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Incorporating risk in a positive mathematical
programming framework: a dual approach

Linda Arata, Michele Donati, Paolo Sckokai and
Filippo Arfini†

In this study we develop a new methodological proposal to incorporate risk into a
farm-level positive mathematical programming (PMP) model. We estimate simulta-
neously the farm nonlinear cost function and a farmer-specific coefficient of absolute
risk aversion as well as the resource shadow prices. The model is applied to a sample of
representative arable crop farms from the Emilia-Romagna region in Italy. The
estimation results confirm the calibration ability of the model and reveal the values of
the individual risk aversion coefficients. We use the model to simulate different
scenarios of crop price volatility, in order to explore the potential risk management
role of an agri-environmental scheme.

Key words: agri-environmental schemes, farm behaviour, positive mathematical
programming, risk aversion.

1. Introduction

Risk is an important component of agricultural activities, since it affects
farmer production choices. Hardaker et al. (1997) classify risk in agriculture
as production, market, institutional, personal and financial risk. Under a
risky environment, the decision-maker makes the choices based on his
expectations of uncertain outcomes and these expectations are often based on
past experiences. Many empirical studies show that the farmer is a risk-averse
agent as he is willing to sacrifice some income to ensure against the risky
consequences (Feder 1980; Sckokai and Moro 2006). Given the risk-averse
attitude of farmers, the recent increase in price volatility on world and
European Union (EU) markets is perceived as negative as it makes farmer
income uncertain. These unpredictable price variations may lead to nonop-
timal production decisions in the short run and may discourage farm
investments, leading to a decrease in farm profitability and competitiveness in
the medium to the long run. Since risk is a structural component of
agricultural production and the farmer is not a risk neutral agent, ignoring
risk in modelling farmer behaviour is likely to lead to biased results.
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In a mathematical programming model, risk faced by farmers can be
introduced either by randomising the behaviour of input and output prices or
by introducing uncertainty in the supply of limiting inputs, as well as in the
technical coefficient specification. There are different techniques to accom-
modate risk in a mathematical programming framework, such as the mean-
variance approach (Freund 1956; Coyle 1999), the minimisation of the total
absolute deviations (MOTAD) (Hazell 1971), the target MOTAD (Tauer
1983), the chance constrained programming (Charnes and Cooper 1959) and
the discrete stochastic sequential programming (Kaiser and Messer 2011).
Besides the inclusion of risk, another important issue in farmer behaviour

analyses is the ability of the model to calibrate to the observed base year
situation. Although normative mathematical programming models, which
lack any calibration, dominated the efforts in agricultural economics
modelling for decades, nowadays a wide divergence between the modelled
outcome and the observed outcome is unacceptable in policy analysis.
Although the addition of a risk term in a normative mathematical
programming model may improve the model performance and may overcome
the overspecialisation problem, typical of linear programming, it is often not
enough to reproduce the observed farmer production decisions. Positive
mathematical programming (PMP) is a powerful calibration method
formalised in the 1990s with the aim of overcoming the drawbacks of
normative models. The PMP method is able to recover a nonlinear cost
function, or alternatively a nonlinear yield function, that allows to exactly
reproduce the observed activity levels and to provide information about the
effect of parameter changes on farm input allocation (Howitt 1995).
In this study, we develop a new methodological approach which partially

draws from the few previous attempts of incorporating farm risk in a farm-
level PMP model and combines them in an innovative and consistent way.
Given the importance of accounting for risk in farm-level analysis and the
powerful calibration ability of PMP, the incorporation of risk in a PMP
framework is one of the new research frontiers in farmer behaviour analyses.
So far, there have been limited attempts in the literature to introduce risk
modelling in a PMP framework (Paris and Arfini 2000; Cortignani and
Severini 2012; Jansson et al. 2014; Petsakos and Rozakis 2015). This may be
explained by the difficulties in estimating two different nonlinear terms in the
objective function, the cost function and the risk component. The idea of
combining risk modelling with PMP relies on the information contained in
the farm nonlinear cost function estimated in the PMP procedure. As this
cost function incorporates any type of model misspecification, data errors,
aggregation biases, price expectations and risk behaviour (Henry de Frahan
et al. 2007), it should be possible to isolate the risk component from the farm
nonlinear cost function in order to study specifically the impact of risk on
farmer choices. Our proposal addresses this issue by merging the first linear
step with the second nonlinear step of the standard PMP procedure in a
farmer expected utility maximisation problem. This allows us to estimate
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simultaneously the farmer risk aversion coefficient, the farm nonlinear cost
function as well as the shadow prices of limiting resources (e.g. land) by
exploiting the dual optimality conditions. Our proposal still develops from
the original PMP set-up (Howitt 1995; Paris and Howitt 1998) while avoiding
its drawbacks and potential inconsistencies (Heckelei and Wolff 2003).
The proposed model is applied to a sample of representative arable crop

