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TEMPERATURE PROBABILITIES AND THE

BAYESIAN 'NO DATA' PROBLEM

Thomas L. Sporleder

Weather constitutes an exogenous factor in are considered. Freeze damage or loss to a particular
agriculture which may have considerable influence on commodity may be regarded as an uncertainty while
production and marketing. For a particular the occurrence of a particular low temperature (or
commodity, weather may influence quantity produced, range of temperatures) may be regarded as a risk. This
quality of the commodity marketed, and is because actual freeze damage or loss to a crop is a
consequently influence prices received (or paid) by function of other variables, in addition to
various firms associated with that commodity system. temperature, and all possible actions which could be
Although some has been written about the influence taken for prevention of freeze damage. In reality, this
of weather on agriculture [6, 9, 10, 11, 13, 17], little simply means that if the outcome is regarded as
economic analysis is available which attempts to freeze damage it may be classified as an uncertainty.
integrate estimated probabilities of some weather However, if the outcome is regarded as a temperature
phenomenon (a notable exception is McQuigg and occurrence (or range of temperatures) then that
Doll [11 ] ). This latter situation may be attributed, at outcome may be regarded as a risk.
least partially, to the complexities of such an Some of the other variables which are
integrative analysis. functionally related to freeze damage in citrus are

This paper examines one possible procedure for best stated by Orton [12, p. 19]:
integrating temperature probability estimates into an There are no easily defined criteria
analysis of decisions under uncertainty, which by which the severity of freezes in a
reduces the problem to one of risk. Probabilities of given region may be judged. The
low temperature are utilized in a Bayesian context to inter-relationship between a very large
illustrate decision-making concerning freeze number of micrometeorlogical and
protection in citrus. physiological factors are too complex.

In the case of citrus, the occurrence of
TEMPERATURE PROBABILITIES freeze injury in the simplest terms is

influenced by a relationship among the
Risk and Uncertainty critical tissue temperature, the severity

The two types of outcomes or eventualities and duration of freeze temperatures, the
which influence plans for the future of every business amount of stored heat and the presence
firm are risk and uncertainty. If each outcome is or absence of wind during the freeze.
unknown but occurs with a known probability Critical temperatures vary with tissue
distribution, the situation is regarded as risk. If each age, type, condition, variety and
outcome is unknown and the probability of nutrition. Meteorlogical factors and
occurrence of each outcome is unknown the situation cultural practices affect dormancy and
is regarded as an uncertainty [7]. cold hardiness, which in turn affects

critical temperatures.
Freeze Damage reeze Damage It is obvious from the above that freeze damage as an

The distinction between risk and uncertainty is a outcome with known probability would require
useful one when temperature probabilities and freezes estimable relationships among a complex of
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inter-related variables. Each of these other variables minimum extreme minimum. That is, F(xo) is
possess probability distributions but many would be computed for each integer value of Xo in the data
difficult to quantify. range from 1

As a naive model, however, temperature
probability could be considered an indicator of the (3) F(xo) =Jo f(x, a,) dx,
outcome freeze damage. This leads directly to a
consideration of the quantification of low where Xo represents a particular temperature. This
temperature occurrence. calculation will yield the probability (P) that a

Computational~ ~Aspects temperature equal to or less than Xo will occur asComputational Aspects
P(xo)=l-F(xo). A return period, T(x) can also be

Calculating probabilities of low temperature computed by
occurrence in some relevant geographic area may be
accomplished by evaluating extreme minimum T( (

(4) T(xo) = 1/e(xo).temperature data utilizing the statistics of extremes.
The methodological framework for this approach was

T(xo) is the number of time periods which will
originally constructed by Lieblein and others [3, 4,
8]. The appropriate statistical distribution for elapse, on the average, before a temperature equal to

extreme temperatures is the Fisher-Tippett Type I or less than x0 will occur. Examples of P(x,) and
distribution [16]. The probability density function T(xo) for extreme minimum temperature data for a
(pdf) of the Fisher-Tippett Type I distribution for citrus season from the Weslaco, Texas, weather
minimums is given by [5, p, 113]: reporting substation are shown in Table 1.

