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Impact of Automated Guidance for Mechanical Control

of Herbicide-Resistant Weeds in Corn

Terry Griffin (Kansas State University), and J. Lowenberg-DeBoer (Purdue University)

ABSTRACT

This study evaluated the feasibility of reintroducing mechanical weed control as an alter-
native for herbicide-resistance weed infestations. The production practice tested included
row cultivation with a separate banded spray application using high-accuracy automated
guidance systems. A range of ground speeds were tested for the row cultivation opera-
tion, each with a different per acre cost and timeliness penalty. A typical eastern Corn
Belt farm with a rotation of corn and soybean served as the base for the linear pro-
gramming model. It was found that if the farmer was willing to reintroduce tillage, row
cultivation conducted at higher operating speeds in conjunction with separate banded
application could be justified under a range of relatively inexpensive herbicide costs as
low as $7 per acre. When effective herbicides were relatively expensive at $30 per acre,
the optimal decision would be to use row cultivation and reduce herbicides via banding.
At faster ground speeds, the majority of hours devoted to row cultivation shifted to ear-
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lier time periods so that yield penalties were avoided.

Precision agriculture is a form of information
technology applied to agriculture. Most preci-
sion agriculture applications can be assigned
to one of two categories. The first is “informa-
tion intensive,” using soil mapping, variable rate
application, yield monitors, and other sensors
that provide spatial information that must be
analyzed before it is useful for decision making
(Fernandez-Cornejo et al., 2001). The second
group is “embodied-knowledge” technologies,
requiring less skill and management ability than
without the technology (Fernandez-Cornejo et al.,
2001). Global navigation satellite system (GNSS,
formerly known as the global positioning system,
or GPS) technologies such as automated guidance
systems are in the second group. Technologies
from the latter group have been adopted at higher
rates by farmers and practitioners than technolo-
gies from the former (Erickson & Widmar, 20135;
Griffin et al., 2017; Schimmelpfennig & Ebel,
2011) because embodied-knowledge technology
reduces human capital requirements relative to
the status quo (Fernandez-Cornejo et al., 2001;
Griffin et al., 2004).

62

GNSS-enabled navigation technologies are
increasingly being used by commercial applica-
tors and farmers. Service providers have rapidly
adopted automated guidance since commercial-
ization in the early 2000s, with current adoption
rates over 80% (Erickson & Widmar, 2015). Farm-
level trends have been similar to service providers;
automated guidance was reported to be used on
45% to 55% of planted acres from 2010 to 2013
(Schimmelpfennig, 2016) and 67% of Kansas
farms in 2015 (Griffin et al., 2017). GNSS-enabled
automated guidance controls the steering of the
equipment in parallel or contour swaths (Grisso
et al., 2009).

Automated guidance systems potentially
increase field efficiency. Griffin et al. (2005)
described some of the GNSS guidance benefits
claimed by industry, including (1) a reduction in
equipment overlap, (2) increased field operation
ground speeds, (3) an increase in the number of
labor hours per day while reducing fatigue, and
(4) more appropriate placement of inputs includ-
ing fall applied nitrogen, row cultivation, and
controlled trafficking of tracks and wheels. These
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advantages allowed more timely field operations
that potentially led to improved yields and reduced
machinery constraints for a given equipment set.
Recent advancements to sprayer technology such
as automated boom height control (Sharda et al.,
2016) also provide the potential to make banded
herbicide applications.

The use of herbicide weed control has been
an integral part of farm management for several
decades due to being an efficient and cost-effective
alternative to mechanical weed control manage-
ment. However, repeated use of broad spectrum
herbicides has resulted in herbicide resistance in
several weed species (Norsworthy et al., 2012).
Although the indiscriminate use of herbicides has
been linked to the quick and widespread adoption
of herbicide-resistant crop species (Fernandez-
Cornejo et al.,, 2014), research indicates that
herbicide resistance predates the introduction of
biotech crops by several decades (Weed Science
Society of America, 2016). By the time the U.S.
Department of Agriculture (USDA) began track-
ing the adoption of biotech soybean production
in 2000, over half of U.S. acreage was planted to
herbicide-tolerant varieties and reached over 90%