farms from the Emilia-Romagna region in Northern Italy, with the aim of
checking the ability of the model to calibrate to the base year-observed activity
levels and to estimate the farmer specific absolute risk aversion coefficient, the
parameters of the quadratic cost function and the resource and activity shadow
prices. Then, the calibrated model is used to perform some simulations of
different cropprice volatility scenarios, aimingat checking the farmers’ reaction
to changes in market conditions and to explore the potential risk management
role of a specific agri-environmental scheme (AES), the option to convert a
share of cropland to grassland. AESs are the measures which take the highest
share of the EU budget allocated to Rural Development Programmes, and
several studies have analysed the impact of their adoption on farm perfor-
mances (Pufahl and Weiss 2009; Arata and Sckokai 2016). However, no study
has investigated their potential role as a tool to cope with risk at farm level. The
idea is that, since the adoption of AESs guarantees a fixed payment to farmers
independent ofmarket conditions and crop yields, thesemeasuresmay act as an
insurance against price and yield risk.
The paper is organised as follows: Section 2 presents the existing literature

on PMP and the attempts to incorporate risk in PMP models; section 3
describes our methodological proposal to integrate risk in a PMP model;
section 4 details the empirical model and data, while in section 5 we analyse
the results of the calibration and of the simulations; section 6 discusses the
results and draws the main conclusions.

2. Risk in PMP models

The standard PMP approach is a three-step procedure which uses the dual
information provided by the calibration constraints of the first step to recover
a farm nonlinear cost function, or alternatively, a nonlinear yield function,
which calibrates the model to the observed activity levels. Although PMP was
already applied in the 1980s in agricultural economic analyses, the first
scientific publication which formalised this methodology dates back to 1995.
Following the seminal papers by Howitt (1995) and Paris and Howitt (1998),
there have been many methodological developments in the domain of PMP,
aiming to improve the standard approach. Paris and Arfini (2000) deal with
the problem of zero activity levels in some farms, proposing the self-selection
approach. Paris (2001) proposes the symmetric positive equilibrium problem
(SPEP) as a way to avoid a linear representation of the technology and to
make demand and supply of fixed inputs responsive to output levels and
input price changes.
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One of the most important developments to the original PMP approach is
proposed by Heckelei and Wolff (2003), who argue that the first step of PMP
leads to inconsistent parameter estimates when more observations are
included. The authors suggest to skip the first step and to employ directly
the first-order conditions of the desired programming model to estimate
simultaneously the nonlinear cost function and the dual values of the
constraints. The work by Heckelei and Wolff (2003) represents a remarkable
attempt to join mathematical programming model with econometric
techniques within the new framework of ‘Econometric Mathematical
Programming’. Empirical applications of their method can be found in
Henry de Frahan et al. (2007), Buysse et al. (2007) and Jansson and Heckelei
(2011). R€ohm and Dabbert (2003) propose, in the standard three-step PMP
set-up, a way to account for stricter substitution relationships of the same
crop grown under two different technologies (e.g. conventional wheat and
wheat under agri-environmental schemes). Kanellopoulos et al. (2010) extend
the standard PMP approach in order to overcome two important drawbacks.
Their proposal avoids a zero shadow value for the least profitable activity,
guaranteeing a marginal return of the binding resource equal to the average
gross margin of the production plan, and allows the integration of supply
elasticities in the calibration process.
Another extension of the PMP approach is represented by the model

proposed by Arfini and Donati (2011) and discussed in the book by Paris
(2011: 397–404). These authors merge the first linear step with the second
nonlinear step of PMP in order to estimate simultaneously the parameters of
the nonlinear cost function, the shadow price of resources and the differential
marginal costs. The same authors provide also an empirical application to the
analysis of the 2008 Common Agricultural Policy (CAP) reform. Doole and
Marsh (2014) criticise the standard three step PMP approach by showing that
when used to calibrate the New Zealand Forest and Agriculture Regional
Model (NZ-FARM), the scenario analysis leads to inconsistent results. The
authors provide a set of recommendations to improve the reliability of
simulation results.
The use of exogenous supply elasticities in the calibration process is

another step towards the calibration of ill-posed mathematical programming
models. So far the attempts to use exogenous elasticities in the calibration
process are limited and most of them perform a ’myopic’ calibration by
holding the shadow values of the constraints constant to price changes. M�erel
and Bucaram (2010) derive the analytical expression of an exact, non
‘myopic’, implicit supply elasticity from a programming model. The
non’myopic’ elasticity accounts for the change in the constraints shadow
values due to a crop price change. In addition, the authors derive the
necessary and sufficient conditions under which a programming model with
Leontief technology and quadratic adjustment costs can be calibrated against
a set of exogenous own-price elasticities. A follow-up work is M�erel et al.
(2011), which derives the closed-form expression of the exact implied supply
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elasticity of a generalised constant elasticity of substitution (CES) program-
ming model, as well as the necessary and sufficient conditions to make the
exact calibration of the model against exogenous elasticities feasible.
As stated above, a relatively new research frontier in the area ofmathematical

programming concerns the integration of risk modelling in a PMP framework.
The idea comes from the information contained in the dual values of the
calibration constraints of the standard PMP. As this information captures also
the riskbehaviour, it shouldbepossible tomake the risk component explicit and
separate it from the other nonlinear cost components. This would allow to
identify the farmer attitude towards risk and the role of risk in farmer choices, as
well as to perform simulations under different risk scenarios. So far, there have
been a few studies in this direction.
The first attempt is by Paris and Arfini (2000), who introduce risk in a PMP

