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Precision agriculture is a form of information 
technology applied to agriculture. Most preci-
sion agriculture applications can be assigned 
to one of two categories. The first is “informa-
tion intensive,” using soil mapping, variable rate 
application, yield monitors, and other sensors 
that provide spatial information that must be 
analyzed before it is useful for decision making 
(Fernandez-Cornejo et al., 2001). The second 
group is “embodied-knowledge” technologies, 
requiring less skill and management ability than 
without the technology (Fernandez-Cornejo et al., 
2001). Global navigation satellite system (GNSS, 
formerly known as the global positioning system, 
or GPS) technologies such as automated guidance 
systems are in the second group. Technologies 
from the latter group have been adopted at higher 
rates by farmers and practitioners than technolo-
gies from the former (Erickson & Widmar, 2015; 
Griffin et al., 2017; Schimmelpfennig & Ebel, 
2011) because embodied-knowledge technology 
reduces human capital requirements relative to 
the status quo (Fernandez-Cornejo et al., 2001; 
Griffin et al., 2004). 

GNSS-enabled navigation technologies are 
increasingly being used by commercial applica-
tors and farmers. Service providers have rapidly 
adopted automated guidance since commercial-
ization in the early 2000s, with current adoption 
rates over 80% (Erickson & Widmar, 2015). Farm-
level trends have been similar to service providers; 
automated guidance was reported to be used on 
45% to 55% of planted acres from 2010 to 2013 
(Schimmelpfennig, 2016) and 67% of Kansas 
farms in 2015 (Griffin et al., 2017). GNSS-enabled 
automated guidance controls the steering of the 
equipment in parallel or contour swaths (Grisso 
et al., 2009). 

Automated guidance systems potentially 
increase field efficiency. Griffin et al. (2005) 
described some of the GNSS guidance benefits 
claimed by industry, including (1) a reduction in 
equipment overlap, (2) increased field operation 
ground speeds, (3) an increase in the number of 
labor hours per day while reducing fatigue, and 
(4) more appropriate placement of inputs includ-
ing fall applied nitrogen, row cultivation, and 
controlled trafficking of tracks and wheels. These 
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Abstract

This study evaluated the feasibility of reintroducing mechanical weed control as an alter-
native for herbicide-resistance weed infestations. The production practice tested included 
row cultivation with a separate banded spray application using high-accuracy automated 
guidance systems. A range of ground speeds were tested for the row cultivation opera-
tion, each with a different per acre cost and timeliness penalty. A typical eastern Corn 
Belt farm with a rotation of corn and soybean served as the base for the linear pro-
gramming model. It was found that if the farmer was willing to reintroduce tillage, row 
cultivation conducted at higher operating speeds in conjunction with separate banded 
application could be justified under a range of relatively inexpensive herbicide costs as 
low as $7 per acre. When effective herbicides were relatively expensive at $30 per acre, 
the optimal decision would be to use row cultivation and reduce herbicides via banding. 
At faster ground speeds, the majority of hours devoted to row cultivation shifted to ear-
lier time periods so that yield penalties were avoided.

Impact of Automated Guidance for Mechanical Control  
of Herbicide-Resistant Weeds in Corn 
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advantages allowed more timely field operations 
that potentially led to improved yields and reduced 
machinery constraints for a given equipment set. 
Recent advancements to sprayer technology such 
as automated boom height control (Sharda et al., 
2016) also provide the potential to make banded 
herbicide applications. 

The use of herbicide weed control has been 
an integral part of farm management for several 
decades due to being an efficient and cost-effective 
alternative to mechanical weed control manage-
ment. However, repeated use of broad spectrum 
herbicides has resulted in herbicide resistance in 
several weed species (Norsworthy et al., 2012). 
Although the indiscriminate use of herbicides has 
been linked to the quick and widespread adoption 
of herbicide-resistant crop species (Fernandez-
Cornejo et al., 2014), research indicates that 
herbicide resistance predates the introduction of 
biotech crops by several decades (Weed Science 
Society of America, 2016). By the time the U.S. 
Department of Agriculture (USDA) began track-
ing the adoption of biotech soybean production 
in 2000, over half of U.S. acreage was planted to 
herbicide-tolerant varieties and reached over 90% 

