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The public R&D and productivity growth in
Australia’s broadacre agriculture: is there a

link?

Farid Khan, Ruhul Salim, Harry Bloch and Nazrul Islam†

This paper investigates the dynamic relationships between research and development
(R&D) expenditure and productivity growth in Australian broadacre agriculture using
aggregate time series data for the period 1953 to 2009. The results show a
cointegrating relationship between R&D and productivity growth and a unidirectional
causality from R&D to TFP (total factor productivity) growth in Australian
broadacre agriculture. Using the dynamic properties of the model, data from beyond
the sample period are analysed by employing the variance decomposition and the
impulse response function. The findings reveal that R&D can be readily linked to the
variation in productivity growth beyond the sample period. Furthermore, the
forecasting results indicate that a significant out-of-sample relationship exists between
public R&D and productivity in broadacre agriculture.

Key words: Australian Broadacre Agriculture, cointegration, productivity, public
research & development.

1. Introduction

There is a broad consensus among economists and researchers that rising
agricultural productivity has been the crucial factor in achieving economic
prosperity and in meeting the growing global food demand over the past
decades (Pardey et al. 2013; Alston and Pardey 2014). One of the leading
factors that fuels productivity improvements in agriculture is investment in
agricultural research and development (hereafter, R&D), which produces new
knowledge and achieves technological breakthroughs (Coe and Helpman
1995).
In recent decades, there has been concern that productivity in agriculture is

declining throughout most of the developed world (Ball et al. 2013). Evidence
of a slowdown in productivity growth is revealed over the last decade
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compared with earlier periods in Australian agriculture (Sheng et al. 2011;
Khan et al. 2015). Studies also have found that falling public R&D
investment in agriculture over the past decades is one of the possible causes
of the recent declines in agricultural productivity growth (Schimmelpfennig
and Thirtle 1994; Alston et al. 2011). The recent decline in productivity has
thus renewed interest in productivity analysis.
In the long run, agricultural productivity is largely driven by new

knowledge or technology and/or efficiency improvements. However, there
are concerns that the declines in productivity growth can be attributed to the
lagged impact of the real public investment in agricultural research, which has
stagnated since 1970s. Mullen (2007) found R&D to be a major source of
productivity growth in Australian agriculture. Similarly, Salim and Islam
(2010) also found that R&D matters for long-run productivity growth. A
recent study by Sheng et al. (2015a) on Australian broadacre agriculture
suggests that increasing size is not effective to improve productivity unless the
technological capabilities of farms are improved, which is where R&D is an
essential element to promote innovation adoption.
Apart from R&D, there are other factors that drive productivity through

efficiency improvements. Changes in domestic policy settings and human
capital are important determinants of agricultural productivity in Australia
(Gray et al. 2014). Sheng et al. (2015b) show that policy reforms through
resource reallocation among farms contribute to the industry-level produc-
tivity growth in Australian broadacre agriculture. In addition, studies suggest
that economy-wide reforms facilitate transformation and structural adjust-
ment in agriculture and provide a more favourable enabling environment to
productivity growth (Gray et al. 2014). Changes in institutions and regula-
tory arrangements create conditions conducive to productivity growth.
Among efficiency drivers, farmers’ education and training are also important
determinants of productivity growth through increasing their capacity to
innovate (Mullen 2007; Xayavong et al. 2015). Another factor that influences
broadacre agricultural productivity in Australia is seasonal conditions which
are beyond the control of farmers and government. Islam et al. (2014) found
across varying rainfall environments that efficiency gains play an increasingly
important role in influencing productivity as growing season rainfall
increases.
While the previous studies identify the factors that influence farm

productivity, so far no study has yet been performed to identify the long-
run dynamic relationship between farm productivity and R&D in Australian
broadacre agriculture with a dynamic econometric model specification. This
paper addresses this gap in the literature. It examines the relationship
between public R&D spending and productivity growth in Australian
broadacre agriculture with a data series spanning more than 50 years. This
paper applies cointegration and Granger causality to investigate the
relationship between R&D and TFP and the direction of causality running
between them. Apart from estimating short-term and long-term effects of
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public R&D investments, this paper also focuses on the dynamic effects of
R&D by applying variance decomposition, impulse response functions and a
forecasting modelling. It explores the properties of the relationship between
R&D and productivity growth in a more dynamic fashion and beyond the
sample period.
The remainder of this paper proceeds as follows. The next section provides

a brief overview of public R&D and agricultural productivity in Australia. A
discussion of data sources and variable selection is given in Section 3.
Section 4 discusses the time series econometrics and empirical results.
Section 5 concludes the paper.

