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Income Sorting Across Space:

The Role of Amenities and Commuting Costs

Abstract

We study the sorting of skill/income-heterogeneous consumers within and between cities. We

allow for non-homothetic preferences and locations that are differentiated by their accessibility

to exogenous amenities and distance to employment centers, where production is subject to local

externalities. The residential equilibrium is driven by the properties of an amenity-commuting

aggregator obtained from the primitives of the model. Using the model’s structure and estimated

parameters based on micro-data for the Netherlands, we predict that exogenous amenities are

a key driver of spatial sorting. Our general equilibrium counterfactual analysis shows that in

the absence of amenities, the GDP increases by 10% because commutes are shorter. However,

income segregation rises and 95% of consumers are worse-off.

Keywords: cities, social stratification, income, amenities, commuting

JEL Classification: R14, R23, R53, Z13.
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Ségrégation spatiale : Rôle des aménités et des coûts à la mobilité

Résumé

Nous étudions la répartition spatiale des ménages selon leur revenu au sein et entre les villes.

Nous considérons un modèle de choix résidentiel en équilibre général avec externalités dans

lequel les préférences sont non homothétiques et les lieux se différencient selon notamment leur

niveau d’accessibilité aux aménités (urbaines et rurales) et aux emploi. En utilisant la structure

du modèle et les paramètres estimés basés sur des micro-données des Pays-Bas, nous prédisons

que la distribution spatiale des aménités influence très fortement la ségrégation spatiale. Notre

analyse contrefactuelle d’équilibre général montre qu’une baisse et une distribution uniforme

des aménités générerait des gains de productivité mais une hausse substantielle de la ségrégation

spatiale et une perte de bien-être pour une large majorité des ménages.

Mots-clés : villes, stratification sociale, revenu, aménités, déplacements domicile-travail, navette

Classification JEL : R14, R23, R53, Z13.
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Income Sorting Across Space: The Role of Amenities and Commuting Costs

1. Introduction

Spatial segregation seems to generate negative and persistent effects on individual development

and to threaten social cohesion (Chetty and Hendren, 2018; Bazzi et al., 2019). This is why we

find it important to study the various forces that underpin the sorting of heterogeneous house-

holds within and between cities. To this end, we develop a full-fledged general equilibrium

model that determines the locations of skill-heterogeneous households and shows how their

choices pin down the aggregate income. This in turn allows us to study the effects of exogenous

amenities – such as natural and historic attributes of locations – on the spatial distribution of

households and activities. Our approach tackles this problem from two complementary perspec-

tives. First, we develop a new urban economic model in which skill-heterogeneous households

choose where to live and where to work in a polycentric space-economy in the presence of

agglomeration economies and heterogeneous commuting behavior. Second, we estimate this

model using various datasets from the Netherlands and undertake a counterfactual that high-

lights the impact of specific amenities on spatial sorting and the aggregate income.

The canonical monocentric city model leads to a fairly extreme prediction: households are

sorted by increasing income as the distance to the central business district rises (Fujita, 1989).

One missing key explanation, at least for cities that have a long history, is the existence of

exogenous amenities, such as historic buildings and architecture, scenic landscapes, river and

sea proximity. That such amenities matter in residential choices has been well documented

(Brueckner et al., 1999; Glaeser et al., 2008; Koster and Rouwendal, 2017; Lee and Lin, 2018).

Furthermore, there are substantial differences in total factor productivity among employment

centers (Hornbeck and Moretti, 2019). However, we do not know well how these forces interact

to determine how households distribute themselves across urban areas. This paper attempts

to fulfill this gap by proposing a new approach in which locations are distinguished by the

distance to employment centers, which have an endogenous total factor productivity, and the

accessibility to given and fixed amenities that vary across space.

What are our main contributions? First, we develop a quantitative urban sorting model based

on the bid-rent function approach to show that, regardless of the functional form of the amenity,

commuting time, and skill distributions, the spatial sorting of heterogeneous households across

a continuum of locations is imperfect. In other words, a greater geographical distance between

households no longer implies a wider income gap. Although our problem has the nature of

a matching problem between landlords and households, matching theory cannot be applied

here because a household’s land consumption varies with both income and location while it is

exogenous in matching theory (Chiappori, 2017). This is why we use the bid rent approach in
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this paper.

Second, we characterize the equilibrium skill mapping under Stone-Geary preferences, which

are not homothetic, and a large number of potential employment centers. Homothetic prefer-

ences such as the Cobb-Douglas or the CES, which are the specifications most often used in the

literature, must be ruled out because they generate multiplicity of equilibria when a continuum

of households have different incomes (Gaigné et al., 2017), while failing to capture the fact that

housing expenditure shares decline with income (Albouy et al., 2016). We show that the equi-

librium skill mapping reflects the behavior of a location-quality index defined over the location

set. This index is built from the primitives of the model and its value at any particular location

is determined by households’ commuting behavior. Furthermore, since the location-quality in-

dex is defined over a set that includes locations belonging to different cities, we account for the

fact that amenity and productivity differences in urban areas are critical in choosing a residen-

tial place. It is worth stressing that our results are not specific to the Stone-Geary preferences.

They hold true for other non-homothetic preferences; what changes is the functional form of

the location-quality index.

The upshot is that the bliss point is the global maximizer of the location-quality index, thus

implying that this location is occupied by the high-skilled because they propose the highest bid.

As one moves away from this location along all admissible directions, households are sorted

by decreasing skills until a local minimizer of the location-quality index is reached where low-

skilled households are located. Around this minimizer, household skill starts rising. As a result,

households get more exposure to and have more contacts with other social groups when the

number of turning points of the location-quality index rises.

Third, production, which operates through employment centers whose size and productivity

are endogenous, allows the determination of households’ incomes according to their skills and

residential choices. To make our setting consistent with real life, we account for the fact that

individuals’ commuting behavior is gravitational in nature. In line with the empirical literature

on agglomeration economies (Combes and Gobillon, 2015), we also recognize that workers’

productivity depends on the density of jobs in their working places, which are characterized by

an endogenous and specific total factor productivity. The heterogeneity of space implies that

workers having the same skills may end up earning different incomes though each skill-group

enjoys the same utility level.

Fourth, we show that a spatial equilibrium always exists. It is well known that settings involving

agglomeration economies are often plagued with the existence of multiple equilibria (Duranton

and Puga, 2004). However, we show that the spatial equilibrium is unique if agglomeration

economies are not too strong (Allen and Arkolakis, 2014). From the empirical viewpoint, this

assumption does not seem to be an issue because our calculations show that the equilibrium is
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unique for the estimated values of the elasticity of agglomeration economies.

Fifth, our model is flexible enough to determine analytically the equilibrium outcome when

skills and the location-quality index are Fréchet-distributed. We use this location-quality index

to predict the equilibrium skill mapping and test these predictions by estimating recursively the

main parameters of a discretized version of the theoretical model. We first estimate a commuting

gravity equation and, then, the income mapping, which is shown to be directly related to the skill

mapping. This provides the necessary information to estimate the elasticity of agglomeration

economies.

For the empirical analysis, we use rich Dutch microdata for more than 10 million households

covering the years 2010 to 2015 on incomes, residential and job locations at the household

level, employment accessibility, as well as land values and amenities at each location. The

choice of the Netherlands is motivated by (i) the availability of these disaggregated data and

(ii) the fact that the public services that underpin social cohesion (e.g., education and health) are

centrally financed and/or administered (Ritzen et al., 1997). As a result, competition between

jurisdictions supplying schools that characterizes many U.S. metropolitan areas is much less

of an issue. The Netherlands is one of the countries with the highest population densities in

the world (if we disregard city states). Today, with a population density of 407.4 pop/km2, the

Netherlands is almost as dense as the San Francisco Bay area whose area is similar to that of

the Netherlands. This is an important feature in settings where density economies matter. It is

also one of the richest countries, with a GDP per capita higher than in the UK, Germany and

Japan. Moreover, Dutch cities were established long ago and are known to offer a high quality

of life, which is at least partly due to the presence of exogenous amenities. Despite being a

small country, the Netherlands hosts no less than 8 UNESCO world heritage sites, which is

almost as much as London and Paris together, and has 61,908 listed buildings, three times more

than Greater London.

To measure the level of exogenous amenities, we use a proxy suggested by Ahlfeldt (2013)

and Saiz et al. (2018): the number of outside geocoded pictures taken by residents at a certain

location. One key advantage of this index is that it lets consumers choose the aesthetic quality

of buildings and locations they like best by “voting with their clicks” (Carlino and Saiz, 2019).

This allows us to move beyond the approach of defining amenities implicitly, as in Ahlfeldt

et al. (2015) and Albouy (2016). We show the robustness of our results by using an alternative

proxy for amenities based on Lee and Lin (2018).

Admittedly, households also care about the proximity to private facilities such as shops, restau-

rants and theaters, which may be disproportionately located in upscale neighborhoods where

many pictures are taken. In addition, since there is no proxy that perfectly captures the full

amenity potential at a certain location, amenities are measured with error. Employment acces-
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sibility is also likely to be endogenous due to correlation with unobservable household charac-

teristics and agglomeration economies – the latter being more prevalent in dense areas where

commutes are shorter. We address the endogenous nature of amenities and accessibility in our

econometric analysis in several ways, e.g. by obtaining Oster (2019)’s bias-adjusted estimates

and by constructing historic instruments. Since the strategy of using instruments based on

historic data raises several issues, we devote considerable attention to the validity of such an

identification strategy.

We first report results from reduced-form regressions. The results unambiguously suggest

that both amenities and commuting costs are important in determining the spatial income dis-

tribution. We find that doubling the amenity level attracts households whose incomes are

2.3% higher, while doubling accessibility attracts households whose incomes are 3.8% higher.

Hence, the impacts of amenities and accessibility have a similar order of magnitude. We then

estimate the structural parameters of the model, which enables us to undertake counterfactual

experiments.