model relying upon the mean-variance approach proposed by Freund (1956).
Although their study focused the attention of agricultural economists on this
new challenge, the authors simply apply an exogenous absolute risk aversion
coefficient in a constant absolute risk aversion (CARA) expected utility
framework, and their model still relies upon the standard three-step PMP.
A more recent attempt is proposed by Cortignani and Severini (2012). Their

paper develops from the work by Heckelei and Wolff (2003) and directly
estimates the parameters of an expected utilitymaximisationmodel by applying
the generalised maximum entropy (GME) estimation technique on the first-
order conditions of the model. Both prices and yields are accounted as a source
of risk, but it is not possible to isolate the price risk from the yield risk. The
model estimates simultaneously the nonlinear cost function, a farm-specific
absolute risk aversion coefficient and the shadow price of land. Their paper
presents an illustrative empirical application to a small sample of farms located
in the centre of Italy with the aim of evaluating the effect of a revenue insurance
scheme on farm production choices and on farm gross margins.
The work by Petsakos and Rozakis (2015) represents the first attempt in the

literature to calibrate a nonlinear mean-variance (E-V) model by applying the
three-step PMPprocedure. The calibration procedure recovers the values of the
expected farm income and of its variance–covariancematrix by applyingGME.
The authors, however, consider risk as the only source of nonlinearity in the
cost function as the cost term is kept linear. In addition, they apply a
logarithmic utility function, which implies a relative risk aversion coefficient
equal to one by construction and leads to the assumption that the degree of
absolute risk aversion does not depend on individual farmer risk preferences
but only on their individual wealth. Another recent development in estimating
the parameters of an E-V mathematical programming model is represented by
Jansson et al. (2014). The authors apply a Bayesian methodology to estimate
the parameters of a farm-level E-V model which exhibits decreasing absolute
risk aversion (DARA) preferences in a large-scale application across the EU.
Given the few attempts found in the literature to integrate risk into a PMP

framework, and lacking an established consensus on the most suitable one,
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we propose a different approach which combines in an innovative and
consistent way the standard PMP with the estimation of the optimality
conditions of the desired programming model.

3. Theoretical model

Our proposal merges the first linear step of PMP with the second nonlinear
step by using the dual relationships of a farmer expected utility maximisation
problem. The model incorporates the risk term according to the E-V
approach and estimates simultaneously the differential marginal cost and the
shadow price of resources which usually belong to the first PMP step, as well
as the farm nonlinear cost function and the farm-specific coefficient of
absolute risk aversion. In addition, no calibration constraints are made
explicit in the model.
The primal formulation of a farm-level model incorporating risk in the first

PMP step is the following:

max
x

EUfð~pfÞ ¼ Eð~pfÞ0xf � c0fxf �
1

2
afx

0
fVxf

subject toAfxf� bf ðyfÞ

xf� �xf þ e ðkfÞ

xf � 0

where f is the farm index, xf is the vector of endogenous activity levels,�xf is
the vector of observed activity levels, cf is the vector of accounting costs per
unit of activity and Eð~pfÞ is the vector of expected prices. bf and Af represent
the vectors of available resources and the matrix of technical coefficients,
respectively, V represents the variance–covariance matrix of activity prices, af
is the farmer absolute risk aversion coefficient, yf and kf are the vectors of
resource shadow values and of the shadow values of the calibration
constraints, respectively, and ɛ is the disturbance term vector which prevents
linear dependency among the constraints (Paris and Howitt 1998). The model
assumes that the random prices are normally distributed.
The dual formulation of the above primal model is as follows:

min
y;k

TCf ¼ b0fyfþk0fð�xfþeÞþ 1

2
afx

0
fVxf:

subject to cf þ afVxf þ A0
fyf þ kf�Eð~pfÞ ðxfÞ

yf� 0; kf� 0; xf� 0

where TCf is the value of the dual objective function.
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Our estimation model merges the primal first-step PMP model with its
corresponding dual model and adds the second step PMP equation as a
constraint. The final specification of the estimation model, which can be
applied to farms sharing the same technology, is the following:

min
uf;yf;kf;af;D;L

XF
f¼1

XI
i¼1

yfibfi

þ
XF
f¼1

XJ
j¼1

1

2
u2fj þ cfj�xfj þ kfjð�xfj þ efÞ þ af

XJ0
j0¼1

�xfjVj;j0 �xfj0 � Eð~pfjÞ0�xfj
 !

ð1Þ

subject to cf þ afV�xf þ A0
fyf þ kf�Eð~pfÞ ðwfÞ ð2Þ

cf þ kf ¼ Q�xf þ uf ðvfÞ ð3Þ

Q ¼ L0DL ð4Þ

yf� 0; kf � 0; af� 0 ð5Þ

where j is the activity index, i is the resource index and f indicates farms that
share the same technology. Q is the symmetric positive semidefinite matrix of
a quadratic cost function, common to all the farms that share the same
technology, L and D are respectively the unit lower triangular matrix and the
diagonal matrix of the Cholesky factorisation, whose elements are restricted
to be non-negative, and uf is the vector of specific farm deviations from the
common marginal cost function, while wf and vf represent the Lagrange
multipliers associated with each constraint. The solution of the model (1)-(5)
consists in the parameter estimatesQ, yf, kf and af, which are the values of the
parameters that allow the calibration of the model to the observed activity
levels.
The objective function of the estimation model is the sum over all farms of the