within seven years (USDA National Agricultural 
Statistics Service) (Figure 1). By 2013, 90% of corn 
and soybean acreage was planted to biotech culti-
vars including herbicide-tolerant only and stacked 
genes (see Figure 1). Currently, 485 unique cases 
of herbicide resistance have been documented 
(Heap, 2017). Multiple herbicide-resistant weed 
species cause additional concern due to reduced 
herbicide options and increased weed control 
costs. Multiple herbicide resistance has been con-
firmed in economically important weeds including 
Palmer amaranth (Amaranthus palmeri) (Nandula 
et al., 2012), waterhemp (Amaranthus tubercula-
tus Sauer) (Bell et al., 2013), horseweed (Conyza 
canadensis L. Cronq.) (Davis et al., 2009), rigid 
ryegrass (Lolium rigidum Gaudim) (Owen et al., 
2014), and kochia (Kochia scoparia [L.] Schrad.) 
(Foes et al., 1999) (for more details on herbicide 
resistance weeds, see Heap, 2017). Recently, bio-
tech soybean varieties tolerant to dicamba have 
been the focus of substantial controversy due to 
potential drift on nontolerant soybean fields. 

The objective of this study was to determine how 
GNSS-enabled automated guidance may impact 
farmers’ options for controlling herbicide-resistant 

Figure 1. Adoption of herbicide-tolerant genetically modified crops in the United States, 
2000–2017. Source: USDA NASS June Agricultural Acreage Survey
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weed escapes. Specifically, the use of mechanical 
weed control mated with separate banded herbi-
cide application was evaluated under a range of 
conditions to determine at what prices farmers 
would consider alternative weed control methods. 
Using mathematical programming techniques, this 
study was first to report how high-accuracy GNSS 
could be useful in controlling resistant weed spe-
cies by integrating mechanical and chemical weed 
control practices. 

Literature Review

The economic feasibility of GNSS-enabled guid-
ance systems was analyzed soon after the tech-
nologies were introduced (Griffin et al., 2005; 
Medlin & Lowenberg-Deboer, 2000; Wat-
son & Lowenberg-DeBoer, 2004). Watson and 
Lowenberg-DeBoer (2004) used deterministic 
spreadsheet calculations to ascertain how increas-
ing working rates and the workday affected farm 
size potential by adding the guidance system to 
an existing farm. Griffin et al. (2005) expanded 
upon Watson and Lowenberg-DeBoer (2004) by 
formulating similar scenarios in a whole-farm 
mathematical programming model. Watson and 
Lowenberg-DeBoer (2004) examined soil com-
paction and controlled trafficking, making sto-
chastic estimations of yield penalties associated 
with wheel traffic. Shockley et al. (2011) built 
upon their mathematical programming methodol-
ogy by evaluating changes in production practices 
and risk aversion preferences. 

GNSS-enabled navigation technologies have 
been tested in weed control systems. Carballido et 
al. (2013) reported field trials using GNSS to apply 
banded selective herbicides with nonselective her-
bicides. Blake (2013) reported the use of auto-
mated guidance for both mechanical and chemical 
weed control practices in Arizona. Slaughter et 
al. (2012) and Carballido et al. (2013) reported 
labor savings from weed control systems utilizing 
precision agricultural technology. Swinton (2005) 
provided an overview of an ecological weed man-
agement approach where site-specific tools were 
mated to the decision support system. 

Chemical weed control has been combined with 
mechanical weed control practices for a variety of 
agricultural systems. Bates et al. (2012) conducted 
field experiments to evaluate the economics of 

integrating mechanical weed control into existing 
systems and reported reduced herbicide applica-
tions by as much as 70% without loss of yield. 
Mechanical weed control practices have been 
evaluated in conservation tillage corn produc-
tion systems (Bates et al., 2012, Buhler et al., 
1995; Teasdale, 1993). These studies suggest that 
mechanical weed control practices may have a role 
in chemical weed control systems, in particular by 
controlling herbicide-resistant weeds (Boerboom, 
1999). Mechanical weed control is almost essen-
tial in organic production systems (Diekmann & 
Batte, 2014) to replace the utilization of synthetic 
pesticides (Rasmussen, 2004). 