2. Public R&D and broadacre agricultural productivity in Australia

Australian agriculture is primarily based on extensive cropping and livestock
farming activity, which is generally termed ‘broadacre’ agriculture. Broadacre
agriculture is a significant contributor to the country’s agricultural and
economic growth. It generates more than 54 per cent of the country’s gross
value of agricultural production (Gray et al. 2014). Moreover, Australia
exports approximately 60 per cent of its agricultural production, accounting
for 10.9 per cent of the total export earnings in 2010–2011 (ABS, 2012).
The public sector plays a dominant role in R&D investment in Australian

agriculture, generally accounting for around 75 per cent of total agricultural
R&D (Productivity Commission, 2011). This statistics strongly contrasts with
those of other OECD countries, where the share of private R&D is typically
more than half the total investment in agricultural R&D (Sheng et al. 2011).
Figure 1 shows the patterns of public R&D expenditure in broadacre

agriculture between 1953 and 2009 at constant 2009 prices. Over this period,
Australian real public R&D investment in agriculture has grown from 102.3
million AUD in 1953 to almost 415.9 million AUD in 2009. There was an
upward trend in the total public expenditure in agricultural R&D up until the
mid-1970s. Since then, expenditure has essentially been static, with a spike in
investment in 2001 followed by falling investments. Studies indicate that this
sluggishness in public R&D since the mid-1970s may have contributed to the

Figure 1 Public R&D expenditure in Australian broadacre agriculture. Source: Calculated
with data from Mullen (2007, 2010) and ABARES.
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slowdown in agricultural productivity growth in recent periods. Before 1994,
broadacre farming experienced approximately 2.2 per cent growth in
productivity per year, but since then it has been declining by 0.4 per cent a
year (Sheng et al. 2011).
In Australia, agricultural research has been largely supported by public

investments through different sectoral funding and public research agencies.
The research and development corporations (RDCs) are the main funding
bodies of the government for rural R&D in Australia. Covering a broad
spectrum of Australia’s agricultural, fishing and forestry industries, RDCs
invest in R&D and innovation to strengthen the competitiveness and
profitability of these industries by improving the productivity and quality of
products.

3. Methods

This paper uses national time series data for the period 1953 to 2009.
Empirical linkages are examined among four variables, namely total factor
productivity, domestic public investments in R&D, foreign public investment
in R&D and farmers’ level of education1 . The broadacre TFP index (TFP) is
measured by the Australian Bureau of Agricultural and Resource Economics
and Sciences (ABARES) and is estimated as the ratio of a Fisher quantity
index of total output to a Fisher quantity index of total input. A complete
description of how ABARES constructs the TFP index for the broadacre
industries can be found in Gray et al. (2011).
The domestic public investment in R&D (RD) in broadacre agriculture

series builds on data calculated by Mullen (2010) and data from the
Australian Bureau of Statistics (ABS) biannual Australian Research and
Experimental Development Survey. Mullen assembles the R&D data from
various public sources, including the Australian Bureau of Statistics (ABS)
and a previous dataset from Mullen et al. (1996). In the absence of
broadacre-specific R&D data, the R&D in broadacre alone is derived from
the R&D investment in agriculture by assuming that broadacre agricul-
ture’s share is equal to its share of the total value of production in
agriculture.
This paper uses R&D expenditure in US agriculture, collected from the US

Department of Agriculture (USDA), as a proxy for the foreign R&D
expenditure (FRD). The US plays a significant role in global agricultural
R&D in relation to its investment and in terms of research spillovers (Alston
2002). It is often assumed that the transfer of knowledge and technology
between countries depends on a trade channel, which facilitates access to the
outputs of foreign R&D, thereby enhancing productivity. Therefore, we
construct and use an import-share-weighted US R&D variable for the model

1 Weather is another important potential variable that may explain productivity variation in
Australian broadacre agriculture, but that has not been included in this study.
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by following Coe and Helpman (1995). These data are weighted by the per
cent of agricultural imports to the agricultural gross value of farm production
(GVP) in Australia. The agricultural GVP is obtained from ABARES, and
imports of agricultural crops and livestock products are obtained from FAO
statistics. This series is extrapolated backwards for the period 1953 to 1960
using actual data from 1961 to 2009.
Another variable is farmers’ education (EDU), which is used as a proxy for

the unobserved human capital of broadacre farmers. It is likely that farmers’
ability and adoption of new technologies are influenced by his level of
education attainment. The inclusion of human capital is common in the TFP
regressions because education makes people more effective in organising
work, in communicating and in becoming more innovative, all of which
contribute to a higher productivity level. Following Mullen and Cox (1995)
and Sheng et al. (2010), this variable is proxied by the proportion of primary
school-age students in the total population enroled in primary schools in
Australia collected from the World Development Indicators database. This
series is also extrapolated backwards for the period 1953 to 1970 using the
actual data for later years.
To estimate the effects of R&D, three alternative R&D variables are