square of the individual farmdeviations from the commonmarginal cost function

of each production activity,
PF
f¼1

PJ
j¼1

u2fj ; as farms share the same technology, the

estimation of the parameters is performed by minimising the square of the
individual farm deviations, uf. In other words, uf acts as the error term of a
standard regression analysis. In the objective function, we also include the sum
overall farmsof thedifferencebetween theobjective functionof theprimal and the
dualmodel of the farmer expected utilitymaximisation problem, which should be
zerobyconstruction.Constraint (2) represents thedual constraintof the economic
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equilibrium condition stating that the marginal cost must be larger or equal than
the expected marginal revenue, while constraint (3) establishes the relationship
between the marginal cost of the first step of the standard PMP and the marginal
cost of the farm nonlinear cost function to be estimated. This constraint allows us
to estimate the implicit cost kf for each activity. Constraint (4) is the Cholesky
decomposition, which guarantees the matrix Q to be symmetric and positive
semidefinite in order to ensure convexity of the cost function.
The use of the dual relationship (constraint (2)) allows us to merge the first

two PMP steps, which has some advantages. First, the calibration procedure
does not use the first step of the standard PMP to recover the shadow values of
the constraints, which raised several critiques in the literature. Second, the
model allows the simultaneous estimation of the vector of shadow values of
resources, yf, the vector of the shadow values of activities, kf, the symmetric
matrix of the quadratic cost function, Q, the vector of individual farm
deviations from the marginal cost function of each activity, uf, and the farmer
absolute risk aversion coefficient af. The coefficient of absolute risk aversion is
farm specific, and it exhibits CARA preferences1 . We impose either neutral or
risk-averse behaviour by farmers, forcing the absolute risk aversion coefficients
to be non-negative.
From models (1)–(5), we can derive the following Lagrangian function:

Lf ¼ 1

2
u0fuf þ af�x

0
fV�xf þ y0fbf þ k0f �xf þ ef

� �þ c0f�xf

�Eð~pfÞ0�xf þ w0
f Eð~pfÞ � cf � afV�xf � A0

fyf � kf

� �
þ v0f cf þ kf �Q�xf � uf

� �
From the Lagrangian function, we can derive the corresponding set of

Karush–Kuhn–Tucker (KKT) conditions, which represents the solution to
the model, and their associated complementary slackness conditions:

dLf

duf
¼ uf � vf ¼ 0 ð6aÞ

u0f
dLf

duf
¼ u0f uf � vf

� � ¼ 0 ð6bÞ

dLf

dyf
¼ bf � Afwf� 0 ð7aÞ

1 Despite the well-known limitations of the mean–variance expected utility function with
CARA preferences, which assumes a normal distribution of the payoffs, this approach is
widely used to represent agricultural production choices under risk (see among others: Coyle
1992; Oude Lansink 1999; Garrido and Zilbermann 2008).
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y0f
dLf

dyf
¼ y0f bf � Afwf

� � ¼ 0 ð7bÞ

dLf

dkf
¼�xf þ ef � wf þ vf� 0 ð8aÞ

k0f
dLf

dkf
¼ k0f �xf þ ef � wf þ vf

� � ¼ 0 ð8bÞ

dLf

daf
¼�x0fV�xf � w0

fV�xf� 0 ð9aÞ

af
dLf

daf
¼ af �x

0
fV�xf � w0

fV�xf

� �
¼ 0 ð9bÞ

dLf

dwf
¼ Eð~pfÞ � cf � afV�xf � A0

fyf � kf� 0 ð10aÞ

w0
f

dLf

dwf
¼ w0

f Eð~pfÞ � cf � afVxf � A0
fyf � kf

� �
¼ 0 ð10bÞ

dLf

dvf
¼ cf þ kf �Q�xf � uf ¼ 0 ð11aÞ

v0f
dLf

dvf
¼ v0f cf þ kf �Q�xf � uf

� � ¼ 0 ð11bÞ

KKT condition (6a) indicates that the dual value vector vf associated with
the marginal cost function is equal to the farm deviation vector from the
marginal cost function uf; since the model tries to keep the elements of uf as
small as possible, the elements of vf result in a small positive or negative
number too. wf is the dual value vector of the economic equilibrium
constraint (2) and, given vf = uf from (6a) and kf > 0, Equation (8b) shows
that wf ffi�xf. Substituting vf = uf and wf = �xf in (7a) and (8a), we obtain the
resource constraints and the calibration constraints, respectively. Hence,
models (1)–(5) implicitly represent the constraints of a first-step model of the
standard PMP, and as a consequence, the estimated model can properly
calibrate to the base year activity level without making the first step explicit.
This avoids the critiques raised in the literature against the presence of the
calibration constraint and the recovery of the resource shadow value in the
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first step of PMP. The other KKT conditions represent a tautology (condition
9a) and the constraints of the estimation models (1)–(5) (conditions 10a) and
11a).
The parameters estimated by the models (1)–(5) allow the calibration of the

nonlinear models (12)-(14) to the base year farmer decision variables�xf:

maxEU
Xf

ð~pfÞ ¼ Eð~pfÞ0xf �
1

2
x0fQ̂xf � û

0
fxf �

1

2
âfx

0
fVxf: ð12Þ

subject toAfxf� bf: ð13Þ

xf � 0 ð14Þ

where xf is the vector of endogenous farm activity levels, Q̂, ûf and âf have
been estimated previously and Eð~pfÞ0, V, Af and bf are exogenous parameters.
Equation (12) is the farmer expected utility to be maximised, which is equal
to the expected revenue minus the estimated nonlinear cost function and
minus the risk premium, while Equation (13) represents the resource
constraints.
Our methodological proposal for the incorporation of risk in a PMP

framework represents an innovative approach compared to previous studies.
Our model differs from the work by Paris and Arfini (2000) as we estimate
endogenously the farmer coefficient of absolute risk aversion and we do not
rely upon the standard three-step PMP. Although our model presents some
similarities with the model by Cortignani and Severini (2012), some
differences should be mentioned. First, the first-order conditions of our
estimation model (equations (1)–(5)) reproduce exactly the first step of the
standard PMP procedure while avoiding its well-known weaknesses. Second,

by minimising over
PF
f¼1

PJ
j¼1

u2fj we apply a least square estimator instead of a

GME estimator. Third, we introduce the farm-specific error term on the
common marginal cost function and not on the observed output quantity as
in Cortignani and Severini (2012), and we minimise this farm deviations given
the assumption of a common technology across farms. Finally, we do not
impose any upper bound to the coefficient of absolute risk aversion, thus
making the model more flexible in defining the individual (farm-specific) risk
preferences. Our approach differs also from Petsakos and Rozakis (2015) as
we estimate two nonlinear terms, the cost function and the risk term, and we
consider more than one farm simultaneously.

4. Empirical model and data

In this section, an empirical application of the theoretical model presented in
Section 3 is provided considering crop price risk only. First, models (1)–(5)
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are estimated, and the ability of the model to calibrate to the base year
activity levels and to estimate individual specific absolute risk aversion
coefficients is checked. Then, the calibrated models (12)–(14) are applied in
simulating the land allocation impact of different crop price volatility
scenarios. In each scenario, a special attention is paid to the land committed
to a specific AES, the option to convert a share of cropland to grassland, and
to its potential role in coping with price risk.
The model is applied to a sample of 42 representative arable crop farms

representing a combination between six size classes and seven provinces
(Piacenza, Parma, Reggio-Emilia, Modena, Bologna, Ferrara and Ravenna)
in the plain area of the Emilia-Romagna region in Italy2. The use of
representative farms instead of the real ones is mainly linked to a technical
motivation, since they guarantee the absence of zero activity levels, thus
reducing the computational difficulty in testing the novelty of our approach.
However, the use of average farms, or alternatively of ‘regional’ farms, to
analyse the effects of policy measures is a common practice in many empirical
mathematical programming studies (Schmid et al. 2007; Louhichi et al. 2010;
Chiron et al. 2013; Kirchner et al. 2016).
The size classes are based on the available farmland and are defined

according to the standard classification adopted by the Italian Official
Statistics (Istat): 1–10 hectares, 10–30 hectares, 30–50 hectares, 50–100
hectares, 100–300 hectares, >300 hectares. The representative farm is the
average arable crop farm in terms of size and land allocation in each territory
and size class. Crop production levels are the farmer decision variable, while
the exogenous per unit crop-specific variable costs and prices of the
representative farms are obtained averaging the corresponding farm-level
data for each class–province combination.
The crop-specific variable costs include fertilisers, seeds, crop protection

products, electricity, water, heating fuels, insurance, motor fuels, services by
agricultural contractors and other specific crop costs. Five crops are included
in the empirical model: sugar beet, common wheat, corn, barley and
grassland under environmental commitments. The first four crops are the
most widely grown crops in the area under study, while the committed
grassland is the AES considered in our model. For the farms where the AES
is not in place in the baseline, we set very small initial allocation to take into
account this scheme as an option, following common practice in the literature
(Cortignani and Severini 2009; Arfini and Donati 2013). The payment for
grassland under AES is set at 240 euro/ha, according to the Rural
Development Program (RDP) of the Emilia-Romagna region (Regione
Emilia Romagna 2005). The source of the data is the RICA-AGREA

2 The Emilia-Romagna region is one of the most important regions in Italy in terms of
agricultural production, which is also very similar to that of other regions in Northern Italy
(e.g. Lombardia, Veneto and Piemonte), as well as to other intensive arable crop areas around
the EU. Thus, our empirical results can be considered representative of all these areas.
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database (a merged database that combines data from the Italian Farm
Accounting Data Network with those provided by the Integrated Adminis-
tration and Control System of agricultural payments) for the Emilia-
Romagna region.
Wheat represents the most grown crop in each farm size class, and it covers

around 50 per cent of the area, followed by corn and sugar beet (Table 1).
The largest share allocated to grassland under agri-environmental commit-
ment is around 1.5 per cent3. The average variable unit costs of barley and
corn range between 52 euro/tonne and 88 euro/tonne and between 57 euro/
tonne and 98 euro/tonne, respectively, according to the farm size class, while
the ones of wheat fluctuate in a smaller range, between 81 euro/tonne and 94
euro/tonne. The sugar beet variable costs fall in the 17–23 euro/tonne range.
We introduce the land constraint as the only resource constraint, and we

adopt a quadratic cost function, the most frequently used functional form in
PMP works. Expected output prices, accounting variable cost per unit of
activity, observed activity levels, the amount of farmland and the matrix of
technical coefficients are all farm-specific exogenous variables, while the
variance–covariance matrix of output prices is common to all farms and
computed from annual series of crop prices over the period 2002–2008