Although mechanical weed control has declined 
in the Corn Belt due to time constraints and reduc-
tion in tillage operations by some farmers, it remains 
a viable alternative for herbicide resistance (Boer-
boom, 1999) and organic production (Diekmann 
& Batte, 2014). Given the prevalence of herbicide-
resistant weed species (Heap, 2017) and evidence 
that a single herbicide-resistant weed escape can 
overtake an entire field in less than three years 
(Norsworthy et al., 2014), automated guidance 
systems may be the embodied knowledge technol-
ogy that enables farmers to integrate mechanical 
weed control with chemical weed control. 

Materials and Methods

This analysis builds on earlier studies by eval-
uating the potential of automated guidance to 
integrate mechanical weed control with banded 
herbicide application. In this study, the hypotheti-
cal farm decision maker had a herbicide-resistant 
weed population that is not sufficiently controlled 
by the status quo chemical weed control practices. 
The farmer is considering row cultivation com-
bined with banded herbicide application rather 
than a broadcast application of a relatively expen-
sive herbicide to control weeds. A row, or sweep, 
cultivator is a tillage toolbar implement that stirs 
the soil a few inches deep, physically removing 
weeds between crop rows. The sweep is the blade 
that comes into contact with the soil surface. With 
increased accuracy, the probability of crop dam-
age from mechanical weed control is minimized 
even at faster ground speeds (i.e., higher working 
rates) until crop growth reaches canopy closure. 
Broadcast applications of relatively expensive 
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herbicides are replaced with mechanical weed 
control and separate banded postemerge herbi-
cide application of the expensive herbicide, allow-
ing for reduced herbicide use and cost while still 
controlling weeds. 

This analysis built upon the linear program-
ming (LP) models presented by Griffin et al. (2005, 
2014) and Rosburg (2017) to examine the utili-
zation of a high-accuracy automated guidance 
system for separate row cultivation and banded 
herbicide application. Row cultivator sweeps and 
herbicide bands come in a variety of sizes. Band 
widths were assumed to be at least as wide as the 
difference between the 30-inch row width and the 
width of sweeps within the row.

Once the base farm was defined, it was mod-
ified in a series of LP runs using Purdue Crop/
Livestock Linear Programming (PCLP) software 
(see Dobbins et al., 2001, for the user’s manual 
and Preckel et al., 1992, for details on model 
formulation). Variations of the model have been 
used for over four decades. It was chosen to con-
duct this research because thousands of farmers 
(more than 7,000 farmers as of 2004 according 
to Griffin et al., 2005) have relied on, trusted, 
and input their own information over 25,000 
times, validating the model (Candler et al., 1970; 
McCarl et al., 1977). LP is a mathematical tool 
for solving an objective function such as maxi-
mizing returns to fixed costs with respect to a set 
of whole-farm constraints on land, unpaid family 
labor, and capital under a given weather regime 
(Dantzig, 1949, 1963). For the nonmathematical, 
LP is best understood as automated budgeting. 
It facilitates budget comparisons for thousands 
of alternatives and identification of the highest 
return alternative. The optimization problem was 
specified as an LP model in the standard summa-
tion notation as written in Boehlje and Eidman 
(1982, pp. 404–405) as:

	 Max ∏ = ∑
n

j=1

 cj Xj	 (1)

subject to:

	 ∑
n

j=1

 aij Xj ≤ bj for i = 1 . . . m	 (2)

	 Xj ≥ 0 for j = 1 . . . n	 (3)

where:

Xj = the level of the jth production process or 
activity,

cj = the per unit return to the unpaid resources 
(bi’s) for the jth activity,

aij = the amount of the ith resource required per 
unit of the jth activity, and

bi = the amount of the ith resource available. 

The objective function (Equation 1) maximizes 
per unit net returns (cj) from all activities (Xj). 
Equation 2 defines the constraints on how many 
units of each activity can be in the optimal solu-
tion. The j activities include production of two 
crops, corn and soybean, grown in rotation. The i 
resources include (1) land available for crop pro-
duction; (2) available labor expressed as a com-
bination of number of people, number of hours 
per day, and number of days suitable for fieldwork 
per period; and (3) the availability of machinery 
based on number of machines of each type, num-
ber of hours per day that the machine is available, 
and working rates expressed as acres per hour for 
each crop production task. The remaining vari-
ables a and b are the production process or activ-
ity resource requirements and resource availability 
constraints, respectively. In all, there were nearly 
1,000 constraints. The production season was seg-
mented into 20 time period constraints; the most 
active planting and harvesting times were in one-
week increments and longer periods otherwise. 
Labor constraints were divided into unpaid and 
hourly wage earners. Equation 3 prevents negative 
production. 