Since our main focus is on the effects of exogenous amenities, we consider a scenario where

these amenities are set to the lowest value observed in the sample. This mimics many U.S.

cities, where households focus only on commuting. As a result, commutes are shorter and the

overall output increases by 10.6%. This is because the Dutch high-skilled workers who reside

in high amenity places move into the most productive locations. The aggregate real income

rises by 7.3%, while the aggregate land rent decreases by 0.6%. Such numbers could suggest

that the demand for amenities reduces the overall productivity of the Dutch economy. However,

this argument ignores the fact that consumers, despite lower incomes, do value historic and

natural amenities: 95% of the households lose utility when amenities are set to their lowest

value. Furthermore, a flat distribution of exogenous amenities has strong repercussions for the

spatial distribution of skills, hence of incomes: the correlation between the values observed

in the data and in the counterfactual is only 0.556. Hence, we may conclude that amenities

are a key determinant of the skill-based sorting of households within and between cities. In

addition, we have constructed a measure of income mixing, i.e. the standard deviation of skills

in adjacent neighborhoods, to see how the counterfactual scenario affects income mixing within

the Netherlands. More specifically, a uniform amenity distribution implies that income mixing

is reduced by approximately two-thirds. Hence, there is substantially more spatial segregation

when amenities are absent. This confirms the armchair evidence that European, especially

Dutch, cities are more socially mixed than American cities. Last, because our experiment is

about consumer amenities, we do not observe substantial differences in the spatial distribution

of production in a situation where exogenous amenities are absent.
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Related literature. Suggesting the complexity of the issue, only a handful of papers in urban

economics have studied the social stratification of cities with heterogeneous households. Béck-

mann (1969) was the first attempt to take into account a continuum of heterogeneous house-

holds in the monocentric city. Unfortunately, the assignment approach used by Beckmann was

flawed (Montesano, 1972). Recent surveys, such as Duranton and Puga (2015) and Behrens and

Robert-Nicoud (2015), highlight the various difficulties associated with the spatial assignment

of heterogeneous agents and express some skepticism about the ability of the bid-rent approach

to deal with heterogeneous households and a continuum of locations.

Diamond (2016) studied how local wages, urban costs and employment respond to local labor

shocks. However, this author focuses on workers’ locational choices between cities and disre-

gard workers’ residential choices within cities. Using a dynamic setting, Lee and Lin (2018)

showed that richer households are anchored in neighborhoods with better natural amenities. We

differ from them in at least one fundamental aspect: in their setting people are assumed to work

where they live. In our setting, households are free to choose where to live and where to work,

while accounting explicitly for commuting costs between the residence and the workplace.

In an important paper, Ahlfeldt et al. (2015) highlight the role of amenities, agglomeration

economies and commuting in residential location choices in their study of the internal structure

of Berlin. Our paper differs from theirs in several fundamental aspects. First, these authors

assume an open city model in which the total city population is endogenous while households

enjoy the same exogenous utility level. In contrast, we work with a model in which the utility

level is endogenous. Second, they assume homogeneous individuals, whereas we consider skill-

heterogeneous workers, so that the endogenous utility level varies across skills. Third, Ahlfeldt

et al. (2015) do not provide any properties of the spatial equilibrium. This should not come as

a surprise as characterizing the equilibrium outcome is problematic under a finite location set.

Indeed, one cannot use the tools of analytical calculus. In contrast, by working with a continuum

of locations, we are able to show that residential choices are driven by a location-quality index

that allows us to pin down households’ location choices.

These differences imply that the estimation procedures used in the two papers also differ along

several lines. For example, Ahlfeldt et al. (2015) find that the elasticity of amenities with re-

spect to residential density is 0.15, which is quite high. This is so mainly because amenities

are measured as ‘structural residuals’, meaning that it is unclear what these amenities actu-

ally capture (e.g., they may capture housing characteristics or sorting on unobserved household

characteristics). In our paper, we define amenities explicitly and strive to show that amenities

and employment accessibility have a causal and significant impact on the spatial equilibrium.

Whereas Ahlfeldt et al. (2015) obtain structural residuals proxying for amenities and local pro-

ductivity by using Cobb-Douglas utility and production functions, we recover preferences for

amenities using income mapping, Stone-Geary preferences and a CES production function.
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Closer to us, Tsivanidis (2019) considers two skill-groups and a closed-city setting. Like us, he

uses Stone-Geary preferences because the observed Engel curves are nonlinear. However, his

work differs from ours along several lines. In particular, Tsivanidis focuses on the intra-urban

impact of a major transportation infrastructure and does not aim to develop a setting that yields

theory results. In this respect, his work remains in the spirit of Ahlfeldt et al. (2015).

The remainder of the paper is organized as follows. We provide a detailed description of our

model in Section 2. Section 3 characterizes the equilibrium skill mapping for general distribu-

tion functions. We also determine analytically the equilibrium skill and income mappings when

skills and the location-quality index are Fréchet-distributed. Data are discussed in Section 4.

In Section 5, we provide reduced-form evidence of the impact of amenities and accessibility

to jobs on sorting by incomes. In Section 6, we outline the procedure to identify the model’s

parameters and present the results of our counterfactual analysis. Section 7 concludes.

2. The model and preliminary results

2.1. The economy

The economy involves a unit mass of skill-heterogeneous households. A household is char-

acterized by her skill s ∈ R+ and is endowed with one unit of s-labor. The skill c.d.f. F (s)

is continuously differentiable on R+ and its density is denoted f(s). Like most recent con-

tributions in urban economics, we treat the skill distribution as a given. Each household has

one unit of time that she divides between commuting and producing. Her allocation of time is

determined by the residence and working place she chooses.

The economy involves two normal consumption goods: (i) land h, which is a proxy for housing,

and (ii) a homogeneous final consumption good q. Shipping the final good within the city

is costless. Therefore, its price is the same across city locations. This good is used as the

numéraire. The land density at each location of the network is 1 while the opportunity cost of

land is given by the constant R0 ≥ 0.

The map formed by streets, roads, highways, and railway junctions (in a city, region or country)

is modeled by means of a topological network. A topological arc, denoted az, is the image in

R
2 of a compact interval of R by a continuous one-to-one mapping. Clearly, any arc linking

two distinct locations contains a continuum of locations. A topological network N = ∪Z
z=1az

is defined as the union of a finite number Z ≥ 1 of topological arcs. Each arc has a finite

length. Furthermore, N is such that for any two points x1 and x2 belonging to N there is at least

one concatenation of arcs and subarcs of N that links these two points. The distance d(x1, x2)

between x1 and x2 is given by the length of the shortest path that connects these locations.

Clearly, d(·) is a metric defined on N . The endpoints of the arcs are called vertices. We assume

that these vertices are not colinear, so that (N, d) is not a one-dimensional metric space. An
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example of transportation networks similar to ours can be found in Allen and Arkolakis (2014).

In what follows, we assume that all functions are differentiable along each arc of the network

N , except may at the vertices.

2.2. Consumption

Households share the same utility function. Since households prefer more amenities than less,

we consider a preference structure similar to the one used in models of vertical product differ-

entiation:

U(q, h; b) = b · u(q, h),

where b denotes the amenity level, q the costlessly traded numéraire, and h the land consump-

tion. Hence, the utility derived from consuming amenities rises with income. Let b(x) > 0

be a given function whose value expresses the amenity level (or, equivalently, an aggregator of

distinct amenities) available at x ∈ N , which are exogenous and intrinsic to a location. In the

featureless city of urban economics, b(x) is constant across locations. In this paper, b(x) varies

with x.

We have seen that homothetic preferences must be ruled out to study the impact of skill het-

erogeneity on residential choices. A well-known example of non-homothetic utility is Stone-

Geary’s:

u(q, h) = q1−µ · (h − h)µ, (1)

where 0 < µ < 1 and h > 0 the minimum amount of floor-space in which to live, which is

supposed to be sufficiently low for the equilibrium consumption of the numéraire to be positive.

A s-household residing at x faces the following budget constraint:

y(s) = q + R(x)h,

where y(s) the income of a s-household and R(x) the land rent at x, which are both specified

below. In line with the literature, we assume that the land rent is paid to absentee landlords

(Fujita, 1989).

Maximizing (1) with respect to q and h subject to the budget constraint leads to the linear

expenditure system:

q∗(x, y(s)) = (1 − µ)[y(s) − R(x)h], (2)

h∗(x, y(s)) = (1 − µ)h + µ
y(s)

R(x)
, (3)

which shows that the land demand at any location x increases less than proportionally with

10
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income.

The corresponding indirect utility V (R(x), y(s)) is given by the following expression:

V (R(x), y(s)) = (1 − µ)1−µµµb(x)
[
y(s) − R(x)h

]
R(x)−µ.

2.3. Production and income

The final sector, which operates under constant returns and perfect competition, supplies the

numéraire by combining horizontally differentiated intermediate inputs produced by workers in

employment locations. Each worker produces a single intermediate input and each intermediate

input is produced by a single worker. The production function of the final sector is given by

Y =
{∫ 1

0
[z (ϕ)](σ−1)/σ

dϕ
}σ/(σ−1)

,

where z (ϕ) denotes the quantity of input ϕ while σ > 1 is the elasticity of substitution between

intermediate inputs. Shipping these inputs across space is costless.

There is a given and finite number of employment locations i = 1, ..., n ∈ N . When a s-worker

produces the intermediate input ϕ at i, her output is given by z (ϕ) = Aiℓis units of input ϕ,

where Ai > 0 is the total factor productivity of location i and ℓi is the worker’s labor time at

i. Let gi(s) ≥ 0 be the endogenous density of s-households working at i (see (10) for a formal

definition). Since the intermediate inputs are shipped at no cost, the total output of the economy

is given by a nested CES (Bénabou, 1996):

Y =

{
n∑

i=1

[
Ai

[∫ ∞
0 (ℓis)(σ−1)/σgi(s)ds

]σ/(σ−1)
](σ−1)/σ

}σ/(σ−1)

. (4)

In other words, the aggregate output may be viewed as a CES-sum of what is accomplished

in each employment location. In doing so, we account for the direct interdependence between

employment centers, each one providing a particular range of intermediate inputs according to

its skill composition.

Since we already account for the heterogeneity of the labor force at i in (4), we assume that the

total factor productivity Ai of the location i depends only on its size:

Ai = AiL
δ
i ≥ 0, i = 1, .., n (5)

where Ai > 0 is an exogenous location-specific shifter, Li ≥ 0 the employment level at i, and

δ > 0 the elasticity of agglomeration economies with respect to Li at location i. We treat the

vector L ≡ (L1, ..., Ln), with L1 ≥ 0, ..., Ln ≥ 0 and Σn
i=1Li = 1, as given and will determine
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the equilibrium values L∗
1, .., L∗

n in Proposition 1.

Denote by ℓi(x) the labor time of a household residing at x and working at i. Since the final

sector is competitive, it follows from (4) that the income earned by a s-household residing at x

and working at i is given by

Aiℓi (x) s
∂Y

∂[Aiℓi (x) s]
= [Aiℓi (x) s](σ−1)/σY 1/σ

≡ ω(s)ti(x)

where

ω(s) ≡ s(σ−1)/σY 1/σ (6)

is a s-household’s skill-specific component of the household’s income, which also depends on

the overall productivity Y of the city, while

ti(x) ≡ [Ai(Li)ℓi(x)](σ−1)/σ

is the commuting component of the income for any given Ai. For any Ai and Aj , we assume

that ti(x) = tj(x) for j Ó= i has a finite number of solutions.