constructed following the previous time series studies (Mullen and Cox
1995; Thirtle et al. 2008; Sheng et al. 2010). First, a single lagged value of
R&D expenditure is used. Like Thirtle et al. (2008), this paper finds a
12 year R&D lag (RDt�12) as the strongest influence on TFP. The strongest
R&D lag is determined by using the Ramsey RESET specification test, and
different model selection criteria are reported in the online appendix,
Table S12 . Second, we construct a simple R&D knowledge stock variable
(RDSPIM) following the perpetual inventory method (PIM), which is
commonly used to construct stocks for physical capital flows in the
literature.
Finally, another R&D knowledge stock (FRDgamma) is constructed

using the gamma distribution function. In the literature, there are different
lag structures and lag lengths used to approximate the lag effects of R&D
with a gamma distribution, but there is hardly any consensus among the
researchers regarding lag selection. For example, in US agriculture a
recent study by Huffman and Evenson (2006) uses a 35 year lag profile.
Also in Australian broadacre agriculture, Binenbaum et al. (2008)
assumed that the knowledge stock is built up following a 35 year
trapezoidal research profile. Studies in UK and Australian agriculture
largely use 16 to 35 years for the lag. For example, Cox et al. (1997) used
30 year lag specifications of the research impacts on productivity in
Australian broadacre agriculture.

2 The ordinary least squares regression is fitted to determine strongest R&D lag by using the
following log-linear relationship: LnTFPt ¼ b0 þ b1LnRDt�i þ b2LnFRDt þ b3LnEDUt þ et.
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Given the data limitation and considering the relatively applied nature of
public agricultural R&D in Australia, we allow 30 year lagged specifications
of the research impacts on productivity for the gamma distribution function,
which is consistent with previous studies in Australian broadacre agriculture,
e.g. Cox et al. (1997). The number of observations on R&D and the degrees
of freedom available for identifying relationships are also a consideration for
this lag selection. In addition, the preliminary investigation mentioned
previously finds 12 (or 15) years as the strongest lag, implying a maximum lag
of 24 to 30 years for the gamma distribution. Following Alston et al. (2011),
the parameters of the gamma lag distribution are assigned values of k = 0.70
and d = 0.90.
In the next section, we apply a set of standard unit root tests, including

the Augmented Dickey Fuller, the Dickey–Fuller generalised least squares
(DF-GLS), the Phillips–Perron and the KPSS (Kwiatkowski, Phillips,
Schmidt, and Shin) tests, to examine time series properties of all series.
Then, we apply a cointegration test proposed by Johansen and Juselius
(1990) to investigate the cointegrating relationship between R&D and
productivity growth. In addition, the Granger causality test is used to shed
light on the direction of possible causality between R&D and TFP growth
along with the Toda–Yamamoto Granger noncausality test for the
robustness check. A few robustness checks are also performed to test the
consistency of the empirical results, including after allowing for unknown
structural breaks.

4. Time series econometrics and empirical results

4.1 Unit root tests

To provide valid empirical evidence on long-run dynamic relationships
among variables, we investigate the time series properties of the variables
using widely used unit root tests: the Augmented Dickey–Fuller (ADF)
test, the GLS detrended Dickey–Fuller test (DF-GLS), the Phillips–Perron
tests and the KPSS test. The ADF test adjusts a higher-order autoregres-
sive process by adding lagged difference terms of the dependent variable in
the parametric test regression. DF-GLS is a simple modification of the
ADF test proposed by Elliott et al. (1996), where the time series is
transformed via a generalised least squares (GLS) regression before
performing the test, and this is considered to be better in terms of the
statistical power of the test (Apergis 2014). Both the Phillips–Perron and
the KPSS tests apply nonparametric methods for controlling serial
correlation in testing for a unit root. The KPSS test differs from the
other unit root tests, such as the ADF, DF-GLS and PP, in that it
assumes stationarity of the series under the null hypothesis. Test results for
the time series data covering the period 1953–2009 are presented in the
online appendix. These results confirm that all variables are nonstationary
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in their levels, but they are stationary in their first differences, i.e. they are
each integrated of order one, I(1)3 ,4 .

