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Abstract

“Bodenrichtwerte” reflect the average location value
of land plots within a specific area. They constitute an
important source of information that contributes to
price transparency on land markets. In Germany,
“Bodenrichtwerte” are provided by publicly appoint-
ed expert groups (Gutachterausschiisse). Using em-
pirical data from Mecklenburg-Western Pomerania
between 2013 and 2015, this article examines the
relation between “Bodenrichtwerten” and statistically
determined location values. It turns out that “Boden-
richtwerte” tend to underestimate location values of
arable land by 11.5% on average. This underestima-
tion can be traced back to the pronounced increase of
land prices in the observation period. As an alterna-
tive to the expert-based determination of location
values, we suggest a nonparametric smoothing proce-
dure that rests on the Propagation-Separation Ap-
proach. The application of this data-driven procedure
achieves an accuracy comparable to that of official
“Bodenrichtwerte” at the one-year ahead prediction
of location values without the requirement of expert
knowledge.

Key Words

land value; adaptive weight smoothing; agricultural
land markets; propagation-separation approach; Bo-
denrichtwert

1 Introduction

Information about realized prices is crucial for the
price formation process on land markets. An im-
portant source of information that contributes to price
transparency on land markets are location values,
estimates for which (referred to as Bodenrichtwerte,
BRW) are provided by publicly appointed expert
groups (Gutachterausschisse) in Germany. According
to the Federal Building Code (BAUGESETZBUCH),
BRW are intended to reflect the average location val-
ue (per square meter) of pieces of land. The purpose
of these values is to reduce transaction costs related to
real estate transactions by offering reliable bench-
marks for purchases and taxation.

Unfortunately, three features of land markets im-
pede the accurate estimation of location values. First,
land markets are characterised by a relatively low
liquidity. For example, in Germany on average only
less than one percent of the agricultural area is sold
each year (STATISTISCHES BUNDESAMT, 2015). Actu-
ally, it may happen that only a few or even no land
transactions take place within a particular sub-district
(Gemarkung) during one or two years. As a conse-
guence, estimating location values typically warrants
pooling observations from sub-districts for which one
can assume a similar location value. In practice, this
entails a bias-variance trade-off: by including weighted
observations from other sub-districts, one can reduce
variance, but if the assumption of equal location value
is violated, considerable bias may be incurred. The
second feature that impedes estimation of location
values is that land is an extremely heterogeneous as-
set: its value depends on a variety of attributes and
conditioning variables, such as soil quality, plot size,
land use systems, or distance to cities." This heteroge-
neity complicates a direct comparison of observed
prices. The third characteristic that complicates the
determination of BRW is the dynamics inherent to
land markets. Changes in the location value of land
may arise from changes in interest rates or agricultural
product prices, technological change, or changes in
legislation. To capture these dynamics, BRW are up-
dated every two years at the latest. The method to be
applied in this task is comparative analysis, i.e., pool-
ing prices of similar plots and adjusting prices for
deviations of the underlying plot to make them com-
parable. For this purpose, homogeneous sub-districts
showing similar price determining attributes, so-called
location value zones (Bodenrichtwertzonen), are de-
fined.

In view of the aforementioned characteristics of
land markets, it is quite obvious that expert groups
face a challenging statistical estimation problem. Ob-
served transactions have to be filtered to reflect mar-
ket conditions, i.e., purchases between family mem-
bers, forced sales, or seizure should be ruled out.

! See HUTTEL et al. (2013) and the literature cited therein

for an overview on land price determinants.
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Moreover, prices that are untypical need to be identi-
fied as outliers and either adjusted or dropped. Finally,
observed transactions need to be ‘translated’ to reflect
typical land characteristics of the sub-district, which
implies that observed prices have to be weighted or
otherwise adjusted. While there are some clear proce-
dures for filtering, much intuition is required for ad-
justing and weighting observed land prices when up-
dating the location value estimates. In practice, expert
knowledge comes into play at this point. In the case
that no sufficient amount of transactions for pooling is
available, ‘deductive methods’ may be applied (BUN-
DESMINISTERIUM FUR VERKEHR, BAU UND STADT-
ENTWICKLUNG, 2011). These include the considera-
tion of past location values and general market trends.

From a scientific point of view, the question aris-
es if BRW actually reflect location values and how the
procedure applied by the experts can be assessed. In
particular, it would be interesting to analyse if BRW
show systematic biases and if so, where and why these
biases occur.? Any answer to these questions has to
cope with the problem that location values are hypo-
thetical values and thus unobservable. Nonetheless,
given their definition, one would expect that BRW do
not systematically deviate from realized prices in a
location value zone.

Against this background the contribution of this
paper is twofold. First, we aim at the evaluation of
BRW as indicators of location values of agricultural
land through a comparison of BRW and sample statis-
tics of observed land prices. Second, we propose a
statistical smoothing procedure as a data driven alter-
native to the expert-based approach. More specifically,
we make use of an adaptive smoothing procedure that
has been introduced as the “Propagation-Separation
Approach” (PSA) by POLZEHL and SPOKOINY (2006)
into the literature. This method was originally devel-
oped as “Adaptive Weights Smoothing” in the context
of image denoising (POLZEHL and SPOKOINY, 2000).
Recently, it has also been used in geology for the es-
timation of seismic parameter fields (GITIS et al.,
2015). The paper most similar to ours is KOLBE et al.
(2015) who use PSA for the estimation of land values
in an urban context. We follow their statistical proce-
dure, but in contrast to KOLBE et al. (2015) we create
a benchmark that allows us to compare the BRW with

2 Biases of BRW could be rooted in the underlying meth-

odological procedure. Apart from that, expert groups
might have a tendency to update BRW conservatively in
phases of booming land prices to dampen further price
increases.