2.4. Workplace choice

A s-household is characterized by an intrinsic income ω(s) that depends on her skill s and the

total output Y , while her income also depends on her residential location x and workplace i.

The s-households located at x have idiosyncratic reasons for working in different employment

locations. In line with discrete choice theory, we assume that a s-household’s income is random

and given by ω(s)ti(x)νkxi, where the νkxi are i.i.d. shocks on commuting, which are specific

to the individual k and locations x and i. These shocks capture households’ idiosyncrasies.

The effect of uncertainty on location and consumption decisions depends on the timing of uncer-

tainty resolution and on the flexibility that allows a household to revise her decision in response

to information. We assume here a timing that endows households with the possibility to ad-

just their workplace and total consumption conditional upon their residential choices. Before

observing their actual income, households choose their residential locations x at the spatial

equilibrium associated with the distribution of expected incomes. Once households are located,

they are able to observe their actual incomes. The households then choose the workplaces that

give them the highest incomes, as well as the corresponding consumption of land and numéraire.

Since households are heterogeneous in commuting, those who choose the same residential lo-

cation x need not earn the same income and consume the same commodity bundle.

Since households anticipate they will choose the best workplace after the resolution of uncer-
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tainty, the expected indirect utility of a household at x is defined as follows:

E [V (R(x), ω(s)ti(x)νi)]=E

{
(1 − µ)1−µµµb(x)

[
max

i=1,..,n
ω(s)ti(x)νi − R(x)h

]
R(x)−µ

}
. (7)

When the νi are i.i.d. according to a Fréchet c.d.f.I(z) = exp(−Kiz
−ε), where the shape

parameter ε is an inverse measure of the dispersion of idiosyncratic tastes, which is assumed

to be the same across employment locations, and Ki is the scale parameter of the employment

location i. We show in Proposition 1 that the equilibrium outcome is such that the households

who reside at x share the same skill s(x). Since the land rent R(x) is given to a s-household

located at x, maximizing (7) amounts to maximizing her expected income given by

y(s(x), x) ≡ ω(s(x))t(x), (8)

where

t(x) ≡ E

[
max

i=1,..,n
ti(x)νi

]
= Γ

(
ε − 1

ε

) [
n∑

i=1

Kit
ε
i (x)

]1/ε

and Γ (·) is the gamma function (McFadden, 1974). It follows from (8) that the expected income

of a s-household located at x is strictly increasing in s. Furthermore, y(s, x) also depends on

the locational choices made by all types of households through the total factor productivity of

the employment locations captured in ti. As a result, individual incomes are determined at the

market outcome.

The probability that a household living at x chooses to work at i is given by the gravity equation:

πi(x) =
Ki [ti(x)]ε

∑n
j=1 Kj [tj(x))]ε

> 0 for allx ∈ N. (9)

Thus, households residing at the same location work in different employment locations.

Because the s-households may be distributed over several residential locations, we denote by

ζ(x, s) ∈ [0, 1] the share of s-households who reside at x. Therefore, we have:

gi(s) =
∫

Nπi(x)ζ(x, s)f(s)dx. (10)

Using this expression, (4) becomes:

Y =

[
n∑

i=1

∫ ∞

0

∫

N
[Aiℓi (x) s](σ−1)/σ πi(x)ζ(x, s)f(s)dxds

]σ/(σ−1)

. (11)
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2.5. The spatial equilibrium

Given an amenity function b(x), a given mass of heterogeneous households choose where to live

and where to work in the city, how much land and how much of the composite good to consume.

The s-households may be distributed over several locations. The land market clearing condition

holds if s(x) satisfies the following condition:

|ζ(x, s)f(s)h(x, s)ds| = dx. (12)

In other words, the amount of land available between any x and x + dx > x and the area

occupied by the households whose skill varies from s to s + |ds| are the same. Since s(x) need

not be monotone, the land market clearing condition is expressed in absolute value.

A spatial equilibrium is defined by the following vector:

(s∗(x), ζ∗(x, s∗(x)), Y ∗, R∗(x), h∗(x, s∗(x)), q∗(x, s∗(x)), L∗
1, ..., L∗

n)

with x ∈ N , such that

b(x) · u[q∗(x, s∗(x)), h∗(x, s∗(x))] ≥ b(y) · u[q∗(y, s∗(x)), h∗(y, s∗(x))] ∀x ∈ N

holds under the budget constraint, the population constraint and (12).

If the above inequality is strict for all y Ó= x, then all s∗(x)-households are located at x

(ζ∗(x, s∗(x)) = 1). Otherwise, there exist at least two locations x1 and x2 such that s∗(x)-house-

holds are indifferent between the locations x1 and x2. Thus, we have 0 < ζ∗(·, s∗(x)) < 1 at

x1 and x2, while the sum of the shares is equal to 1. In this case, we say that there is spatial

splitting of identical households.

In our setting, heterogeneous households enjoy different equilibrium utility levels. This is to

be contrasted with Ahlfeldt et al. (2015) who assume that households share the same expected

utility level, which is the exogenous reservation utility that prevails in the rest of the economy.

3. The sorting of skills

3.1. The location-quality index

The bid rent Ψ(x, y(s, x), U) of a household whose expected income is y(s, x) is the highest

amount she is willing to pay for one unit of land at x when her utility level is given and equal

14
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to U . In other words, the bid rent function is defined as follows:

Ψ(x, y(s, x), U) ≡ max
q,h

{
y(s, x) − q

h

∣∣∣∣∣ s.t.b(x) · u(q, h) = U

}

= max
h

y(s, x) − Q(h, U/b(x))

h
, (13)

where Q(h, U/b(x)) is the unique solution to b(x) · u(q, h) = U because u is strictly increasing

in h and indifference curves do not cut the axes.

Since households treat the utility level as given, applying the first-order condition to (13) yields

the equation:

Q(h, U/b(x)) − hQh(h, U/b(x)) − y(s, x) = 0 (14)

whose solution, denoted H(y(s, x), U/b(x)), is the quantity of land consumed by a s-household

at x if her bid rent is equal to the land rent.1 The solution H(·) is called the bid-max lot size

(Fujita, 1989). In Appendix A.2, we show that this solution is unique.

The budget constraint implies that the bid rent function may be rewritten as follows:

Ψ(x, y(s, x), U) ≡
y(s, x) − Q(y(s, x), U/b(x))

H(y(s, x), U/b(x))
. (15)

Land at x is allocated to the highest bidder. Therefore, if the type s∗(x) is located at x, then

s∗(x) must solve the equation:

Ψs =
∂Ψ(x, y, U)

∂y
·

∂y(s, x)

∂s
= 0, (16)

with
∂y(s, x)

∂s
= ωst(x) =

σ − 1

σ
s−1/σY 1/σt(x),

the latter being obtained using (6) and (8). The second-order condition implies Ψss < 0. Ap-

plying the implicit function theorem shows that s∗
x and Ψsx have the same sign. Therefore, we

know how the skill mapping varies when the sign of Ψsx is determined.

Defining

B(x) ≡
bx(x)

b(x)
and T (x) ≡ −

tx(x)

t(x)
,

we show in Appendix A.1 that

Ψsx =
t(x)h

H2
· [B(x) − (1 − µ)T (x)] ·

∂y(s, x)

∂s
. (17)

1For any function f(y, z), let fy (respectively fyz) be the partial (cross-) derivative of f with respect to y
(respectively to y and z).

15



Working paper SMART-LERECO N°20-06

As will become clear after Proposition 1, under Stone-Geary preferences, it is possible to sub-

sume the amenity and commuting effects at x into a single scalar that has the nature of a

location-quality index. This scalar is given by

∆(x) ≡ b(x)[t(x)]1−µ. (18)

As L is given, the function ∆(x) at x is well defined. Since ∂y(s, x)/∂s > 0, differentiating

(18) shows that ∆x(x), B(x)−(1−µ)T (x) and Ψsx have the same sign. Therefore, Ψsx changes

sign at any extrema of the location-quality index. Furthermore, the higher µ, the stronger the

preference for land. Therefore, as the intensity of preference for land increases, commuting

matters less than the accessibility to amenities. We assume without much loss of generality that

b(x) and t(x) are such that ∆(x) is never flat on a positive measure interval.

Although we assume Stone-Geary preferences, our results hold true whenever the location-

quality index ∆(x) is a function of b(x) and t(x) that is independent of s. To illustrate this,

consider u(q, h) = qρ1 + hρ2 with 0 < ρi < 1 and ρ1 Ó= ρ2. The elasticity of substitution

between land and the numéraire is variable and equal to 1/(1 − δ1ρ1 − δ2ρ2), where δi is the

expenditure share on good i = 1, 2. When ρ1 > ρ2, i.e. the composite good matters more

than land, it can be shown that the above preferences generate the index ∆(x) ≡ [b(x)]1/ρ1 t(x),

which is similar to (18).

3.2. The equilibrium skill mapping

Our objective is now to determine the equilibrium skill mapping that specifies which s-house-

holds are located at x. The next proposition shows that skills are distributed across N according

to the values of the location-quality index. Conditional on L, we rank the values of ∆(x) by

increasing order and denote by G(∆) the corresponding c.d.f. defined over R+.

The following proposition is proved in Appendix A.2:

Proposition 1 Assume Stone-Geary preferences. Then, (i) each location hosts at most one

household type; (ii) there exists a spatial equilibrium and this equilibrium is unique when the

elasticity of total factor productivity with respect to employment is not too large; (iii) the equi-

librium skill mapping s∗(x) and the equilibrium location-quality index ∆∗(x) vary together

with x. Furthermore, denoting by G(·) the distribution of the values of ∆∗(x), the equilibrium

skill mapping is given by

s∗(x) = F −1[G(∆∗(x))]. (19)

In Appendix A.2, we also show that the equilibrium utility level satisfies the Spence-Mirrlees

condition, thus implying the existence of a positive assortative matching between skills and the
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values of the location-quality index. In this case, there is a unique one-to-one and increasing

relationship between s and ∆ (Chiappori, 2017). Hence, the highest skilled locate where the

equilibrium location-quality index ∆∗ reaches its maximum. As ∆∗ starts decreasing with x,

the skill level of the corresponding residents also decreases. The lowest skilled reside at a global

minimizer of the equilibrium location-quality index. Around this location, the skill level rises

together with ∆∗. As a result, the skill sorting does not translate into spatial sorting because the

function ∆∗(x) is in general not monotonic in x. In other words, we have:

∂

∂x

dU∗

ds
≷ 0.

