term of the selection equation, and yi, xi,
vi, ui and εi are defined as previously. The inefficiency term ui is assumed to follow
a half-normal distribution with variance σ2

u and wi and vi are assumed to follow a
bivariate normal distribution with variances 1 and σ2

v , respectively, and a correlation
coefficient of ρ. Parameters ρ, α and β are to be estimated. Non-zero values of ρ
indicate the presence of selection bias and when ρ = 0, the model reduces to that of
the standard stochastic frontier model.

Following Greene (2010), a two-step estimation procedure is used. In the first
step we modeled membership into cooperatives with the selection equation (Eq.1),
using a probit model. Consistent ML estimates of α are obtained and used to derive
the conditional simulated log likelihood function of the combination of equations 1
and 3 (for more details, see Greene (2010)).

Empirically, for the selection model, the variable Mi is a dummy representing
the likelihood that the farmer belongs to a cooperative, taking the value of 1 if
the farmer is a member of cooperative and 0 otherwise, z is defined as previously.
Similarly to Bravo-Ureta et al. (2012) and Abdul-Rahaman and Abdulai (2018), we
estimated two stochastic frontier models, one for cooperatives members and one for
non-members. Once the two stochastic frontier models are estimated, one can derive
the group-specific technical efficiency estimates both for cooperatives members and
non-members. To do so, we used the JLMS approach and then compared these
efficiency scores against each benchmark.

However, our methodological framework still has one limitation. It is not possible
to compare directly the estimated farms’ individual technical efficiency between
cooperatives members and non-members since these scores pertain to each group’s
own frontier (González-Flores et al., 2014; Villano et al., 2015; Henningsen et al.,
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2015). Therefore, in order to address this issue, we used a meta-frontier approach
that enables us to estimate and compare the technical efficiency of production units
regrouped in different types of technology.

2.4 Meta-Frontier approach

Considering that all farmers are gathered in J groups (j = 1, 2) and farmers in
each group operate under a group-specific technology, with group-specific frontiers
defined as f j(xji) and f(.) a specified functional form. Commonly, the meta-frontier
production function fM(xji) that envelops all different groups’ frontiers f j(xji) is
expressed as:

f j(xji) = fM(xji) exp(−uMji ), ∀ j, i, (4)

whereuMji ≥ 0, therefore fM(.) ≥ f j(.) and the relationship of the jth production
frontier to the meta-frontier is defined as the meta technology ratio (MGR), which
expresses the difference in efficiency due to the choice of a particular technology,
and it is between zero and one. To estimate the metafrontier, we follow Huang et al.
(2014) approach that has the main advantage to allow statistical interpretations. In
the first step, the standard maximum likelihood (ML) estimation is used to estimate
group-specific frontiers. In a second step, a stochastic frontier model (as in equation
5) is formulated and estimated by the maximum likelihood to obtain the estimates
of the meta-frontier:

f̂ j(xji) = fM(xji) exp(vMji − uMji ), ∀i, j = 1, 2. (5)

This equation is similar to the traditional stochastic frontier, where f̂ j(xji) represents
the estimates of the group-specific frontier, uMji (uMji ≥ 0) is the technological gap
and is assumed to follow a truncated-normal distribution with the mode µM and
independent from vMji , and vMji is assumed to follow a normal distribution with zero
mean, but non independently and identically distributed. Additionally, the mode
µM(qji) is a function of environmental variables qji.

As described by Huang et al. (2014), for each level of inputs, an associated output
level yji with respect to the meta-frontier fM(xji) has three components: the meta

technology ratio MTRj
i =

fj(xji)

fM (xji)
, the group specific technical efficiency of each

production unit TEj
i =

yji
fj(xji) exp(vji)

= exp(−uji), and the technical efficiency of

each farmer regarding the meta-frontier MTEj
i =

yji
fM (xji)×exp(vji)

= MTRj
i × TE

j
i .

2.5 Empirical Strategy

As stated previously, to correct for selectivity bias, we use first the propensity score
matching method and then a sample selection stochastic frontier approach. Fol-
lowing Ma et al. (2018b); Abdul-Rahaman and Abdulai (2018) in a first step, we
generated the propensity score of belonging to a cooperative, using a probit model,
by regressing the cooperative membership variables on farm observable character-
istics (see table 1). In the PSM approach, numerous algorithms can be applied to
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match members and non-members of similar propensity scores. We use the most
common matching technique: the nearest neighbor matching with five neighbors
and caliper of 0.01. By doing so, a total of 787 matched farmers are obtained in-
cluding 105 members of cooperatives and 682 non-members with a similar range of
observable characteristics. Table A1 in the appendix presents the propensity score
of cooperative membership for the matched and unmatched samples. The balancing
test results are also presented in table A2. From table A2 significant differences
can be observed between members and non-members in most of the variables in the
unmatched sample. Contrarily, no significant differences in the observed character-
istics could be found in the matched sample, suggesting that balancing condition is
satisfied (Caliendo and Kopeinig, 2008). In addition, the common support condition
is also satisfied, as shown in figure 1.

Once the matched sample obtained, we estimated the sample-selection stochas-
tic frontier model. Here, the first stage is the estimation of the selection equation
(eq. 1) as a standard probit model. Several factors are associated with coopera-
tives membership ((Fischer and Qaim, 2012b; Abebaw and Haile, 2013; Tolno et al.,
2015; Mojo et al., 2017)), including personal details of household head (gender, age,
education level) and household characteristics (e.g. household size, agricultural as-
sets, land size), the access to rural various institutions (e.g. agricultural extension
services, credits), the geographic location of the household. Based on previous stud-
ies, in our empirical specification, we assume that the probability that a household
belongs to a cooperative member is a function of these main selected variables. How-
ever, it is worth noting that households could have better access to extension due to
cooperative membership, rendering the access to extension services variable poten-
tially endogenous in the modeling of cooperative membership, and leading then to
biased estimates. We, therefore, corrected this endogeneity issue with the two-stage
control function approach suggested by Wooldridge (2015)4. The variables used to
model the cooperative membership are presented in table 1.