4.2 Cointegration and the VEC model

4.2.1 Cointegration test: Johansen approach based on VAR
Economic theory and the existing empirical studies regarding the short-
run and the long-run dynamic relationships between TFP and R&D
provide limited guidance in modelling the relationship between research
expenditures and total factor productivity. To identify the relationships,
we adopt a modelling strategy based upon the information provided by
the time series data. We apply an unrestricted VAR (vector autoregres-
sion) model that allows the data to speak to the possible links and
directions among these variables. The VAR-based Johansen cointegration
test uses maximum likelihood estimation methodology to test for the
cointegration rank r, which represents the number of independent
cointegrating vectors.
To use the Johansen test, a vector error correction model (VECM) of the

following form can be specified:

Dyt ¼
Y

yt�1 þ
Xp�1

i¼1

CiDyt�i þ et ð1Þ

where P ¼ Pp
i¼1

Ai � I and Ci ¼ � Pp
j¼iþ1

Aj .

The Johansen test examines the coefficient matrix Π, particularly the rank
of the matrix. According to Engle and Granger (1987), if all variables of the
vector yt are integrated of order one, I(1), the coefficient matrix Π has rank
0 ≤ r < k, where r is the number of linearly independent cointegrating
vectors. If rank (Π) = 0, there is no cointegrating vector. However, if 1 ≤
r < k, there is a single cointegrating vector or multiple cointegrating vectors
in the system.
Johansen proposes two types of likelihood ratio tests: the trace test and

maximum eigenvalue test, for the number of characteristic roots using the
following two statistics:

3 We also test unit roots for the alternative R&D variables: RDt�12, RDPIM and RDgamma

knowledge stock variables, for both domestic and foreign R&D expenditures. The results
indicate that all variables have a unit root in the level across all the tests. However, two
variables: RDgamma and FRDgamma, are not integrated in their first differences according to the
PP and KPSS tests.

4 We also employ the Zivot–Andrews unit root tests which suggest that all series are
integrated of order one after allowing breaks by following Salim and Bloch (2009). Detailed
results are available upon request.
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ktrace ¼ �T
Xk
i¼rþ1

ln 1� bki
� �

ð2Þ

kmax ¼ �T ln 1� bkrþ1

� �
ð3Þ

where bk is the estimated values of the characteristic roots (also called
eigenvalues) obtained from the Πmatrix and T is the number of usable
observations. The null hypothesis for the trace test is r cointegrating vectors,
and the alternative isk cointegrating vectors. Themaximumeigenvalue tests the
null hypothesis of r cointegrating vectors against r + 1 cointegrating vectors.
We use the multivariate maximum likelihood approach of Johansen and

Juselius, which allows the estimation of multiple cointegrating relationships.
The results for the trace test and the eigenvalue test (Table 1) reject the null
hypothesis of no cointegrating vector, but they cannot reject the hypothesis of,
atmost, one cointegrating equation. Both the trace test and themax-eigenvalue
test indicate one cointegrating equation at the 5 per cent significance level.5,6

4.2.2 Vector error correction model: Johansen and Juselius method
Having established cointegration, the Johansen–Juselius vector error correc-
tion (VEC) method is used to test the short-run dynamic relationship among
variables. The error correction model is as follows:

Table 1 Cointegration tests: Johansen and Juselius approach

Series tested: LnTFP LnRD LnFRD LnEDU

Hypothesised Eigenvalue Statistic 5%

No. of CE(s) Critical value Prob.*

Trace test
None† 0.445 52.426 47.85613 0.0175
At most 1 0.217 20.632 29.79707 0.3810
At most 2 0.089 7.407 15.49471 0.5308
At most 3 0.042 2.348 3.84146 0.1255

Max-eigenvalue test
None † 0.445 31.795 27.58434 0.0135
At most 1 0.217 13.225 21.13162 0.4318
At most 2 0.089 5.059 14.26460 0.7343
At most 3 0.042 2.348 3.84146 0.1255

*MacKinnon–Haug–Michelis P-values. †Rejection of the hypothesis at the 0.05 level.

5 Cointegration tests are conducted using the original R&D variable not lagged or stock
values.

6 For sensitivity, we performed Gregory and Hansen cointegration test which suggests that
allowing for an unknown structural break does not affect results. Detailed results are available
on request.
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DTFPt ¼b1 þ
Xm
i¼1