Table 1 Descriptive statistics of the representative farms by size class (means)

class 1* class 2 class 3 class 4 class 5 class 6

Total farmland (ha) 7.0 15.5 41.6 73.9 192.6 361.9
Land allocation (ha)
Barley 0.6 0.9 2.0 3.3 8.6 18.9
Corn 1.9 4.3 12.1 23.1 70.4 125.1
Sugar beet 0.4 1.8 5.6 11.4 24.7 48.3
Wheat 3.9 8.5 21.7 36.0 88.7 169.0
Grassland under AES 0.1 0.1 0.1 0.1 0.2 0.6

Production (tonnes)
Barley 2.6 4.1 8.8 15.5 45.8 98.6
Corn 15.9 37.7 110.2 204.2 594.8 1044.4
Sugar beet 23.7 95.9 317.4 615.4 1201.3 2741.8
Wheat 20.4 46.3 119.6 205.2 485.1 929.8

Crop variable costs (euro/tonne)
Barley 84.5 88.4 65.2 70.5 51.7 59.4
Corn 79.9 97.7 77.8 86.0 56.9 70.9
Sugar beet 21.6 22.6 18.1 19.7 17.2 20.3
Wheat 84.3 93.8 82.8 76.4 82.4 81.1

Price (euro/tonne)
Barley 194.6 199.4 218.1 198.8 200.1 226.6
Corn 216.0 214.7 216.1 213.3 197.7 215.5
Sugar beet 40.2 42.5 40.2 40.1 38.4 42.2
Wheat 216.5 222.5 220.6 221.5 213.8 232.8

*class 1: 1–10 hectares, class 2: 10–30 hectares, class 3: 30–50 hectares, class 4: 50–100 hectares, class 5: 100
–300 hectares, class 6: >300 hectares.

3 Since the share of committed AES grassland is very small, we have assumed a common
technology between farms adopting AES and farms not adopting AES.
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(Table A1). Wheat is the crop with the highest price volatility, while sugar
beet shows the lowest price variation. The different price–risk scenarios are
constructed by inflating the variance–covariance matrix of the base year by a
scalar which takes different values in each scenario. The volatility scenarios
are set according to the average change in crop price volatility in Italy
between the two time periods 2002–2008 and 2009–2014 for wheat, corn and
barley. As the variance in the second period increased by 17 per cent for
wheat and by 95 per cent for corn and barley, we have simulated three
scenarios with a price variance ranging between the baseline level and a 100
per cent increase. More specifically, in the three scenarios, volatility is set to
20, 50 and 100 per cent higher than the baseline, respectively. For simplicity,
and due to data limitation, we assume that the output of grassland under
agri-environmental commitments is not sold on the market. Thus, this
activity bears no risk, since it affects farm income only through the fixed agri-
environmental payment.

5. Results

This section presents the results of the model calibration to the base year
activity levels and the parameter estimates. Then, the results of the
simulations due to an increase in price volatility are discussed, emphasising
the changes in the crop mix and the impact on the adoption of the AES.

5.1 Calibration and estimation

The model is able to reproduce the base year-observed crop allocation for
each farm in the sample. The percentage deviations between the observed
activity levels and the level reproduced by the model are lower than 0.1 per
cent for almost all farms, and only one farm shows a deviation higher than
1% (1.4%). The model estimation of the symmetric matrix of the nonlinear
cost function shows the substitution relationships among crops; the only
exception is sugar beet, which turns out to be a complement of barley and of
grassland under environmental commitment (Tables A2). The model is able
to estimate a farm-specific absolute risk aversion coefficient, and seven farms
exhibit a coefficient equal to zero (Table 2). Six out of seven risk neutral
farms are the largest farms in the sample. The correlation coefficient between
farm revenue and the risk aversion coefficient is �0.5, indicating a negative
relationship between these two variables.
The shadow values of land range between zero and 240 euro/ha. The zero

value is due to small calibration errors (see Section 3). In a model setup where
the farm cost function is simultaneously estimated with the shadow price of
land, some farms may use less land than their total land endowment due to
the small calibration errors. However, the share of nonused land remains
extremely small (no more than 0.03 per cent of the land).
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Table 2 Farm size, absolute risk aversion coefficient, land shadow value and land allocation
to AES grassland under different scenarios

Farm
number

Farm
size (ha)

Absolute
risk

aversion
coefficient
(per euro)

Shadow
value
of land
(euro)

Land allocation to AES grassland (% share)