Versions of the model have evaluated a variety 
of production issues in a series of studies. Most 
recently, Rosburg (2017) modified b to determine if 
an existing farm could support a beginning farmer 
by adding land but keeping machinery constant. 
Griffin et al. (2014) varied the number of good days 
to conduct fieldwork in bi to calculate the impacts 
from planting and harvest downtime framed as 
diverting farm equipment to implement on-farm 
experiments. Griffin et al. (2005) also modified bi 
to iterate over a range of working rates of specific 
field machinery to determine whole-farm impacts 
of adding higher-accuracy guidance systems to 
existing field equipment. Like Griffin et al. (2014), 
Nistor and Lowenberg-DeBoer (2007) changed the 
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hours per day constraint, bi, to model increased 
labor availability for controlled drainage. Robert-
son (2006) and Cain (2006) altered the aij matrix 
of cropping systems to evaluate the long-term prof-
itability of continuous corn and alternative tillage 
methods, respectively. Additional details about the 
model input data and operating procedures can be 
found in Dobbins et al. (2001), Doster et al. (2010), 
and Preckel et al. (1992).

Contribution margin (π), defined as total whole-
farm returns to fixed costs, can be calculated as 
total crop sales revenue minus total direct costs 
and can be considered whole-farm profit. Fixed 
costs include land costs, equipment costs including 
automated guidance system associated costs, and 
returns to management and unpaid labor. In this 
analysis, the objective function of the LP model 
was to maximize contribution margin or profit. 
Partial budget analyses were conducted using the 
contribution margin values estimated from each 
run of the LP model. This analysis reported the sce-
nario where mechanical weed control was added 
to an existing farm with automated guidance. 
Since all alternatives include the same sprayer and 
broadcast herbicide application, these fixed costs 
were omitted from the partial budget, but per acre 
costs of operations and additional herbicides were 
accounted for when additional spray operations 
were conducted. 

Four assumptions guide this analysis. First, for 
control of resistant weeds, effective herbicides are 
relatively more expensive than ineffective herbi-
cides. Second, weed distributions are relatively 

uniform, not clustered patches, such that spot 
spraying was not a viable option. Third, mechani-
cal weed control is a perfect substitute for broad-
cast herbicide application in the row middles (i.e., 
the former is at least as effective in weed control 
efficacy and as equivalent with respect to yield 
penalties). Fourth, any GNSS accuracy is sufficient 
for broadcast herbicide application; however, only 
high-accuracy GNSS is adequate to make banded 
spray applications with the 90-foot boom sprayer.

Defining the Base Scenario and 
Parameterizing the LP Model 

The base farm was defined as a representative-
size single equipment set U.S. Corn Belt farm. 
The weather parameters were set specifically to 
Indiana in the eastern portion of the Corn Belt. 
A single equipment set farm is sized such that one 
planter, one grain drill, and one harvester are suffi-
cient to cover all the acreage in a typical year. The 
3,000-acre hypothetical farm has three tractors; 
two each of the 24-foot chisel, 32-foot disk, and 
42-foot field cultivator; and one each of the 90-
foot boom self-propelled sprayer, 24-row planter, 
30-foot grain drill, combine (370 hp), 12-row corn 
head, and 30-foot soybean head (Table 1). A chisel 
is a primary tillage implement that minimizes soil 
inversion while preserving some crop residue on 
the surface. A field cultivator is a secondary till-
age implement that incorporates crop residue into 
the soil. A disk is a primary tillage implement that 
incorporates crop residue while stirring the soil.

Table 1. Inventory of implements, size, field efficiency, and working rates without GNSS guidance

Implement Number 
Width
(feet)

Field efficiency
(%)

Ground speed
(mph)

Working rate
(acre per hr)

Disc 2 32 80 5.25 16.3

Chisel plow 2 24 85 5.25 13.1

Field cultivator 2 42 85 6.50 28.2

Boom sprayer 1 90 65 12.7 90.0

Planter (corn) 1 60 70 6.20 31.9

Drill (soybean) 1 30 70 6.25 15.8

Harvester (corn) 1 30 85 3.85 11.9

Harvester (soybean) 1 30 85 3.85 11.9

Row cultivator 1 20 80 5.00 9.7

Source: Mississippi State Budget Generator (Laughlin & Spurlock, 2008).