within seven years (USDA National Agricultural
Statistics Service) (Figure 1). By 2013, 90% of corn
and soybean acreage was planted to biotech culti-
vars including herbicide-tolerant only and stacked
genes (see Figure 1). Currently, 485 unique cases
of herbicide resistance have been documented
(Heap, 2017). Multiple herbicide-resistant weed
species cause additional concern due to reduced
herbicide options and increased weed control
costs. Multiple herbicide resistance has been con-
firmed in economically important weeds including
Palmer amaranth (Amaranthus palmeri) (Nandula
et al., 2012), waterhemp (Amaranthus tubercula-
tus Sauer) (Bell et al., 2013), horseweed (Conyza
canadensis L. Crong.) (Davis et al., 2009), rigid
ryegrass (Lolium rigidum Gaudim) (Owen et al.,
2014), and kochia (Kochia scoparia [L.] Schrad.)
(Foes et al., 1999) (for more details on herbicide
resistance weeds, see Heap, 2017). Recently, bio-
tech soybean varieties tolerant to dicamba have
been the focus of substantial controversy due to
potential drift on nontolerant soybean fields.

The objective of this study was to determine how
GNSS-enabled automated guidance may impact
farmers’ options for controlling herbicide-resistant
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Figure 1. Adoption of herbicide-tolerant genetically modified crops in the United States,
2000-2017. Source: USDA NASS June Agricultural Acreage Survey
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weed escapes. Specifically, the use of mechanical
weed control mated with separate banded herbi-
cide application was evaluated under a range of
conditions to determine at what prices farmers
would consider alternative weed control methods.
Using mathematical programming techniques, this
study was first to report how high-accuracy GNSS
could be useful in controlling resistant weed spe-
cies by integrating mechanical and chemical weed
control practices.

LITERATURE REVIEW

The economic feasibility of GNSS-enabled guid-
ance systems was analyzed soon after the tech-
nologies were introduced (Griffin et al., 2005;
Medlin & Lowenberg-Deboer, 2000; Wat-
son & Lowenberg-DeBoer, 2004). Watson and
Lowenberg-DeBoer (2004) used deterministic
spreadsheet calculations to ascertain how increas-
ing working rates and the workday affected farm
size potential by adding the guidance system to
an existing farm. Griffin et al. (2005) expanded
upon Watson and Lowenberg-DeBoer (2004) by
formulating similar scenarios in a whole-farm
mathematical programming model. Watson and
Lowenberg-DeBoer (2004) examined soil com-
paction and controlled trafficking, making sto-
chastic estimations of yield penalties associated
with wheel traffic. Shockley et al. (2011) built
upon their mathematical programming methodol-
ogy by evaluating changes in production practices
and risk aversion preferences.

GNSS-enabled navigation technologies have
been tested in weed control systems. Carballido et
al. (2013) reported field trials using GNSS to apply
banded selective herbicides with nonselective her-
bicides. Blake (2013) reported the use of auto-
mated guidance for both mechanical and chemical
weed control practices in Arizona. Slaughter et
al. (2012) and Carballido et al. (2013) reported
labor savings from weed control systems utilizing
precision agricultural technology. Swinton (2005)
provided an overview of an ecological weed man-
agement approach where site-specific tools were
mated to the decision support system.

Chemical weed control has been combined with
mechanical weed control practices for a variety of
agricultural systems. Bates et al. (2012) conducted
field experiments to evaluate the economics of

integrating mechanical weed control into existing
systems and reported reduced herbicide applica-
tions by as much as 70% without loss of yield.
Mechanical weed control practices have been
evaluated in conservation tillage corn produc-
tion systems (Bates et al., 2012, Buhler et al.,
1995; Teasdale, 1993). These studies suggest that
mechanical weed control practices may have a role
in chemical weed control systems, in particular by
controlling herbicide-resistant weeds (Boerboom,
1999). Mechanical weed control is almost essen-
tial in organic production systems (Diekmann &
Batte, 2014) to replace the utilization of synthetic
pesticides (Rasmussen, 2004).

