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Air pollution and food prices: evidence from
China

Feifei Sun, Dieter B. A. Koemle and Xiaohua Yu†

Air pollution is one of the top environmental concerns in China. On days with severe
air pollution, people (both consumers and producers) often reduce outdoor economic
activities in order to avoid possible health damages. This impacts the market trade of
fresh food products, at least in a short run. This empirical study sheds light on the
impact of air pollution on the short run prices of three major fresh food products
(Chinese cabbage, tomatoes and pork) using daily data from the largest outdoor
wholesale market in Beijing. With an increase in AQI (Air Quality Index) by 100 units,
prices for Chinese cabbage and tomatoes decrease by 1.19 and 0.89 per cent. With an
increase in PM2.5 concentration by 100 lg/m3, prices for Chinese cabbage and
tomatoes decrease by 0.64 and 0.55 per cent. Air pollution affects vegetable prices, but
has no significant impact on prices of pork products.

Key words: air pollution, air quality index, Beijing, food price, PM2.5.

1. Introduction

In developing countries, rapid economic growth and drastic urbanisation are
usually accompanied by increasing environmental pollution, and China is no
exception (Yu and Abler 2010; Zheng and Kahn 2013). Particularly, air
pollution is a top environmental concern in urban China, and the major
pollutants include nitrous oxides (NOx), carbon monoxide (CO) and
atmospheric particulate matters. Smog outbreaks are frequently observed
in China. According to the official data published by the Ministry of
Environmental Protection, the proportion of haze-fog1 days in 2013 was 35.9
per cent, and the annual average PM2.5 (particles less than 2.5 micrometres in
aerodynamic diameter) concentration was 26–160 lg/m3, far above the safety
standard set by the World Health Organization (10 lg/m3).
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Air pollution can lead to severe health damages. It is linked to increases in
mortality rate, incidences of cancers, visits to physicians, low birthweight and
significantly shortens life expectancy (Seaton et al. 1995; K€unzli et al. 2000;
Brunekreef and Holgate 2002; Hoek et al. 2002; Yu and Abler 2010; Chen
et al. 2013). On days with heavy air pollution, people often reduce outdoor
activities in order to avoid health damages.
During Chinese public holidays in October 2016, Beijing, one of the most

popular tourist destinations in China, suffered from very heavy hazes, which
directly led to an 11.2 per cent decrease in the number of tourists compared
to the previous year.2 Poor visibility due to fog, mist and haze can easily
cause road traffic accidents, cancellation of flights and closedown of
highways.
In December 2013, we conducted a household survey in Beijing of people’s

behaviour on pollution days. Amongst our 624 respondents, 43.15 per cent
stated that their daily life has been ‘severely affected’, 52.39 per cent
‘somewhat affected’, and only 4.46 per cent stated ‘not affected’ in pollution
days. In sum, more than 95 per cent of people have their daily life affected by
air pollution.
We conjecture that these daily activity changes could alter both supply and

demand conditions, which consequently shifts market equilibrium. Thus, air
pollution could increase the volatility of commodity prices, which is
particularly true for some fresh food products. However, this phenomenon
is not well studied in the literature.
An enormous body of the literature shows that the social and economic

impact of air pollution could be colossal, diverse, and long lasting. For
example, part of this literature sheds light on the effect of air pollution on
property values with use of the hedonic price techniques (Ridker and
Henning 1967; Smith and Deyak 1975; Harrison and Rubinfeld 1978; Smith
and Huang 1995; Brasington and Hite 2005). Some other studies have
empirically investigated the influence of air pollution on labour efficiency
and firm productivity. For instance, Zivin and Neidell (2011) find that a
10 ppb decrease in ozone concentrations increases agricultural worker
productivity by 4.2 per cent. Similarly, Chang et al. (2014) reveal a
significant negative impact of PM2.5 on the productivity of indoor workers
and find that reductions in PM2.5 in the U.S. during 1999–2008 generated
$19.5 billion in labour cost savings, accounting for nearly one-third of the
total estimated welfare benefits. Cui et al. (2016) find an inverse relationship
between firm productivity and pollution emission per unit output, and
exporting firms have lower emission per unit output.
In the agricultural sector, the literature finds that air pollution can stunt

plant growth (Emberson et al. 2003; Heck et al. 1988), thereby reducing crop
yield. A number of studies have evaluated the impact of some common air