For example, in a monocentric city, a wider income gap is no longer matched with a greater

distance between two households.

The skill sorting generates a specific output level Y ∗. When b(x) is constant, a household

chooses the location that maximizes her expected productivity. In this case, the sorting of skills

leads to the highest expected total output. By contrast, an uneven distribution of exogenous

amenities fosters a lower expected total output because historic and natural amenities are likely

to attract the most skilled people away from the places where they are the most productive. In

this event, the drop in the consumption of private goods is the counterpart of a higher level of

local amenity.

3.3. From theory to data

To estimate the model, we need an explicit form of the skill-specific mapping

s∗(x) = F −1[G(∆∗(x))]. For this, we must consider specific distributions F and G. Earning

distributions are skewed to the right and the Fréchet distribution is a good candidate to capture

this. Equally important, the Fréchet distribution leads to an analytical solution of our model. In

what follows, we assume that variable s is drawn from a Fréchet distribution to the power (σ −

1)/σ with shape parameter γs > 0 and scale parameter Ks > 0: F (z) = exp(−Ksz
−γS(σ−1)/σ)

over R+ with density

f(s) = Ksγs
σ − 1

σ
[exp(−Kss

−γs(σ−1)/σ)]s−[γs(σ−1)+σ]/σ.

An increase in γs leads to less income inequality.

It is analytically convenient to assume that the values of ∆∗(x) = b(x) [t∗(x)]1−µ
are also drawn

from a Fréchet distribution with the c.d.f. G(z) = exp(−K∆z−γ∆) over R+ and density g(z).

This holds if b(x) and t∗(x) are Fréchet-distributed.
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Using (19), the mapping s∗(x) can then be retrieved from the condition:

∫ ∞

s∗

f(z)dz = 1 − exp(−Ks(s
∗)−γs(σ−1)/σ) =

∫ ∞

∆∗

g(ζ)dζ = 1 − exp(−K∆(∆∗)−γ∆),

which is the counterpart in the ∆∗-space of the land market clearing condition (12). It follows

from Proposition 1 that households ranked by decreasing incomes are assigned to locations

having a decreasing location-quality index.

Set γ ≡ γ∆/γs and K ≡ Ks/K∆. Solving the above equation yields the equilibrium skill

mapping:

s∗(x) =
{
K1/γs [∆∗(x)]γ

}σ/(σ−1)
. (20)

We show in Appendix A.2 that ζ∗(x, s∗(x)) is uniquely determined for any x. Therefore, the

equilibrium output is given by

(Y ∗)(σ−1)/σ =
n∑

i=1

∫

N
[Ai(L

∗
i )ℓi (x) s∗(x)](σ−1)/σ π∗

i (x)ζ∗(x, s∗(x))f(s∗(x))dx,

where π∗
i (x) is obtained by replacing ti(x) by t∗

i (x) in πi(x).

Since a continuous distribution of skills is not directly observed in the data, we estimate the

income mapping instead. As ω = s(σ−1)/σY 1/σ, the equilibrium income mapping is given by

y(s∗(x), x) = t∗(x)ω(s∗(x)) = K1/γs [∆∗(x)]γ t∗(x)(Y ∗)1/σ. (21)

Last, we show in Appendix A.3 that the equilibrium land rent at x is given by

R∗(x) = µ(1 − µ)
1−µ

µ k− 1
µ t∗(x) [∆∗(x)]

1
µ

[
µt∗(x)

R∗(x)
+

(1 − µ)h

ω(s∗(x))

] 1
(1−µ)µγ

, (22)

where k is a positive constant.

Therefore, the land rent is a priori neither monotonic nor the mirror image of the spatial income

distribution. In short, the interaction between amenities, commuting and income sorting may

give rise to a variety of land rent profiles, which are not driven by the location-quality index

alone.
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4. Data and descriptives

4.1. Datasets

We have gained access to various nationwide non-public microdata from Statistics Netherlands

between 2010 and 2015. Unlike the United States or the United Kingdom, the Netherlands does

not undertake censuses to register their population, but the register is constantly updated when

people move or when there are changes in the household composition. The first dataset we

use is the Sociaal Statistisch Bestand (SSB), which provides basic information on demographic

characteristics, such as age, country of birth, marital status and gender. We only keep people that

could be part of the working population, that is, those between 18 and 65 years, and aggregate

these data to the household level. Importantly, the SSB data enable us to determine where

households reside, up to the postcode level. Hence, space is discrete in the plane.

The data on yearly income of households are obtained from the Integraal Huishoudens Inkomen

panel dataset. These data are based on the tax register, which provides information on taxable

income, tax paid, as well as payments to or benefits from property rents or dividends. The in-

come data also provide information on whether households are homeowners or renters. Public

housing is rent controlled and there are often long waiting lists for public housing. So, house-

holds are not entirely free to choose their utility-maximizing location. Therefore, we will focus

on owner-occupied housing, which means that we keep about 70% of the data.2

To estimate the commuting time for each household, we use the tax register information, which

provides information on individual jobs and the number of hours worked in each firm for each

year. Using data on location information on each establishment from ABR Regio and network

travel time from SpinLab we calculate for each household the average commuting time. More

information on how we calculate the commuting time between locations is provided in Ap-

pendix B.1.

Information on land values and lot sizes is not directly available. As is common practice,

we infer them from data on housing transactions, provided by the Dutch Association of Real

Estate Agents (NVM). The methodology used to calculate land values and lot sizes is described

in Appendix B.2. The NVM data contain information on the large majority (about 75%) of

owner-occupied house transactions between 2000 and 2015. We know the transaction price,

the lot size, inside floor space size (both in m2), the exact address, and a wide range of housing

attributes such as house type, number of rooms, construction year, garden, state of maintenance,

and whether a house is equipped with central heating.3 We also know whether the house is a

2We furthermore obtain information on the educational level of adults in the household. This is available for

only 75% of the population, but our main specifications will not use these data, so this appears not to be an issue.
3We exclude transactions with prices that are above e1 million or below e25, 000 and have a price per square

meter which is abovee5, 000 or belowe500. We furthermore leave out transactions that refer to properties that are

larger than 250 m2of inside floor space, are smaller than 25 m2, or have lot sizes above 5000 m2. These selections

consist of less than one percent of the data and do not influence our results.
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listed building.

We are interested in the impact of amenities on income sorting and land prices. We proxy

the amenity level by the picture density in a neighborhood. More specifically, we gather data

from Eric Fisher’s Geotagger’s World Atlas, which contain all geocoded pictures on the website

Flickr. The idea is that locations with an abundant supply of aesthetic amenities will have a high

picture density. We show in Appendix B.6 that there is a strong positive correlation between

picture density and historic amenities or geographical variables, such as access to open water

or open space. There are, however, several issues with using geocoded pictures as a proxy for

amenities.4

First, to avoid the possibility of inaccurate geocoding, we keep only one geocoded picture per

location defined by its geographical coordinates.5 This reduces the number of pictures by about

50%. Second, one may argue that the patterns of pictures taken by tourists and residents may

be very different. Since we have information on users’ identifiers, we can distinguish between

residents’ and tourists’ pictures by keeping users who take pictures for at least 6 consecutive

months between 2004 and 2015 in the Randstad. It seems unlikely that tourists stay for 6 con-

secutive months in the area. Note that the correlation between residents’ and tourists’ pictures

is 0.653, which is rather low. Third, many recorded pictures may not be related to amenities but

to ordinary events in daily life occurring inside the house. Hence, we only keep pictures that are

taken outside buildings, using information on all the buildings in the Netherlands from the GKN

dataset, which comprises information on the universe of buildings. Furthermore, if pictures are

not related to amenities, one would expect almost a one-to-one relationship with population

density. However, if we calculate the population density in the same way as we calculate the

amenity level, the correlation is only 0.223. Last, we recognize that people who take pictures

may belong to a specific socio-demographic group (e.g., young people with a smartphone) by

including demographic controls and using instrumental variables.

Though imperfect, we believe that the picture density is probably the best proxy available for

the relative importance of urban amenities at a certain location because it captures both the

heterogeneity in aesthetic quality of buildings and residents’ perceived quality of a certain lo-

cation. Nevertheless, we test the robustness of our results using an alternative hedonic amenity

index in the spirit of Lee and Lin (2018) (see Appendix B.3 for more details). The hedonic

index aggregates the average impact of several proxies of amenities, such as the locations of

historic buildings, proximity to open space and water bodies, by testing their joint impact on

house prices. We also construct historic instruments. Knol et al. (2004) have scanned and dig-

itized maps of the land use in 1900 into 50 by 50 meter grids and classified each grid into 10

4Ahlfeldt (2013) shows that in Berlin and London the picture density is strongly correlated to the number of

restaurants, music nodes, historic amenities and architectural sites, as well as parks and water bodies.
5In a continuous space, the probability that several pictures are taken at exactly the same location is zero.

Hence, observing multiple pictures at the same location is likely caused by inaccurate geocoding.
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categories, including built-up areas, water, sand, and forest. We aggregate these 10 categories

into 3 categories: built-up areas, open space, and water bodies and calculate the share of the

area used for each type in each neighborhood. We further gather data from the 1909 census on

occupations and employment in each municipality. The latter were much smaller than nowa-

days and about 4 times the size of the current neighborhoods. For each occupation we obtain

the required skill level. This enables us to calculate the share of households who are medium

and high-skilled. We gather additional data on the railway network in 1900 and the stations that

existed then (see Appendix B.4 for more information), enabling us to calculate employment ac-

cessibility in 1909. For robustness, similar instruments based on the land use in 1832, obtained

from HISGIS and NLGIS,6 are constructed. HISGIS provides information on the exact space oc-

cupied by buildings. The cadastral income was used to determine the property tax and reflected

the land value at that time. A disadvantage of the HISGIS is that it is only available for parts

of the Netherlands, thereby reducing the number of observations by about 50%. Additional

information on the road network in 1821 is obtained from Levkovich et al. (2017).

4.2. Descriptive statistics

Figure 1(a) provides a map of the Netherlands, the study area, where we indicate the most

important cities. The conurbation formed by the four largest cities, i.e. Amsterdam, Rotterdam,

The Hague, and Utrecht, is known as the Randstad, and has a population of about 7.1 million.

Figure 1(b) displays the commuting pattern across neighborhoods and shows that the Dutch

urban structure is really polycentric, as many commuting flows occur between different cities.

This underlines the need for a model that allows for location choices in the whole country.

Figure 1(c) is a map of the most important roads and railways that form the transportation

network in the Netherlands.