Although mechanical weed control has declined
in the Corn Belt due to time constraints and reduc-
tion in tillage operations by some farmers, it remains
a viable alternative for herbicide resistance (Boer-
boom, 1999) and organic production (Diekmann
& Batte, 2014). Given the prevalence of herbicide-
resistant weed species (Heap, 2017) and evidence
that a single herbicide-resistant weed escape can
overtake an entire field in less than three years
(Norsworthy et al., 2014), automated guidance
systems may be the embodied knowledge technol-
ogy that enables farmers to integrate mechanical
weed control with chemical weed control.

MATERIALS AND METHODS

This analysis builds on earlier studies by eval-
uating the potential of automated guidance to
integrate mechanical weed control with banded
herbicide application. In this study, the hypotheti-
cal farm decision maker had a herbicide-resistant
weed population that is not sufficiently controlled
by the status quo chemical weed control practices.
The farmer is considering row cultivation com-
bined with banded herbicide application rather
than a broadcast application of a relatively expen-
sive herbicide to control weeds. A row, or sweep,
cultivator is a tillage toolbar implement that stirs
the soil a few inches deep, physically removing
weeds between crop rows. The sweep is the blade
that comes into contact with the soil surface. With
increased accuracy, the probability of crop dam-
age from mechanical weed control is minimized
even at faster ground speeds (i.e., higher working
rates) until crop growth reaches canopy closure.
Broadcast applications of relatively expensive
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herbicides are replaced with mechanical weed
control and separate banded postemerge herbi-
cide application of the expensive herbicide, allow-
ing for reduced herbicide use and cost while still
controlling weeds.

This analysis built upon the linear program-
ming (LP) models presented by Griffin et al. (2005,
2014) and Rosburg (2017) to examine the utili-
zation of a high-accuracy automated guidance
system for separate row cultivation and banded
herbicide application. Row cultivator sweeps and
herbicide bands come in a variety of sizes. Band
widths were assumed to be at least as wide as the
difference between the 30-inch row width and the
width of sweeps within the row.

Once the base farm was defined, it was mod-
ified in a series of LP runs using Purdue Crop/
Livestock Linear Programming (PCLP) software
(see Dobbins et al., 2001, for the user’s manual
and Preckel et al., 1992, for details on model
formulation). Variations of the model have been
used for over four decades. It was chosen to con-
duct this research because thousands of farmers
(more than 7,000 farmers as of 2004 according
to Griffin et al., 2005) have relied on, trusted,
and input their own information over 25,000
times, validating the model (Candler et al., 1970;
McCarl et al., 1977). LP is a mathematical tool
for solving an objective function such as maxi-
mizing returns to fixed costs with respect to a set
of whole-farm constraints on land, unpaid family
labor, and capital under a given weather regime
(Dantzig, 1949, 1963). For the nonmathematical,
LP is best understood as automated budgeting.
It facilitates budget comparisons for thousands
of alternatives and identification of the highest
return alternative. The optimization problem was
specified as an LP model in the standard summa-
tion notation as written in Boehlje and Eidman
(1982, pp. 404-405) as:

Max =) ¢X, (1)
=1
subject to:
Y, X <bfori=1...m 2)

j=1

X/.zOforjzl...n (3)

where:

X, = the level of the j* production process or
activity,

¢, = the per unit return to the unpaid resources
(b’s) for the j*™ activity,

a, = the amount of the i resource required per
unit of the j activity, and

b, = the amount of the i* resource available.

The objective function (Equation 1) maximizes
per unit net returns (c) from all activities (X)).
Equation 2 defines the constraints on how many
units of each activity can be in the optimal solu-
tion. The j activities include production of two
crops, corn and soybean, grown in rotation. The i
resources include (1) land available for crop pro-
duction; (2) available labor expressed as a com-
bination of number of people, number of hours
per day, and number of days suitable for fieldwork
per period; and (3) the availability of machinery
based on number of machines of each type, num-
ber of hours per day that the machine is available,
and working rates expressed as acres per hour for
each crop production task. The remaining vari-
ables a and b are the production process or activ-
ity resource requirements and resource availability
constraints, respectively. In all, there were nearly
1,000 constraints. The production season was seg-
mented into 20 time period constraints; the most
active planting and harvesting times were in one-
week increments and longer periods otherwise.
Labor constraints were divided into unpaid and
hourly wage earners. Equation 3 prevents negative
production.