b11iDTFPt�i þ
Xn
i¼1

b12iDRDt�i þ
Xn
i¼1

b13iDFRDt�i

þ
Xr

i¼1

b14iDEDUt�i þ a1ECTt�1 þ e1t

ð4Þ

DRDt ¼b2 þ
Xm
i¼1

b21iDTFPt�i þ
Xn
i¼1

b22iDRDt�i þ
Xn
i¼1

b23iDFRDt�i

þ
Xr

i¼1

b24iDEDUt�i þ a2ECTt�1 þ e2t

ð5Þ

DFRDt ¼b3 þ
Xm
i¼1

b31iDTFPt�i þ
Xn
i¼1

b32iDRDt�i þ
Xn
i¼1

b33iDFRDt�i

þ
Xr

i¼1

b34iDEDUt�i þ a3ECTt�1 þ e3t

ð6Þ

DEDUt ¼b4 þ
Xm
i¼1

b41iDTFPt�i þ
Xn
i¼1

b42iDRDt�i þ
Xn
i¼1

b43iDFRDt�i

þ
Xr

i¼1

b44iDEDUt�i þ a4ECTt�1 þ e4t

ð7Þ

where D denotes the difference operator; TFP, RD, FRD and EDU are the
endogenous variables that are integrated of order one; and ɛt are random
errors that are each independently and identically distributed. The inclusion of
lags of the dependent variable as explanatory variables in the regression is
necessary, as the dependent variable itself may be correlated with its lags. The
error correction term ECT is the one-period lagged value of the error term
from the cointegrating equation, which equals zero in the long-run equilibrium
relationship. The coefficients a1, a2, a3, and a4 are the adjustment parameters,
and they represent the speed of adjustment in the error correction mechanism.
Table 2 presents the test results for error correction by using the Johansen–

Juselius vector error correction method with specifications of R&D. In the
table, Panel A shows results for 12 years of lag values of R&D and foreign
R&D. This type of lag structure has been applied in other studies, including
Salim and Islam (2010) and Thirtle et al. (2008). The statistically significant
and negative coefficient of the equilibrium error term provides evidence of the
adjustment of the short-run disequilibrium towards the long-run equilibrium
for the model. For the ΔTFP equation, the negative sign indicates that TFP
moves towards its equilibrium level in the case of the 12 year lagged R&D.
The coefficient of �0.924 suggests a 92.4 per cent adjustment towards the
long-run equilibrium in each year.
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Panel B andPanel C report results based onR&D stocks constructed by two
alternative specifications ofR&D lag structure: the perpetual inventorymethod
(PIM) and gamma distribution, respectively. Under the PIM method, R&D
stocks are calculated assuming adepreciation rate fixedat 5 per cent. InPanelC,
R&D stocks are calculated assuming a gamma distribution with a 30 year
research lag length. The results show that in the ΔTFP equation, the coefficient
associated with the error correction term reported in Panel B is statistically
significant and negative, suggesting a move towards long-run equilibrium. In
Panel C, the error correction term is not statistically significant, suggesting no
error correction adjustment towards long-run equilibrium. Besides, the low R-
square and F-statistic does not suggest that this specification fits data well.
The coefficients on the first-difference terms reported in Table 2 represent

short-run elasticities as all variables are in natural logarithms. The short-run
adjustment parameters of the explanatory variables R&D stock and foreign
R&D stock under the PIM method are positive and significant, indicating
that both domestic and foreign R&D have positive short-run impacts on
TFP, while the other short-run parameters are not significant7 . This result

Table 2 Unrestricted VECM results: dependent variable ΔlnTFP

Variable Estimated coefficients (Std. Err.)

Panel A. 12 years
Lag R&D

Panel B. R&D
stocks (PIM)

Panel C. R&D stocks
(gamma distribution)

ECTt�1 �0.923683* �0.936533* �0.092051
(0.19762) (0.17652) (0.07773)

D ln TFPt�1 0.001114 0.074174 �0.390205*
(0.15312) (0.13713) (0.13236)

D ln RDt�13 �0.134035
(0.17817)

D ln FRDt�13 �0.094480
(0.08011)

D lnRDSPIMt�1 1.271427*
(0.44833)

D ln FRDSPIMt�1 1.755252*
(0.56797)

D lnRDSgamma
t�1 �1.019522

(0.79853)
D ln FRDSgamma

t�1 0.906417
(0.96645)

D ln EDUt�1 �0.698104 �1.273997 �2.231255
(1.69180) (1.62469) (1.96767)

Constant 0.036015 �0.184527 1.96767
(0.02139) (0.04707) (0.05170)

Adj. R-squared 0.453231 0.459173 0.229158
S.E. equation 0.094154 0.087366 0.109495
F-statistic 7.962980 10.16943 2.913379

*Rejection of the null hypothesis at the 1%.