the PSA-based estimation. Moreover, we assess the
predictive performance of the BRW and PSA in terms
of out-of-sample evaluation. PSA is a nonparametric
regression method that allows separating the underly-
ing structure in the data from distorting noise by
means of an iterative locally adaptive smoothing algo-
rithm. Unlike conventional smoothing algorithms,
such as fixed-bandwidth kernel regression, PSA does
not only consider the distance between two locations
when determining the weight of observations; rather,
it adds a second component that takes into account the
difference in resulting regression estimates. The at-
tractiveness of PSA is based on an appealing statisti-
cal property: the estimator obeys a “small modelling
bias condition” meaning that it shows the smallest
variance given a predetermined bias which can be
controlled by the econometrician (POLzEHL and
SPOKOINY, 2006). Thus, PSA addresses the variance-
bias trade-off in pooling observations from different
sub-districts. Previous applications have documented
that PSA performs well, if data show large homoge-
neous zones that are separated by sharp discontinuities
(BECKER and MATHE, 2013). In contrast, SHEN et al.
(2016) report that PSA has difficulties to identify out-
liers in otherwise homogeneous data. Thus, it is not
clear whether PSA constitutes a viable alternative to
the expert-based determination of location values. The
application and the evaluation of this rather new sta-
tistical method constitutes the second contribution of
our study. We note that we do not aim at developing a
superior statistical method in order to substitute BRW;
rather, we are interested in exploring if PSA may be
used as a complement or a benchmark for official BRW.

The remainder of the article is organized as fol-
lows: Section 2 describes the land transaction data
from Mecklenburg-Western Pomerania that we use as
the empirical basis of our analysis. Afterwards, we
derive a benchmark for assessing the performance of
location value estimators. In Section 3, we analyse
whether BRW show a significant bias and what fac-
tors this hinges on. In particular, we are interested in
whether there are any significant differences in bias
between different expert groups. In Section 4, we
introduce the PSA method in general and demonstrate
how it can be applied to our data. Section 5 presents
the results of an out-of-sample forecast application,
which compares the performance of BRW and PSA at
the one-year ahead prediction of location value. The
paper ends with an assessment of the current practice
of calculating BRW and answers the question if the
use of formal statistical procedures can improve the
informational content of BRW.
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Figure 1. Prices for arable land 2000-2015 in Mecklenburg-Western Pomerania, East Germany, and

whole Germany
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2 Empirical Data and Derivation of
a Benchmark

Mecklenburg-Western Pomerania is one of the former
East German states and is located in the northeast of
Germany. Its land market is characterised by one of
the highest turnover rates in Germany: in 2014, 2.7%
of the agricultural land were sold, whereas the average
in Germany amounts to 0.8%. About 30% of the
transactions are conducted by the Bodenverwertungs-
und -verwaltungs GmbH (BVVG). As in most Ger-
man states, the prices for agricultural land experienced
a strong rise after 2007: the price for arable land in-
creased from almost 0.50 EUR/m? in 2007 to around 2
EUR/m2 in 2015, which means a growth by factor 4
(see Figure 1). Remarkably, the prices in Mecklen-
burg-Western Pomerania stagnated around the aver-
age prices in East Germany for a long period, but have
caught up to the average prices for the whole of Ger-
many since 2007. This means that the increase in pric-
es was much stronger in Mecklenburg-Western Pom-
erania than in other East German states.

In this study, we use a data set of purchases of
arable land in Mecklenburg-Western Pomerania
through the years 2013-2015.2 We drop some transac-
tions that are labelled as ‘unsuited to analysis’ since
they took place between family members or show
other irregularities that mark them as not being repre-
sentative. We also cut off prices below the first per-

® Data source: Landesweite Datensammlung des Oberen

Gutachterausschusses fiir Grundstiickswerte im Land
Mecklenburg-Vorpommern (OGAA M-V)

centile and above the 99" percentile for each year
from 2013-2015. This serves to remove extreme pric-
es, which are unrealistic for agricultural land and are
therefore most likely affected by some sort of error,
e.g., a misplaced decimal point, or are a very untypi-
cal sale. Altogether, we obtain 4,374 observations
over three years. The summary statistics in Table 1
depict an almost linear increase in mean land prices of
about 0.23 EUR/m? from 2013 to 2015. The distribu-
tion of prices in the years 2013-2015 is depicted in
Figure 2. The spatial unit of analysis that is used for
location value estimation is the sub-district (Ge-
markung), a historic administrative unit that is usually
situated at a sub-municipality level. In Mecklenburg-
Western Pomerania, there are 3,557 sub-districts alto-
gether, which implies that in most years there is not
even one observation per sub-district available. This
gives rise to the necessity of using observations from
several years for location value prediction. Experts
may use deductive methods and their experience for
this purpose. For PSA, we will pool time-adjusted
prices from 2013 and 2014 as the basis for predicting
the location values of 2015.

* While the values we cut off at the upper price range are

clearly outliers (the 99™ percentile differs from the mean
by up to 3.5 standard deviations), the first percentile on-
ly differs by 1.5 standard deviations on average. We
consider the prices below that mark unrealistically low,
but to safeguard against distortions introduced by a
hypothetical inadequate outlier removal, we also per-
formed all the computations in this paper on the data
without removing data below the first percentile. The
results differ only slightly and are equivalent in terms of
our research questions.
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Table 1. Summary statistics of observed purchase prices, plot size and soil quality of sold pieces of land

Summary Plot size Soil Prices Prices 2013 Prices 2014 Prices 2015
statistics (ha) quality (EUR/M?) (EUR/m?) (EUR/M?) (EUR/m?2)
Mean 8.89 38.18 1.64 1.43 1.64 1.92
Standard 19.94 8.14 0.76 0.66 0.72 0.82
Deviation

Observations 4,374 4,278 4,374 1,651 1,479 1,244

Note:

Soil quality is measured on a scale from 0 to 120 in ascending order. Different total counts result from missing soil quality

values in the data set. In the subsequent analyses, the largest possible datasets are used.

Source: own elaboration

Figure 2. Density plots of price distribution for the years 2013,

2014 and 2015
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Density
04 05

03

01

0.0

‘typical’ for its sub-district.