Versions of the model have evaluated a variety
of production issues in a series of studies. Most
recently, Rosburg (2017) modified b to determine if
an existing farm could support a beginning farmer
by adding land but keeping machinery constant.
Griffin et al. (2014) varied the number of good days
to conduct fieldwork in b, to calculate the impacts
from planting and harvest downtime framed as
diverting farm equipment to implement on-farm
experiments. Griffin et al. (2005) also modified b,
to iterate over a range of working rates of specific
field machinery to determine whole-farm impacts
of adding higher-accuracy guidance systems to
existing field equipment. Like Griffin et al. (2014),
Nistor and Lowenberg-DeBoer (2007) changed the
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hours per day constraint, b, to model increased
labor availability for controlled drainage. Robert-
son (2006) and Cain (2006) altered the a, matrix
of cropping systems to evaluate the long-term prof-
itability of continuous corn and alternative tillage
methods, respectively. Additional details about the
model input data and operating procedures can be
found in Dobbins et al. (2001), Doster et al. (2010),
and Preckel et al. (1992).

Contribution margin (1), defined as total whole-
farm returns to fixed costs, can be calculated as
total crop sales revenue minus total direct costs
and can be considered whole-farm profit. Fixed
costs include land costs, equipment costs including
automated guidance system associated costs, and
returns to management and unpaid labor. In this
analysis, the objective function of the LP model
was to maximize contribution margin or profit.
Partial budget analyses were conducted using the
contribution margin values estimated from each
run of the LP model. This analysis reported the sce-
nario where mechanical weed control was added
to an existing farm with automated guidance.
Since all alternatives include the same sprayer and
broadcast herbicide application, these fixed costs
were omitted from the partial budget, but per acre
costs of operations and additional herbicides were
accounted for when additional spray operations
were conducted.

Four assumptions guide this analysis. First, for
control of resistant weeds, effective herbicides are
relatively more expensive than ineffective herbi-
cides. Second, weed distributions are relatively

uniform, not clustered patches, such that spot
spraying was not a viable option. Third, mechani-
cal weed control is a perfect substitute for broad-
cast herbicide application in the row middles (i.e.,
the former is at least as effective in weed control
efficacy and as equivalent with respect to yield
penalties). Fourth, any GNSS accuracy is sufficient
for broadcast herbicide application; however, only
high-accuracy GNSS is adequate to make banded
spray applications with the 90-foot boom sprayer.

DEFINING THE BASE SCENARIO AND
PARAMETERIZING THE LP MODEL

The base farm was defined as a representative-
size single equipment set U.S. Corn Belt farm.
The weather parameters were set specifically to
Indiana in the eastern portion of the Corn Belt.
A single equipment set farm is sized such that one
planter, one grain drill, and one harvester are suffi-
cient to cover all the acreage in a typical year. The
3,000-acre hypothetical farm has three tractors;
two each of the 24-foot chisel, 32-foot disk, and
42-foot field cultivator; and one each of the 90-
foot boom self-propelled sprayer, 24-row planter,
30-foot grain drill, combine (370 hp), 12-row corn
head, and 30-foot soybean head (Table 1). A chisel
is a primary tillage implement that minimizes soil
inversion while preserving some crop residue on
the surface. A field cultivator is a secondary till-
age implement that incorporates crop residue into
the soil. A disk is a primary tillage implement that
incorporates crop residue while stirring the soil.