7 The ECM results for the other variables indicate that none of the equations contains a
statistically significant error correction term. Details are available from the authors on request.
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shows that lagged R&D is significant in explaining changes in total factor
productivity and implies that increased R&D expenditure leads to produc-
tivity growth in Australian broadacre agriculture.
The long-run parameters of the cointegrating equations estimated from the

ECM are reported in the following equations. The estimated parameters are
exactly identified, and the model fits well8 . The results of the normalised
cointegrating coefficients are presented in the following relationship for
different specifications of the R&D variable where ‘***’ and ‘**’ denote that the
associated long-run parameters are statistically significant at the 0.01 and
0.05 levels, respectively:

LnTFP ¼ 6:158þ 0:1279LnRD���
t�12 þ 0:0945LnFRDt�12 � 0:6074LnEDU���

t

ð8Þ

LnTFP¼12:863þ0:3146LnRDSPIM���
t �0:1861LnFRDSPIMt �2:343LnEDU��

t

ð9Þ

LnTFP¼15:583þ0:2488LnRDSgamma
t �1:440LnFRDSgamma���

t �3:778LnEDUt

ð10Þ

The normalised cointegrating Equation 8 considers 12 years of R&D lag.
Equations 9 and 10 are specified with research stocks (RDS) based on the
PIM and the gamma distribution, respectively. In the case of both 12 year
lagged R&D and research stock based on the PIM specifications, the
coefficients for R&D are positive and statistically significant, indicating a
long-term marginal effect on TFP. Because a double-logarithmic functional
form is used, the coefficient can be interpreted as a long-term elasticity. The
long-run elasticities of TFP with respect to the 12 year peak R&D lag and
research stock based on the PIM are 0.128 and 0.315, respectively, suggesting
substantial impact for the public investments in agricultural R&D in
Australia.
Further results in Equation 8 show that foreign R&D is positively related

to TFP in the case of 12 year R&D lag, although the coefficient is not
statistically significant, and that the long-run coefficient of school enrolment
variable (EDU) is negative and significant. The ratio of primary school
enrolment is a crude proxy for the farmers’ level of education. However, the
variable is included in this analysis following other studies (e.g. Mullen and
Cox 1995 and Sheng et al. 2010) without considering the possibility of its

8 P > v2 = 0.00 in the case of the cointegrating equations. Overall model fits statistics report
P > v2 = 0.00; the coefficients on cointegrating equations are largely statistically significant, as
are the adjustment parameters.
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lagged effects on productivity due to limitations on data availability. The
negative sign, though, is not expected, but similar evidences of wrong sign are
found in the standard literature. Perhaps this finding indicates that Australian
farmers have poor capacity to facilitate precision agriculture, technology
adoption and managing the complexity of the modern farming or to receive
the benefits of ICT-based technologies. Other studies show that the adoption
rates of information technologies is not as fast as expected in Australian
agriculture (Kingwell and Pannell 2005; Kingwell 2011).
Like the error correction term, the long-run coefficient of R&D in

Equation 10 is not statistically significant in the case of both domestic and
foreign R&D stocks based on the gamma distribution. Limited data
availability might be one possible reason for this weak result. An alternative
model is tested considering R&D stock based on the gamma distribution for
domestic R&D only, and results suggest a long-run cointegrating relationship
between TFP and domestic R&D like the result using the R&D stock based
on PIM9. A series of diagnostic tests are performed to check the specifications
of the model and to ensure the validity of the estimated coefficients and
inferences. The results obtained from the likelihood ratio (LR) test also
confirm the cointegrating relationships between TFP and R&D (both 12 year
lagged R&D and research stock based on the PIM)10 . The stability tests of
the VECM estimates suggest that the number of cointegrating equations have
been correctly specified. Further, an LM test for autocorrelation suggests that
there is no autocorrelation in the residuals at either lag order one or two.
Results are not reported here to conserve space.
Overall, we find strong econometric evidence of the existence of a long-run

equilibrium relationship between the TFP and the public R&D in Australian
broadacre agriculture. This result supports the logic of the research and
development corporation (RDC) system, where a levy is collected from
farmers to invest into R&D that leads to increased GVP via higher
agricultural TFP growth. This evidence of a cointegrating relationship
between R&D expenditure and productivity growth implies that productivity
growth in Australian broadacre agriculture is to be driven by technological
advancements. Public policies directed at scientific research and development
likely to lift longer-term productivity growth in Australian agriculture.

4.3 Granger causality tests

To explore the direction of the causality among the variables in the
cointegrated vector, we apply the Granger causality test. The presence of one
cointegrating vector implies that there should be Granger causality in at least
one direction. Granger causality can be examined using the following VAR
framework of order p:

9 LnTFP ¼ 16:2565þ 0:3144LnRDSgamma���
t þ 0:109LnFRDt � 2:933LnEDU��

t
10 Detailed results are available from the authors upon request.
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TFPt ¼b1 þ
Xp
i¼1

b11iTFPt�i þ
Xp
i¼1

b12iRDt�i þ
Xp
i¼1

b13iFRDt�i

þ
Xp
i¼1

b14iEDUt�i þ e1t

ð11Þ

RDt ¼b2 þ
Xp
i¼1

b21iTFPt�i þ
Xp
i¼1

b22iRDt�i þ
Xp
i¼1

b23iFRDt�i

þ
Xp
i¼1

b24iEDUt�i þ e2t

ð12Þ

FRDt ¼b3 þ
Xp
i¼1

b31iTFPt�i þ
Xp
i¼1

b32iRDt�i þ
Xp
i¼1

b33iFRDt�i

þ
Xp
i¼1

b34iEDUt�i þ e3t

ð13Þ

EDUt ¼b4 þ
Xp
i¼1

b41iTFPt�i þ
Xp
i¼1

b42iRDt�i þ
Xp
i¼1

b43iFRDt�i

þ
Xp
i¼1

b44iEDUt�i þ e4t

ð14Þ

Equation 11 models TFP as a linear function of its own lagged values plus
the lagged values of all other variables treated as excluded. If the lagged
values of all excluded variables have nonzero effects on TFP, then these
variables Granger cause TFP in a manner conditional on the effects of its own
lagged values. Granger causality testing sets as the null hypothesis that RD
does not Granger cause TFP: H0:b121 = . . . = b12p = 0 This joint hypothesis
can be tested using a standard Wald F or v2 test because each individual set of
restricted parameters is drawn from only one equation. Similarly, in Equation
12, the null hypothesis that TFP does not Granger cause RD can be expressed
as H0:b211 = . . . = b21p = 0.
Table 3 presents the Granger causality Wald test based on vector

autoregressions to establish the direction of causality of the cointegrated
vector. The v2 statistics in the first row tests whether RD (R&D), FRD
(foreign R&D) and EDU (school enrolment) are Granger prior to TFP,
the dependent variable in this case. The probabilities in the next row
show that R&D and EDU are Granger prior to TFP, and this is true for
all excluded variables together, which is an expected outcome. We run a
similar test for each of the remaining dependent variables and find no
evidence of any feedbacks in the opposite direction, which establishes the
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presence of unidirectional Granger causality running from R&D and
EDU to TFP. More specifically, the results indicate unidirectional
causality from R&D to TFP as the lags of R&D are significant for the
TFP regression, but the lags of TFP are not significant for the R&D
regression. Thus, the results show evidence of a unidirectional causal
relationship between R&D and TFP growth with causality running from
R&D to TFP growth.

4.4 Variance Decomposition and Impulse Response Function

The variance decomposition and impulse response functions provide more
information on the dynamic properties of the model and allow prediction of
the relative importance of the variables beyond the sample period. Variance
decomposition measures the proportion of variation in the dependent
variable that is induced by its own shocks or shocks emanating from other
variables. Table 4 presents the variable decomposition estimates for TFP for
30 years of the time horizon.
The result shows that in the case of the TFP, approximately 80 per cent of

the forecast error variance at the fifth-year horizon is accounted for by its
own shock, and the R&D, foreign R&D and enrolment contribute the
remaining 20 per cent of shocks. R&D explains approximately 8.7 per cent
and 17.4 per cent in the 10th and 20th years, respectively, remaining nearly
persistent over the future period.
We use Cholesky one standard deviation impulse response functions as

part of the robustness checks of the cointegration findings beyond the sample
period. The impulse response functions provide the response of the dependent
variables to the shocks to each of the variables in the VEC model. Figure 2
shows the impulse responses of TFP, as this is the variable of main interest. In
response to a shock in R&D, the future TFP initially increases and then
remains positive and nearly constant for the future periods. This result
indicates that TFP responds positively and persistently in the future period to

Table 3 Granger causality Wald tests—vector autoregression

Dependent variable Excluded variables

TFP RD FRD EDU All

v2 TFP 14.620 5.421 6.935 32.785
Prob > v2 0.001* 0.067 0.031* 0.000*
v2 RD 0.057 0.154 0.167 0.554
Prob > v2 0.972 0.926 0.920 0.997
v2 FRD 0.323 0.180 2.739 5.634
Prob > v2 0.851 0.914 0.254 0.465
v2 EDU 1.569 0.160 1.189 6.502
Prob > v2 0.456 0.923 0.552 0.369

Note All variables are in logarithmic form, and R&D variables are in original form not lagged or stock
values. *Rejection of the hypothesis at the 0.05 level
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an increase in R&D and implies that government investment in research and
development in agriculture would result in future productivity growth. In the
graph, the broken lines indicate confidence limits around the estimates based
on asymptotic standard errors11 .