2 See http://env.people.com.cn/n1/2016/1003/c1010-28755747.html.
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pollutants (e.g. SO2, NOx and O3) on agricultural crop growth (e.g. Voutsa
et al. 1996; Agrawal et al. 2003).
Food prices are strongly connected with both consumer and producer

welfare (Yu 2014a,b). The current literature mainly attributes domestic
food price volatility to the international food market, unpredictable
weather shocks, petroleum/energy prices and government policies (Gerrard
and Roe 1983; Ramaswami and Balakrishnan 2002; Clapp 2009; Yu
and Zhao 2009; Mueller et al. 2011; Anderson and Nelgen 2012;
Gardebroek and Hernandez 2013; Meyer and Yu 2013; Yu 2014a; Cat~ao
and Chang 2015; Yu and Abler 2016). However, examining the effect of
air pollution on food price volatility has largely been neglected in the
current literature.
To fill in the research gap, we evaluate the effects of air pollution on food

prices in Beijing (city), using the wholesale market prices for three major fresh
food products consumed in China: Chinese cabbage, tomatoes and pork. To
do this, we develop a theoretical model based on the market equilibrium and
employ the autoregressive distributed lag (ARDL) model.. As the capital and
second largest city in China, for years Beijing has been well known to have
serious air pollution problems. Such a study could also have significant policy
impacts.
The study is organised as follows. Section 2 presents a theoretical

framework for modelling the effects of air pollution on food prices. Section 3
discusses our empirical strategy, which is followed by a description of the
data in Section 4. Section 5 presents the estimation results and the discussion.
Finally, we conclude in Section 6.

2. Theoretical framework

Air pollution could affect commodity prices through the channels of both
supply and demand. On the one hand, the fall in labour productivity
(Zivin and Neidell 2011; Chang et al. 2014), or decline in crop yields
(Agrawal et al. 2003; Emberson et al. 2003; Heck et al. 1988), or the
decrease in outdoor activities of farmers or traders, could lead to a
decrease in supply, which could push up food prices. On the other hand,
based on the weather forecast, consumers may adjust shopping times and
store some shelf-stable food to avoid exposure to harmful air pollution
(Wen et al. 2009), which would eventually shift demand and would affect
commodity prices. The final effect of air pollution on commodity prices
depends on the aggregate effects of demand and supply in response to air
pollution. This study formalises ideas and adopts a similar theoretical
framework as proposed by Yu (2014a).
Assume both demand Dit and supply Sit of food i at time t are determined

by food price Pit and air quality At,
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Dit ¼ D At;Pitð Þ
Sit ¼ S At;Pitð Þ ð1Þ

Taking a total derivative,

dDit ¼ @Dit

@At
dAt þ @Dit

@Pit
dPit

dSit ¼ @Sit

@At
dAt þ @Sit

@Pit
dPit

ð2Þ

Based on the market equilibrium condition, dDit = dSit and,

dPit

dAt
¼

@Dit

@At
� @Sit

@At

@Sit

@Pit
� @Dit

@Pit

ð3Þ

By first rewriting Equation (3), we can then obtain the food price elasticity
gPi;A with respect to air quality for food i.

gPi;A ¼ dPit

dAt
� At

Pit
¼

@Dit

@At
� At

Dit
� @Sit

@At
� At

Sit

@Sit

@Pit
� Pit

Sit
� @Dit

@Pit
� Pit

Dit

¼ eDi;A � eSi;A

eSi;Pi
� eDi;Pi

ð4Þ

where eDi;A and eSi;A are, respectively, demand and supply elasticities with
respect to air quality for food i. eDi;Pi

and eSi;Pi
are the price elasticities of

demand and supply, respectively.
Economic theory indicates that for a normal good, the sign of price

elasticity of demand eDi;Pi
is negative, while the price elasticity of supply eSi;Pi