Table 1. Inventory of implements, size, field efficiency, and working rates without GNSS guidance

Width Field efficiency ~ Ground speed Working rate
Implement Number (feet) (%) (mph) (acre per hr)
Disc 2 32 80 5.25 16.3
Chisel plow 2 24 85 5.25 13.1
Field cultivator 2 42 85 6.50 28.2
Boom sprayer 1 90 65 12.7 90.0
Planter (corn) 1 60 70 6.20 31.9
Drill (soybean) 1 30 70 6.25 15.8
Harvester (corn) 1 30 85 3.85 11.9
Harvester (soybean) 1 30 85 3.85 11.9
Row cultivator 1 20 80 5.00 9.7

Source: Mississippi State Budget Generator (Laughlin & Spurlock, 2008).
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Field operations were based on conventional till-
age production systems reported in Cain (2006).
The conventional tillage practice was to disk, chisel
plow, and field cultivate prior to planting corn and
then disk followed by field cultivation prior to
planting soybean. Without automated guidance,
tractors and implements could be used 12 hours
per day and increased to 15 hours per day when
automated guidance was utilized. Although planter
overlap and speed were not impacted by auto-
mated guidance, GNSS-enabled guidance allowed
the planter to be used for additional hours per day
based on desire for straight and parallel rows. The
combine was used 12 hours per day in corn and
8.5 hours per day in soybean. Except for the row
cultivator, the number of acres covered per hour
for each field operation held constant regardless of
guidance technology. The number of acres worked
per hour, or working rate, takes into account speed,
size, and field efficiency of the machinery (see Table
1). For instance, the working rate for the corn
planter was 31.9 acres per hour (see Table 1).

Weather probabilities were adjusted to ensure
that model calculations were representative in a
majority of years by setting the model to the 80th
and 60th percentile worst years in the spring and
fall, respectively, for the number of days that
equipment can enter the field to conduct field-
work. Doster et al. (2010) suggested setting spring
(planting) and fall (harvesting) percentiles to the
75th-85th and 55th-60th worst years in 100,
respectively, because yield penalties for late plant-
ing or harvest are severe in the eastern Corn Belt.
The days worked per week were limited to 6.5.

The long-run nonstochastic prices were esti-
mated from prices received by farmers (USDA
National Agricultural Statistics Service, 2017).
Expected yields and variable costs were chosen
from the 2016 Purdue Crop Cost and Return
Guide (Dobbins et al., 2015) for high-productivity

soil. Full-season yields of 198 bushels per acre
for corn and 60 bushels per acre for soybean and
prices of $4.60 per bushel for corn and $10.80
per bushel for soybean were assigned to the model
(Table 2). These yields assume good weed control.
Variable costs of production were $449 per acre
for corn and $227 for soybean.

Selective herbicides could be applied in bands
over the row after planting in a separate row culti-
vation field operation using a real-time kinematic
(RTK) automated guidance system (+/- 1 cm).
RTK offers the benefit of both relative and abso-
lute accuracy (Buick, 2002). Relative or pass-to-
pass accuracy is useful for swathing (i.e., returning
to a parallel pass a few minutes after the previ-
ous pass) and was useful for field cultivation and
spraying if previous or subsequent input appli-
cations were not being considered (Buick, 2002).
Absolute accuracy is important for returning to
the same location after extended periods of time,
that is, planting in the appropriate location after
fall fertilizer application, using controlled traf-
ficking, or row cultivating growing crops at high
speeds several weeks after planting (Buick, 2002).

Using an RTK-automated guidance system
onetime cost of $8,000, a useful life of 10 years
with no salvage value, and a 7% discount rate,
the annualized cost of automated guidance system
was $1,360. The useful life of guidance systems
has not explicitly been estimated, although 5 years
(Groover & Grisso, 2009) to 12 years (Office of
Financial Management, 2014) have been sug-
gested; therefore, the 10-year useful life was cho-
sen based on the useful life of the GNSS-enabled
equipment. Automated guidance system costs
include both the RTK and the automated guidance
components on the tractor and sprayer.

Per acre costs of operation for the row cultivator
were calculated for all five ground speeds (Table
3). For each speed, the field efficiency was held

Table 2. Crop vyield, price, and production costs

Crop yield* Crop price** Variable costs*

(bu per acre) (per bushel) (per acre)
Corn 198 $4.60 $449
Soybean 60 $10.80 $227

* Dobbins et al. 2015.

** USDA National Agricultural Statistics Service, 2017.
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Table 3. Row cultivator ground speed and working rate

Ground speed Working rate® Total cost**
Scenario (miles per hour) (acres per hour) ($ per acre)
1&2 5.0 9.7 9.99
3 6.0 11.6 8.32
4 7.0 13.6 7.14
S 8.0 15.5 6.24
6 9.0 17.5 5.55

* Working rate calculations assumed a constant 80% field efficiency.