(1)~ f(x a,3)= - xexp [- )e(x- a)-e / )/] For example, to interpret the probabilities in
(1) f(x,a, t3) exp [- -a)-e )( 3'at p Table 1, if Xo = 21" then P(21°) = .045 and T(21°) =

_< x ,_ <a < , and <0. 22.1 This means that the probability of a temperature
where < x< -<oa<-,andl<0. The .where - ' ' * < 0, -0 < a! <-, and p < O. The equal to or less than 21 occurring from November
corresponding cumulative distribution function (cdf)

through March in Weslaco is .045. Also, on the
is: average, 22.1 November through March seasons

(years) would elapse before a temperature equal to or
(2) F(x)=l-exp[- e-(x- a)/(] less than 210 would occur.2

where 13<0. The parameters a and 3 of the cdf are
estimated by Lieblein's fitting procedure [8]. THE BAYESIAN "NO DATA" PROBLEM
Parameters estimated by Lieblein's procedure are
"unbiased -and as efficient as possible" [4, pp. ame e 

Temperature probabilities are amenable to
223-226].

integration with the Bayesian decision model.

The author has written a computer program to Suppose the most simplistic case of decision-maker

calculate the value of the reduced variate (x-o)//3 of faced with choosing an optimal course of action with

the cdf [14]. Using either extreme minimum respect to investing in freeze protection for his citrus

temperature input data for a month, a group of grove. Let Ai represent action concerning freeze

months (season), or yearly, the program computes protection. Let Oj represent the occurrence of n

the value of the reduced variate first for the alternative states of nature with respect to

maximum extreme minimum temperature in the data temperature. Then,

set. The value of the reduced variate is then
computed in unit (integer) decrements of x to the (5) Xij = f(Ai, Oj)

lUtilization of this functional form is the common practice in climatology. See [14, pp. 5-8] for a more extensive

discussion.
2 There is a subtle distinction which should not be ignored when interpreting these statistics. Since the input data are

extreme minimum temperatures (i.e. lowest temperature recorded per unit time), P(x,) is technically the probability of a
temperature equal to or less than xo occurring and which is also the extreme minimum per unit time. Another way to compute
the probability of occurrence of a low temperature would be to use occurrence of temperatures (rather than minimums per unit
time as input data). Such probabilities would always equal or exceed the probabilities computed from minimums. In practice,
however, the distinction is not of major import since low temperatures are the focal point of the analysis. This is true because the
lower the temperature the more likely it is to be the minimum per unit time.
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Table 1. 'PROBABILITY AND RETURN PERIOD FOR SELECTED MINIMUM
TEMPERATURES, WESLACO, TEXAS, NOVEMBER THROUGH MARCH.

Probability of
Temperature Temperature xo or Return Period
Xo Below Occurring T(xo)

35 .993 1.0
34 .971 1.0
33 .921 1.1
32 .837 1.2
31 .728 1.4
30 .606 1.6
29 .487 2.1
28 .380 2.6
27 .290 3.4
26 .218 4.6
25 .161 6.2
24 .118 8.5
23 .086 11.6
22 .063 16.0
21 .045 22.1
20 .033 30.7
19 .023 42.6
18 .017 59.3
17 .012 82.6
16 .009 115.1

Source: Computed from monthly extreme minimum temperatures for the 50-year
period 1920-21 to 1969-70. Data obtained from the Texas Agricultural
Experiment Station, Weslaco, Texas.

where Xj is an outcome. Attention must focus onOj. and where uij =g(Xij) 3. This derivation is referred to
If temperature probability as computed above is as the "no data" problem [, p. 113].

regarded as an indicator of freeze damage then P(Oj)
may be regarded, from (3), as: If some a posteriori probability distribution,

P( 01 ), can be calculated by performing an

p(6) P() = fx' f(x, a, ) dx -fx f(x, a, 3) dx experiment 4 (with results k,k = 1, 2, ..., n) that
serves as a predictor of 0 then the "data" strategy

where 0j is the occurrence of a temperature between woud to select the action A for which expected
xo and Xo, given xo<Xo. Equation (6) represents utility i is a maximum;where

Bayesian objective a priori information concerning
the probability distribution of the states of nature. Ak P(j 

(8) ui =Z uij P(0jl Jk)-
Derivation of a Bayesian decision would thus to j
select the action Ai for which expected utility, ui is
a maximum; where However, with the case of citrus freeze protection, it

is difficult to construct a predictive model in which 

(7) ui = . uij P(0j) is a precise indicator of 0.
J

3Where uij is some linear transformation of Xij.
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An Application 1. zero own-price flexibility for Texas

The derivation of a Bayesian decision utilizing a grapefruit.
priori information in the form of temperature 2. net return per acre on a non-protected grove
probabilities may be illustrated by a hypothetical yet for a freeze year is-$1500. This includes
realistic example involving a Weslaco, Texas, production costs incurred during the year of the
grapefruit grove. For simplicity, the example is freeze, costs to re-establish grove, and the present
limited to a 2 x 2 matrix where: value of lost net revenue until grove is back to

production level preceding the freeze.