We report descriptive statistics of the 10,213,524 households of our sample in Table 1. The

average (median) yearly income is e91, 535 (e86, 732). Incomes are approximately Fréchet

distributed (see Appendix B.5).7 The average land price in the sample is e1, 312 , but there

are stark spatial differences. For example, in the capital Amsterdam, it is e3, 046, while in the

rural province of Friesland it is only e716. As expected, the correlation between the estimated

land price and lot size is negative (ρ = −0.245). The average lot size is 364 m2. However, in

Amsterdam it is only 253 m2, which corresponds to the higher land values in this city. About

15% of households occupy apartments and the correlation between occupying an apartment and

the land price is positive (ρ = 0.153).

We use the neighborhood definition proposed by Statistics Netherlands, so that we have 4,033

6HISGIS and NLGIS are Dutch historical geographic information system projects developed by the Fryske

Akademy.
7We report maps and histograms of income and land prices in Appendix B.5.
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(a) Overview map

(b) Commuting networks (c) Transport Network

Figure 1: The Netherlands

neighborhoods, which define from now on our location set. The picture density, i.e. the proxy

for amenities, ranges from 0 to 231 pictures per hectare. Only 0.2% of the households live

in neighborhoods that do not have any pictures. We disregard these households. The average

picture density in Amsterdam (22.7) is much higher than in Rotterdam (9.63), The Hague (6.17),
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Table 1: Descriptive statistics

Mean Std. dev. Min Max

Gross income (in e ) 91,535 53,683 3,589 999,897

Land price (e per m2) 1,312 752.2 0.00753 22,418

Lot size (m2) 364.3 923.8 25 24,824

Pictures per ha 2.189 8.840 0 231.9

Hedonic amenity index 2.821 0.0915 2.723 3.885

Share historic district 0.0347 0.139 0 1

Listed building 0.0941 0.699 0 17.06

Share built-up land 0.449 0.298 0.000856 1

Share water 0.0496 0.0738 0 0.813

Commuting time in minutes 26.39 17.18 0 120.0

Employment accessibility 624,940 275,990 14,427 1.347e+06

Total hours worked in household 2,159 913.1 416.1 6,239

Household has company car 0.149 0.356 0 1

Works at single-establishment firm 0.443 0.497 0 1

Number of jobs in household 1.511 0.968 1 18

Person is male 0.521 0.215 0 1

Person is foreigner 0.0718 0.217 0 1

Age of person 41.99 9.008 18 64

Apartment 0.153 0.360 0 1

House built <1945 0.192 0.394 0 1

Notes: The number of observations is 10,213,540. For land price and lot size the number of observations

is 2,196,280. Because of confidentiality restrictions the minimum and maximum values refer to the

0.01% and 99.99% percentile. This implies that we exclude the bottom and top 1,024 observations.

and Utrecht (7.66). Recall that we only use pictures outside a building taken by residents in

determining the amenity index. It appears that 80% of the pictures are taken outside a building

while about 60% of the pictures are taken by local residents. Going back to Table 1, we see that

the average commuting time is 26 minutes, which is very close to statistics provided by other

sources (Department of Transport and Works, 2010). The unconditional correlation of picture

density with income is close to zero (ρ = 0.0533), but this is not very informative as we do not

control for household characteristics. The correlation of the amenity index with land prices is

substantially higher (ρ = 0.431). Finally, households that have a short commute do not seem

to live in high amenity locations, as the correlation between the amenity level and commuting

time is low (ρ = −0.0454).

The historic instruments that we use are described in Table B.6 of Appendix B.4.

5. Reduced-form income mapping

5.1. Econometric framework and identification

Before developing the structural estimation of the parameters of the model, we consider the

income mapping, which plays a key role in our model. We first provide reduced-form evidence
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that sorting by incomes is indeed related to our proxy for amenities and accessibility to jobs –

the variables that constitute the location-quality index (see (21)). Set

log ỹki(x) = α1 log b̃(x) + α2 log ã(x) + α3Ck + Ωi + ξki(x), (23)

where ỹki(x) is the observed income net of commuting of household k living at x and working

in i; b̃(x) is the density of geocoded pictures – our proxy for amenities, ã(x) is a proxy for

employment accessibility, Ck are household characteristics, Ωi are workplace fixed effects, and

ξki(x) is an error term. Parameters α1, α2, α3 and Ωi are estimated. For the moment, we proxy

ã(x) by:

ã(x) =
I∑

i=1

F (τi(x))ni.

In other words, at location x we weight the number of jobs ni at i by the share of people whose

commute is at most equal to τi(x).

There are several issues when using (23) to identify the causal impact of b̃(x) and ã(x) on

sorting on the basis of income. First, regarding accessibility ã(x), a reason for a bias is that

labor markets may not be fully competitive as households may bargain over to get an income

compensation for living further away. Hence, observed incomes ỹki(x) may be higher when

people live further away. Note that about 15% of the costs of a longer commute is paid by the

employer (Mulalic et al., 2014).

Second, a more general concern about α1 and α2 as measures of the impacts of amenities and

accessibility on the spatial income distribution is that there is an omitted variable bias due to

sorting, heterogeneity in preferences for housing quality, agglomeration economies, and unob-

served spatial features. More specifically, households may not only sort on the basis of income,

but also on the basis of other household characteristics. Households with children, for example,

may aim to locate in neighborhoods with a large amount of green space. Variables b̃(x) and ã(x)

could also be correlated with unobserved housing attributes because households with different

incomes may have different preferences for housing quality, such as the age of the housing stock

(Brueckner and Rosenthal, 2009). For example, a large share of the housing stock in the city

center of Amsterdam takes the form of apartments. This may imply that the affluent are not

willing to locate there because they eschew apartment living (Glaeser et al., 2008).

Third, there may be reverse causality between ỹki(x) and b̃(x) and between ỹki(x) and ã(x).

For example, the provision of amenities may be a direct result of the presence of high-income

households. Indeed, anecdotal evidence suggests that cultural and leisure services are often

abundantly available in upscale neighborhoods (Glaeser et al., 2001). Similarly, high income

neighborhoods may attract employers that are in need of specialized and highly educated labor.

Last, since we do not observe the ‘exact’ amenity level, there may be a measurement error in
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b̃(x), which may lead to a downward bias of α1 when the error is random.8

The first step to mitigate the biases associated with these concerns is first to ‘purge’ household,

job and housing characteristics, Ck, from neighborhood characteristics. For example, Ck cap-

tures the members of the households who work full-time or part-time, the size of the household

and the age of the adults, while housing attributes are, for example, housing type and con-

struction year. This approach reduces the likelihood that we measure sorting on the basis of

household characteristics other than incomes. Furthermore, since we also include workplace

fixed effects Ωi, we control for productivity differences (e.g., due to agglomeration economies)

at the workplace.

Working with an endless string of controls will not fully address the endogeneity concerns

raised above. Unfortunately, our data do not allow us to exploit quasi-experimental or tempo-

ral variation in b̃(x) and ã(x). Therefore, to investigate the importance of the omitted variable

bias, we analyze coefficient movements after including controls. Oster (2019) shows that co-

efficient movements together with changes in the R2 can be used to estimate biased-corrected

coefficients. We outline this procedure and discuss the results in detail in Appendix B.6.

The omitted variable bias is not the only endogeneity issue. Our proxies may also suffer from

measurement error and reverse causality. We will, therefore, rely on instrumental variables. Our

first set of specifications uses contemporary instruments, while our second set of specifications

appeals to historic instruments. Regarding contemporary instruments for amenities, we use a

set of observed, arguably exogenous, proxies for amenities, such as the listed building density,

the share of the neighborhood x that is in a historic district, as well as the share of built-up areas

and water bodies. By using other proxies for amenities, the measurement error of b̃(x) is likely

to be mitigated. One may argue that the contemporary instruments do not convincingly address

the issue of unobserved locational and household characteristics that may be correlated with

b̃(x). Moreover, they do not address the potential endogeneity of accessibility ã(x).

Alternatively, we exploit the fact that b̃(x) and ã(x) are autocorrelated. First, land use in 1900

is used as an instrument. We expect aesthetic amenities to be positively correlated to the share

of built-up area in 1900. For example, the historic city center of Amsterdam has many build-

ings that have been built before 1900, which are now listed buildings. Furthermore, we also

expect water bodies available in 1900 to be correlated to current water bodies, which are often

considered as an amenity. As an instrument for commuting time, we count the total number of

households Ex,1909 in 1909 within a commuting distance by using the railway network in 1900:

8As suggested by the literature on local public goods, there might be reverse causality, meaning that the lo-

cation of local public goods and jobs is determined by the spatial income distribution. To a large extent, this is

because the institutional context that prevails in the U.S. implies that the quality of schools and other neighborhood

characteristics are often determined by the average income in the neighborhood (Bayer et al., 2007). This is to be

contrasted with what we observe in many other countries where local public goods such as schools are provided

by centralized bodies.
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a1909(x) =
n∑

i=1

F (τi(x))ni,1909, (24)

where τi(x) is the commuting time between x and employment location i = 1, ..., n, while

F (τi(x)) is the share of people who commute at most τ minutes in the sample (see Appendix

B.1). Hence, F (τi(x)) represents the aggregate cumulative distribution of commuting times,

while ni,1909 is the total employment at i in 1909. Because of temporal autocorrelation, we

expect that a better employment accessibility in 1909 also implies a better employment acces-

sibility today.

Historic instruments can be criticized because of the (strong) identifying assumption that past

unobserved locational features are correlated to current unobserved locational endowments.

However, these instruments are more likely to be valid in the context of income sorting because

the patterns of income sorting within each city have considerably changed throughout the last

century. Around 1900, open water and densely built-up areas were not necessarily considered as

amenities. For example, the canals in Amsterdam were essentially open sewers (Geels, 2006).

Therefore, locations near a canal often repelled high-income households who located in lush

areas just outside the city. It was also before cars became the dominant mode of transport.

People around 1900 often walked to their working place, so that commuting distances were

short. However, the rich could afford to live outside the city and take the train to their workplace.

The cities in 1900 were not yet influenced by (endogenous) planning regulations, as the first

comprehensive city plans date from the 1930s.

Still, one may be concerned that the measure of amenities is itself determined by the wealth

of individuals who locate there. The reason is that unobservables that determine the concen-

tration of wealthy individuals in the past also determine the locations of landmarks today, and

thus determine where pictures are taken. Moreover, one may argue that historic employment

accessibility, which is correlated to current employment accessibility, makes it easier to find

jobs for all household members, and thus increases household income due to better matching,

rather than shorter commutes. We address these concerns in several ways.