To calculate the effects of condi-
tioning variables, we set up a linear
regression model for (log) land-prices.
We consider soil quality and plot size as
covariates. Soil quality is known to
have a considerable influence on land
prices (e.g., HENNIG et al., 2014). Plot
size on the other hand is included be-
cause we hypothesize that large plot
sizes tend to be sold by the federal trust
(BVVG) that is in charge of adminis-

Price (EUR/m?)

trating formerly state owned land. It is
4 not unlikely that the prices from these
sales differ from sales among private
parties (HUTTEL et al., 2016). Given the

Note:

Source: own elaboration

In order to assess the predictive performance of
BRW and PSA, we need to establish a benchmark,
given that the true location values are not observable.
We call this benchmark empirical location values
(ELV). An important property of ELV is that by de-
sign they are an unbiased estimator of location value.
Briefly, they are obtained by calculating the average
price of sold arable land in a sub-district in a given
year. However, we first perform an adjustment of the
observed purchase prices. This step serves to reduce
the variance of ELV by shifting observed prices to-
wards the expected value, which is particularly useful
to mitigate extreme prices and to some extent should
compensate the fact that in many sub-districts only
few transactions are observed per year. Adjustment
consists in subtracting from the observed prices the
effects of certain individual plot characteristics, e.g.,

2013 (black), 2014 (blue) and 2015 (green). Dashed lines indicate the
median. The kernel bandwidth used for estimating the densities is 0.13.
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observed linear trend in our data, we
also account for temporal effects by
including time dummy variables. More-
over, regional dummy variables are
included to reduce the risk of omitted variable bias.
Through temporal and spatial dummy variables, all
unobserved effects that are constant over time or
space are captured. Finally, we also include the quad-
ratic soil quality and plot size terms, since we found
that the corresponding model achieves a lower BIC
than the one with only the linear terms. Hence, we fit
the following log-linear regression model to our data
(see next paragraph for details):

— 2
log(pi,j,t) = a1Sijc + a28{j¢ + B1qij¢
2
+ B2 + Vlijtz2014

6
1)
+ 81 jt2015 + Z Ui Jijek
k=2
+ b + gi,j,t
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where s; ;. denotes plot size of transaction i in sub-
district j in year t, g; j . denotes the corresponding soil
quality, I; j 12014 and I; j t 2915 are time dummy varia-
bles indicating the year the transaction took place in.
The J; jtx are dummy variables indicating which re-
gion the area is located in, and b is a constant. The
subsequent adjustment step corrects actual prices for
effects of above-average or below-average values of
soil quality and plot size:

= & (sije = 5)

- 5)

A — 5 —2
—b1 (Qi,j,t - qj) - BZ(QiZ,j,t - qj)

log(p: ) = log(pi )

— @y(s?e

2)

where p; ;. denotes adjusted prices. We determine
average soil quality ﬁj and average plot size s; of sub-

district j by taking the mean soil quality and plot size
of all sold plots in that sub-district from 2013-15 (see
Table 1 for summary statistics). Note that we do not
adjust for temporal effects, because we want to esti-
mate time-varying location values. In a final step, the
ELV éj_t of sub-district j in year t is derived by re-
transforming the adjusted log-price with the exponen-
tial and taking the sub-district- and year-wise mean of
the adjusted prices:

Mjt
1w
Ojc = — ) Pije

et

where n; , denotes the number of observations in sub-
district j in year t.

The model in Equation (1) is estimated with OLS
yielding highly significant effects for all covariates, as
displayed in Table 2. The effects of the years 2014
and 2015 reflect the upward trend of land prices ob-
served in our data. Soil quality has a positive effect on
land prices as expected. Plot size, too, shows a posi-
tive effect. We are aware that the rather simple model
in Equation (1) may not capture heterogeneity of land
prices completely, but the moderate model fit suggests

3)

® The fact that average soil quality and average plot size

refer to sub-districts (Gemarkungen) and not to location
value zones (Bodenrichtwertzonen) may drive a wedge
between BRW and ELV. However, we expect this po-
tential deviation to be small, since location value zones,
which typically comprise several sub-districts, are by
definition regions of homogeneous natural conditions.

that ELV constitute a fair approximation of the true
location value.

Table 2. Regression model for price adjustment

Covariate Effect (EUR/m?) | Standard error
Intercept -0.8972*** 0.1280
Year 2014 0.1240*** 0.0153
Year 2015 0.2592*** 0.0158
Soil Quality 0.0412*** 0.0070
Soil Quality Squared -0.0003*** 9.5635e-05
Plot Size (ha) 0.0082*** 0.0008
Plot Size Squared (ha) -2.2212e-05*** 5.2412e-06
Expert Group 2 0.2541%** 0.0208
Expert Group 3 0.1148*** 0.0239
Expert Group 4 0.2027*** 0.0276
Expert Group 5 -0.0539** 0.0245
Expert Group 6 -0.0686*** 0.0217
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Note: The effects refer to log-prices. R2 = 0.30. *** denotes

significance at the 1% level, ** at the 5% level. Standard
errors are robust.
Source: own elaboration

To measure the performance of a location value
predictor, we use the mean squared error (MSE) and
the bias, as explained in the following. The calculation
basis for these measures is the so-termed ‘observed
deviation’, which denotes the deviation 9” - éj,t of a
predicted value 8;, from the ELV 8;,, that we ob-
serve for each sub-district j and year t. Being a
common measure of predictive performance, the
MSE is usually computed with regard to the true value
that is to be estimated. Seeing as true location values
are not observable, however, we can only compute
the MSE with respect to ELV. The relationship
between the MSE with respect to a benchmark
and the MSE with respect to the true location value
can be derived from the decomposition MSE =
E[(6-0)]=E[(8-0)"|+E[@-0)]+
2E[(6 - 8)(8 - 0)].

More than in the MSE itself, we are interested
in the MSE difference between two predictors 8,

and @,. We have MSE, — MSE, = E [(éz - é)z] -
E[(6, - 6)°] + 2E[(9, — ,)(8 - 6)]. If the devia-
tions (6, — 8;) and (6 —0) have a low correlation,
then  E[(6,—0,)(6 —06)] ~E[(§, —6,)]E[(6 —
6)] = 0.° It follows that the MSE with respect to the

® We have E[(6 — )] = 0, because ELV is an unbiased
location value estimator.
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benchmark (i.e., computed on the basis
of the observed deviation) is equivalent

Figure 3. Distribution of ELV and BRW, as well as observed
deviation in the BRW test set

to the MSE with respect to the true
location value for comparing predic-
tors. Therefore, we use the MSE with
respect to ELV as a measure of per-
formance in this study. Finally, we are
interested in the bias of a predictor,
which we estimate with the mean ob-
served deviation.

EUR/mM?