**Total cost of operation for fully utilized row cultivator including tractor costs. **Fully
utilized row cultivator had an annual use of 150 hours per year.

** Assumed labor expense of $11 per hour and fuel price of $3 per gallon.

constant at 80% to avoid indirect impacts from
differing field shapes and sizes. Hourly wages and
per gallon fuel prices were assumed to be $11.00
and $3.00, respectively. The costs were calculated
assuming full utilization at 150 hours per year. Per
acre costs of row cultivator operation ranged from
$9.99 for 5 miles per hour to $5.55 for 9 miles per
hour (see Table 3).

Once the base farm was parameterized, the six
LP model scenarios were run and output was col-
lected. The first scenario (Scenario 1) added the
row cultivator to the existing chemical weed con-
trol system but only for the corn acreage. Soybean
acreage did not receive the row cultivator opera-
tion in any scenario. This hypothetical herbicide-
resistant weed scenario was more of a problem in
corn than soybeans assuming that selective her-
bicides for soybeans could control the weed that
was resistant to herbicides used in corn. In addi-
tion, mechanical weed control for soybeans would
require substantial changes in production practices
such as widening row widths from narrow rows
(7 to 15 inches) to wider 30-inch rows that may
induce yield penalties. Row cultivation may com-
plicate the harvest of soybeans by heaping soil up
near base of plants. The LP model was updated by
(1) adding the row cultivator operation to the list
of activities, (2) requiring the operation to begin
4 weeks after planting and be completed within 1
week, and (3) adding the per acre cost of operation
(see Table 3) to the variable costs. Scenario 2 built
on Scenario 1 by adding automated guidance such
that equipment constraints were extended and the
annualized cost was subtracted from the contribu-
tion margin. Each subsequent run of the LP model

(Scenarios 3 to 6) increased the working rate of
the row cultivator (see Table 3 for working rates
and costs for each ground speed). Working rates
were increased for the row cultivator operations
to reflect relying on automated guidance instead of
human control for accurate field operations. With
no automated guidance on the row cultivator (Sce-
nario 1), the field operation was conducted at 5
miles per hour, or 9.7 acres per hour (see Table
3). Five ground speeds were evaluated by iterating
between 5.0 and 9.0 miles per hour in increments
of 1.0 mile per hour (see Table 3). Ground speeds
equated to working rates ranging from 9.7 to 17.5
acres per hour (see Table 3).

RESULTS AND DISCUSSION

Given the static and deterministic nature of the LP
model, contribution margins were affected by the
timeliness of the row cultivator operation based on
the requirement to complete the operation within
1 week. Negative effects such as yield losses and
weed escapes contributing to the soil weed seed
bank occur if weed control is not conducted in a
timely manner. To determine if automated guid-
ance would influence mechanical weed control
decisions to manage herbicide-resistant weed
escapes, the number of hours that the row culti-
vator was operated in each of the one-week time
periods was examined and the number of binding
time periods reported. At slower speeds without
RTK automated guidance, the majority of row cul-
tivator capacity hours occurred during May 24—
May 30 and May 31-June 6. However, at faster
speeds greater than or equal to 6 miles per hour,
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no row cultivator operations were conducted May
31 through June 6. When operated between 8 and
9 miles per hour, the number of row cultivator uti-
lization hours went to zero during the May 31 to
June 6 time period, as planter field operations were
more timely. At 9 miles per hour, the cultivator was
only used in the two weeks between May 18 and
May 30. When the row cultivator was introduced
to the farm without automated guidance, five time
periods were utilized and four were binding (Sce-
nario 1). When automated guidance was adopted
and the row cultivator was operated at the same
speed (Scenario 2), utilization was reduced to four
periods and was binding in three. For ground
speeds of 6, 7, and 8 miles per hour, the row culti-
vator was utilized in three time periods, while two
were binding. At 9 miles per hour, the row cultiva-
tor was used in two time periods and was binding
in only one. These results indicate that faster oper-
ating speeds have whole-farm benefits.