67  Griffin and Lowenberg-DeBoer / Journal of Applied Farm Economics 1, no. 2 (Fall 2017)

Field operations were based on conventional till-
age production systems reported in Cain (2006). 
The conventional tillage practice was to disk, chisel 
plow, and field cultivate prior to planting corn and 
then disk followed by field cultivation prior to 
planting soybean. Without automated guidance, 
tractors and implements could be used 12 hours 
per day and increased to 15 hours per day when 
automated guidance was utilized. Although planter 
overlap and speed were not impacted by auto-
mated guidance, GNSS-enabled guidance allowed 
the planter to be used for additional hours per day 
based on desire for straight and parallel rows. The 
combine was used 12 hours per day in corn and 
8.5 hours per day in soybean. Except for the row 
cultivator, the number of acres covered per hour 
for each field operation held constant regardless of 
guidance technology. The number of acres worked 
per hour, or working rate, takes into account speed, 
size, and field efficiency of the machinery (see Table 
1). For instance, the working rate for the corn 
planter was 31.9 acres per hour (see Table 1). 

Weather probabilities were adjusted to ensure 
that model calculations were representative in a 
majority of years by setting the model to the 80th 
and 60th percentile worst years in the spring and 
fall, respectively, for the number of days that 
equipment can enter the field to conduct field-
work. Doster et al. (2010) suggested setting spring 
(planting) and fall (harvesting) percentiles to the 
75th–85th and 55th–60th worst years in 100, 
respectively, because yield penalties for late plant-
ing or harvest are severe in the eastern Corn Belt. 
The days worked per week were limited to 6.5.

The long-run nonstochastic prices were esti-
mated from prices received by farmers (USDA 
National Agricultural Statistics Service, 2017). 
Expected yields and variable costs were chosen 
from the 2016 Purdue Crop Cost and Return 
Guide (Dobbins et al., 2015) for high-productivity 

soil. Full-season yields of 198 bushels per acre 
for corn and 60 bushels per acre for soybean and 
prices of $4.60 per bushel for corn and $10.80 
per bushel for soybean were assigned to the model 
(Table 2). These yields assume good weed control. 
Variable costs of production were $449 per acre 
for corn and $227 for soybean.

Selective herbicides could be applied in bands 
over the row after planting in a separate row culti-
vation field operation using a real-time kinematic 
(RTK) automated guidance system (+/- 1 cm). 
RTK offers the benefit of both relative and abso-
lute accuracy (Buick, 2002). Relative or pass-to-
pass accuracy is useful for swathing (i.e., returning 
to a parallel pass a few minutes after the previ-
ous pass) and was useful for field cultivation and 
spraying if previous or subsequent input appli-
cations were not being considered (Buick, 2002). 
Absolute accuracy is important for returning to 
the same location after extended periods of time, 
that is, planting in the appropriate location after 
fall fertilizer application, using controlled traf-
ficking, or row cultivating growing crops at high 
speeds several weeks after planting (Buick, 2002). 

Using an RTK-automated guidance system 
onetime cost of $8,000, a useful life of 10 years 
with no salvage value, and a 7% discount rate, 
the annualized cost of automated guidance system 
was $1,360. The useful life of guidance systems 
has not explicitly been estimated, although 5 years 
(Groover & Grisso, 2009) to 12 years (Office of 
Financial Management, 2014) have been sug-
gested; therefore, the 10-year useful life was cho-
sen based on the useful life of the GNSS-enabled 
equipment. Automated guidance system costs 
include both the RTK and the automated guidance 
components on the tractor and sprayer. 

Per acre costs of operation for the row cultivator 
were calculated for all five ground speeds (Table 
3). For each speed, the field efficiency was held 

Table 2. Crop yield, price, and production costs

Crop yield*  
(bu per acre)

Crop price**  
(per bushel)

Variable costs* 
 (per acre)

Corn 198 $4.60 $449

Soybean 60 $10.80 $227

* Dobbins et al. 2015.
** USDA National Agricultural Statistics Service, 2017. 
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constant at 80% to avoid indirect impacts from 
differing field shapes and sizes. Hourly wages and 
per gallon fuel prices were assumed to be $11.00 
and $3.00, respectively. The costs were calculated 
assuming full utilization at 150 hours per year. Per 
acre costs of row cultivator operation ranged from 
$9.99 for 5 miles per hour to $5.55 for 9 miles per 
hour (see Table 3). 