Analysing BRW Bias
and Deviations from
Empirical Location
Values

In this section, we will have a closer
look at BRW as one-year ahead predic-

o]
]

i

tor with the goal of assessing bias and

I
ELV

BRW Observed Deviation

identifying the factors that explain the
observed deviation. It is important to
note that our data set does not contain
BRW for all sub-districts, so we have to perform this
analysis on the subset (‘BRW test set’) of sub-districts
and years for which we have a BRW and at least one
suitable transaction. This leaves us with 900 (in 2013),
664 (in 2014) and 808 (in 2015) sub-districts, respec-
tively.

Figure 3 displays boxplots of ELV, BRW, and the
observed deviation of BRW. We find that compared to
ELV, BRW show a smaller variability as well as a
lower price level, which indicates an underestimation
of location values. We, therefore, expect to find a sig-
nificant bias for BRW. For the test set, we obtain for
BRW a bias of —0.22 EUR/m2. This means an under-
estimation by 11.5% in relation to average land prices
in 2015. In order to infer whether this figure is statisti-
cally significant, we perform a one-sample t-test for
the null hypothesis of zero bias. From the resulting p-
value < 10~*> we conclude that BRW has a signifi-
cant, negative bias. To make our result more robust to
violations of the normality assumption underlying the
t-test, we also perform Wilcoxon’s signed-rank test for
the null-hypothesis of the median being equal to zero.
This test only requires the weaker assumption that the
distribution of the observed deviation is symmetric,
which is approximately given, as illustrated by Figure
3. Here again we obtain a p-value < 107>, which
corroborates the previous result. This shows that BRW
actually tend to underestimate location values.
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Source: own elaboration

Figure 4 depicts the spatial distribution of ob-
served differences between BRW and ELV. Apparent-
ly, there are some regional clusters, in particular in the
Southern half. This observation suggests that system-
atic factors exist that explain the bias of BRW. To
analyse the observed deviation of BRW from ELV
further, we develop a linear regression model for the
absolute value of the observed deviation — this does
not cover the direction of the deviation, but only its
magnitude. To determine what factors lead to an over-
or underestimation, we furthermore perform a logistic
regression of the sign of observed deviation against
the same factors. As explanatory variables in both
models, we consider the indicators of average soil
quality and average plot size computed as in Equation
(2), a time dummy and a categorical variable indicat-
ing which expert group determined the BRW.” The
rationale of choosing these covariates is as follows:
one might conjecture that experts tend to oversmooth
location values in areas with high soil quality, i.e.,
high land prices. Likewise, experts may have difficul-
ties to smooth prices for small plots, which are often
sold at high prices (per square meter). Moreover, since
BRW are not continuously updated, they may lag

" There are six expert groups in our BRW test set, with

506, 300, 462, 389, 259, and 552 observations, respec-
tively.
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Figure 4. Mean deviation of BRW from ELV per sub-district from 2013 to 2015

B :05¢-066¢
| | o0e5€-030¢
| |-020€e-000€
| Joot1e-020¢€
| Joze-176¢€

Note:
Source: own elaboration

behind the actual development of location values,
particularly during a period of booming prices. Final-
ly, the expert groups themselves may have an impact
on the bias, because BRW are not calculated with a
clear algorithm but involve personal judgements that
may differ among expert groups. However, the effect
of this variable has to be interpreted with caution,
because it is difficult to separate the impact of experts
from unobserved regional effects. As both expert
group and year are categorical variables and we use a
model without a constant, we have to exclude one
dummy variable from the model. We chose the time
dummy for 2013, which is then the reference year. All
expert group dummies are included so that they can be
interpreted as regional fixed effects. To better quantify
the regional effects, we use centred versions of the
variables ‘average plot size’ and ‘average soil quality’'
by subtracting their individual means.

Table 3 summarises the results of the regression
model estimated with OLS. Since a Breusch-Pagan
test rejected the hypothesis of homoscedastic residuals
(p-value 5.817e-08), we computed robust standard

Categories are based on quintiles. The blank sub-districts are owing to a lack of BRW values and/or transactions for our analysis.

errors for the estimated coefficients. Both years as
well as average plot size and average soil quality are
significant at least at the 5% level. Note that we have
already adjusted ELV for the effects of soil quality
and plot size of individual transactions. The effects of
this regression model, therefore, refer to properties of
a sub-district, not of transactions. The effect of aver-
age plot size is significant at the 1% level, yet — at less
than 0.01 EUR/ha and 0.05 EUR for a sub-district
with mean average plot size s; of 9.77 ha — rather
small in magnitude. Average soil quality has an effect
of 0.16 EUR/m? for a sub-district of mean average soil
quality ﬁj of 38.94. Temporal effects are in the same

order of magnitude as average soil quality. The mag-
nitude of bias in BRW increases with every year,
which we attribute to the linear increase in mean land
prices that we have observed between 2013 and 2015.
It seems as though BRW do not sufficiently take mar-
ket trends into account. As for expert effects, we find
that all expert groups show effects significant at the
1% level, ranging from 0.36 EUR/m?2 to 0.48 EUR/m2.
This means that there is a significant deviation in

194



GJAE 66 (2017), Number 3

2013 for all expert groups, which even increases in the
following years. To determine, however, if a system-
atic over- or underestimation is present, we perform a
logistic regression.

Table 4 summarises the effects of our covariates
on the probability of BRW overestimating (positive
sign) or underestimating (negative sign) location value.
We find that average plot size shows a significant neg-
ative effect, meaning that the larger transacted plots in
a sub-district on average, the more does BRW tend to
underestimate its location value. The results for aver-
age soil quality do not show any significant effect for
the direction of the bias. Finally, we see that all expert
groups tend to underestimate location values in 2013,

Table 3. Coefficients of absolute value of BRW
deviation (OLS linear regression).

Covariate Coeff. Std. error
Year 2014 0.0496** 0.0207
Year 2015 0.1084*** 0.0199
Avg. Plot Size (ha) 0.0061*** 0.0008
Avg. Soil Quality 0.0041*** 0.0015
Expert Group 1 0.4493*** 0.0204
Expert Group 2 0.4531*** 0.0299
Expert Group 3 0.4813*** 0.0232
Expert Group 4 0.4630*** 0.0266
Expert Group 5 0.4135*** 0.0260
Expert Group 6 0.3645*** 0.0228

Note: Dependent variable is the absolute value of deviation.
p?=10.09. ** and *** denote significance at the 5 and 1%
levels, respectively. Standard errors are robust.