is positive. Therefore, the denominator of Equation (4) is always positive.
Notably, we presume that the denominator is a positive constant, because the
price elasticities of demand and supply are independent of air quality.
However, the sign of the numerator of Equation (4) is difficult to infer. As

aforementioned, both consumers and suppliers tend to reduce their outdoor
activities on heavy pollution days to avoid health damage, which simulta-
neously pushes down both demand and supply in the short run. Both the
signs of eDi;A and eSi;A are positive, although their magnitudes are different
depending on the properties of the food (e.g. storability). Finally, the
aggregate effect of air quality on food prices depends on the relative scales of
demand and supply elasticities with respect to air quality.

1. If the stimulating effect of air quality on demand is larger than that on
supply, then eDi;A[ eSi;A , we have gPi;A [ 0 , implying that the food price
increases with the improvement of air quality.

2. If the stimulating effect on demand is offset by that on supply, then
eDi;A ¼ eSi;A , that is gPi;A ¼ 0 , implying that air quality has no significant
effect on food price.
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3. If the stimulating effect on demand is smaller than that on supply
(0\eDi;A\eSi;A ), or air pollution stimulates demand for some special
foods (eDi;A\0 ), then gPi;A\0 implying that the food price increases with
the deterioration of air quality.

The demand and supply elasticities with respect to air quality and the final
aggregate effect on prices may differ for each product. For instance,
vegetables may be different from meat products due to a different demand
and supply structure. In this study, we shed light on three specific fresh food
products: Chinese cabbage, tomatoes and pork products, which are all staple
daily foods for Chinese consumers (Yu and Abler 2014; Zhou et al. 2015).

3. Econometric model

Food price determination is a dynamic process, which could be modelled by
many different econometric models. However, finite lag models often impose
very strong restrictions on the lagged response of the dependent variable to a
change in independent variables. As a general compromise, the autoregressive
distributed lag (ARDL) model provides a more flexible platform to model
time series (Greene 2007, pp. 681). Particularly, the ARDL(1, 1) model has
become the most frequently used in modern time series analysis (Greene 2007,
pp. 689). The model is specified as:

lnPt¼a0þ
Xp

i¼1

di lnPt�iþ
Xn

j¼1

Xq

i¼0

xj;iXj;t�iþqHolidaytþ
X6

k¼1

ckWeektk

þ
X11

l¼1

hlMonthtlþ
X1or2

m¼1

umYeartmþeit ð5Þ
.
where Pt is the food price at time t, di is the coefficient for the lag of food
prices. Xj,t is a vector of exogenous variables, including air pollution levels,
daily temperature and 24-h precipitation. xj,i captures their effects on food
prices at different times. Severe weather condition, as well as pollution, may
have both influences on consumer behaviour (Agnew and Thornes 1995;
Murray et al. 2010) and commodity supply (Olesen & Bindi, 2002; Zhang &
Carter, 1997), so it is reasonable to add these variables into regression.
Additionally, food prices tend to increase during traditional festivals, so we
add a dummy variable Holidayt in the baseline model. We also include
dummies for each day in a week (with Sunday as the omitted category)
Weektk, for each month of the year (with December as the omitted category)
Monthtl, and year dummies Yeartm to net out potential seasonality effects. a0
is a constant, ɛt is the error term, and p and q are maximum lag orders.
The ARDL model provides a general form for us to test the dynamic

impact of air pollution on food prices. When xi = 0, the ARDL(1, 1) model
degenerates to an AR(1) model.
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Notably, ARDL model requires that the dependent variable does not have
a unit root. Hence, a test of unit roots for ln Pit is a precondition for
conducting these econometric exercises. In addition, there may exist serial
correlation in the error terms, which may lead to incorrect standard errors.
Hence, we use the Newey–West method to correct the standard errors
(Newey and West 1987). Greene (2007, PP.643) proposes the lags in Newey–
West could be N1/4 where N is the sample size.

4. Data sources and descriptive statistics

4.1 Data sources

Beijing is the capital and second largest city in China. It has been well known
for its severe air pollution for many years, due to its basin geographic
location, increasing population, limited resources and heavy pollution in
neighbouring regions. In order to carry out the abovementioned research, we
collected daily food prices, daily AQI numbers and daily PM2.5 concentra-
tion from various sources.