Baseline Scenario 1* Scenario 2 Scenario 3

1 4.6 0.00592 0 2.2 5.8 10.7 18.6
2 5.1 0.00317 240.0 2.0 5.7 10.6 17.6
3 6.1 0.00269 0.0 1.6 4.5 8.2 13.6
4 7.6 0.00225 240.0 1.3 4.4 8.5 14.4
5 8.1 0.00143 0 1.2 2.5 4.2 6.7
6 8.6 0.00335 33.9 1.2 3.9 7.5 13.2
7 9.1 0.00286 32.3 1.1 3.5 6.8 11.5
8 12.0 0.00185 0.0 0.8 2.8 5.5 9.7
9 13.0 0.00178 0 0.8 2.7 5.3 9.0
10 14.0 0.00190 0 0.7 2.8 5.6 9.7
11 15.0 0.00000 164.5 0.7 0.7 0.7 0.7
12 17.0 0.00136 43.7 0.6 2.6 5.2 9.1
13 18.0 0.00088 204.8 0.6 3.0 6.2 10.8
14 19.0 0.00123 0 0.5 1.8 3.5 6.0
15 32.6 0.00057 240.0 0.3 1.2 2.4 4.2
16 38.0 0.00090 240.0 0.3 2.1 4.6 8.2
17 40.1 0.00052 240.0 0.2 1.0 1.9 3.2
18 41.1 0.00043 240.0 0.2 1.4 2.8 5.2
19 44.0 0.00029 240.0 0.3 1.0 1.9 3.1
20 46.5 0.00029 240.0 0.4 0.9 1.6 2.5
21 48.6 0.00054 240.0 0.2 1.0 2.0 3.5
22 58.6 0.00045 240.0 0.2 1.0 2.1 3.6
23 61.5 0.00030 0 0.2 0.7 1.3 2.2
24 65.6 0.00032 202.9 0.2 0.8 1.6 2.8
25 72.5 0.00028 0 0.2 0.6 1.0 1.6
26 80.1 0.00025 147.5 0.1 0.7 1.4 2.3
27 88.0 0.00050 28.4 0.3 1.4 2.8 4.9
28 91.1 0.00030 96.0 0.1 0.6 1.2 2.1
29 120.1 0.00019 133.7 0.1 0.4 0.8 1.4
30 155.6 0.00013 169.3 0.1 0.3 0.6 1.0
31 187.1 0.00005 240.0 0.1 0.2 0.5 0.9
32 190.1 0.00005 238.6 0.1 0.2 0.5 0.9
33 210.6 0.00004 99.9 0.0 0.2 0.3 0.6
34 235.0 0.00004 75.5 0.4 0.5 0.7 1.0
35 250.0 0.00002 57.0 0.1 0.1 0.2 0.4
36 310.1 0.00004 221.6 0.0 0.2 0.4 0.7
37 322.1 0.00000 36.9 0.0 0.0 0.0 0.0
38 350.6 0.00000 0 0.0 0.0 0.0 0.0
39 360.5 0.00000 0 0.1 0.1 0.1 0.1
40 380.0 0.00000 0 0.2 0.2 0.2 0.2
41 400.1 0.00000 0 0.0 0.0 0.0 0.0
42 410.0 0.00000 0 0.6 0.6 0.6 0.6

*Scenarios 1, 2 and 3 correspond to a price volatility respectively 20%, 50% and 100% higher than the
baseline volatility.
Source: simulation results.
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5.2 Simulation results

The simulation results focus on the changes in land allocation among crops
under different price volatility scenarios and a special attention is paid to the
farmland share committed to grassland. While risk neutral farmers do not
change their crop mix under different scenarios, risk-averse farmers increase
the share of AES grassland as a response to a rise in crop price volatility. As
most of the largest farms in the sample are risk neutral, the effect is detected
only for small/medium size farms. If volatility is set to 20 per cent larger than
the baseline (scenario 1), the smallest risk-averse farms would commit to AES
more than 2 per cent of their land (Table 2). In scenario 2, where volatility is
50 per cent larger than the baseline, most of the smallest farms would
contract more than 8 per cent of their land under AES. Finally, by doubling
volatility (scenario 3), the percentage of farmland subject to grassland would
increase to more than 10 per cent in around 1/5 of the risk-averse farms, and
it would be between 4 and 10 per cent in another 1/3 of the farms. Thus, the
AES scheme seems to work as income stabiliser tool. Indeed, when crop price
fluctuations become larger, risk-averse farmers are willing to convert some
share of high-income and high-risk crops to a lower-risk activity.
In parallel with the changes in AES grassland, we also observe a change in

the crop mix as a response to an increase in crop price volatility. The crop mix
under different scenarios is shown in Figure 1, where the land allocation is
aggregated among all the 42 farms. The change in the crop mix across
scenarios is the result of a direct and a cross effect. The former consists of the
decrease of production of high-risk crop when price volatility rises, while the
second is due to the relationships among crops, shown by the cross terms of
the symmetric matrix of the nonlinear cost function (i.e. the derivative of the
marginal cost of production of a crop with respect to the quantity produced
of another crop) and by the covariances of output prices. When crop price
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Figure 1. Land allocation to each crop in the sample (% shares).
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volatility rises, the share of total farmland allocated to sugar beet in the
sample increases from 13.3 per cent in the baseline to 16.8 per cent in the most
risky scenario, since sugar beet is the lowest risk crop in the sample (lowest
price variance). On the other hand, the share of the highest risk crop, wheat,
drops from 47.3 in the baseline to 38.7 per cent in the high volatility scenario,
and a similar drop (from 34.2 to 25.5 per cent) is observed for corn. Although
barley is the second most risky crop, its share rises across the three scenarios,
likely as a consequence of the negative cross term between barley and sugar
beet in the cost function matrix, such that the marginal cost of barley
production decreases with an increase in land allocated to sugar beet.
The simulation results confirm the importance to account for both the

direct and the indirect effects of a change in crop price volatility. In addition,
the increasing share of committed grassland supports the potential role of
AES as income stabiliser tool especially for the smallest farmers that are also
the most risk averse4.