Source: own elaboration

Table 4. Coefficients of direction of BRW
deviation (logistic regression).

Covariate Coeff. Std. error
Year 2014 0.0215 0.1107
Year 2015 0.0995 0.1034
Avg. Plot Size (ha) -0.0378*** 0.0054
Avg. Soil Quality -0.0068 0.0077
Expert Group 1 -0.6761*** 0.1124
Expert Group 2 -0.9148*** 0.1645
Expert Group 3 -0.5953*** 0.1174
Expert Group 4 -0.0762 0.1378
Expert Group 5 -1.0220*** 0.1541
Expert Group 6 -0.6559*** 0.1208
Note: Dependent variable is the sign of deviation (1 = non-

negative, 0 = negative). The model has been fit with ML.
Nagelkerke pseudo-R2 = 0.06. *** denotes significance at
the 1% level.

Source: own elaboration
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even though this effect is comparatively weak and not
significant for Group 4. In the years 2014 and 2015, no
significant change occurs in this regard.

To summarise the findings of this section, our
analysis shows that there is a significant negative bias
in BRW — meaning that experts systematically under-
estimate location value in our BRW test set. This un-
derestimation may be linked to the fact that in the
years covered by our study, we observe a nearly linear
increase in land prices, suggesting that experts do not
sufficiently take the trend into consideration, which is
corroborated by our regression analysis of BRW devi-
ation from ELV. This analysis has further shown that
high average soil quality in a sub-district likewise
increases deviation, but in both directions; market
trend therefore does not appear to be the only source
of erroneous assessment, but it accounts more than
other factors for the observed bias. Finally, we have
found some heterogeneity between expert groups,
which can also be interpreted as regional heterogeneity.

4 A Propagation-Separation
Approach for Estimating
Location Value

In the introduction to this paper, we have pointed out
that data scarcity requires to pool observations from
different sub-districts to estimate location values.
Depending on how the pooling is carried out, it trades
a reduced variance for an increased bias. In the previ-
ous section, we have seen that BRW show a relatively
low variance compared to the benchmark, but at the
same time are afflicted by a significant bias. In the
present section, we introduce a statistical procedure,
which unlike BRW selects the sub-districts used for
pooling in a purely data-driven way for every sub-
district.

The “Propagation-Separation Approach” (PSA;
POLZEHL and SPOKOINY, 2006) is an iterative, adap-
tive procedure based on local constant regression. The
underlying idea of this approach is to find for every
point x; a maximal local neighbourhood in which the
local constant parametric assumption is not violated —
in other words, in which we can assume equal loca-
tion value. At the beginning of the procedure, a small
neighbourhood U°(x;) of every point x; is considered
to estimate the location value 6(x;).2 Afterwards, in

& For our analysis, the initial neighbourhood includes only

x; itself.
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each step k, we update the initial location value esti-
mate by including new points x; from an extended
neighbourhood U*(x;); but those candidates x; are
tested for homogeneous location value and only used
for re-estimation of location value if the hypothesis of
local homogeneity 8(x;) = 6(x;) is not rejected. This
iterative procedure is continued until we reach a pre-
defined maximal radius of the neighbourhood.

Following KoLBE et al. (2015), the underlying
local regression model for estimating the location
values can be described as

yi =0(x;) +¢€, e;~N(0,07) )
where y; denotes the observed log price of agricultural
land, x; is a vector of explanatory variables which
determine the distribution of observation y;. It is
worth mentioning that PSA in general would be able
to detect stable trends as well, which is not done here
due to the short observation period of three years. This
requires the specification of an appropriate parametric
model. When Equation (4) is assumed to be a local
parametric model such as a time trend model, PSA
can determine the longest homogeneous time intervals
where the same parameter coefficients hold. In fact,
PSA has been successfully applied to capture tem-
poral structure breaks in finance and insurance (SHEN
ET AL, 2016; CHEN and Niu, 2014; CHEN et al.,
2010). Since we are interested in finding sub-districts
with homogeneous location values, x; simply refers to
location coordinates [x;;, x,;] in our case.” In a local
regression model, the local parameter 8(x;) can be
estimated by the weighted maximum likelihood esti-
mation where a nonnegative weight w;; = w;;(x;) <
1 is given to each observation y;, i,j = 1,...,n. The
corresponding local maximum likelihood estimator
for a fixed x; is given by:

n
0(x;) = arggnaxz Wij(xl-)logp(yj,e), (5)
j=1

where p(-, 8) denotes the density function. If the den-
sity function p(:, 8) belongs to the exponential family,
for instance a Gaussian distribution, PoLzEHL and
SPOKOINY (2006) have shown that the explicit solu-
tion of (5) is in fact a Nadaraya-Watson estimator:

% We use the coordinates of a sub-district’s centre point as

coordinates of the sub-district.

A(x,) = 27:1 Wij(xi):)’j.

YR wi () (6)
As above mentioned, the PS approach is an iterative
procedure, and in each iteration step, the local estima-
tor is defined as a weighted mean of observations.
Therefore, in iteration step k (i.e., within the neigh-
bourhood U¥(x;)), the adaptive local estimator
ék(xi) is

27=1W{€j(xi)y]'
n

Nk —
7] (xl) j=1Wikj(Xi) . (7)
The main advantage of the PS approach arises from
the construction of the weights wikj (x;). The determi-
nation of weights in the PS approach not only consid-
ers the likeness of the data with the sub-district of
interest, but also controls the bias possibly introduced
from the extension of data samples. To be specific, the
weights depend on the product of two components:
the location component Kj,. and the homogeneity
component Kyom:

W = Kioe(15) Knom (s5), (8)

where Kjo.(-) and Kpom(+) are two kernel functions
that are non-negative and strictly monotonically de-
creasing on the support [0, 1], for example the triangu-
lar kernel function. Similar to the standard nonpara-
metric regression, the argument in the location compo-
nent Kj,. is the Euclidean distance measure between
the locations i and j divided by the bandwidth h*:

p(xi, x5)
hk ©))

k —

On the other hand, s{‘j in the homogeneity component
is a statistical penalty:

k
Ty

1’ (10)

k _

where Ti’; is the test statistic for a constant local para-
metric estimate and A is the critical value of the test
statistic T/S. The homogeneity component Kpom(s)
becomes relevant for controlling the bias when ex-
tending the size of neighbourhood U¥(x;). To test the
hypothesis of local homogeneity 6(x;) = 6(x;) at
each step k, the estimates 6~"(x;) and 6/ '(x;)
obtained from the previous iteration is compared.
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Following POLZEHL and SPOKOINY (2006) and BECK-
ER and MATHE (2013), the test statistic T/ is con-
structed based on the Kullback-Leibler dlvergence
between the pointwise parameter estimates of the pre-
vious iteration step at two different points. Formally it
states

Ti’; = NfTrxL(6F7, éjk—l) (11)

where Nf = ¥7_; wf(x;). The decision rule of the

test requires to compare T" with the corresponding

critical values A. The null hypothesis of parameter
homogeneity is rejected if T" > A. As a result,

l’j ” > 1, Khom(su) =0 and w =0, i.e., obser-
vation x] does not belong to U* (xl) and will not be
used to estimate 8 (x;).These two characteristics of the

PS approach are very desirable: it extends the homo-

geneous neighbourhood with non-zero weights to

reduce the variance of the estimates, and separates
every two regions with different parameter values to
control the bias.

In summary, the procedure for a fixed location x,
is provided as follows:

1) Start with the smallest initial bandwidth h°, com-
pute the initial estimate 6°(x;) according to (6)
with w = Kioc(1%). N2 = ¥ wi (x;)

2) For k = 1, the bandwidth is extended to h'. Cal-

P(xl Xj)
hl
Tl

0
=4 INPKL(6?,6?). Then derive the adaptive

weights w; = Kjoc (1) Khom(sf;) and estimate
9 (xi).

3) For k > 2, the bandwidth increase to h*. Derive
the adaptive weights w/S = Kioc(15)Knom(sf)

lk p(xl x})
hl

culate the components l and Silj =

with and

k ~ ~
sk = % = ATINFTIHL@BE, GE Y
N = 37, wi(x;) Then estimate 6% (x;).
4) The procedure stops if k = k*, otherwise k = k +
1. k* indicates that the bandwidth h* reaches the

pre-defined maximum bandwidth r*.*°

and

0" Note that the iteration is continued even if the homoge-
neity hypothesis is rejected for all x; in U*(x;). The
procedure does not require that “homogeneous areas” be
contiguous.

The crucial parameter of PS approach is the critical
value A that determines the number of observations to
be used in the estimation of each location value.
Greater values of A allow the inclusion of more points
into a homogeneous region, leading to a smoother
parameter surface and potentially a higher bias at re-
duced variance. In fact, for 4 — oo, we obtain a non-
adaptive kernel smoother. On the other hand, smaller
values of A will lead to a stricter selection of homoge-
neous regions and less points being included into the
estimation. As a result, less available information is
used and the variance of the estimate is generally
higher. Due to the multiple testing procedure in this
adaptive algorithm, there is no well-defined unique
choice of A1 (KOLBE et al., 2015). POLZEHL and
SPOKOINY (2006) suggest performing Monte Carlo
simulations of the relevant likelihood function with
globally constant parameters on the design space. 1
can then be chosen as the smallest value that ensures
the homogeneity assumption holds everywhere with a
high probability. For computing A and the correspond-
ing PSA estimates, we use the package ‘aws’ for the
statistical software R (POLZEHL, 2016).

5 Comparing BRW and PSA

In this section, we compare the performance of BRW
and PSA at the one-year ahead prediction of location
values. For this purpose, we use a training set for PSA
based on adjusted prices from 2013 and 2014, and a
test set of ELV from 2015 for validation purposes. As
explained in Section 2, the low number of observa-
tions in 2014 requires that we pool data from 2013
and 2014. Moreover, it is convenient that for obtain-
ing our training set, we use the same procedure that
we previously applied to compute ELV, but only tak-
ing into account observations from 2013 and 2014
since we cannot include information from the test set.
In particular, we use Equation (2) for price adjustment
where we furthermore add the estimated temporal
effect y to observations from the year 2014. This ap-
proach to temporal pooling is very similar to the de-
ductive methods available to land price experts. The
resulting prices reflect the 2014 price level of typical
plots. As with ELV, we compute the mean per sub-
district and obtain a training set of 1,556 average pric-
es that represent the initial location value estimates for
PSA. There are, however, 3,557 sub-districts in Meck-
lenburg-Western Pomerania, so we do not have PSA
estimates of the 2015 location values for all sub-
districts; moreover, we do not have corresponding
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BRW for all sub-districts, either. Consequently, we
have to filter the 2015 ELV data by selecting only
those sub-districts, for which we have a value in the
PSA training set and a BRW to enable a fair compari-
son. This reduces the number of sub-districts in the
test set to 502.

As explained above, PSA has two parameters A
and h,,,, that control the threshold of the homogenei-
ty test and the maximum distance of observations that
are included in local estimation, respectively. For our
PSA baseline predictor, A is 9.72 as determined by
Monte Carlo simulation (POLZEHL and SPOKOINY,
2006) (cf. Section 4). h,,,, can be selected such that
for any cell on the grid, all other cells lie within the
maximum distance. As we use a 100x100 grid, we set
hmax 10 150, which is slightly greater than the length
of the grid’s diagonal. This is the configuration of our
default PSA predictor ‘PSA1’.

To demonstrate the sensitivity of the results to
parameter choice, we also perform PSA with a re-
duced value of h,,;, (‘PSA2’) as well as with greater
(‘PSA4’) and smaller (‘PSA3’) values of A. Further-
more, we seek to account for the fact that expert-based
estimates can leverage trends observed during the past
years for prediction, whereas PSA is limited to syn-
chronous data. To reflect this possibil-
ity, we combine PSA with a linear
trend, based on the effect y from the

Table 5. Characteristics of the used predictors

Predictor | Description

BRW Expert based location value

PSA1 1=972; Rypax = 150
PSA2 1=9.72; Rmax = 10
PSA3 1=10.972; Rypax = 150
PSA4 1=972; Romax = 150
PSA5 PSA1 trend-adjusted

Source: own elaboration

next year, this should improve the PSA estimate sig-
nificantly. An overview of the predictors used in our
analysis and of their characteristics is provided in
Table 5.