Once the base farm was parameterized, the six 
LP model scenarios were run and output was col-
lected. The first scenario (Scenario 1) added the 
row cultivator to the existing chemical weed con-
trol system but only for the corn acreage. Soybean 
acreage did not receive the row cultivator opera-
tion in any scenario. This hypothetical herbicide-
resistant weed scenario was more of a problem in 
corn than soybeans assuming that selective her-
bicides for soybeans could control the weed that 
was resistant to herbicides used in corn. In addi-
tion, mechanical weed control for soybeans would 
require substantial changes in production practices 
such as widening row widths from narrow rows 
(7 to 15 inches) to wider 30-inch rows that may 
induce yield penalties. Row cultivation may com-
plicate the harvest of soybeans by heaping soil up 
near base of plants. The LP model was updated by 
(1) adding the row cultivator operation to the list 
of activities, (2) requiring the operation to begin 
4 weeks after planting and be completed within 1 
week, and (3) adding the per acre cost of operation 
(see Table 3) to the variable costs. Scenario 2 built 
on Scenario 1 by adding automated guidance such 
that equipment constraints were extended and the 
annualized cost was subtracted from the contribu-
tion margin. Each subsequent run of the LP model 

(Scenarios 3 to 6) increased the working rate of 
the row cultivator (see Table 3 for working rates 
and costs for each ground speed). Working rates 
were increased for the row cultivator operations 
to reflect relying on automated guidance instead of 
human control for accurate field operations. With 
no automated guidance on the row cultivator (Sce-
nario 1), the field operation was conducted at 5 
miles per hour, or 9.7 acres per hour (see Table 
3). Five ground speeds were evaluated by iterating 
between 5.0 and 9.0 miles per hour in increments 
of 1.0 mile per hour (see Table 3). Ground speeds 
equated to working rates ranging from 9.7 to 17.5 
acres per hour (see Table 3). 

Results and Discussion

Given the static and deterministic nature of the LP 
model, contribution margins were affected by the 
timeliness of the row cultivator operation based on 
the requirement to complete the operation within 
1 week. Negative effects such as yield losses and 
weed escapes contributing to the soil weed seed 
bank occur if weed control is not conducted in a 
timely manner. To determine if automated guid-
ance would influence mechanical weed control 
decisions to manage herbicide-resistant weed 
escapes, the number of hours that the row culti-
vator was operated in each of the one-week time 
periods was examined and the number of binding 
time periods reported. At slower speeds without 
RTK automated guidance, the majority of row cul-
tivator capacity hours occurred during May 24–
May 30 and May 31–June 6. However, at faster 
speeds greater than or equal to 6 miles per hour, 

Table 3. Row cultivator ground speed and working rate

Scenario
Ground speed

(miles per hour)
Working rate*

(acres per hour)
Total cost** 
($ per acre)

1&2 5.0 9.7 9.99

3 6.0 11.6 8.32

4 7.0 13.6 7.14

5 8.0 15.5 6.24

6 9.0 17.5 5.55

* Working rate calculations assumed a constant 80% field efficiency.
**Total cost of operation for fully utilized row cultivator including tractor costs. **Fully 
utilized row cultivator had an annual use of 150 hours per year.
**Assumed labor expense of $11 per hour and fuel price of $3 per gallon.
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no row cultivator operations were conducted May 
31 through June 6. When operated between 8 and 
9 miles per hour, the number of row cultivator uti-
lization hours went to zero during the May 31 to 
June 6 time period, as planter field operations were 
more timely. At 9 miles per hour, the cultivator was 
only used in the two weeks between May 18 and 
May 30. When the row cultivator was introduced 
to the farm without automated guidance, five time 
periods were utilized and four were binding (Sce-
nario 1). When automated guidance was adopted 
and the row cultivator was operated at the same 
speed (Scenario 2), utilization was reduced to four 
periods and was binding in three. For ground 
speeds of 6, 7, and 8 miles per hour, the row culti-
vator was utilized in three time periods, while two 
were binding. At 9 miles per hour, the row cultiva-
tor was used in two time periods and was binding 
in only one. These results indicate that faster oper-
ating speeds have whole-farm benefits. 