The second stage of the sample selection stochastic frontier model is the esti-
mation of the production function. To do so, from preliminary comparisons us-
ing the pooled unmatched data, a maximum likelihood ratio test led to the re-
jection of the Cobb-Douglas (CD) in favor of the translog (TL) functional form
(χ2 = 79.28, p < 0.01), which has the main advantage to add the effects of in-
teractions between inputs. Also, the Akaike Information Criterion of the translog
(AIC = 2099.47) was less than that of the Cobb Douglas (AIC = 2158.75). There-
fore, we used translog specification or all analyses and it is expressed as:

yi = f(xi, β) + δDi + γGi + εi, εi ∼ N
[
0, σ2

ε

]
, (6)

where yi represents the natural logarithm of the output of the ith farmer, xik, xil

4In a first stage, we estimated separately, the access to extension services and the cooperative
membership on the same independent variables plus an instrument (here the number of plots
owned by the farmer) using a probit model. The instrument, the number of plots owned by the
household, significantly influences the access to extension services but not directly influences the
household membership to cooperatives (see table A3 in the appendix). In the second-stage probit
estimation, the access to extension services variables and their generalized residuals predicted from
the first-stage are included in the cooperative membership equation and estimated
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denote vectors of the natural logarithm of production inputs k or l, for k 6= l; D
represent dummy variables; G represent other contextual variables; β, δ and γ are
parameters to be estimated; εi is the composite error term as defined previously and
comprising vi and ui.

The output here is the total rice production (in kilograms). The four inputs
included in the models are the land cultivated (in hectare), the quantity of seeds (in
kilograms), the quantity of total labor (in equivalent working-days) and the quantity
of fertilizers (in kilograms). The dummy variables are cooperative membership, the
use of certified seeds and the non-use of fertilizers. The other environmental variables
are the percentages of clay and silt elements in soils, and the rainfall of the survey
year 2017 (in millimeters)5. We follow Battese (1997) approach, to account for zero
values of fertilizer use by including a dummy for the non-use of fertilizer, such that
the logarithm of the fertilizer with zero values is taken only if it is positive, and zero
otherwise.

To identify whether it is necessary to estimate separate frontiers for members
and non-members, we first estimated a pooled stochastic production frontier includ-
ing a dummy variable for cooperative membership. Then, two separate stochastic
production frontier models for members and non-members are estimated. Finally,
using a likelihood ratio test, we checked if there is a difference in technologies used
by the two groups of farmers (Bravo-Ureta et al., 2012). Specifically, the estimated
likelihood ratio (LR) can be estimated as follows:

LR = −2× (lnLp− (lnL1 + lnL0)), (7)

where lnLp, lnL1 and lnL0 respectively denote the log-likelihood values for the
pooled stochastic production frontier model, the cooperative members’ sample, and
the non-members’. Where the null hypothesis is that members and non-members
use the same rice production technology. For the estimation of the meta-frontier, the
second step environmental variables or sector-specific variables (that are supposed
to impact the group-specific technology gap ratio) included in the four meta-frontier
models are the agro-ecological zones of Casamance and the Delta, and three envi-
ronmental risks such as the presence of grains bird 6, drought and the early stop
of rain. The estimations of the conventional stochastic production frontier for both
matched and unmatched samples were performed using the R software, while the
PSM was conducted in STATA software and NLOGIT 6 was used to estimate the
sample selection stochastic production frontier models.

5Rainfall and soil percentages of clay, silt and sand were retrieved from publicly available
database from International Soil Reference and Information Centre (ISRIC – World Soil Informa-
tion) at https://data.isric.org/ using the geographical coordinates of each household. The Database
uses machine learning and data collected in 2017 and 2018

6According to (de Mey et al., 2012), annual bird damage in average can exceed more than 13%
of the potential rice production during wet seasons.
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3 Data Sources and Descriptive Statistics

3.1 Data Sources

The data used derived from a survey conducted in Senegal, which randomly sampled
4533 households that mainly produce dry cereals (rainfed cereals). Data was col-
lected in 2017 in the framework of the Agricultural Policy Support Project funded by
USAID. Senegalese National Agricultural Research Institute conducted the survey,
with the support of the International Food Research Institute (IFPRI). A multi-
stage sampling procedure was applied for the selection of households and a struc-
tured household questionnaire was used to collect information. This questionnaire
included several modules and gathered information on a range of topics such as crop
productions, cooperative membership, household assets, access to infrastructure, ac-
cess to institutions, and household demographic and socioeconomic characteristics.
Besides crops’ productions and the used inputs information, data collection also in-
cluded market prices and households adoption of agricultural technologies (certified
seed and fertilizers) during the main agricultural season of 2016. After the data
cleaning process, we retrieved the set of 835 farmers that produced rice during the
2016 season.

3.2 Variables Descriptive Statistics

Table 1 presents the definition and summary statistics of the variables used in the
analysis. The households in the sample are predominantly male-headed, i.e. 90%.
The household heads are generally aged with an average of 53 years and without
any formal education, (53%). The households’ heads are mainly farmers, however,
the households also get revenues from off-farm activities (41%). On average, the
household includes more than nine family members and owns about 3.55 hectares
of agricultural land. About 18% of these households are members of cooperatives.

Regarding the production variables, the farmers produce on average 1407 kg of
rice. However, the standard deviation shows that there is a huge variation in the
production output. To produce rice, farmers dedicate an average of 0.9 hectares,
52 kg of seeds and 86 kg of fertilizers. However, most of the farmers do not use
fertilizers (61.8%). In addition, around 3 equivalent persons work on rice plots
during the season. all outcomes are log specified. Concerning the matching variables,
following the literature we included several variables e.g. the household and its
heads characteristics, the household’s assets (agricultural implements index) 7, the
geographical location, the household access to rural institutions, the agro-ecological
zones.

