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TEMPERATURE PROBABILITIES AND THE
BAYESIAN ‘NO DATA’ PROBLEM

Thomas L. Sporleder

Weather constitutes an exogenous factor in
agriculture which may have considerable influence on
production and marketing. For a ° particular
commodity, weather may influence quantity produced,
quality of the commodity marketed, and
consequently influence prices received (or paid) by
various firms associated with that commodity system.
Although some has been written about the influence
of weather on agriculture [6,9,10, 11, 13,17], little
-economic analysis is available which attempts to
integrate estimated probabilities of some weather
phenomenon (a notable exception is McQuigg and
Doll [11]). This latter situation may be attributed, at
least partially, to the complexities of such an
integrative analysis. '

This paper examines one possible procedure for
integrating temperature probability estimates into an
analysis- of decisions under wuncertainty, ‘which
reduces the problem to one of risk. Probabilities of
low temperature are utilized in a Bayesian context to
illustrate decision-making concerning freeze
protection in citrus.

TEMPERATURE PROBABILITIES

Risk and Uncertainty

The two types of outcomes or eventualities
which influence plans for the future of every business
firm are risk and uncertainty. If each outcome is
unknown but occurs with a known probability
distribution, the situation is regarded as risk. If each
outcome is unknown and the probability of

occurrerice of each.outcome is unknown the situation -

is regarded as an uncertainty [7].

Freeze Damage

The distinction between risk and uncertainty is a-

useful one when temperature probabilities and freezes

are considered. Freeze damage or loss to a particular
commodity may be regarded as an uncertainty while
the occurrence of a particular low temperature (or
range of temperatures) may be regarded as a risk. This
is because actuval freeze damage or loss to a crop is a
function of other variables, in  addition to
temperature, and all possible actions which could be
taken for prevention of freeze damage. In reality, this
simply means that if the outcome is regarded as
freeze damage it may be classified as an uncertainty.
However, if the outcome is regarded as a temperature
occurrence (or range of temperatures) ther that
outcome may be regarded as a risk.

Some of the other variables which are
functionally related to freeze damage in citrus are
best stated by Orton [12, p. 19]:

There are no easily defined criteria
by which the severity of freezes in a
given region may be judged. The
inter-relationship between a very large
number of micrometeorlogical and
physiological factors are too complex.
In the case of citrus, the occurrence of
freeze injury in the simplest terms is
influenced by a relationship among the
critical tissue temperature; the severity
and duration of freeze temperatures, the
amount of stored heat and the presence
or absence of wind during the freeze.
Critical - temperatures vary with tissue
age, type, condition, variety and
nutrition. Meteorlogical factors and
cultural practices affect dormancy and
cold hardiness, which in turn affects
critical temperatures.

It is obvious from the above that freeze damage as an
outcome . with. known probability would "require

* estimable relationships among a complex -  of
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inter-related variables. Each of these other variables
possess probability distributions but many would be
difficult to quantify.

As a naive model, however, temperature
probability could be considered an indicator of the
outcome freeze damage. This leads directly to a
consideration of the quantification of low
temperature occurrence.

Computational Aspects

Calculating probabilities of low temperature
occurrence in some relevant geographic area may be
accomplished by evaluating extreme minimum
temperature data utilizing the statistics of extremes.
The methodological framework for this approach was
originally constructed by Lieblein and others [3, 4,
8]. The- appropriate statistical distribution for
extreme temperatures is the Fisher-Tippett Type I
distribution [16]. The probability density function
(pdf) of the Fisher-Tippett Type I distribution for
minimums is given by [5, p, 113]:

()] f(x,a,ﬁ)=-%—exp [--;—(x-aj-e'(x'“)/ b

where -=< x<=,-=<a<e« and §<0. The
- corresponding cumulative distribution function (cdf)
is:

@) F()=1-exp[-e-(x-a/f]

- where $<0. The parameters ¢ and g of the cdf are
estimated by Lieblein’s fitting procedure [8].
Parameters estimated by Lieblein’s procedure are
“unbiased and as efficient as possible” [4, pp.
223-226] .