The base farm returns to fixed costs with no
mechanical weed control equipment had a poten-
tial of $636,371 prior to herbicide-resistant
weed infestations. However, under scenarios of
herbicide-resistant weed escapes, these returns
were reduced substantially. When the row cultiva-
tor was added to the farm to physically control the
intrarow portion of the weed escapes (Scenario 1),
contribution margin decreased to $601,031 due to
reduction in timeliness and cost of the additional
field operation. When GNSS automated guidance
was introduced to the farm, therefore allowing
banded herbicide applications (Scenario 2), the
contribution margin was $608,464 (Scenario 2),
$7,433 more than in Scenario 1 but still less than
the base case.

Returns increased as ground speeds of the row
cultivator operation increased. When the row cul-
tivator speed increased from 5 miles per hour to
6 miles per hour, returns increased by $20,123 to
$616,248. Similar but lower marginal increases
were observed from speeding up the field operation
from 6 to 7 miles per hour. Returns for Scenarios
4 through 6 increased to $621,779, $626,555, and
$628,260, respectively (Table 4). Even at the fast-
est row cultivator operating speeds, contribution
margin never reached the returns realized before
weed resistance. Therefore, herbicide costs or yield
reduction due to poor weed control must be costly
enough to offset the separate row cultivator and
banded spraying operation costs (i.e., changes to
the contribution margin).

As the row cultivator speed increased, per acre
differences from the base contribution margin
decreased but never went to zero. When the row
cultivator operation was introduced to the base
farm, contribution margins decreased by $23.56
per acre of corn (see Table 4). When automated
guidance was adopted, the difference fell to $18.60
even at the same ground speed of 5 miles per hour.
At the fastest ground speed of 9 miles per hour,
the difference was $5.41 per corn acre (see Table
4). Differences in contribution margin per corn
acreage were examined for break-even herbicide
analysis.

Bands from 4 to 24 inches were evaluated.
Since herbicides could be applied in narrow bands
instead of the entire row width, relatively expensive
herbicides could be applied such that the changes
in contribution margin could equate to zero.

For Scenario 1, contribution margins were
reduced by $23.56 per corn acre when the row

Table 4. Returns of adding mechanical weed control under automated

guidance system management

Contribution margin

Change from base

Change from base

Scenario ($ per farm) ($ per farm) ($ per corn acre)
1 601,031 35,340 23.56
2 608,464 27,907 18.60
3 616,248 20,123 13.42
4 621,779 14,592 9.73
S 626,555 9,816 6.54
6 628,260 8,111 5.41
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Table 5. Breakeven herbicide costs by spray band width and technology.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario § Scenario 6
Band width (inches) 23.56 18.60 13.42 9.73 6.54 541
2 353.40 279.07 201.23 145.92 98.16 81.11
4 176.70 139.54 100.62 72.96 49.08 40.56
6 117.80 93.02 67.08 48.64 32.72 27.04
8 88.35 69.77 50.31 36.48 24.54 20.28
10 70.68 55.81 40.25 29.18 19.63 16.22
12 58.90 46.51 33.54 24.32 16.36 13.52
14 50.49 39.87 28.75 20.85 14.02 11.59
16 44.18 34.88 2518 18.24 12.27 10.14
18 39.27 31.01 22.36 16.21 10.91 9.01
20 35.34 27.91 20.12 14.59 9.82 8.11
22 32.13 25.37 18.29 13.27 8.92 7.37
24 29.45 23.26 16.77 12.16 8.18 6.76

cultivator operation was introduced (see Table 4);
therefore, if cultivation mated with banded herbi-
cide application is a perfect substitute for broad-
cast chemical weed control, the per acre herbicide
costs must be greater than or equal to $23.56 to
justify integration of separate mechanical and
chemical weed control practices. When applied in
14-inch bands, per acre herbicide costs must be at
least $50.49 to break even (Table 5). At more nar-
row bands such as 6 inches, the per acre herbicide
costs must be $117.80 to equate to the $23.56 per
acre difference in contribution margin.