7Following the standard approach for calculating a welfare index, we have computed the agri-
cultural implements index by using dummy variables of the possession of 17 agricultural assets
such as donkey carts, horse cart, cattle cart, tractor, sine hoes, plows, occidental hoes, sheller,
polyculture, arenas, thresher, harvester, sprayer, sower, storage, hangar, atomizer
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Table 1: Description of variables
Variables Description and measurement Type Mean (SD)
Cooperative Membership status in a cooperative (1=yes, 0=no) Dummy 0.183 (0.387)

Household and Head characteristics
Sex Gender of household head (1=yes, 0=no) Dummy 0.897 (0.304)
Age Age of household head (years) Continuous 53.589 (12.726)
Household size Number of family members Continuous 9.647 (5.200)
Off-farm Household involved Off-farm work (1=yes, 0=no) Dummy 0.412 (0.492)
No education No formal education (1=yes, 0=no) Dummy 0.534 (0.499)

Assets & living conditions
Land owned Total land size owned by the household (hectares) Continuous 3.553 (5.750)
Implements index Agricultural implements index Continuous -1.004 (0.834)
Number of plots Number of plots owned Continuous 2.838 (1.652)

Location
Distance to road Distance to the nearest all-weather road (km) Continuous 11.140 (12.904)
Distance to market Distance to the nearest main market (km) Continuous 15.964 (12.802)

Access to institutions
Extension Access to extension services (1=yes, 0=no) Dummy 0.198 (0.398)
Credit Access to credit (1=yes, 0=no) Dummy 0.019 (0.137)
Certified seed Adoption of certified seed (1=yes, 0=no) Dummy 0.210 (0.407)

Ecological conditions
Casamance AEZ Casamance agro-ecological zone (1=yes, 0=no) Dummy 0.759 (0.428)
Delta AEZ Delta agro-ecological zone (1=yes, 0=no) Dummy 0.097 (0.296)
Rainfall Rainfall 2016 (mm) Continuous 1046.283 (386.948)
Clay Percentage of clay (%) Continuous 27.594 (4.090)
Silt Percentage of silt (%) Continuous 17.844 (3.286)
Granivorous Birds Granivorous birds damage (1=yes, 0=no) Dummy 0.192 (0.394)
Drought Drought (1=yes, 0=no) Dummy 0.062 (0.242)
Early Rain Stop Early rain stop (1=yes, 0=no) Dummy 0.325 (0.468)

Production inputs
Land Total area cultivated (hectares) Continuous 0.900 (1.100)
Labor Total labor size (equiv. work-days.) Continuous 232.123 (258.244)
Seeds Total seeds (KG) Continuous 52.070 (62.930)
Fertilizers Total fertilizers (KG) Continuous 86.540 (390.630)
No Fertilizers Non use of fertilizers (1=yes, 0=no) Dummy 0.618 (0.486)

Outcome variable
Rice Production Total crops productions (KG) Continuous 1407.10 (5742.24)
N Number of Observations 835

3.3 Comparative Descriptive Statistics

Table 2 shows the comparative descriptive statistics of the characteristics of coopera-
tive members and non-members for the matched and unmatched samples. Significant
differences are observed between members and non-members mostly with the un-
matched sample. Cooperative members tend to have larger households (10 persons)
than non-members(9 persons). They are also less involved in off-farm works and
possess fewer agricultural implements. Cooperatives members have better access to
rural institutions (extension, credit and certified seeds) relatively to nonmembers.
Furthermore, they use more agricultural production inputs (land, labor, seeds, and
fertilizers) and produce much more quantities of rice compared to non-members.
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Table 2: Comparative Descriptive Statistics

Unmatched Sample Matched Sample
Variables Members Non-Members P-value Members Non-Members P-value
Sex 0.93 (0.26) 0.89 (0.31) 0.12 0.91 (0.28) 0.89 (0.31) 0.42
Age 52.58 (12.32) 53.82 (12.81) 0.27 51.83 (12.51) 53.82 (12.81) 0.13
Household size 10.33 (5.05) 9.49 (5.22) 0.07 10.78 (5.57) 9.49 (5.22) 0.03
Off-farm 0.28 (0.45) 0.44 (0.50) <0.01 0.34 (0.48) 0.44 (0.50) 0.05
No education 0.58 (0.49) 0.52 (0.50) 0.19 0.52 (0.50) 0.52 (0.50) 0.99
Land owned 3.00 (4.89) 3.68 (5.92) 0.14 3.12 (3.39) 3.68 (5.92) 0.16
Implements index -1.16 (1.00) -0.97 (0.79) 0.03 -1.02 (1.00) -0.97 (0.79) 0.60
Number of plots 2.57 (2.01) 2.90 (1.56) 0.06 2.77 (1.95) 2.90 (1.56) 0.52
Distance to road 17.16 (17.66) 9.79 (11.15) <0.01 13.86 (15.56) 9.79 (11.15) 0.01
Distance to market 17.09 (15.15) 15.71 (12.21) 0.30 15.46 (14.24) 15.71 (12.21) 0.87
Casamance AEZ 0.41 (0.49) 0.84 (0.37) <0.01 0.44 (0.50) 0.84 (0.37) <0.01
Delta AEZ 0.41 (0.49) 0.03 (0.16) <0.01 0.03 (0.17) 0.03 (0.16) 0.28
Extension 0.61 (0.49) 0.10 (0.31) <0.01 0.44 (0.50) 0.10 (0.31) <0.01
Credit 0.06 (0.24) 0.01 (0.10) 0.01 0.57 (0.50) 0.01 (0.10) <0.01
Certified seed 0.56 (0.50) 0.13 (0.34) <0.01 0.23 (0.42) 0.13 (0.34) <0.01
Rainfall 2016 673.73 (535.05) 1129.86 (285.12) <0.01 856.02 (520.90) 1129.86 (285.12) <0.01
Clay (%) 26.49 (4.75) 27.84 (3.89) <0.01 26.40 (5.01) 27.84 (3.89) 0.01
Silt (%) 16.69 (4.16) 18.10 (3.00) <0.01 16.58 (4.29) 18.10 (3.00) <0.01
Granivorous Birds 0.43 (0.49) 0.14 (0.34) <0.01 0.34 (0.48) 0.14 (0.34) <0.01
Drought 0.07 (0.25) 0.06 (0.24) 0.86 0.10 (0.29) 0.06 (0.24) 0.27
Early Rain Stop 0.17 (0.38) 0.36 (0.48) <0.01 0.22 (0.42) 0.36 (0.48) <0.01
Land 1.09 (1.93) 0.86 (0.80) 0.15 1.15 (2.23) 0.86 (0.80) 0.18
Labor 244.40 (203.18) 229.37 (269.11) 0.44 223.95 (200.54) 229.37 (269.10) 0.81
Seeds 70.50 (96.08) 47.93 (51.98) 0.01 61.82 (88.18) 47.93 (51.98) 0.12
Fertilizers 278.16 (832.28) 41.41 (138.05) <0.01 265.56 (977.00) 41.41 (138.05) 0.02
No Fertilizers 0.27 (0.45) 0.70 (0.46) <0.01 0.39 (0.49) 0.70 (0.46) <0.01
Rice Production 4153.39 (12950.56) 790.71 (959.23) <0.01 4040.12 (15031.26) 790.71 (959.23) 0.03
N 153 682 835 105 682 817