4.5 Forecasting modelling

This section presents a forecasting exercise to evaluate whether changes in
R&D stocks contain information about future changes in the productivity of
Australian broadacre agriculture. Forecasts are produced from the estimated
VEC model, where both lagged values of TFP and R&D stocks are used for
forecasting. The model also includes foreign R&D and education enrolment
as two exogenous variables. Figure 3 shows estimated forecasts of TFP for
the forecast period 2010 to 2020 along with confidence error bands (red
broken lines). Based on the estimated VEC model, the graph shows that
productivity declines over the forecast period. The confidence error bands
widen towards the end of the forecast sample because the forecasts errors
tend to compound over time.
To obtain the out-of-sample forecasting evaluation, part of the sample is

reserved by not including it in the estimation sample. The VEC and other
models are estimated for the sample period 1953 to 2002 (reserving seven
years of actual data for evaluation purposes), and out-of-sample forecasting
is performed for the period 2003 to 2020.
Following Apergis (2014), the VEC-based TFP forecasts is compared with

those of the random walk model (RW) and basic forecasting model (with

Table 4 Variance decomposition of LnTFP

Period S.E. LnTFP LnRD LnFRD LnEDU

1 0.090 100 0 0 0
(0.000) (0.000) (0.000) (0.000)

5 0.102 79.864 2.695 5.446 11.995
(9.124) (4.875) (6.139) (6.424)

10 0.106 73.533 8.689 5.177 12.602
(10.797) (6.821) (8.060) (8.033)

15 0.109 69.074 13.890 5.093 11.942
(12.094) (8.182) (10.463) (8.332)

20 0.112 65.979 17.400 5.111 11.511
(13.228) (9.320) (12.429) (8.627)

25 0.114 63.771 19.842 5.154 11.232
(14.263) (10.281) (14.294) (9.037)

30 0.115 62.151 21.614 5.196 11.039
(15.182) (11.025) (16.007) (9.407)

Note Cholesky ordering: LnTFP LnRD LnFRD LnEDU. Standard errors based on Monte Carlo
simulations (100 repetitions) are reported in the parentheses. Both the domestic R&D and the foreign
R&D are used in the original form, not as lagged or stocks form.

11 The impulse response functions for the rest of the variables are available from the authors
on request.
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constant and trends) by using two statistics: root-mean-squared errors
(RMSE) and the Theil coefficients. Table 5 reports and compares forecast
evaluations across different forecasting models. The results indicate that the
VEC model that includes R&D knowledge stocks performs better than the
other two models giving smaller RMSE values and Theil coefficients. These
imply that the inclusion of information on R&D knowledge stocks gives
better predictive ability of future TFP. However, the idea of forecasting
productivity growth incorporating R&D and other control variables is a new
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Figure 2 Generalised impulse response functions for the TFP equation. Note:Y-axis presents
responses of TFP to one S.D. change in impulse variables, and X-axis is the periods.
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Figure 3 Out-of-sample forecasts of TFP for sample 2010–2020. Note:Y-axis presents LnTFP,
and X-axis is the time period.
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application in the literature of the time series analysis of agricultural
productivity. It provides further evidence of the importance of R&D in
productivity growth in agriculture, showing that incorporation of the
information on R&D investment improves productivity forecasts signifi-
cantly.

5. Conclusions

This paper investigates the long-run relationship between public R&D and
the TFP in broadacre agriculture in Australia over a period of five decades.
To ensure valid empirical evidence on long-run dynamic relationships among
variables in question, a set of standard unit root tests is first used, including
the augmented Dickey–Fuller, DF-GLS, Phillips–Perron and KPSS tests to
determine time series properties of the variables. Then, using the cointegra-
tion analysis, econometric evidence is found of a cointegrating relationship
between R&D expenditure and productivity growth in Australian broadacre
agriculture. Having established cointegration, an error correction model is
constructed that shows that lagged R&D is significant in explaining changes
in total factor productivity. This result implies that increased R&D
expenditure leads to better outcomes for productivity in Australian broadacre
agriculture. The results also show evidence of a causal relationship between
R&D and TFP growth. With respect to the direction of causality, the
empirical evidence indicates a unidirectional causality running from R&D to
TFP growth.
In addition, the dynamic properties of the model are explored using

variance decomposition and impulse response functions, which show that
TFP responds positively and persistently in the future period because the
effect of a shock in public R&D does not die out over time. Furthermore, the
out-of-sample forecasting exercise that indicates that investment in public
R&D in agriculture does matter in forecasting productivity growth is a new
application in the agriculture literature. The results show that information on
R&D investment improves productivity forecasts significantly.
The insight behind the findings of the relationship between the public R&D

and productivity in broadacre agriculture in Australia is straightforward. An
increase in the public expenditure in R&D is likely to lead to higher
productivity growth in the long run. This implies that productivity growth in
Australian broadacre agriculture is to be driven mostly by technological
advancements.

Table 5 Out-of-sample forecasting of TFP for the period 2003–2020

RMSE Theil inequality coefficient

VEC model 0.237512 0.021073
RW model 0.259072 0.023074
Basic 0.257132 0.022905
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