In Scenario 2, automated guidance was added
to the farm previously represented by Scenario 1.
Automated guidance with the same ground speed
lowered the target breakeven from $23.56 to
$18.60 per acre (see Table 4), allowing herbicides
to be less expensive than for Scenario 1 but still
able to entice farmers to integrate row cultivator
with separate banded herbicide applications. For
the 6-inch band, per acre herbicide costs must be
more than $93.02 to encourage banding after a
row cultivator operation (see Table 5). As row
cultivator speed increased, the breakeven herbi-
cide costs decreased. At 6 miles per hour (i.e., Sce-
nario 3), breakeven herbicide costs were $67.08
per acre for a 6-inch band. Scenario 4, Scenario 5,
and Scenario 6 had similar decreases in breakeven

herbicide prices of $48.64, $32.72, and $27.04,
respectively (see Table 5). A range of band widths
from 2 to 24 inches are presented for the six sce-
narios in Table §.

As the row cultivator working rate increased,
the potential of row cultivator followed by banded
spraying increased. The mechanical weed control
costs per acre decreased as ground speed increased;
therefore, the herbicide cost thresholds decreased
(see Table 5). As a result, when herbicides were rel-
atively more expensive to control an outbreak of
herbicide-resistant weeds, mechanical weed con-
trol became a feasible alternative as row cultivator
working rates increased. If herbicide costs were any
higher, mechanical weed control with banded her-
bicide applications would be the optimal decision.

To put these results into perspective, commonly
used herbicide costs were compared to breakeven
results. Using expected prices, the calculated
threshold values were compared to expected her-
bicide prices to give a point of reference. When
the relatively inexpensive herbicide glyphosate
was at $12 per gallon (Ferrell & Sellers, 2017)
and was applied at 3 pints per acre, it would
cost $4.50 per acre as a broadcast application.
None of the scenarios reported in Table 5 would
encourage banding of this herbicide. A relatively
more expensive herbicide, linuron (brand name
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Lorox DF), applied at 1.5 pound per acre costs
$22 per pound (Ferrell & Sellers, 2017), or $33
per acre. At 22-inch, 18-inch, 14-inch, and 10-
inch bands, the decision maker would consider
banding at herbicide prices similar to linuron at
the faster row cultivator speeds for Scenarios 1, 2,
3, and 4, respectively. For Scenario 5 and Scenario
6, the decision maker would consider banding at
6-inch bands. However, these examples are for a
single herbicide. In reality, resistant weeds and,
more specifically, weeds with multiple resistance
may require multiple applications of two or more
herbicides, so the linuron-priced example may be
considered conservative.

CONCLUSIONS

The combination of automated guidance technol-
ogy, mechanical weed control,and banded herbicide
application provides an alternative to broadcast
herbicide application as the optimal farm manage-
ment decision. The breakeven analysis included the
total costs of adding the row cultivator to the farm.
Only relatively expensive herbicides would encour-
age the adoption of mechanical weed control with
banded herbicide application.

These results indicated that mechanical weed
control with banding was a feasible option under
a range of row cultivator ground speeds examined.
The optimal decision was to row cultivate with
banded herbicide application when the herbicide
was priced higher than changes to contribution
margin. At relatively expensive herbicide costs, the
farm would adopt mechanical weed control to off-
set the use of chemical products.

There are limitations to this analysis, including
that it considers only a corn soybean rotation in
the eastern Corn Belt; results may be different with
other crop rotations and in other geographies. The
potential of government program subsidies for
reduced pesticide application have not been con-
sidered in this analysis. Since row cultivation is a
form of tillage, no-till production benefits includ-
ing soil health may be negated under a mechan-
ical weed control system. In addition, possible
impediments to physical weed control adoption
may result from USDA Natural Resources Con-
servation Service soil conservation programs that
encourage reduced tillage.

Herbicide-resistant weed escapes and expen-
sive new herbicides may not be necessary to
induce farmers to reconsider row cultivation for
weed control or to adopt an automated guidance
system. It may be more likely that GNSS naviga-
tion technology techniques find use in organic or
other identity-preserved production systems in
conjunction with existing systems. Newer and
more expensive herbicides would have an even
greater impact on these results. Recent price
reductions in GNSS navigation technologies have
made mechanical weed control with banded spray
application more attractive.
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