4 Results and Discussion

4.1 Determinants of Cooperatives Membership

Factors that determine households’ decision to belong to a cooperative are presented
in table 3 with their marginal effects. The likelihood ratio test shows that the model
estimates are significant at 1% level (χ2(14) = 265.58; p < 0.01). Table3 also shows
the residual coefficient from the first-stage of the access to extension services variable
which is a potential endogenous variable. The results show that the residuals are
not statistically significant, suggesting that the access to extension services is not
endogenously correlated to the household’s decision to belong to a cooperative.

The results of the estimation of equation (1) suggest that the main factors that
have a significant influence on whether the farmer decides to be a member of a
cooperative are the household size, the access to extension services and to credit.
The household size has a positive and significant effect on cooperative membership.
These results support those of Bernard and Spielman (2009) and Ma and Abdulai
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(2016). Those households who have more members have higher probability (0.8%)
to be a member of cooperatives. With more members, these households have a
better chance that one of their members could belong to a cooperative. Variables
such as access to extension services and credit affect positively and significantly the
farmers’ probability to be members of cooperatives. Farmers who have access to
extension services are about 58.6% more likely to join cooperative and those that
have access to credit have 25.7% to be members. The access to various institutions
e.g. agricultural extension services (Abebaw and Haile, 2013) and credits (Abdul-
Rahaman and Abdulai, 2018) and even to cooperatives Mojo et al. (2017) is, in the
previous literature, associated with cooperatives’ membership.

Table 3: Probit Estimates of Cooperative Membership: Unmatched Sample
Coefficients Marginal Effects

Intercept −1.134 (0.471)∗∗

Sex 0.057 (0.215) 0.012 (0.043)
Age −0.008 (0.005) −0.002 (0.001)∗

Household size 0.039 (0.012)∗∗∗ 0.008 (0.002)∗∗∗

Off-farm −0.176 (0.137) −0.036 (0.028)
Education −0.051 (0.134) −0.011 (0.028)
Area owned 0.001 (0.012) 0.000 (0.003)
Implements index −0.046 (0.079) −0.010 (0.017)
Distance to road −0.009 (0.007) −0.002 (0.001)
Distance to market −0.007 (0.006) −0.002 (0.001)
Extension 1.901 (1.018)∗ 0.586 (0.329)∗

Credit 0.852 (0.493)∗ 0.257 (0.186)
Casamance AEZ −0.283 (0.205) −0.064 (0.050)
Delta AEZ 1.034 (0.720) 0.312 (0.266)
Extension residuals −0.478 (0.562)
Log Likelihood -264.889
Num. obs. 835
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

4.2 Production Frontiers Estimates

The conventional and sample selection frontiers models estimates are respectively
presented in tables 4 and 5 for the original unmatched data, and in tables 6 and
7 for the matched data. From the estimation of the stochastic frontier models
with the pooled data, the likelihood ratio (LR) tests indicate the rejection of the
null hypothesis of homogeneous technology between cooperatives members and non-
members for both the unmatched data (χ2(23) = 45.553, p < 0.01) and for the
matched data (χ2(23) = 39.394, p < 0.05) justifying the identification strategy
of two separate production frontiers for cooperatives members and non-members.
Furthermore, in the pooled estimation with both unmatched and matched data,
the positive and significant effect of cooperative membership dummy on the frontier
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estimates suggests that agricultural cooperative membership enhance significantly
the rice production. Abdul-Rahaman and Abdulai (2018) and Ma et al. (2018b)
observed similar results respectively in Ghana and China. These results can be
explained by the fact that cooperatives members, in general, have better access to
farm inputs and technologies through their social networks, and therefore increase
their productions.

Table 4: Conventional Estimates of Translog Production Frontier: Unmatched sam-
ple