A = the action "no freeze protection" Under the first assumption, the difference
A2 = the action "freeze protection" between u2 1 and u2 2 will be the cost of firing and:
01 = the state of nature "no minimum restoration of the freeze protection system. Thus,

temperature occurrence below 22°"-no u2 2 is estimated as $138 - $182 = -$44.
freeze damage The second assumption results in u 2 = -$1500

02 = the state of nature "minimum which is at least correct in sign but may not be
temperature occurrence below precise in magnitude. Reliable and typical data are
22°"-freeze damage. sparse on costs incurred after a severe freeze on Texas

groves.
In this example, u 1 and u2 1 are relatively easy The Bayesian decision under the above

to quantify. Considering ul the Texas Agricultural conditions is derived utilizing P(0 ) = .955 and P(0 2 )
Extension Service [15] has recently computed net . ^ ^ ^ ^ Extension Service [15] has recently computed net = .045, from Table 1. With measurement in dollars,
return per acre for Texas grapefruit under typical the expected utility is a maximum for (2, thus
management at $192. Of course, u1 I is greater than i s 
u2 1 with the difference attributable to the total cost
of a freeze protection system.

Table 2. DERIVATION OF A BAYESIAN "NO DATA" DECISIONl UTILIZING
TEMPERATURE PROBABILITIES FOR A WESLACO, TEXAS, GRAPEFRUIT

The magnitude of u2 l can be readily estimated GROVE.

using costs of a freeze protection system reported by Expected
-- °~~ " . ' "Action State of Nature Utility Measured

Connolly [2, p. 146]. Assume this system will No Freeze Fre inDollars

protect a grove from damage below 220 temperatures. _ > 2° , <21° ai

The costs involved are: A^No Freeze $192 $ -1500 $115.86

1. $487 per acre original investment in a cold Protection

protection system. A2
Freeze $138 $ -44 $129.81

2. $20 per acre annual maintenance costs Protection

(considered as depreciation) which retains the
value of the original investment at $487 per acre.
3. $182 per acre cost of firing cost restoration of
the system. Restoration cost is assumed to bring L
the system back to the original $487 per acre
investment. The suggested model is theoretical even though

With an opportunity cost factor of 10 percent per objective information concerning P(0) is relatively
year assumed, and a 2 percent factor for risk, easily obtainable from extreme minimum
insurance, and taxes, the per acre annual fixed cost of temperature analysis. The weakest part is
the freeze protection system would be $34.094. quantification of ui2.
Including $20 per acre depreciation, the per acre Another difficulty, already noted, is that in the
annual fixed cost of the system would be $54.09. model Oj is regarded as the occurrence of a particular
Thus, u2 i is estimated at $137.91, or $138 by range of temperatures rather than the occurrence and
rounding. extent of freeze damage to the commodity. This,

The more difficult estimates are u 2 and u2 2 . however, could be remedied by additional research on
For the example, the magnitudes were derived under the quantification of relationships among all those
-these assumptions: variables which affect freeze damage.

4(1/2 of 10% = 5% + 2% = 7% times $487 = $34.09.)
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CONCLUSIONS relevant time period for considering low temperatures
is essentially unrestricted. That is, probabilities for a

The usefulness of temperature probabilities in a month, a group of months (season), or for a year may
Bayesian "no data" problem has been illustrated be computed. Probabilities such as these can also be a
using freeze protection in citrus as an example. Since basic input into a simulation model of the costs and
such probabilities are relatively easy to compute, returns associated with freeze protection in the citrus
objective a priori information for a Bayesian model is industry.
readily attainable. The advantage of the The procedures outlined above provide a logical
computational procedure outlined for calculating prerequisite analysis for more complicated models of
temperature probabilities is that the geographic area decisions under uncertainty which involve weather
is specific to the location of the commodity and the phenomena.
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