6. Discussion and conclusions

In this study, we develop a new methodological approach which accommo-
dates risk in a PMP framework, introducing some innovations with respect to
the available literature. The individual farmer absolute risk aversion
coefficients are estimated endogenously in the model together with the farm
nonlinear cost function, the shadow prices of resources and the shadow prices
of activities. The model calibrates to the base year-observed activity levels
without making any calibration constraint explicit.
We provide an empirical application of our model on a sample of

representative farms from the Emilia-Romagna region in Italy. We show that
themodel calibrates to the base year-observed activity levels for all farms, and it
is able to reveal the individual farmer absolute risk aversion coefficients. In this
respect, we identify a negative correlation between risk aversion coefficient and
farm size, with the largest farms in the sample exhibiting risk neutral behaviour.
Our model is consistent with the standard PMP foundations (Paris 2011: 340–
411), but it avoids the critiques raised in the literature by directly estimating the
above shadow prices. Unlike the model of Cortignani and Severini (2012),
where anupper boundon the coefficient of risk aversion is imposed, ourmethod
is more flexible in estimating that coefficient, while the error terms can be
interpreted as deviations from the common farmcost function.Differently from

4 We have also carried out an additional simulation in order to find the level of the AES
payment in the baseline situation which produces the same environmental benefit of an
increase in price volatility, measured in terms of AES grassland share. We consider twenty
simulated levels of price volatility. If volatility increases by 5% compared to the baseline
situation, the AES payment should increase by around 3.5 euro/ha in order to produce the
same adoption of AES grassland induced by the 5 per cent increase in volatility. The per-
hectare payment should increase by around 15 per cent to provide the same AES adoption
caused by a 50 per cent rise in the baseline volatility and by 30 per cent to replicate the same
adoption of a doubling in volatility.

© 2017 Australian Agricultural and Resource Economics Society Inc.

280 L. Arata et al.



Petsakos and Rozakis (2015), we estimate both a nonlinear cost function and a
nonlinear risk term.
We perform some simulations to test the farmers’ response to changes in

price volatility and to investigate the role of agri-environmental grassland as a
farmers’ strategy to cope with risk. The idea is that the grassland under agri-
environmental contract may represent an income risk management tool for
farmers, since it guarantees a fixed payment independent of market
conditions. The simulation results confirm the potential role of the grassland
program as income stabilisers for the risk-averse farms, namely the small and
medium size farms, since they increase the share of farmland under AES
commitment as a response to increased crop price volatility. When the crop
price volatility doubles, the smallest farms would contract around 10 per cent
of their land under AES grassland, and in some cases, such share would
increase to over 15 per cent. The impact of price volatility on the crop mix
depends not only on farmer risk preferences, but also on the complemen-
tarity/substitutability relationships among crops.
We believe that our calibrated farm-level model has potential for being

used in policy simulations involving the impact of risk, such as, for example,
the analysis of the newly introduced income stabilisation tool of the CAP.
This tool may be modelled by introducing an additional cost (i.e. the annual
insurance payment) together with a threshold on farm revenue that activates
the revenue insurance scheme. The simulation of different volatility scenarios
and the consideration of a multiple-year time horizon would show the
volatility degree which makes the option beneficial for each farmer.
Despite this potential, our model still has some important limitations. For

example, we assume that farmers exhibit CARA risk preferences and that
income volatility is due only to price changes, while yields are kept constant
over time. It would be interesting to further develop the model by assuming
DARA preferences and by introducing variable crop yields over time. Indeed,
DARA preferences may capture the influence of CAP payment changes on
farmer risk aversion (Koundouri et al. 2009).
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Appendix

Table A1 Variance–covariance matrix of prices in the baseline computed on 2002–2008 data
(€2/tonne2).

Sugar beet Wheat Corn Barley AES

Sugar beet 0.19 �0.98 �0.64 �0.88 0.00
Wheat �0.98 11.02 7.82 9.77 0.00
Corn �0.64 7.82 6.04 6.95 0.00
Barley �0.88 9.77 6.95 8.88 0.00
AES 0.00 0.00 0.00 0.00 0.00

Source: own elaboration on data by the Chambers of Commerce of Bologna, Milan and ISMEA.
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Supporting Information

Additional Supporting Information may be found in the online version of this
article:
Data S1 Dataset and code.

Table A2 Coefficients of the quadratic term of the farm nonlinear cost function

Sugar beet Wheat Corn Barley AES

Sugar beet 6.43 9 10�05 3.14 9 10�05 9.76 9 10�05 �4.64 9 10�06 �2.29 9 10�05

Wheat 3.14 9 10�05 1.22 9 10�03 9.94 9 10�04 1.27 9 10�03 1.20 9 10�04

Corn 9.76 9 10�05 9.94 9 10�04 9.15 9 10�04 9.22 9 10�04 1.23 9 10�04

Barley �4.64 9 10�06 1.27 9 10�03 9.22 9 10�04 1.57 9 10�03 �3.89 9 10�06

AES �2.29 9 10�05 1.20 9 10�04 1.23 9 10�04 �3.89 9 10�06 7.03 9 10�03

Source: estimation results.
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