Pooled Members Non-Members Metafrontier
Intercept 5.388 (0.676)*** 3.731 (3.093) 5.242 (0.727)*** 5.163 (0.223)***
Land 0.045 (0.208) -0.591 (1.024) 0.136 (0.221) 0.057 (0.069)
Seeds 0.081 (0.214) 0.873 (0.749) -0.023 (0.239) 0.149 (0.07)**
Fertilizers 0.08 (0.188) 0.065 (0.898) 0.227 (0.206) 0.074 (0.061)
Labor 0.114 (0.116) 0.504 (0.337) 0.02 (0.134) 0.128 (0.038)***
Land2 -0.21 (0.042)*** -0.286 (0.288) -0.212 (0.043)*** -0.199 (0.014)***
Seeds2 0.062 (0.053) 0.14 (0.184) 0.04 (0.057) 0.047 (0.017)***
Fertilizers2 0.15 (0.041)*** 0.107 (0.166) 0.109 (0.051)** 0.152 (0.013)***
Labor2 0.036 (0.019)* 0.171 (0.063)*** 0.014 (0.021) 0.032 (0.006)***
Land×Seeds 0.087 (0.048)* 0.043 (0.164) 0.105 (0.051)** 0.077 (0.016)***
Land×Fertilizers -0.004 (0.021) 0.041 (0.068) -0.057 (0.027)** -0.015 (0.007)**
Land×Labor 0.015 (0.022) 0.164 (0.126) -0.01 (0.024) 0.018 (0.007)**
Seeds×Fertilizers -0.023 (0.014) -0.014 (0.047) -0.015 (0.018) -0.021 (0.005)***
Seeds×Labor -0.022 (0.025) -0.243 (0.107)** 0.016 (0.027) -0.023 (0.008)***
Fertilizers×Labor -0.045 (0.01)*** -0.051 (0.024)** -0.053 (0.012)*** -0.04 (0.003)***
No Fertilizers 0.379 (0.395) -0.153 (2.286) 0.592 (0.416) 0.466 (0.129)***
Certified Seeds 0.024 (0.089) 0.164 (0.202) -0.106 (0.1) 0.105 (0.03)***
Cooperative 0.27 (0.091)***
Rainfall 2016 -0.001 (0.000)*** -0.001 (0.000)*** 0.000 (0.000) -0.001 (0.000)***
Clay (%) 0.041 (0.009)*** 0.032 (0.024) 0.038 (0.01)*** 0.044 (0.003)***
Silt (%) -0.026 (0.01)** -0.025 (0.026) -0.028 (0.011)** -0.026 (0.003)***
Intercept 0.242 (0.037)***
Casamance AEZ -0.11 (0.033)***
Delta AEZ -0.273 (0.263)
Grains Bird -0.239 (0.044)***
Drought -0.098 (0.042)**
Early Rain Stop 0.019 (0.023)
σu 0.871 (0.081)*** 1.141 (0.139)*** 0.628 (0.15)*** 0.002 (0.000)***
σv 0.646 (0.037)*** 0.491 (0.083)*** 0.707 (0.05)*** 0.264 (0.007)1
ρ(w, v)
Log likelihood -1026.735 -186.883 -817.075 -73.356
Num. obs. 835 153 682 835
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table 5: Conventional Estimates of Translog Production Frontier: Matched sample
Pooled Members Non-Members Metafrontier

Intercept 5.266 (0.696)*** 3.533 (3.532) 5.242 (0.727)*** 5.123 (0.193)***
Land 0.037 (0.211) -0.401 (1.309) 0.136 (0.221) 0.058 (0.062)
Seeds 0.128 (0.22) 0.493 (0.882) -0.023 (0.239) 0.165 (0.065)**
Fertilizers 0.081 (0.193) 0.013 (1.035) 0.227 (0.206) 0.067 (0.058)
Labor 0.096 (0.12) 0.356 (0.406) 0.02 (0.134) 0.111 (0.036)***
Land2 -0.214 (0.042)*** -0.323 (0.386) -0.212 (0.043)*** -0.204 (0.012)***
Seeds2 0.044 (0.054) 0.288 (0.221) 0.04 (0.057) 0.039 (0.016)**
Fertilizers2 0.157 (0.042)*** 0.169 (0.193) 0.109 (0.051)** 0.162 (0.013)***
Labor2 0.035 (0.02)* 0.201 (0.07)*** 0.014 (0.021) 0.031 (0.006)***
Land×Seeds 0.099 (0.049)** 0.014 (0.215) 0.105 (0.051)** 0.087 (0.014)***
Land×Fertilizers -0.013 (0.022) 0.01 (0.083) -0.057 (0.027)** -0.02 (0.007)***
Land×Labor 0.01 (0.023) 0.125 (0.145) -0.01 (0.024) 0.014 (0.007)**
Seeds×Fertilizers -0.031 (0.016)** -0.053 (0.059) -0.015 (0.018) -0.028 (0.004)***
Seeds×Labor -0.018 (0.025) -0.245 (0.123)** 0.016 (0.027) -0.021 (0.007)***
Fertilizers×Labor -0.043 (0.01)*** -0.029 (0.027) -0.053 (0.012)*** -0.04 (0.003)***
No Fertilizers 0.375 (0.399) 0.178 (2.626) 0.592 (0.416) 0.428 (0.12)***
Certified Seeds 0.005 (0.093) 0.233 (0.26) -0.106 (0.1) 0.071 (0.028)**
Cooperative 0.255 (0.096)***
Rainfall 2016 -0.001 (0)*** -0.001 (0)** 0 (0) -0.001 (0)***
Clay (%) 0.042 (0.009)*** 0.055 (0.028)* 0.038 (0.01)*** 0.044 (0.002)***
Silt (%) -0.027 (0.011)*** -0.041 (0.031) -0.028 (0.011)** -0.029 (0.003)***
Intercept 0.175 (0.017)***
Casamance AEZ -0.06 (0.017)***
Delta AEZ -0.821 (0.053)***
Grains Bird -0.343 (0.012)***
Drought -0.081 (0.002)***
Early Rain Stop 0.009 (0.006)
σu 0.834 (0.09)*** 1.088 (0.169)*** 0.628 (0.15)*** 0.000 (0.000)***
σv 0.662 (0.04)*** 0.553 (0.093)*** 0.707 (0.05)*** 0.248 (0.006)1
ρ(w, v)
Log likelihood -967.529 -130.757 -817.075 -18.874
Num. obs. 787 105 682 787
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table 6: Sample Selection Estimates of the Translog Production Frontier: Un-
matched sample