The author has written a computer program to
calculate the value of the reduced variate (x-a)/ of
the cdf - [14]. Using either extreme minimum
temperature input data for a month, a group of
months (season), or yearly, the program computes
the value of the reduced variate first for the
maximum extreme minimum temperature in the data
set. The ‘value of the reduced variate is then
computed in unit (integer) decrements of x to the

" minimum extreme minimum. That is, F(x,) is
.computed for each integer value of x, in the data

range from?*:

B)  F)=fy_ f(x,a,0)dx,

where X, - represents a particular temperature. This
calculation will yield the probability (P) that a
temperature equal to or less than x, will occur as
P(x.)=1-F(x,). A return period, T(x) can also be
computed by:

@) T(x)=1/P(x,).

T(x,) is the number of time periods which will
elapse, on the average, before a temperature equal to
or less than x, will occur. Examples of P(x,) and
T(x,) for extreme minimum temperature data for a
citrus season from the Weslaco, Texas, weather
reporting substation are shown in Table 1.

For example, to interpret the probabilities in
Table 1, if x5 = 21° then P(21°) = .045 and T(21°) =
22.1 This means that the probability of a temperature
equal to or less than 21° occurring from November
through March in Weslaco is .045. Also, on the
average, 22.1 November through March seasons
(vears) would elapse before a temperature equal to or
less than 21° would occur.?

THE BAYESIAN “NO DATA” PROBLEM

Temperature probabilities are amenable to
integration with the Bayesian decision model.
Suppose the most simplistic case of decision-maker
faced with choosing an optimal course of action with
respect to investing in freeze protection for his citrus
grove. Let A; represent action concerning freeze
pratection. Let 0]- represent the occurrence of n
alternative states of nature with respect to
temperature. Then,

G nj=iALGY

L ytilization of this functional form is the common practice in climatology. See [14, pp. 5-8] for a more extensive

discussion.

2There is a subtle distinction which should not be ignored when interpreting these statistics. Since the input data are
extreme minimum temperatures (ie. lowest temperature recorded per unit time), P(x,) is technically the probability of a
temperature equal to or less than x, occurring and which is also the extreme minimum per unit time. Another way to compute
the probability of occurrence of a low temperature would be to use occurrence of temperatures (rather tha}n.minimums per unit
time as input data). Such probabilities would always equal or exceed the probabilities computed from minimums. In practice,
however, the distinction is not of major import since low temperatures are the focal point of the analysis. This is true because the
lower the temperature the more likely it is to be the minimum per unit time.

114



Table 1.

" PROBABILITY AND RETURN PERIOD FOR SELECTED ' MINIMUM

TEMPERATURES, WESLACO, TEXAS, NOVEMBER THROUGH MARCH.

Probability of
Temperature Temperature x, or Return Period
Xo Below Occurring T(x,)
35 993 1.0
34 . 971 10
33 921 1.1
32 837 1.2
31 728 1.4
30 .606 1.6
29 .487 2.1
28 380 2.6
27 290 34
26 218 4.6
25 el 6.2
24 118 8.5
23 086 11.6
22 063 16.0
21 045 22.1
20 033 30.7
19 023 42.6
18 .. 017 593
17 -.012 82.6
16 009 115.1

Source: Computed from monthly extreme minimum temperatures for the 50-year
period 192021 to 1969-70. Data obtained from the Texas Agricultural

Experiment Station, Weslaco, Texas.

where Jyj is an outcome. Attention must focus on6;.

If temperature probability as computed above is
regarded as an indicator of freeze damage then P(@j)
may be regarded, from (3), as:

©  PO)= I3 f0x,0B) dx-fy, f 0B dx

where Bj is the occurrence of a temperature between
Xo and Xs; given Xo <X,. Equation (6) represents
Bayesian objective a priori information concerning
_the probability distribution of the states of nature.
Derivation of a Bayesian decision would thus e to
select the action A; for which expected utility, u; is
a maximum; where

A _
() = u; PEp

3Where U is some linear transformation of )\l.l

and where uj; =g(A;}) 3. This derivation is referred to
as the “no data” problem [1,p.113].

If some a posteriori probability distribution,
P(6| ¢), can be calculated by performing an
experiment ¥ (with results Yy k=1, 2, .., n) that
serves as a predictor of 8 then the “data™ strategy
would be to select the action A; for which expected
utility U is a maximum; where

® =3 upe] 0.