4.1.1 Air quality measures
There are many ways to measure air quality. In general, air pollutants are
subdivided into criteria and non-criteria air pollutants. The former group
includes particulate matter (PM2.5 and PM10), ozone (O3), nitrogen dioxide
(NO2), sulphur dioxide (SO2) and carbon monoxide (CO), and most countries
have regulated the maximum amount of each criteria pollutant in ambient
air. On the other hand, non-criteria air pollutants are much more numerous,
but no general maximum levels exist.
The Ministry of Environmental Protection (MEP) in China is responsible

for monitoring the level of air pollution. Based on the content of criteria air
pollutants, the MEP then calculates the air quality index (AQI), ranging from
0 to 500, and categorises air quality into six levels: Grade I (Excellent,
AQI ≤ 50), Grade II (Good, 50 < AQI ≤ 100), Grade III (Light Pollution,
100 < AQI ≤ 150), Grade IV (Medium Pollution, 150 < AQI ≤ 200), Grade
V (Heavy Pollution, 200 < AQI ≤ 300) and Grade VI (Extremely Heavy
Pollution, 300 < AQI). If air quality is worse than Grade II, it may be
harmful to health. The statistics from the National Bureau of Statistics of
China show that more than half of the days in Beijing were in fact polluted in
recently years.
As the AQI is the most prevalent index used for measuring air quality in

China, we take the daily AQI published by the MEP to measure air quality.
As these data have been published since 2014, the time frame is from 1
January 2014 to 31 December 2015.
However, for the general public, the AQI calculation is often not

understandable, and the accuracy of AQI is frequently questioned by
researchers (Ghanem and Zhang 2014). In addition, the AQI is capped at 500,
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so that the extreme pollution cases, which could significantly affect human
behaviour, may not be correctly mirrored by this index.
As a comparison, we also use PM2.5 concentration data published by the

U.S. Embassy in Beijing3 to measure air quality. PM2.5 is a particularly
harmful pollutant particle, as it can penetrate deep into the lungs and blood
streams, causing severe health damages. The PM2.5 concentration data of the
U.S. Embassy in Beijing are an independent measure of air quality and are
believed to be less manipulated. The U.S. Embassy reports hourly air
pollution information, so we use the 24-hour average to obtain daily PM2.5
concentrations. To match the daily prices data, the PM2.5 data we used spans
three years, from 1 January 2013 to 31 December 2015. However, we find that
the trends between AQI and PM2.5 are basically consistent.

4.1.2 Food prices
We collect daily food prices from Beijing Xinfadi Agricultural Products
Wholesale Market.4 This market is located in southern Beijing, between the
4th and 5th Ring Roads and much of the fresh food supply comes from Hebei
and Shandong Province,5 which are also highly air polluted areas in northern
China. This outdoor food market is able to satisfy over 90 per cent of food
demand in the city. It bears 70 per cent of the vegetable supply and 80 per
cent of super market fruit supply in Beijing. Therefore, the daily commodity
trading prices published by Xinfadi is a good reflection of the city’s food
prices. As Chinese cabbage and tomatoes are particularly popular vegetables
in northern China, we specifically shed light on these two products. For
comparison, pork (mainly the carcass meat) is also included in the analysis, as
more than 60 per cent of consumed meat products in China are made from
pork (Yu and Abler 2014). Although Xinfadi Wholesale Market also
sporadically reports the prices of other products, they cannot be used in this
study due to many missing observations. The trends of the three food prices
are presented in Figure 1.

4.1.3 Other variables
Except for pollution, the weather conditions also affect people’s outdoor
activities. In order to control for these variables, we include temperature
(maximum temperature) and precipitation conditions in the regression.6

Data on minimum daily temperature show similar temporal patterns as the

3 Source: http://www.stateair.net/web/historical/1/1.html.
4 Beijing Xinfadi Agricultural Products Wholesale Market was established in 1988 and has

become the largest professional agri-products wholesale market in Asia. It can handle up to
16000 tons of vegetables, 16,000 tons of fruit, more than 3000 pigs, 3000 sheep, 500 cattle and
1800 tons of aquatic products every day.