1. We go back further in time as it is less likely that unobserved characteristics of a location

or building in the past are correlated with those in present time. We exploit land use data

from the census in 1832. We use municipal populations in 1832 and calculate the travel

time of population within commuting distance using information on the road network of

1821. We further control for the share of buildings, the share of built-up area, and the

share of water bodies within the neighborhood as instruments. Moreover, using data on

the Cadastral Income, we can control for the value of land at that time. If rich households

sorted themselves into the most attractive locations of the past, we expect to see a positive

correlation with the Cadastral Income in 1832.
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2. We estimate specifications where we control for the current share of built-up areas and

population density. Locations that were attractive in the past attracted people and conse-

quently have a high share of built-up area in 1900. The share of built-up areas in 1900

is likely to be correlated to the current population density and to shares of built-up areas

nowadays. By controlling for the current share of built-up areas and population density

we mitigate the issue that our proxy for amenity just captures contemporary population

density, rather than a higher amenity level because of the historic buildings.

3. We gather data from the 1909 census on occupations and skills in each municipality. We

then control in various ways for the average skill level of households in 1909 as a proxy

for the income in the past. Controlling for the skill level should also address the issue

that employment density in 1909 may be correlated to better matching opportunities.

Since this proxy may be imperfect, we also use the share of Protestants in 1899 at the

municipality level as another proxy for income/skill. Indeed, at that time Protestants had

a higher education level and were wealthier.

4. We also consider another instrument for employment accessibility. From the 1899 census,

we gather data on the share of locally born people (i.e., within the same municipality).

If the (lack of) mobility of households is correlated over time, the share of locally born

people should be correlated positively to current commuting times because immobile

households have to commute on average longer to their jobs.

5. Finally, we estimate specifications where we exclusively focus on areas of reclaimed land

since 1900. These are areas that are reclaimed from the sea (about 5% of the land) just

before and after World War II. As these reclaimed locations are otherwise identical, and

as no one was living in those locations at that time, we address reverse causality.

5.2. Reduced-form results

Table 2 reports the baseline reduced-form results of the income mapping. Column (1) shows a

simple regression of log income on log amenities and log accessibility, while we only control

for demographic characteristics and year fixed effects. This shows that more amenities and

accessibility are associated with higher incomes. Doubling amenities implies an increase in

income of (log 2− log 1)×0.0215 = 1.5%. Doubling of accessibility attracts households whose

incomes are 6.9% higher. In column (2), we add a wider array of controls related to housing

quality and job characteristics. Although the R2 increases by almost 50%, the coefficients

related to amenities and accessibility are hardly affected. This suggests that amenities are not so

much correlated to building quality. In column (3), we include workplace fixed effects to control

for agglomeration economies in the workplace and identify the ‘pure’ accessibility effect. We

observe that the coefficient is somewhat lower. A 100% increase in amenities now attracts
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Table 2: Baseline reduced-form regression results

Dependent variable: log household gross income

+ Housing + Workplace Contemporary Historic

and job controls fixed effects Instruments instruments

OLS OLS OLS 2SLS 2SLS 2SLS

(1) (2) (3) (4) (5) (6)

log Pictures per ha 0.0215∗∗∗ 0.0285∗∗∗ 0.0166∗∗∗ 0.0168∗∗∗ 0.0333∗∗∗ 0.0382∗∗∗

(0.0016) (0.0013) (0.0011) (0.0023) (0.0037) (0.0037)

log Employment accessibility 0.0999∗∗∗ 0.0942∗∗∗ 0.0881∗∗∗ 0.0879∗∗∗ 0.0737∗∗∗ 0.0526∗∗∗

(0.0043) (0.0040) (0.0035) (0.0038) (0.0048) (0.0100)

Household controls Yes Yes Yes Yes Yes Yes

Housing and job controls No Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes

Workplace fixed effects No No Yes Yes Yes Yes

Number of observations 10,213,540 10,213,540 10,213,524 10,213,524 10,213,524 10,213,524

R2 0.2041 0.2949 0.3316

Kleibergen-Paap F-statistic 386.2 238.8 86.04

Notes: Bold indicates instrumented variables. Household controls include household size, mean age of adults, mean gender, household type

(couple, single, kids), the share of the household that is foreign-born. Job controls are the total hours worked, whether the household

has a company car, the share of full-time contracts, the share of permanent contracts. Housing controls include house type, height of

the building, construction year dummies and whether a building is listed. Standard errors displayed in parentheses are clustered at the

neighborhood level. ∗∗∗ p < 0.01.

households whose incomes are 1.2% higher. The coefficient related to employment accessibility

is hardly affected.

Despite the inclusion of controls and workplace fixed effects, one may argue that we do not

convincingly address the omitted variable bias. We deal with this issue in Appendix B.6 by

estimating bias-corrected regressions following Oster (2019). We show that when we choose the

appropriate maximum attainable R2 (as only part of the variation in incomes can be explained by

variables varying at the neighborhood level), the estimates are very close to the OLS estimates.

This strongly suggests that the omitted variable bias is not a major issue.

In column (4) we aim to address potential measurement error in the picture density as a proxy

for amenities by instrumenting for it with observed proxies for amenities (e.g., nearby historic

buildings or share water bodies). The first-stage results in Appendix B.6 show the expected

signs: there is a higher picture density in built-up areas, in areas with more water bodies (e.g.,

the Amsterdam canal district), and where there are many historic buildings.9 The contempo-

rary instruments are strong instruments for amenities. The second-stage coefficient related to

amenities in column (4)in Table 2 is essentially identical, suggesting that measurement error is

not a main concern.

9Since we have more instruments than endogenous variables, one might object that the two-stage least squares

estimates are biased (Angrist and Pischke, 2009). Hence, we also have experimented with other estimators that are

(approximately) median unbiased, such as LIML or GMM estimators. The results are virtually identical. For this

reason, we do not report them in the paper.
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Yet, amenities and accessibility may be endogenous due to reverse causality. The use of con-

temporary instruments may only partly address this issue. This is why we instrument amenities

with historic variables in column (5). The instruments are the shares of water bodies and of

built-up area in 1900 within a neighborhood x. In Appendix B.6, we report the corresponding

first-stage results. The share of built-up area, the share of water bodies in 1900 are strongly

and positively correlated to the current amenity level. Going back to Table 2, the coefficient of

amenities is now somewhat higher: doubling amenities attracts households whose incomes are

2.3% higher. In column (6) we also instrument for employment accessibility with the number of

households within commuting distance in 1909 using the railway network in 1900. The number

of people reachable within commuting distance is positively correlated to current accessibility;

the elasticity is 0.42. Overall, the Kleibergen-Paap F-statistic is above the rule-of-thumb value

of 10 in all specifications, suggesting that the instruments are sufficiently strong.

The second-stage results reported in column (6) of Table 2 reveal that, when we instrument

both amenities and commuting times, there is a positive effect of picture density and accessi-

bility on incomes. This specification is our preferred specification. Doubling amenities attracts

households whose incomes are 2.3% higher. Doubling accessibility leads to households whose

incomes are 3.8% higher. The impacts of accessibility and amenities are thus similar.

Alternative proxies for amenities and effects on land prices. One may worry that our re-

sults hinge on the particular choice of the amenity index. We therefore consider three alterna-

tive proxies for amenities. Following Lee and Lin (2018), we construct an aggregate hedonic

amenity index that describes the amenity provision at every location using house prices. The

procedure is described in Appendix B.3. To make the results comparable, we rescale the hedo-

nic amenity index in such a way that the standard deviation of the log of the hedonic amenity

index is the same as that of the log of the picture index. In column (1) of Table 3, we re-estimate

our preferred specification with historic instruments. It appears that the amenity elasticity is es-

sentially the same as the estimates obtained by using the picture index. We also gather data on

‘places of interest’ from the augmented reality game Pokémon Go as another proxy for ameni-

ties (see Appendix B.3 for detail). Our results show that the density of Pokéstops is positively

associated with incomes: doubling the Pokéstop density attracts households whose incomes are

2.2% higher. The commuting time elasticity is very much the same compared to the baseline

specification. In column (3) we use the share of land available in a neighborhood that is part

of an officially designated historic district. Using historic instruments, we find a strong and

statistically significant effect on household incomes: a 10% increase in the share of land that is

part of a historic district attracts households whose incomes are 3% higher.

In the last three columns of Table 3, we investigate the reduced-form impacts of amenities and

commuting times on land prices. In our setup the signs of the effects of amenities and accessi-

bility on land prices and incomes are the same (although magnitudes may differ). Therefore, we
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Table 3: Reduced form results: alternative proxies for amenities and land prices

Dependent variable: log household gross income

Alternative proxies for amenities Effects on land prices

2SLS 2SLS 2SLS OLS OLS 2SLS

(1) (2) (3) (4) (5) (6)

log Pictures per ha 0.1016∗∗∗ 0.0919∗∗∗ 0.2061∗∗∗

(0.0038) (0.0034) (0.0138)

log Hedonic amenity index 0.0250∗∗∗

(0.0028)

log Pokéstops per ha 0.0396∗∗∗

(0.0046)

Share historic district 0.2914∗∗∗

(0.0309)

log Employment accessibility 0.0782∗∗∗ 0.0580∗∗∗ 0.0731∗∗∗ 0.3586∗∗∗ 0.3343∗∗∗ 0.2119∗∗∗

(0.0086) (0.0113) (0.0088) (0.0104) (0.0091) (0.0323)

Household controls Yes Yes Yes Yes Yes Yes

Housing and job controls Yes Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes

Workplace fixed effects Yes Yes Yes No Yes Yes

Number of observations 10,233,115 9,839,819 10,236,308 2,196,280 2,196,280 2,196,280

R2 0.5564 0.5891

Kleibergen-Paap F-statistic 29.02 68.45 29.14 75.29

Notes: Bold indicates instrumented variables. Household controls include household size, mean age of adults, mean gender,

household type (couple, single, kids), the share of the household that is foreign-born. Job controls are the total hours

worked, whether the household has a company car, the share of full-time contracts, the share of permanent contracts.

Housing controls include house type, height of the building, construction year dummies and whether a building is

listed. Standard errors displayed in parentheses are clustered at the neighborhood level. ∗∗∗ p < 0.01.

now estimate the effects of amenities and commuting time on land prices. We start in column

(4) with a simple OLS specification including amenities and accessibility, while controlling for

households, job and housing characteristics. This leads to a strong positive effect of ameni-

ties on land prices: doubling amenities implies a land price increase of 8.7%, while doubling

accessibility leads to land prices that are 22.4% higher. When we control for workplace fixed

effects, the coefficients are hardly affected. In the final column we instrument for amenities and

accessibility with historic instruments from around 1900. The effect of accessibility becomes

somewhat lower, while the effect of picture density becomes about twice as strong. Hence, the

reduced-form effects on land prices do indeed have the same sign as the effects on income, but

are stronger in magnitude.