The base farm returns to fixed costs with no 
mechanical weed control equipment had a poten-
tial of $636,371 prior to herbicide-resistant 
weed infestations. However, under scenarios of 
herbicide-resistant weed escapes, these returns 
were reduced substantially. When the row cultiva-
tor was added to the farm to physically control the 
intrarow portion of the weed escapes (Scenario 1), 
contribution margin decreased to $601,031 due to 
reduction in timeliness and cost of the additional 
field operation. When GNSS automated guidance 
was introduced to the farm, therefore allowing 
banded herbicide applications (Scenario 2), the 
contribution margin was $608,464 (Scenario 2), 
$7,433 more than in Scenario 1 but still less than 
the base case. 

Returns increased as ground speeds of the row 
cultivator operation increased. When the row cul-
tivator speed increased from 5 miles per hour to 
6 miles per hour, returns increased by $20,123 to 
$616,248. Similar but lower marginal increases 
were observed from speeding up the field operation 
from 6 to 7 miles per hour. Returns for Scenarios 
4 through 6 increased to $621,779, $626,555, and 
$628,260, respectively (Table 4). Even at the fast-
est row cultivator operating speeds, contribution 
margin never reached the returns realized before 
weed resistance. Therefore, herbicide costs or yield 
reduction due to poor weed control must be costly 
enough to offset the separate row cultivator and 
banded spraying operation costs (i.e., changes to 
the contribution margin). 

As the row cultivator speed increased, per acre 
differences from the base contribution margin 
decreased but never went to zero. When the row 
cultivator operation was introduced to the base 
farm, contribution margins decreased by $23.56 
per acre of corn (see Table 4). When automated 
guidance was adopted, the difference fell to $18.60 
even at the same ground speed of 5 miles per hour. 
At the fastest ground speed of 9 miles per hour, 
the difference was $5.41 per corn acre (see Table 
4). Differences in contribution margin per corn 
acreage were examined for break-even herbicide 
analysis. 

Bands from 4 to 24 inches were evaluated. 
Since herbicides could be applied in narrow bands 
instead of the entire row width, relatively expensive 
herbicides could be applied such that the changes 
in contribution margin could equate to zero.

For Scenario 1, contribution margins were 
reduced by $23.56 per corn acre when the row 

Table 4. Returns of adding mechanical weed control under automated 
guidance system management

Scenario
Contribution margin 

($ per farm)
Change from base 

($ per farm)
Change from base 
($ per corn acre)

1 601,031 35,340 23.56

2 608,464 27,907 18.60

3 616,248 20,123 13.42

4 621,779 14,592 9.73

5 626,555 9,816 6.54

6 628,260 8,111 5.41



70  Griffin and Lowenberg-DeBoer / Journal of Applied Farm Economics 1, no. 2 (Fall 2017)

cultivator operation was introduced (see Table 4); 
therefore, if cultivation mated with banded herbi-
cide application is a perfect substitute for broad-
cast chemical weed control, the per acre herbicide 
costs must be greater than or equal to $23.56 to 
justify integration of separate mechanical and 
chemical weed control practices. When applied in 
14-inch bands, per acre herbicide costs must be at 
least $50.49 to break even (Table 5). At more nar-
row bands such as 6 inches, the per acre herbicide 
costs must be $117.80 to equate to the $23.56 per 
acre difference in contribution margin. 

In Scenario 2, automated guidance was added 
to the farm previously represented by Scenario 1. 
Automated guidance with the same ground speed 
lowered the target breakeven from $23.56 to 
$18.60 per acre (see Table 4), allowing herbicides 
to be less expensive than for Scenario 1 but still 
able to entice farmers to integrate row cultivator 
with separate banded herbicide applications. For 
the 6-inch band, per acre herbicide costs must be 
more than $93.02 to encourage banding after a 
row cultivator operation (see Table 5). As row 
cultivator speed increased, the breakeven herbi-
cide costs decreased. At 6 miles per hour (i.e., Sce-
nario 3), breakeven herbicide costs were $67.08 
per acre for a 6-inch band. Scenario 4, Scenario 5, 
and Scenario 6 had similar decreases in breakeven 

herbicide prices of $48.64, $32.72, and $27.04, 
respectively (see Table 5). A range of band widths 
from 2 to 24 inches are presented for the six sce-
narios in Table 5.