5 In 2014, 20.5 per cent vegetables sold in Xinfadi came from Hebei province and 19.0 per
cent vegetables were coming from Shandong province. Source: http://www.xinfadi.com.cn/c
ompany/cintros.shtml.

6 Source: http://www.tianqihoubao.com/lishi/beijing.html.
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Figure 1 The trends in food prices Source: Beijing Xinfadi Agricultural Products Wholesale
Market.
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maximum temperature series and yield similar results to what we find with the
maximum temperature, so we do not report these.7

Figure 1 has demonstrated that food prices show strong seasonality, so do
the air pollution indicators. Usually, air pollution reaches high levels in
winter seasons due to coal burning for heating and cool weather condition. In
order to control for seasonality, we include weekday, month and year
dummies in the econometric models.
It is known that holidays may affect food prices. Hence, a dummy for

national holiday is also included.

4.2 Descriptive statistics

Table 1 presents the definitions and descriptive statistics of the variables. The
average price of Chinese cabbage was 1.02 yuan/kg, with a standard
deviation of 0.44. Tomatoes had an average price of 3.38 yuan/kg and a
standard deviation of 1.28. The pork price was 17.77 yuan/kg on average,
with a standard deviation of 2.51. The relatively large deviations show the
high volatilities of food prices in Beijing.
During 2014–2015, the average daily AQI was 125.38, with a standard

deviation of 76.60. As the national standard for good air quality is an AQI of
100 or less, this reaffirms the severity of air pollution in Beijing.

Table 1 Descriptive analysis of variables

Variable Obs. Mean SD Min Max Units/definition

Dependent variable
Price_cabbage 1092 1.02 0.44 0.43 2.70 Chinese cabbage price, yuan/kg
Price_tomato 1092 3.38 1.28 1.00 6.40 Tomato price, yuan/kg
Price_pork 1092 17.77 2.51 12.50 23.80 Pork price, yuan/kg
Independent variable
AQI 730 125.38 76.60 23.00 485.00 Daily Air Quality Index
pm2.5 1095 94.00 80.43 6.08 557.31 Daily PM2.5 Concentrations,

lg/m3

Temperature_max 1095 18.72 11.14 �6.00 39.00 Daily maximum temperature, °C
Rain 1095 0.24 0.43 0 1 Dummy for whether it rains

or not
Holiday 1095 0.08 0.26 0 1 Dummy for whether it is a

public holiday or not

Notes: The price of tomato is taken from the database of Beijing Xinfadi Agricultural Products Wholesale
Market,8 and the prices of Chinese cabbage and pork are taken from Chinese Agricultural Information
Network.9 Overall, the time frame is from 4 January 2013 to 31 December 2015. The ‘AQI’ is taken from
the Ministry of Environmental Protection. The ‘pm2.50 is taken from the U.S. Embassy in Beijing. The
weather variables, ‘temax’, and ‘rain’ are taken from the network.

7 Source: http://ccm.ytally.com/fileadmin/user_upload/downloads/publications_5th_work
shop/Wang_paper.pdf.

8 Source: http://www.xinfadi.com.cn/marketanalysis/0/list/1.shtml.
9 This network is hosted by the Ministry of Agriculture of the P.R. China. Source: http://

www.agri.cn/.
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Moreover, the average daily PM2.5 concentration was 94.00 lg/m3

(standard deviation 80.43) over three years, with highs usually occurring in
winter seasons. Given that the national safety standard for PM2.5 is 75 lg/
m3, this is also evidence for the severe air pollution in Beijing.

4.3 Test for unit roots

If the dependent variables in the ARDL or AR model have unit roots, it
would make the model unstable. The augmented Dicky-Fuller test (ADF) is
the most prevalent approach in the literature (Dickey and Fuller 1979, 1981;
Elliott et al. 1996). Table 2 reports the unit root test for Chinese cabbage
price, tomato price, pork price, AQI and PM2.5 concentration. The results
rejected the null hypothesis of existence of unit roots for all variables. Hence,
both the ARDL and AR model are legitimate here.