Figure 5 contains in its upper panel boxplots of
the distributions of empirical location values in the
test set and the predicted values. The lower panel dis-
plays boxplots of the differences between predicted
and empirical location values. The more a predictor’s
deviations from ELV are centred around zero, the less
bias it has. A first impression is that BRW as well as
PSA predictors have a significant bias, with the single
exception to the trend-adjusted PSA5. Altogether, the
distributions of observed deviation are quite similar.

Figure 5. Top: Empirical and predicted location values for 2015.
Bottom: Observed deviation in 2015.

regression model in Equation (1) fitted = -

to the 2013/14 data. We compute this 5 7

trend-adjusted predictor (‘PSAS’) as 2 < - e

p 5 : : o ,

= where p is the PSA baseline predic- § s i —3—

tor. The rationale behind this expres- < T =

sion is the following. We assume that g Y - - ' - - -

there is a linear upward trend in the g - : : ! E . s

data from 2014 to 2015, adding a fixed s o —

quantity to the 2014 log-prices, i.e., E(iV BR'W 1' 2' ?" ; E"

log(pj2015) =108(pj2014) + ¥ In RS

order to de-trend PSA, we need to £ s - - & S

subtract this shift ¥, which is estimated % =" i i |

as 7 with the regression model in T ey —m—— : ' : -

Equation (1) based on 2013/14 log- % - - - - :
= e | 1 1 ! ! 1

prices. Hence, we have log(p;) = a ! : ! | : :
pe) P P - _:_ v

log(p;) — # and accordingly p; = g 9 T g jér . 8
(]

A ~ Dj PO 3 — 8
exp(log(pj) -9 = e—}i/, where p; is s ¥ l ‘I’ T 2 % ‘l’ !
the PSA-estimate for the price in 2015 ELV BRW 1 2 3 4 5
of area j and p; is the correspondin

J Pj P g Note: Observed deviation is the differences between predicted and empirical loca-

de-trended estimate. If no abrupt
change in trend is expected for the

tion value. 1-5 denote PSA1-PSA5.
Source: own elaboration
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To formally compare the predictors, we compute the
MSE and test whether the predictors (i) have a bias
significantly different from zero and (ii) have a signif-
icantly smaller bias than BRW. For (i), we perform
one-sample t-tests assuming a non-homogeneous vari-
ance, and additional non-parametric Wilcoxon’s
signed-rank tests as in Section 3. For (ii), we carry out
two-sample t-tests assuming a non-homogeneous var-
iance (Welch test) and, to make the results robust
against a violation of the t-test’s normality assump-
tion, Wilcoxon’s rank-sum test.

Table 6 lists the results of these tests as well as
the MSE for every predictor. We find that all predic-
tors have a significant, negative bias in the same order
of magnitude. The single exception to this is PSA5,
that shows a smaller negative bias which is only sig-
nificant at the 10% level. The MSE, too, indicates a
similar performance of all PSA predictors and BRW,
with the MSE of PSAS5 of course being lower due to
its reduced bias.

In summary, our results show that PSA in various
configurations can reach the same level of accuracy in
terms of MSE and bias as BRW. Since, apart from
PSA5, none of the PSA estimators have shown less
bias than BRW, we find that its data-driven approach
to pooling does not show any apparent advantage over
the fixed BRW zones. The substantial improvement of
PSAS achieved by considering linear trend on top of
PSA indicates how strongly the general market trend
from 2013-2015 impacts on the performance of pre-
dictors. The fact that, like PSA, BRW does not seem
to take trend into consideration would explain the
negative bias, especially seeing as the increase in
mean land prices from 2014 to 2015 (0.28 EUR/m?)
lies in the same order of magnitude.

6 Discussion and Conclusion

In our analysis of sales prices of arable land in Meck-
lenburg-Western Pomerania over the years 2013-
2015, we have found that BRW significantly underes-
timates location values of the following year. A re-
gression analysis of the observed deviation has point-
ed towards regional heterogeneity, soil quality, and
temporal effects as explanatory factors of this devia-
tion. Indeed, we observe a strong linear increase in
mean land prices for every year from 2013-2015,
which suggests that the time trend is not sufficiently
taken into account in BRW estimation. However, soil
quality also shows a strong effect, suggesting that
experts have difficulties in correctly considering soil
quality for location value estimation. Secondly, we
find that on our 2015 test data, PSA predicts location
values with an accuracy comparable to that of BRW,
both in terms of bias and MSE. These findings are in
line with KoLBE et al. (2015), who find that PSA is
able to replicate BRW in an urban context. The per-
formance depends to a limited degree on the choice of
the algorithm’s parameters, but neither bias nor MSE
have proven too sensitive in this regard. Since PSA
does not achieve a reduction of bias, it appears as
though its adaptive approach does not hold any ad-
vantage over fixed BRW zones in the estimation of
location values of agricultural land aside from the
automated and objective procedure. The performance
improvement when a linear trend is taken into consid-
eration, however, hints at a potential for improving
BRW or PSA as location value estimators by com-
plementing these approaches with conventional fore-
casting techniques. It should be emphasized, however,
that this finding is specific to the observation period in

Table 6. Estimated bias, test statistics of the applied tests and the mean squared error (MSE) w.r.t. ELV

Predictor Bias Test (i): One- Test (i): Wilcoxon Test (ii): Test (ii): Wilcoxon MSE
(EUR/mM?) sample t-test signed rank test Welch test rank sum test (EUR/m2)?
BRW -0.25 -8.3069*** 38835*** - - 0.5143
PSAl -0.27 -9.2707*** 36889*** -0.5686 124360 0.5107
PSA2 -0.28 -9.4556*** 36698*** -0.7162 123940 0.5167
PSA3 -0.26 -8.2711%** 37092*** -0.2607 123980 0.5665
PSA4 -0.27 -9.1851*** 37403*** -0.4924 124780 0.5067
PSA5 -0.05 -1.8638* 60394 4.6367*** 148140*** 0.4352
Note: *** denotes significance at the 1%, * at the 10% significance level.