As the row cultivator working rate increased, 
the potential of row cultivator followed by banded 
spraying increased. The mechanical weed control 
costs per acre decreased as ground speed increased; 
therefore, the herbicide cost thresholds decreased 
(see Table 5). As a result, when herbicides were rel-
atively more expensive to control an outbreak of 
herbicide-resistant weeds, mechanical weed con-
trol became a feasible alternative as row cultivator 
working rates increased. If herbicide costs were any 
higher, mechanical weed control with banded her-
bicide applications would be the optimal decision. 

To put these results into perspective, commonly 
used herbicide costs were compared to breakeven 
results. Using expected prices, the calculated 
threshold values were compared to expected her-
bicide prices to give a point of reference. When 
the relatively inexpensive herbicide glyphosate 
was at $12 per gallon (Ferrell & Sellers, 2017) 
and was applied at 3 pints per acre, it would 
cost $4.50 per acre as a broadcast application. 
None of the scenarios reported in Table 5 would 
encourage banding of this herbicide. A relatively 
more expensive herbicide, linuron (brand name 

Table 5. Breakeven herbicide costs by spray band width and technology.

	 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Band width (inches) 23.56 18.60 13.42 9.73 6.54 5.41

2 353.40 279.07 201.23 145.92 98.16 81.11

4 176.70 139.54 100.62 72.96 49.08 40.56

6 117.80 93.02 67.08 48.64 32.72 27.04

8 88.35 69.77 50.31 36.48 24.54 20.28

10 70.68 55.81 40.25 29.18 19.63 16.22

12 58.90 46.51 33.54 24.32 16.36 13.52

14 50.49 39.87 28.75 20.85 14.02 11.59

16 44.18 34.88 25.15 18.24 12.27 10.14

18 39.27 31.01 22.36 16.21 10.91 9.01

20 35.34 27.91 20.12 14.59 9.82 8.11

22 32.13 25.37 18.29 13.27 8.92 7.37

24 29.45 23.26 16.77 12.16 8.18 6.76
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Lorox DF), applied at 1.5 pound per acre costs 
$22 per pound (Ferrell & Sellers, 2017), or $33 
per acre. At 22-inch, 18-inch, 14-inch, and 10-
inch bands, the decision maker would consider 
banding at herbicide prices similar to linuron at 
the faster row cultivator speeds for Scenarios 1, 2, 
3, and 4, respectively. For Scenario 5 and Scenario 
6, the decision maker would consider banding at 
6-inch bands. However, these examples are for a 
single herbicide. In reality, resistant weeds and, 
more specifically, weeds with multiple resistance 
may require multiple applications of two or more 
herbicides, so the linuron-priced example may be 
considered conservative. 

Conclusions

The combination of automated guidance technol-
ogy, mechanical weed control, and banded herbicide 
application provides an alternative to broadcast 
herbicide application as the optimal farm manage-
ment decision. The breakeven analysis included the 
total costs of adding the row cultivator to the farm. 
Only relatively expensive herbicides would encour-
age the adoption of mechanical weed control with 
banded herbicide application. 

These results indicated that mechanical weed 
control with banding was a feasible option under 
a range of row cultivator ground speeds examined. 
The optimal decision was to row cultivate with 
banded herbicide application when the herbicide 
was priced higher than changes to contribution 
margin. At relatively expensive herbicide costs, the 
farm would adopt mechanical weed control to off-
set the use of chemical products. 

There are limitations to this analysis, including 
that it considers only a corn soybean rotation in 
the eastern Corn Belt; results may be different with 
other crop rotations and in other geographies. The 
potential of government program subsidies for 
reduced pesticide application have not been con-
sidered in this analysis. Since row cultivation is a 
form of tillage, no-till production benefits includ-
ing soil health may be negated under a mechan-
ical weed control system. In addition, possible 
impediments to physical weed control adoption 
may result from USDA Natural Resources Con-
servation Service soil conservation programs that 
encourage reduced tillage.

Herbicide-resistant weed escapes and expen-
sive new herbicides may not be necessary to 
induce farmers to reconsider row cultivation for 
weed control or to adopt an automated guidance 
system. It may be more likely that GNSS naviga-
tion technology techniques find use in organic or 
other identity-preserved production systems in 
conjunction with existing systems. Newer and 
more expensive herbicides would have an even 
greater impact on these results. Recent price 
reductions in GNSS navigation technologies have 
made mechanical weed control with banded spray 
application more attractive.
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