5 Estimation results and discussions

Tables 3–5 present the estimated results of the ARDL and AR models for
Chinese cabbage, tomatoes and pork, respectively. The coefficients for time
dummies (week, month and year) are not reported due to space limit.
Generally, the AR(1) model performs better in estimating the effects of air

pollution on food prices, as all lagged terms for air pollution are not
statistically significant. Air pollution has immediate negative effects on
Chinese cabbage price and tomato price, but has no significant effects on pork
price. Moreover, the results between AR(1) and ARDL model are very
similar, which mirrors the robustness of our results. The following discussions
are based on the results of the AR(1) model.

5.1 Chinese cabbage

Column 2 of Table 3 reports the estimation results of the AR(1) model for
Chinese cabbages with AQI data. Compared with column 1, the coefficients
of all variables are very close, which shows that our results are robust. The

Table 2 Unit roots test

Augmented Dicky-Fuller test H0: existence of unit roots

Z(t) 1% Critical Value 5% Critical Value 10% Critical Value

Ln(price_cabbage) �4.70*** �2.33 �1.65 �1.28
Ln(price_tomato) �2.81*** �2.33 �1.65 �1.28
Ln(price_pork) �2.08** �2.33 �1.65 �1.28
AQI/100 �14.26*** �2.33 �1.65 �1.28
pm2.5/100 �17.37*** �2.33 �1.65 �1.28

Notes: Above tests aim at level variables and include drift term in regression. AQI and PM2.5 have been
rescaled by a factor of 1/100 for better readability. ***, **, and * the significant levels of 1%, 5%, and
10%, respectively.
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price of one-day lag has significant positive effects on present price and the
effect is quantitatively large, implying strong price stickiness. Notably, an
increase in AQI by 100 units would lead to a 1.19 per cent decrease in Chinese
cabbage price. We interpret this as the aggregate effect of air pollution on
food demand and supply. Looking back at our theoretical framework, we can
infer that the stimulating effect of air pollution on demand is larger than that
on supply, so that the price decreases as the severity of air pollution increases.
Although the magnitude of the coefficients for air pollution measure does not
seem large, the extremely heavy pollution with AQI > 300 could lower
vegetable price by 3–5 per cent. This could substantially reduce net income or
profit margins of these farmers by 8–13 per cent, as the profit margins of
vegetable farmers are around 40 per cent (National Development and Reform
Commission 2015, Table 1-21-1). It could also bias CPI statistics and lead to
incorrect macroeconomic policies as food expenditure share still remains
about 30 per cent in total household expenditure in China (Yu and Abler
2014, 2016; Zhou et al. 2015).
As for the weather condition variables (maximum temperature and

precipitation dummy) and the holiday variable, their coefficients are all not
statistically significant. We attribute this to the seasonal dummy variables.
For comparison, in columns 3 and 4 of Table 3, we replace the AQI with

the PM2.5 concentration and estimate the ARDL(1, 1) model and the AR(1)
model again, respectively. Consistent with the results of the AQI, the PM2.5

Table 3 Empirical results for Chinese cabbage price

AQI PM2.5

ARDL(1, 1) AR(1) ARDL(1, 1) AR(1)

L1.(Ln(price_cabbage)) 0.8621** 0.8621** 0.9001** 0.9000**
(0.0247) (0.0247) (0.0178) (0.0178)

AQI/100 or pm2.5/100 �0.0130** �0.0119** �0.0070* �0.0064*
(0.0044) (0.0035) (0.003) (0.0026)

L1.(AQI/100) or
L1.(pm2.5/100)

0.0023 0.0012
(0.0055) (0.0033)

Temperature_max �0.0007 �0.0007 �0.0012 �0.0012
(0.0011) (0.0011) (0.0008) (0.0008)

Rain 0.0148 0.015 0.0156 0.0156
(0.0121) (0.0121) (0.0093) (0.0093)

Holiday �0.0195 �0.019 �0.0044 �0.0046
(0.0163) (0.016) (0.0116) (0.0116)