Members Non-Members Metafrontier
Intercept 3.633(5.867) 5.247(0.936)*** 4.974 (0.374)***
Land -0.936(1.284) 0.13(0.265) 0.008 (0.076)
Seeds 0.996(1.13) -0.006(0.266) 0.221 (0.017)***
Fertilizers 0.08(1.63) 0.242(0.281) 0.121 (0.054)**
Labor 0.504(0.597) 0.036(0.172) 0.155 (0.036)***
Land2 -0.37(0.401) -0.213(0.056)*** -0.21 (0.018)***
Seeds2 0.138(0.265) 0.039(0.059) 0.04 (0.02)**
Fertilizers2 0.125(0.307) 0.11(0.064)* 0.148 (0.023)***
Labor2 0.178(0.102)* 0.011(0.023) 0.033 (0.005)***
Land×Seeds 0.084(0.228) 0.106(0.057)* 0.083 (0.019)***
Land×Fertilizers 0.052(0.089) -0.044(0.032) -0.007 (0.008)
Land×Labor 0.188(0.169) -0.009(0.031) 0.022 (0.01)**
Seeds×Fertilizers -0.034(0.059) -0.02(0.017) -0.026 (0.004)***
Seeds×Labor -0.25(0.185) 0.014(0.032) -0.033 (0.007)***
Fertilizers×Labor -0.056(0.047) -0.055(0.015)*** -0.039 (0.004)***
No Fertilizers -0.266(4.124) 0.549(0.671) 0.526 (0.071)***
Certified Seeds 0.166(0.299) -0.141(0.109) 0.128 (0.037)***
Cooperative
Rainfall 2016 -0.001(0.001) 0(0) -0.001 (0)***
Clay (%) 0.033(0.032) 0.036(0.011)*** 0.044 (0.004)***
Silt (%) -0.026(0.035) -0.03(0.013)** -0.029 (0.005)***
Intercept 0.273 (0.047)***
Casamance AEZ -0.139 (0.046)***
Delta AEZ -0.322 (0.058)***
Grains Bird -0.244 (0.166)
Drought -0.114 (0.051)**
Early Rain Stop 0.03 (0.061)
σu 1.188(0.155)*** 0.73(0.125)*** 0.001 (0.000)***
σv 0.544(0.139)*** 0.694(0.043)*** 0.359 (0.004)1
ρ(w, v) -0.475(0.46) 0.502(0.249)**
Log likelihood -313.359
Num. obs. 153 682 835
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Table 7: Sample Selection Estimates of the Translog Production Frontier: Matched
sample

Members Non-Members Metafrontier
Intercept 4.722(7.355) 5.236(0.935)*** 5.318 (0.389)***
Land -0.807(1.83) 0.13(0.265) 0.036 (0.117)
Seeds 0.683(1.312) -0.011(0.267) 0.179 (0.122)
Fertilizers -0.157(1.99) 0.24(0.28) 0.081 (0.106)
Labor 0.311(0.795) 0.037(0.171) 0.131 (0.066)**
Land2 -0.454(0.53) -0.213(0.056)*** -0.21 (0.023)***
Seeds2 0.268(0.344) 0.04(0.06) 0.041 (0.029)
Fertilizers2 0.22(0.357) 0.11(0.064)* 0.169 (0.023)***
Labor2 0.203(0.125) 0.011(0.023) 0.025 (0.011)**
Land×Seeds 0.072(0.32) 0.106(0.057)* 0.083 (0.027)***
Land×Fertilizers 0.038(0.105) -0.047(0.032) -0.019 (0.012)
Land×Labor 0.135(0.221) -0.009(0.031) 0.018 (0.013)
Seeds×Fertilizers -0.08(0.095) -0.019(0.017) -0.026 (0.009)***
Seeds×Labor -0.242(0.195) 0.014(0.032) -0.024 (0.014)*
Fertilizers×Labor -0.04(0.063) -0.054(0.015)*** -0.041 (0.006)***
No Fertilizers -0.699(4.941) 0.562(0.667) 0.504 (0.223)**
Certified Seeds 0.24(0.523) -0.132(0.108) 0.118 (0.051)**
Cooperative
Rainfall 2016 0(0.001) 0(0) 0 (0)***
Clay (%) 0.047(0.04) 0.036(0.011)*** 0.039 (0.005)***
Silt (%) -0.04(0.047) -0.029(0.013)** -0.037 (0.006)***
Intercept 0.354 (0.062)***
Casamance AEZ -0.054 (0.054)
Delta AEZ -0.618 (0.102)***
Grains Bird -0.239 (0.028)***
Drought -0.181 (0.055)***
Early Rain Stop 0.053 (0.041)
σu 1.067(0.282)*** 0.721(0.13)*** 0.000 (0.000)***
σv 0.763(0.245)*** 0.696(0.044)*** 0.451 (0.012)1
ρ(w, v) -0.768(0.235)*** 0.475(0.299)
Log likelihood -489.258
Num. obs. 105 682 787
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

For all four production frontiers models, the inefficiency dispersion parameters
σu are significant, suggesting that most of the farmers are producing below the
production frontier. In addition, the terms σu in all models are much larger for
the members of the cooperative than non-members, suggesting that the members of
the cooperative are more affected by inefficiency than non-members. Results from
the sample selection production frontiers models show that the estimated sample
selectivity term ρ for members is negative and relatively high (in absolute terms)
with both the unmatched and matched data, and statistically significant in the
matched data estimation. This would suggest that unobserved factors that affect
the participation in cooperatives are correlated with the idiosyncratic error term of
the stochastic frontier model. For non-members, the estimated ρ is positive both
matched and unmatched data, and only statistically significant in the case of the
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unmatched data, indicating the presence of selectivity bias from unobserved factors.
These results support the use of the sample selectivity framework (Greene, 2010).

4.3 Predicted Frontiers

Table 8 presents the means of the predicted frontiers for all four models and the
differences between the predicted frontiers of cooperatives members and those of
non-members. The results of this table reveal that members of cooperatives have
higher production frontiers than non-members and the differences are statistically
significant. From estimates with the matched data, being a member increases the
production of rice by around 17% in the conventional estimates of the stochastic
production frontier model and when selectivity bias is taken into account, the in-
crease reaches 27%. These figures confirm the previous results that cooperative
membership increases rice production. These results corroborate those observed by
Abdul-Rahaman and Abdulai (2018) in the rice sector in Ghana, where the partici-
pation in farmers group significantly enhances rice farming yield.