Other sensitivity checks. Appendix B.8 shows that our results still hold for a wide range of

alternative robustness checks and sample selections. To the extent one is still worried that en-

dogeneity plagues our estimates, we strongly advise the reader to consult Appendix B.8. More

specifically, we show that our results hold if we (i) only focus on the urban area of the Rand-

stad or close to city centers, (ii) use data from 1832 to construct instruments for amenities and

employment accessibility, (iii) control for current land use and population density, (iv) control
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for sorting based on skills in 1909, (v) use alternative (historic) instruments, and (vi) only use

observations on land that was reclaimed from the sea.

Further robustness analyses minimize any measurement error regarding accessibility and work-

place productivity, by running specifications where we only keep households (i) with a single

job, (ii) with a single job in a single-plant firm, and (iii) with a company car which are more

likely to use the car for commuting. We further test whether our results change when using the

share of highly educated adults in the household, which is a more direct way to estimate the

(reduced-form) skill mapping. We find very similar effects, both in terms of sign and magni-

tude, which confirms that looking at income or skill levels is more or less equivalent. We also

use commuting time by rail instead of commuting time over the road. Overall, the impact of

amenities and commuting time on income sorting choice is robust.

6. Structural estimation

6.1. Estimation and identification

We define the amenity function as follows:

b(x) ≡
[
b̃(x)

]β
.

In other words, amenities are related to picture density (b̃(x)) where β is the elasticity of prefer-

ences for amenities. Furthermore, letting ℓi (x) ≡ [τi(x)]−κ with κ the elasticity of commuting

time, the labor supply is given by

ti(x)νki(x) = {Ai[τi(x)]−κ}(σ−1)/σνki(x),

where νki(x) are i.i.d. idiosyncratic shocks on commuting times drawn from a Fréchet distribu-

tion with shape parameter ε > 1 and scale parameter Ki > 0.

We use the structure of the model to identify its parameters {β, κ, µ, ε, δ, γ, γS, γ∆}. In this way

we are able to calculate the counterfactual income mappings and land rents.

Our model has a recursive structure. Hence, the estimation of parameters consists of estimating

a number of standard regression equations. However, only the first step – estimating the com-

muting gravity equation – is the same as in Ahlfeldt et al. (2015). To be precise, the gravity

equation identifies the commuting time elasticity κ = κε. Since our model differs considerably

from Ahlfeldt et al. (2015), it comes as no surprise that the remaining steps used to recover the

model parameters are substantially different.

In the second step, using actual data on incomes, we can recover commuting heterogeneity ε.

Third, using information on land rents and lot sizes, which we observe for a subset of the data,
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we recover preferences for land µ. The fourth step uses the income mapping to identify the

preferences for amenities β and the relative heterogeneity of the location quality index γ. This

enables us to identify the location quality index up to a multiplication constant. The remain-

ing heterogeneity parameters (γ∆ and γS) are identified in the fifth step. In the final step, we

estimate the agglomeration elasticity δ.

In line with spatial quantitative equilibrium models, we fix base parameters {σ, h̄}.10 Further-

more, we choose σ = 4 in line with the literature (Dustmann et al., 2009). We set h = 25 m2,

which corresponds to the minimum lot size in the sample, and we use a discount rate of 3.5% to

go from land prices to land rents (see Koster and Pinchbeck, 2018). In what follows, we discuss

the moment conditions, the identifying assumptions in each step, and the estimation procedure.

6.2. Estimating the gravity equation

It follows from (9) that the probability that a household living in x chooses to work in i is equal

to:

πi(x) =
Ki(ω

∗(x)ti(x))ε

n∑
j=1

Kj(ω∗(x)tj(x))ε
=

KiA
ε(σ−1)

σ
i [τi(x)]−

εκ(σ−1)
σ

n∑
j=1

KjA
ε(σ−1)

σ
j [τj(x)]−

εκ(σ−1)
σ

. (25)

In line with Ahlfeldt et al. (2015), we first recover an estimate for κ ≡ −εκ (σ − 1) /σ by

estimating a log gravity model with residence and workplace fixed effects, which absorb Ki

and Ai. The first moment condition is given by:

E[log πi(x) − κ log τi(x) − Υ̃(x) − Ω̃i] = 0. (26)

By including residence fixed effects Υ̃(x) and workplace fixed effects Ω̃i, we mitigate the en-

dogeneity issues associated with τi(x). We then use Poisson Pseudo-Maximum Likelihood

methods to deal with zeroes. One remaining issue is the reverse causality between flows and

travel times. Indeed, at locations where there is more demand for travel, better transport infras-

tructure is likely to be provided, which in turn leads to a shorter travel time. We address this

issue by instrumenting log τi(x) with the log of Euclidian distance between two locations. We

use a control function approach where the first stage residual is inserted as a control function in

the second stage.

10Note that we identify everything up to a multiplication constant. Therefore, the scale parameters of the Fréchet

distribution are not strictly identified.
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6.3. Commuting heterogeneity

The next step is to recover ε from the data. In the spirit of Ahlfeldt et al. (2015), we choose to

minimize the squared differences between variances within neighborhoods x of adjusted labor

supply and labor supply observed in the data. More specifically, let ỹki(x) ≡ ω(x)ti(x)νki(x)

be the observed income in the data of a household k located in neighborhood x and working

in neighborhood i. We observe income conditional on labor supply in the data. For exam-

ple, if someone has a longer commute and therefore supplies less labor, we observe a lower

income net of commuting costs. More specifically, we use the observed income and control

for household characteristics and location pair fixed effects at the level of the neighborhood.

We then recover location-specific income log ŷi(x) by taking the estimated values of location

pair fixed effects. Let t̃i(x) ≡ Ki[ti(x)]ε be the transformed labor supply, obtained from (26).

Note that σ2
log(ω(x)t̃i(x))|x = σ2

log t̃i(x)|x because ω(x) does not vary within the neighborhood.

Hence, the relationship between the variance within neighborhood x of the log of transformed

incomes σ2
log t̃i(x)|x and the variance of the log of location-specific incomes σ2

log ŷi(x)|x
is given by

σ2
log t̃i(x)|x = ε2σ2

log ŷi(x)|x
. This enables us to recover ε from the second moment condition:

E[σ2
log t̃i(x)|x − ε2σ2

log ŷi(x)|x] = 0. (27)

Since the above specification is linear in parameters, we can just use linear regression techniques

to obtain ε.

6.4. Preferences for land

In the third step we use information on land prices R(x) and lot sizes h(x) for a subset of the

sample. Moreover, we use ŷi(x) – the estimated location-specific income – from the previous

step. Rewriting (3), we derive the third moment condition to determine µ:

E

[
R(x) −

µŷi(x)

h(x) − (1 − µ)h

]
= 0. (28)

Since this equation is non-linear, we use nonlinear least squares to obtain an estimate for µ.

6.5. Estimating the income mapping

The income mapping plays a central role in the structural estimation. Recall that the income

mapping (21) is derived from the skill mapping (20). The household k who locates at x is given

by

s(x) =
[
K1/γS

(
∆̃(x)

)γ]σ/(σ−1)
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with K ≡ KS/K∆ and

∆̃(x) ≡ b(x)
[
E

(
max

i=1,..,n
ti(x)νki(x)

)]1−µ̂

= [b̃(x)]β [ã(x)]
1−µ̂

ε̂ , (29)

because the maximum of Fréchet variables is a Fréchet variable, while the employment acces-

sibility ã(x) is defined as follows:

ã(x) =

[
Γ

(
ε̂ − 1

ε̂

)]ε̂

·
n∑

i=1

t̃i(x) =

[
Γ

(
ε̂ − 1

ε̂

)]ε̂

·
n∑

i=1

KiA
ε̂(σ−1)

σ
i · [τi(x)]−

ε̂κ̂(σ−1)
σ ,

where t̃i(x) is obtained from the gravity equation and Γ (·) is the gamma function. Hence, in

contrast to the reduced-form specifications where we choose a somewhat arbitrary functional

form for accessibility, we use here an accessibility measure that is dictated by the model.

Recall that the observed income in the data is ỹki(x) ≡ ω(x)ti(x)νki(x). Since ti(x) ≡

[Ai(τi(x))−κ̂](σ−1)/σ and ω(x) = [s(x)]
σ−1

σ Y 1/σ, the expected income of a household k residing

at x and working in neighborhood i can be rewritten as follows:

ỹki(x) = K1/γS [b̃(x)]βγ [ã(x)]
(1−µ̂)γ

ε̂ [ti(x)νki(x)](Y ∗)1/σ.

Therefore,

log ỹki(x) + κ̂
σ − 1

σ
log τi(x) = Υ(x) + Ωi + νki(x), (30)

where Υ(x) are residence fixed effects and Ωi workplace fixed effects.

We first estimate the location and workplace fixed effects. Then it should hold that

Υ(x) = α0 + α1 log b̃(x) + α2 log ã(x) and Ωi =
σ − 1

σ
log Ai,

where α1 ≡ βγ, α2 ≡ (1 − µ̂)γ/ε̂. Hence, γ = α̂2ε̂/(1 − µ̂) and β = α̂1(1 − µ̂)/α̂2ε̂.

Equipped with estimates for t̃i(x) (from the gravity equation), κ̂, ε̂, and µ̂, we can infer γ and β

from Υ(x). Note further that Ωi are workplace fixed effects, so that wage differences associated

with workplace productivity differences Ai (e.g., due to agglomeration economies) are absorbed

by the fixed effects. More specifically, we focus on the job within the household that generates

the highest number of working hours and use a work-location fixed effect for each location pair.

Hence, we compare households that work at the same location(s), but have different residential

locations. Last, given Ωi, we recover the adjusted workplace productivity Ãi (up to a constant):

Ãi = e
σ

σ−1
Ωi .

We estimate the income mapping in two stages. We define the fourth moment condition as
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follows:

E[log ỹki(x) + κ̂
σ − 1

σ
log τi(x) − Υ(x) − Ωi − α3Ck] = 0, (31)

while the fifth moment condition is given by:

E

[
Υ̂(x) − α0 − α1 log b̃(x) − α2 log ã(x)

]
= 0. (32)

To obtain the causal parameters α1 and α2, and therefore causal estimates for β and γ, we face

the same endogeneity issues as in the reduced-form specification (23). We refrain from repeat-

ing this discussion here. Like in the reduced-form analysis, we will rely on historic instruments

to mitigate endogeneity issues, such as the presence of open space, water bodies and employ-

ment accessibility in 1909 using (24). For the income mapping (moment conditions (31) and

(31)), we also use linear regression techniques. When instrumenting for amenities and employ-

ment accessibility, we use two-stage least squares (2SLS) implying that we replace log b̃(x) and

log ã(x) by their fitted values obtained in the first stage.