Observations 729 730 1091 1091
F-test for Model
Specification

F(24, 704)
= 382.71**

F(23, 706)
= 398.72**

F(25, 1065)
= 747.18**

F(24, 1066)
= 775.52**

Included other explanatory variables
Each day in a week √ √ √ √
Month √ √ √ √
Year √ √ √ √

Notes: The value in brackets is the Newey–West standard error with lag = 6. **, and * the significant levels
of 1% and 5%. We only display the regression output of main variables.
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concentration of one period lag does not have a significant effect on Chinese
cabbage price, so the AR(1) model is still the best choice.
Additionally, the outcome of column 4 is very close to that of column 2,

reaffirming our abovementioned conclusion. Column 4 shows that an
increase in PM2.5 concentration by 100 lg/m3 would lead to 0.64 per cent
decreases in Chinese cabbage price, and the effect is significant. Consistent
with our theory, air pollution could push down both demand and supply, but
the plunge of demand is larger than the supply. It eventually pushes down the
equilibrium market price.

5.2 Tomatoes

Table 4 reports the estimation results for tomatoes. As expected, the AR(1)
model performs better in estimating the effects of air pollution on tomato price,
because the coefficients on At-1 are insignificant in both columns 1 and 3. Both
coefficients for At in the AR(1) model (columns 2 and 4) are negative and
statistically significant. That is, an increase in AQI by 100 units would lead to a
0.89 per cent decrease in tomato price, while an increase in the PM2.5
concentration by 100 lg/m3would lead to a 0.55 per cent decrease. This implies
that air pollution has a similar effect on the price of the tomato as on theChinese
cabbage. The explanation is also similar. Air pollution could plunge both
demandand supplyof tomato, but themagnitudeof plunge for demand is larger
than supply. Eventually, the market prices go down.

Table 4 Empirical results for tomato price

AQI PM2.5

ARDL(1, 1) AR(1) ARDL(1, 1) AR(1)

L1.(Ln(price_tomato)) 0.9667** 0.9666** 0.9695** 0.9695**
(0.0072) (0.0072) (0.0088) (0.0088)

AQI/100 or pm2.5/100 �0.0068* �0.0055* �0.00926* �0.0089**
(0.0030) (0.0025) (0.0037) (0.0028)

L1.(AQI/100) or
L1.(pm2.5/100)

0.0027 0.0008
(0.0032) (0.0038)

Temperature_max 2.65E-05 3.03E-05 0.0003 0.0003
(0.0006) (0.0006) (0.0008) (0.0008)

Rain 0.0017 0.0018 0.0004 0.0005
(0.0052) (0.0052) (0.0067) (0.0067)

Holiday �0.0099 �0.0102 �0.0094 �0.0094
(0.0068) (0.0069) (0.0067) (0.0066)

Observations 729 730 1091 1091
F-test for Model
Specification

F(24, 704)
= 2387.61**

F(23, 706)
= 2463.00**

F(25, 1065)
= 2156.49**

F(24, 1066)
= 2226.23**

Included other explanatory variables
Each day in a week √ √ √ √
Month √ √ √ √
Year √ √ √ √

Notes: The value in brackets is the Newey–West standard error with lag = 6. **, and * the significant levels
of 1% and 5%. We only display the regression output of main variables.
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5.3 Pork

Table 5 reports the effects of air pollution on pork price.Unlike the situation of
Chinese cabbage and tomatoes, air pollution seems to have no significant
effects on pork price, regardless of the model used. We attribute this difference
to the property of meat. First of all, pork can be frozen for future sale, and
China’s cold storage capacity for meat reached 7 million tons in 2008, with
more than 10,000 cold storage units across the country . This could imply that
air pollutionmight have negligible effects on pork supply in the short term, due
to a flexible cold storage control system. Second, pork has a relatively longer
shelf life, and consumer can chill or freeze pork for future consumption, so the
effect of air pollution on daily pork demand is also negligible.