Table 8: Predicted frontier
SF Models Pooled Members Non-Members Difference
Unmatched
Conventional 6.942(1.082) 7.957(1.185) 6.569(0.971) 1.388***
Sample Selection 6.875(1.176) 8.211(1.097) 6.575(0.967) 1.637***
Matched
Conventional 6.829(1.035) 7.661(1.263) 6.569(0.971) 1.092***
Sample Selection 6.819(1.167) 8.407(1.104) 6.575(0.969) 1.832***
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

4.4 Technical Efficiency Score and Meta-Technology Ratios

Tables 9, 10 and 11 present the means of technical efficiency scores (TE) , the
meta-technology ratios (MTR), and the meta-frontier technical efficiency derived
from the estimated different production frontiers (respectively pooled, groups and
meta frontier models). While figures 2 and 3 show respectively their distributions.
Considering the pooled data estimates with the unmatched, in average coopera-
tives members and non-members have similar mean score of respectively 56.36%
(SD=15.22%) 8 and 56.40% (SD=13.75%), proved by the non statistically t test dif-
ference (t = −0.030, df = 211.91, p = 0.9757). The non statistical difference is also
observed for the pooled matched data (t = −0.254, df = 128.79, p− value = 0.800).

When considering that members and non-members are operating with different
technologies, in all separate models, the mean TE estimates for non-members, which
varies from 57.6% to 64.6% are significantly higher than that of members (46.3% to
51.0%), even if the difference slightly reduces when we controlled for selection bias.

8SD is the Standard deviation
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These results suggest that after controlling for biases arising from both observable
and unobserved differences between cooperatives members and non-members in the
production frontiers, non-members are performing better within their own frontier
than members. Therefore, one can conclude that considering the group-specific fron-
tiers, membership in a cooperative has a strong negative causal effect on technical
efficiency. These results contradict mainly those results recently obtained by Abdul-
Rahaman and Abdulai (2018) and Ma et al. (2018b), who stopped their analysis
at this stage of our methodological framework and found that members in cooper-
atives are more technically efficient in their own frontiers than non-members. As
stated previously, comparing farmers’ technical efficiencies from their own bench-
mark could bias the results. Technical efficiency estimates of cooperatives members
and non-members are measured against different production frontiers.

Table 9: Levels of Technical efficiency (TE)
SF Models Pooled Members Non-Members Difference
Unmatched
Conventional 0.564(0.14) 0.499(0.186) 0.646(0.096) -0.147***
Sample Selection 0.555(0.141) 0.463(0.182) 0.576(0.121) -0.113***
Matched
Conventional 0.575(0.134) 0.51(0.172) 0.646(0.096) -0.136***
Sample Selection 0.566(0.132) 0.482(0.169) 0.579(0.12) -0.097***
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

The results from the meta-frontier estimates show that the meta-technology ra-
tios of members in all four models (ranging from 84.2% to 94.3%) are significantly
higher than those of non-members (ranging from 77.2% to 90.8%), suggesting that
cooperatives members operate more closer to the meta-frontier than non-members.
Therefore, one can conclude that membership in a cooperative affects strongly and
positively the output of rice farming, confirming some of the previous results.

Table 10: Levels of Meta-technology Ratios (MTR)
SF Models Pooled Members Non-Members Difference
Unmatched
Conventional 0.895(0.066) 0.943(0.076) 0.884(0.059) 0.058***
Sample Selection 0.889(0.072) 0.937(0.082) 0.878(0.064) 0.060***
Matched
Conventional 0.908(0.05) 0.941(0.061) 0.903(0.047) 0.038***
Sample Selection 0.772(0.091) 0.842(0.118) 0.761(0.081) 0.081***
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

After combining the meta-technology ratios and the group technical efficiencies,
the obtained mean of the meta-technology technical efficiencies estimates of the
cooperatives’ members varies between 41.0% (matched selectivity corrected) and
48.3% (matched conventional ). These MTE estimates in all models for members
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are significantly lower than those of non-members. These results confirm some of
the previous results and mainly suggest that after correcting for selectivity bias,
belonging to a cooperative does not enhance farm efficiency.

Table 11: Levels of Metafrontier Technical efficiency (MTE)
SF Models Pooled Members Non-Members Difference
Unmatched
Conventional 0.554(0.125) 0.473(0.185) 0.572(0.098) -0.099***
Sample Selection 0.494(0.134) 0.436(0.18) 0.507(0.118) -0.07***
Matched
Conventional 0.57(0.114) 0.483(0.172) 0.584(0.096) -0.101***
Sample Selection 0.438(0.119) 0.41(0.164) 0.442(0.109) -0.031*
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

5 Conclusion

Farmers in developing countries are characterized by remarkably low levels of pro-
ductivity and efficiency, mainly due to the lack of access to inputs and improved
technologies. Therefore, cooperatives can constitute the vehicle for access to farm
inputs and therefore enhance farm productivity. However, despite the growing liter-
ature on the importance of cooperative in developing countries, very few studies have
investigated the impact that cooperatives can have on farmers’ technical efficiency.
This paper aimed to fill the gap by evaluating the quantitative effects of cooperative
membership on farmers’ technical efficiency in Senegal, where the access to modern
technologies and productivity and efficiency in the rice sector are crucial issues.

Applying a econometric framework that combines a propensity score matching
(PSM) method with the selection corrected stochastic production frontier model and
a meta-frontier approach, on a cross-sectional data of 835 individuals, we derived
for two groups of farmers (cooperatives members and cooperatives non-members)
their group-specific technical efficiency scores, the meta-technology ratios, and the
meta-technology technical efficiency. The PSM method enables us to match coop-
eratives members with non-members, addressing the biases from observed variables.
With the selectivity-corrected stochastic production frontier model, the biases aris-
ing from unobserved were controlled. The meta-frontier approach helps to compare
the technical efficiency score of both groups.

Estimations results confirmed that selection bias was present, and the two groups
are using two different technologies for rice production, therefore justifying the com-
bined framework that we used. The analysis shows that cooperatives membership
affect positively and significantly the production of rice in Senegal, confirming the
importance of cooperatives in developing countries and their roles in enhancing
farm productions. However, non-members are technically more efficient than non-
members when each group operates in its own frontier, contradicting recent studies.
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The rest of the analysis shows that members have higher meta-technology ratios,
meaning that they are operating much closer to the meta-frontier than non-members.
In addition, in regard to the meta-frontier, significant differences are observed be-
tween cooperatives members and non-members, again in favor of non-members.