Source: own elaboration
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this study that is characterized by a steady increase of
land prices. Extrapolating a linear trend when prices
begin to stagnate will result in a bias as well. It is
noteworthy at this point that PSA in a different con-
figuration could also be used to identify structural
breaks in the price trend.

A further comment seems apposite at this point.
One might argue that BRW are not intended to fore-
cast location values and even trying to do so may fail
in information efficient markets. On the other hand,
market participants may use BRW as a yardstick for
their price expectations of prospective land transac-
tions. Thus, BRW should be up-to-date and not lag
behind current market conditions. In a rapidly chang-
ing environment a biannual update of BRW, as re-
quested by law, may lead to a sluggish adjustment of
location values.

A practical issue with PSA is that outliers are
usually not smoothed by PSA — the reason being that
the homogeneity test, that is performed at every itera-
tion when smoothing the sub-district with the outlier,
will most certainly result in zero weights for most
values other than the outlier itself. On the one hand,
this is precisely the sort of behaviour that we wish,
because it keeps the bias low when pooling values. On
the other hand, it does not allow us to reach a reason-
able estimate for the outlier itself. The reasons for the
occurrence of such singular values may be manifold,
and it is impractical to derive a general rule of treating
them — in this analysis, we have opted for an a priori
removal of the highest and lowest percentiles of pric-
es. Our original concern that the results might be too
sensitive to the choice of parameters has proven un-
justified after this outlier removal. It seems that results
for different parameters diverge more strongly in the
presence of extreme values.

One limitation to our results is that our data set is
of rather limited size. Carrying out similar calcula-
tions for other regions with a longer time series of
land prices and BRW could improve the reliability of
our findings. Moreover, our observation period is
characterised by a strong linear upward trend of mean
land prices. Further assessment of BRW and PSA on
data without such a trend might elucidate if the per-
formance of PSA holds under different market condi-
tions, too. This caveat notwithstanding, we have found
PSA to be a convenient tool for the automatic estima-
tion of location value of agricultural land in a trans-
parent way since no expert knowledge is required for
the procedure. Such a tool can complement the expert-
based approach and serve as a benchmark.

References

BAUGESETZBUCH as published on 23" September 2004
(BGBI. | S. 2414), last changed by article 6 of the law
of 20" October 2015 (BGBI. | p. 1722).

BECKER, S. and P. MATHE (2013): A different perspective
on the Propagation-Separation Approach. In; Electronic
Journal of Statistics 7 (2013) 2702-2736. DOI:
10.1214/13-EJS860.

BUNDESMINISTERIUM FUR VERKEHR, BAU UND STADT-
ENTWICKLUNG (2011): Richtlinie zur Ermittlung von
Bodenrichtwerten (Bodenrichtwertrichtlinie — BRW-
RL). Bundesanzeiger of 11" February 2011 (no. 24:
597).

CHEN, Y., W. HARDLE and U. PIGORSCH (2010). Localized
Realized Volatility Modeling. In: Journal of the Ameri-
can Statistical Association 105 (492): 1376-1393.

CHEN, Y. and L. Niu (2014). Adaptive dynamic Nelson-
Siegel term structure model with applications. In: Jour-
nal of Econometrics 180 (1): 98-115.

GiTis, V.G.A., B. DERENDYAEV, S.A. PIrROGOV, V.G.
SPOKOINY and E.F. YURKOV (2015): Adaptive Estima-
tion of Seismic Parameter Fields from Earthquake Cata-
logs. In: Journal of Communications Technology and
Electronics 60 (12): 1459-1465.

HENNIG, S., G. BREUSTEDT and U. LATACZ-LOHMANN
(2014): Zum Einfluss mitgehandelter Zahlungsan-
spruche auf die Kauf- und Pachtpreise von Ackerland
in Schleswig-Holstein. In: German Journal of Agricul-
tural Economics 63 (4): 219-2309.

HUTTEL, S., L. WILDERMANN and C. CROONENBROEK (2016):
How do institutional market players matter in farmland
pricing? In: Land Use Policy 59 (2016): 154-167.

HUTTEL, S., M. ODENING and A. BALMANN (eds.) (2013):
Agricultural Land Markets — Recent Developments and
Determinants. In: German Journal of Agricultural Eco-
nomics — Special Issue Vol. 62 (2).

KOLBE, J., R. ScHULz, M. WERSING and A. WERWATZ
(2015): Identifying Berlin’s land value map using
adaptive weights smoothing. In: Computational Statis-
tics 2015 (30): 767-790. DOI 10.1007/s00180-015-
0559-9.

POLZEHL, J. and V.G. SPOKOINY (2000): Adaptive Weights
Smoothing with Applications to Image Restoration. In:
Journal of the Royal Statistical Society. Series B (Statis-
tical Methodology) 62 (2): 335-354.

— (2006): Propagation-Separation Approach for Local Like-
lihood Estimation. In: Probability Theory and Related
Fields 135 (3): 335-362.

PoLZEHL J. (2016): aws: Adaptive Weights Smoothing. In:
http://cran.r-project.org/package=aws. R-package version
1.9-6.

SHEN, Z., M. ODENING and O. OKHRIN (2016): Adaptive
local parametric estimation of crop yields: Implication
for crop insurance ratemaking. Paper prepared for
presentation at the 156" EAAE Seminar ‘Prospects for
agricultural insurance in Europe’, Wageningen, Nether-
lands, October 3-4, 2016.

STATISTISCHES BUNDESAMT (2015): Kaufwerte fir land-
wirtschaftliche Grundstiicke 2015. Fachserie 3, Reihe
2.4. Wiesbaden.

200



GJAE 66 (2017), Number 3
Acknowledgements

Financial support from the German Research Founda-
tion (DFG) and the German Academic Exchange Ser-
vice (DAAD) is gratefully acknowledged. We thank
P. Kutschke and T. Gehrke of the Oberer Gutachter-
ausschuss fur Grundstlickswerte im Land Mecklen-
burg-Vorpommern for providing the data.

Contact author:

GEORG HELBING

Humboldt-Universitat zu Berlin

Faculty of Life Sciences

Department of Agricultural Economics
Unter den Linden 6, 10099 Berlin

e-mail: georg.helbing@agrar.hu-berlin.de

201