However, with the case of citrus freeze protection, it
is difficult to construct a predictive model in which ¥
is a precise indicator of 6.
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An Application

The derivation of a Bayesian decision utilizing a
priori information in the form of temperature
probabilities may be illustrated by a hypothetical yet
realistic example = involving a Weslaco, Texas,
grapefruit grove. For simplicity, the example is
limited to a 2 x 2 matrix where: )

A; = theaction “no freeze protection”
A; = the action “freeze protection”
2 p

0, = the state of nature ‘“no minimum
temperature occurrence below 22°”’-no
freeze damage

0, = the state of nature “minimum
temperature occurrence below

+ 22°”freeze damage.

In this example, u;; and u,, are relatively easy
to quantify. Considering u,, the Texas Agricultural
Extension Service [15] has recently computed net
return per acre for Texas grapefruit under typical
management at $192. Of course, u, ; is greater than
u, ; with the difference attributable to the total cost

of a freeze protection system.

The magnitude of u,; can be readily estimated
using costs of a freeze protection system reported by
Connolly [2, p. 146]. Assume this system will
protect a grove from damage below 22°’ temperatures.
The costs involved are:

1. $487 per acre original investment in a cold

protection system.

2. $20 per acre annual maintenance costs

(considered as depreciation) which retains the

value of the oﬁginal investment at $487 per acre.

3. $182 per acre cost of firing cost restoration of

the system. Restoration cost is assumed to bring

the system back to the original $487 per acre

investment.
With an opportunity cost factor of 10 percent per
year assumed, and a 2 percent factor for risk,
insurance, and taxes, the per acre annual fixed cost of
the freeze protection - system would be $34.09%."
Including $20 per acre depreciation; the per acre
annual fixed cost of the system would be $54.09.
Thus, uz: is estimated at $137.91, or $138 by
rounding. .

The more difficult estimates are u;5 and u,,.
For the example, the magnitudes were derived under
‘these assumptions:

4(1/2 of 10% = 5% + 2% = 1% times $487 = $34.09.)
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1. zero own-price Texas

grapefruit. »
2. net return per acre on a non-protected grove
for a freeze year is -$1500. This includes
production costs incurred during the year of the
freeze, costs to re-establish grove, and the present
value of lost net revenue until grove is back to
production level preceding the freeze.

Under the first assumption, the . difference
between uy; and u,,will be the cost of firing and;
restoration of the freeze protection system. Thus,
Uy, is estimated as $138 - $182 = -§44.

The second assumption results in u;, = -$1500
-which is at least correct in sign but may not be
precise in magnitude. Reliable and typical data are
sparse on costs incurred after a severe freeze on Texas
groves.

The Bayesian decision under the above
conditions is derived utilizing P(8,)= 955 and P(6,)
= 045, from Table 1. With measurement in dollars,
the expected utility is a maximum for {}2, thus
action A, is selected (Table 2). .

flexibility for

Table 2. DERIVATION OF A BAYESIAN “NO DATA” DECISION UTILIZING
TEMPERATURE PROBABILITIES FOR A WESLACO, TEXAS, GRAPEFRUIT

GROVE.

Expected
Action State of Nature Utility Measured
No Freeze Freeze n Doll/e{rs
8, >21° 8, <21° w
A
No Freeze $192 $- 1500 $115.86
Protection
Az
Freeze $138 $ -44 $129.81
Protection !
Limitations

The suggested model is theoretical even though
objective information concerning P(@) is relatively
easily obtainable from extreme minimum
temperature analysis. The weakest part is
quantificaition of uj,. ‘ v

Another difficulty, already noted, is that in the
model 9j is regarded as the occurrence of a particular
range of ‘temperatures rather than the occurrence and
extent of freeze damage to the commodity. This,
however, could be remedied by additional research on
the quantification of relationships among all those
variables which affect freeze damage.



CONCLUSIONS

The usefulness of temperature probabilities in a
Bayesian “no data” problem has been illustrated
using freeze protection in citrus as an example. Since
such probabilities are relatively easy to compute,
objective a priori information for a Bayesian model is
readily attainable. The advantage of the
computational procedure outlined for calculating
temperature probabilities is that the geographic area
is specific to the location of the commodity and the

relevant time period for considering low temperatures
is essentially unrestricted. That is, probabilities for a
month, a group of months (season), or for a year may
be computed. Probabilities such as these can also be a
basic input into a simulation model of the costs and
returns associated with freeze protection in the citrus
industry.

The procedures outlined above provide a logical
prerequisite analysis for more complicated models of
decisions under uncertainty which involve weather
phenomena,
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