These results involve some policy implications. Cooperatives are still good in-
strumental tools to enhance farm productions in developing countries, by easing
farm inputs and modern technologies. However, not all farmers benefit from being
members of cooperatives, showed by the group-specific inefficiency scores. Therefore,
policy-makers could exploit the derived social networks from cooperative to enable
farmers to have better access to technical knowledge in order to highly increase
farm productivity and efficiency, not only for members but also for non-members
through their ”natural” social networks (family, religion, geographic, etc). Further
researches, could also investigate the spillover effects of cooperatives membership on
non-members productivity and efficiency.
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Appendix

Table A1: Propensity score of cooperative membership

Unmatched Sample Matched Sample
Intercept −1.134 (0.471)∗∗ −0.990 (0.494)∗∗

Sex 0.057 (0.215) 0.018 (0.217)
Age −0.008 (0.005) −0.009 (0.005)∗

Household size 0.039 (0.012)∗∗∗ 0.039 (0.012)∗∗∗

Off-farm −0.176 (0.137) −0.138 (0.140)
Education −0.051 (0.134) −0.060 (0.135)
Area owned 0.001 (0.012) −0.003 (0.014)
Implements index −0.046 (0.079) −0.014 (0.083)
Distance to road −0.009 (0.007) −0.009 (0.007)
Distance to market −0.007 (0.006) −0.007 (0.006)
Extension 1.901 (1.018)∗ 1.402 (1.155)
Credit 0.852 (0.493)∗ 0.684 (0.576)
Casamance AEZ −0.283 (0.205) −0.249 (0.220)
Delta AEZ 1.034 (0.720) 0.961 (0.805)
Extension residuals −0.478 (0.562) −0.298 (0.637)
Log Likelihood -264.889 -252.521
Deviance 529.779 505.042
Num. obs. 835 787
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Table A2: Balancing test results of PSM.
Members Non-Members P-values Members Non-Members P-values % Red Bias

Sex 0.93 0.89 0.16 0.92 0.88 0.26 -10.10
Age 52.58 53.81 0.28 52.50 51.30 0.44 3.20
Household size 10.33 94.93 0.07 10.37 10.04 0.62 60.80
Off-farm 0.28 0.44 0.00 0.29 0.28 0.93 97.00
Education 0.58 0.52 0.19 0.56 0.66 0.11 -63.80
Area owned 29.96 36.78 0.18 29.22 27.12 0.66 69.20
Implements index -1.16 -0.97 0.01 -1.12 -11.96 0.55 62.90
Distance to road 17.16 97.91 0.00 18.07 18.45 0.87 94.90
Distance to market 17.09 15.71 0.23 17.09 19.50 0.22 -74.90
Extension 0.61 0.10 0.00 0.56 0.55 0.82 97.30
Credit 0.06 0.01 0.00 0.04 0.05 0.67 78.40
Casamance AEZ 0.40 0.84 0.00 0.46 0.50 0.55 91.60
Delta AEZ 0.40 0.03 0.00 0.35 0.36 0.87 97.40
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Table A3: Addressing potential endogeneity in extension variable
Cooperative Extension

Intercept −0.634 (0.365)∗ −0.828 (0.353)∗∗

Sex −0.024 (0.207) −0.121 (0.191)
Age −0.009 (0.005)∗ −0.001 (0.005)
Household size 0.043 (0.011)∗∗∗ 0.016 (0.011)
Off-farm −0.100 (0.126) 0.139 (0.120)
Education −0.091 (0.127) −0.082 (0.123)
Area owned −0.009 (0.014) −0.032 (0.018)∗

Implements index −0.050 (0.075) −0.040 (0.074)
Distance to road −0.012 (0.006)∗∗ −0.012 (0.006)∗∗

Distance to market −0.010 (0.005)∗ −0.009 (0.005)∗

Credit 1.352 (0.340)∗∗∗ 1.090 (0.341)∗∗∗

Number of plots 0.056 (0.040) 0.129 (0.041)∗∗∗

Casamance AEZ −0.531 (0.151)∗∗∗ −0.530 (0.148)∗∗∗

Delta AEZ 2.092 (0.289)∗∗∗ 2.077 (0.285)∗∗∗

Log Likelihood -291.481 -318.322
Num. obs. 835 835
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1

Figure 1: Kernel density of propensity scores
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Table A4: Estimates of the Translog and Cobb-Douglas frontiers
Translog Cobb-Douglas

Intercept 5.388 (0.676)*** 5.206 (0.398)***
Land 0.045 (0.208) 0.68 (0.041)***
Seeds 0.081 (0.214) 0.026 (0.038)
Fertilizers 0.08 (0.188) 0.377 (0.052)***
Labor 0.114 (0.116) 0.081 (0.024)***
Land2 -0.21 (0.042)***
Seeds2 0.062 (0.053)
Fertilizers2 0.15 (0.041)***
Labor2 0.036 (0.019)*
Land×Seeds 0.087 (0.048)*
Land×Fertilizers -0.004 (0.021)
Land×Labor 0.015 (0.022)
Seeds×Fertilizers -0.023 (0.014)
Seeds×Labor -0.022 (0.025)
Fertilizers×Labor -0.045 (0.01)***
No Fertilizers 0.379 (0.395) 1.529 (0.232)***
Certified Seeds 0.024 (0.089) -0.055 (0.091)
Cooperative 0.27 (0.091)*** 0.23 (0.093)**
Rainfall 2017 -0.001 (0)*** -0.001 (0)***
Clay (%) 0.041 (0.009)*** 0.049 (0.009)***
Silt (%) -0.026 (0.01)** -0.026 (0.01)**
σu 0.871 (0.081)*** 0.881 (0.094)***
σv 0.646 (0.037)*** 0.691 (0.042)***
Log likelihood -1026.735 -1066.375
Num. obs. 835 835
∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1
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Figure 2: Distributions of estimated efficiency scores (TE)
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Figure 3: Distributions of estimated Meta Technology Efficiency scores (MTE)
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