6 Conclusion

In recent years, air pollution has become one of the top environmental
concerns in China. In this study, we first develop a theoretical model based on
market equilibrium and then employ econometric tools to evaluate the effects
of air pollution on food prices in Beijing, using the wholesale market prices
for three major fresh food products consumed in China (Chinese cabbage,
tomatoes and pork). We find that air pollution has negative effects on the
price of Chinese cabbage and tomatoes, but has no significant effects on pork
price in the short term. Specifically, with an increase in AQI by 100 units, the

Table 5 Empirical results for pork price

AQI PM2.5

ARDL(1, 1) AR(1) ARDL(1, 1) AR(1)

L1.(Ln(price_pork)) 0.9444** 0.9448** 0.9649** 0.9647**
(0.0128) (0.0127) (0.0085) (0.0085)

AQI/100 or pm2.5/100 0.0012 0.0003 0.0009 0.0004
(0.0015) (0.0014) (0.0011) (0.0010)

L1.(AQI/100) or
L1.(pm2.5/100)

�0.00159 �0.0010
(0.0010) (0.0007)

Temperature_max 0.0002 0.0002 0.0001 0.0001
(0.0002) (0.0002) (0.0002) (0.0002)

Rain 0.0001 0.0000 0.0003 0.0003
(0.0018) (0.0018) (0.0013) (0.0013)

Holiday �0.0005 �0.0002 0.0009 0.0010
(0.0024) (0.0024) (0.0018) (0.0018)

Observations 729 730 1091 1091
F-test for Model
Specification

F(24, 704)
= 4073.16**

F(23, 706)
= 4211.16**

F(25, 1065)
= 4307.40**

F(24, 1066)
= 4486.56**

Included other explanatory variables
Each day in a week √ √ √ √
Month √ √ √ √
Year √ √ √ √

Note The value in brackets is the Newey–West standard error with lag = 6. **, and * the significant levels
of 1% and 5%. We only display the regression output of main variables.
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prices for Chinese cabbage and tomatoes decrease by 1.19 and 0.89 per cent,
respectively; with an increase in PM2.5 concentration by 100 lg/m3, the
prices for Chinese cabbage and tomatoes decrease by 0.64 and 0.55 per cent,
respectively.
We interpret these results as the aggregate effect of food demand and

supply in response to air pollution, while the stimulating effects on demand
and supply are, respectively, determined by natural properties of fresh
products, such as shelf life and storability. For instance, fresh vegetables
perish relatively quickly and are difficult to preserve, so the supply does not
shrink much in the short run. However, when consumers reduce their
outdoor activities, the impact on demand could be larger, eventually pushing
down their market prices. On the contrary, pork has a longer shelf life and
can be frozen for future sale, so the impact of air pollution on the price is
insignificant in the short run.
Air pollution can affect social welfares in many dimensions. This study

indicates that air pollution decreases prices of fresh vegetables in the short
run. Food price volatility is linked to the welfare of both consumers and
producers. Even though the magnitude of the coefficients for air pollution
measure does not seem substantial, extremely heavy pollution with
AQI > 300 still could lower vegetable prices by 2–5 per cent compared to
excellent air quality. This could shrink profit margin or net income of
vegetable farmers by 5–13 per cent, which is a sizable number, as the profit
margin for Chinese vegetable farms is 41 per cent in 2014 (National
Development and Reform Commission 2015, Table 1-21-1). It could also
alternate CPI statistics and lead to incorrect macroeconomic policies as food
expenditure share still remains about 30 per cent in total household
expenditure in China (Yu and Abler 2014, 2016; Zhou et al. 2015). Chinese
governments are taking different measures to mitigate air pollution and
stabilise food prices.
Our main research purpose is to use the market price data to estimate the

impact of air pollution. We unfortunately have no household level data to
match the time series data, to understand specific behaviours of consumers
and suppliers in response to air pollution. It is well known that storage plays
important role in food consumption and could mitigate the impacts (Gibson
and Kim 2012). We find that the impact of air pollution could differ for
different products due to their shelf life length and storability. For instance,
there is no significant impact of air pollution on pork price. Our study is to
measure the aggregate effect of air pollution, rather than to identify the
channels. Air pollution has many channels to affect food prices, which will be
our future research.
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