6.6. Recovering the parameters of the Fréchet distributions

Using {β̂, κ̂, µ̂, γ̂}, we may obtain the shape parameters of the location-quality index and the

income mapping. First, we calculate the expected labor supply at each location using (25).

Using observed amenities, commuting distances, and the adjusted workplace productivity, we

can recover the location-quality index (up to a multiplication constant) at each location:

∆̃(x) = [b̃(x)]β̂ · [ã(x)]
1−µ̂

ε̂ .

Hence, the sixth moment condition may be written as follows:

E


f∆̃

(
∆̃(x)

)
−

γ∆̃

K̃∆̃

e
−

(
∆̃(x)
K

∆̃

)
−γ

∆̃
(

∆̃(x)

K̃∆̃

)−(1+γ∆̃)

 = 0, (33)

where f∆̃(∆̃(x)) is the p.d.f. of the adjusted location-quality index. To obtain the Fréchet

parameters (moment condition eq: moment6), we use Maximum Likelihood. Then, we obtain

γs = γ̂∆/γ̂.

6.7. Recovering the agglomeration elasticity

In the last step, we estimate the elasticity of agglomeration economies. We first determine the

skill mapping for each location given the estimated parameters:

[s(x)]
σ−1

σ = K1/γ̂S [b̃(x)]β̂γ̂ [ã(x)]
1−µ̂

ε̂ .
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Note that we identify s(x) up to a multiplication constant. Hence, we set K∆ in such a way that

the geometric mean of ŝ(x) equals one and then fit a Fréchet distribution to ŝ(x) to obtain KS .

Using (5), we assume that Ai = AiL̃
δ
i , where L̃i is given by:

L̃i =
N∑

x=1

t̃xi∑n
j=1 t̃xj

[
K̂S γ̂S

σ − 1

σ
e−K̂S [ŝ(x)]−γ̂S(σ−1)/σ

[ŝ(x)]−[γ̂S(σ−1)+σ]/σ
]

.

The first term is the share of households living at x commuting to i and the bracketed term is

the employment density at location x. The moment condition is then given by:

E

[
log Ãi − logAi − δ log L̃i

]
= 0. (34)

Once again, one may argue that L̃i is endogenous and correlated to unobserved locational char-

acteristics. As discussed in the foregoing, we use the employment accessibility in 1909. Note

that historic instruments are frequently used in the literature to address the endogeneity of em-

ployment density (Combes et al., 2011). The identifying assumption permits that past unob-

servables that cause employment accessibility in 1909 are unrelated to current unobservables to

give rise to L̃i. We provided extensive support for this assumption in Section 5.2. Moreover,

we test whether the results are different when using data on accessibility to population in 1832

as it is less likely that unobserved characteristics of a location in the past are correlated with its

current characteristics.

Moment condition (34) can be estimated by OLS, but if we instrument for L̃i, we replace L̃i by

the fitted values obtained in the first stage.

6.8. Structural parameters

In Table 4, we report the results of the structural estimation. We obtain cluster-bootstrapped

standard errors by first choosing a set of randomly drawn neighborhoods and then estimate the

consecutive steps described above 250 times.

We find that a commuting time elasticity equal to κ = 0.22, which is higher than in the liter-

ature. However, one should keep in mind that we use the log of commuting time, so that this

represents an elasticity rather than the semi-elasticity. In Appendix B.9, we show that when

we instrument travel times with the Euclidian distance, the travel time elasticity is considerably

lower, in line with the expectation that reverse causality would lead to an overestimate. Given

that endogeneity is quite important, we consider this specification as the preferred one.11 Com-

11In Appendix B.9 we also show other specifications of the gravity model. We (i) use commuting flows based

on the two jobs that generate the most working hours, (ii) use travel time by railways, and (iii) only keep location

pairs with a sufficiently high number of commuters. Results are very robust.
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Table 4: Structural estimation

No 1900 1832

instruments instruments instruments

(1) (2) (3)

Commuting time elasticity, κ̂ 0.2210∗∗∗ 0.2210∗∗∗ 0.2210∗∗∗

(0.0048) (0.0048) (0.0048)

Commuting heterogeneity, ε̂ 2.7323∗∗∗ 2.7323∗∗∗ 2.7323∗∗∗

(0.0144) (0.0144) (0.0144)

Land preferences, µ̂ 0.0955∗∗∗ 0.0955∗∗∗ 0.0955∗∗∗

(0.0003) (0.0003) (0.0003)

Amenity preferences, β̂ 0.0404∗∗ 0.1559∗∗ 0.1062∗∗∗

(0.0181) (0.0712) (0.0262)

Relative location quality heterogeneity, γ̂ 0.3142∗∗∗ 0.1421∗∗∗ 0.2493∗∗∗

(0.0124) (0.0370) (0.0408)

Agglomeration elasticity, δ̂ 0.0465∗∗∗ 0.0887∗∗∗ 0.0745∗∗∗

(0.0016) (0.0040) (0.0034)

Location quality heterogeneity, γ̂∆ 6.0911∗∗∗ 3.2809∗∗∗ 4.2179∗∗∗

(0.2162) (0.5683) (0.3531)

Skills heterogeneity, γ̂s 23.0909∗∗∗ 16.9213∗∗∗ 6.0911∗∗∗

(1.7681) (1.0818) (0.2162)

Fixed parameters:

Minimum lot size, h̄ 25 25 25

Elasticity of substitution, σ 4 4 4

Number of areas 4,033 4,033 4,033

Number of area pairs 16,265,089 16,265,089 16,265,089

Notes: We estimate the parameters using data at neighborhood level. In column (2) we use as instruments

the share of water bodies in 1900 in the neighborhood, the share of built-up land in 1900 in the

neighborhood, the share of built-up land in 1900 <500m of the neighborhood, the share of built-up

land in 1900 500-1000m, and employment accessibility in 1909. In column (3) we use as instruments

the share of water bodies in 1832 in the neighborhood, the share of built-up land in 1832 in the

neighborhood, the share of buildings in 1832 in the neighborhood, the share of buildings in 1832

<500m of the neighborhood, the share of buildings in 1832 500-1000m, and population accessibility

in 1832. Standard errors displayed in parentheses are bootstrapped (250 replications) and clustered

at the neighborhood level; ∗∗∗ p < 0.01, ∗∗ p < 0.05.

muting heterogeneity ε is about 2.73, which is somewhat lower than in Ahlfeldt et al. (2015),

but close to the value picked by Brinkman and Lin (2019). The estimate for µ indicates the

preferences for land. We find that µ̂ = 0.0955, which confirms that richer households spend

less of their income on land (Albouy et al., 2016). Note that µ̂ may seem low, but we only

include payments to land, not to housing itself.

So far, all estimated parameters are identical for different specifications because the historic

instruments are used only in the later steps to identify preferences for amenities, accessibility,

and agglomeration economies. The preference parameter β̂ that indicates how households value

amenities in column (1) is similar to the baseline reduced-form result. However, when we use

instruments based on data from 1909 β̂ is considerably larger. This is mainly because the
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relative location-quality heterogeneity parameter γ̂ is about 50% smaller. The preference for

amenities is not much affected if we use instruments based on data from 1832. The estimated

elasticity of agglomeration economies is 0.0465 if we do not instrument, while it is higher

when we use historic instruments (0.0745 and 0.0887 using instruments from 1900 and 1832,

respectively). These estimates fall within the range provided by the literature. For example,

Rosenthal and Strange (2004) suggest a range of 0.03-0.08. Our estimates are higher than those

reported by Combes and Gobillon (2015) who study the elasticity of wages with respect to

population density.

Overidentification checks. Our structural estimation procedure suggests natural overidentifi-

cation checks that can be used to investigate whether our model is able to fit the data reasonably

well. We do not expect to find a perfect fit because we consider only two determinants of lo-

cation choices, while actual location choices are affected by more factors. First, our estimation

procedure leads to an approximation for the employment level L̃i at each location i. If we com-

pare the estimated L̃i to the observed employment level in each area, we find a correlation of

0.839, which is fairly high. One may be worried that this high correlation might be driven by a

few locations that host many workers. This appears not to be an issue because the correlation

between the log of estimated employment to the log of observed employment is equal to 0.907.

Another overidentification check involves the comparison of ex-post estimated land rents (see

(22)) to the observed land prices. Because land prices are not a direct input in our model, there

is no pre-determined mechanical correlation between estimated and actual land prices.12 We

find a correlation between estimated and observed land prices of 0.643. When we correlate

the log of estimated land prices to the log of observed land prices, we find a slightly higher

correlation (ρ = 0.718). Given that we only include two determinants of locational choices,

these correlations are quite high and suggest that amenities and accessibility are very important

determinants of locational choices.

6.9. Counterfactual

Given the estimated parameters, our model allows for undertaking counterfactual analyses. We

describe the exact procedure to solve for the counterfactual values and derive the aggregate land

rent and real income in Appendix B.9. Let us consider the scenario where we assume away

amenities throughout the Netherlands; that is, we set the amenity level equal to the minimum

value of amenities observed in the data.13 The idea is to mimic U.S. cities where exogenous

12One may argue that land prices are used in the determination of µ. However, spatial differences in estimated

land prices are largely insensitive to the exact magnitude of µ and would hardly affect the correlation between

observed and estimated land prices.
13The absolute amenity level makes no difference for the outcomes because we re-adjust the parameter K∆ for

the aggregate skill distribution to have a geometric mean equal to 1. Moreover, assuming an equal value for b̃x

leads to the same result as when setting β = 0.
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Table 5: Counterfactual analysis

Baseline scenario No amenities scenario

(1) (2)

Total output 120,959 133,805

Aggregate land rents 437,039 434,299

Aggregate real income 11,821 12,680

Income mixing, σ̄x 0.0472 0.0148

Notes: We calculate aggregate land rents as:
∑L

∗

x=1
hc

x
Rc

x
and aggregate net wages as:∑L

∗

x=1
(1/hc

x
)ωc

x
tc

x
. Hence, we weight aggregate labor income by the density in each location.

amenity levels are considerably lower than in the Netherlands. We estimate the outcomes for

the baseline scenario and the counterfactual scenario and report them in Table 5.

Since households do not care about amenities anymore, they live on average closer to their

workplace and earn higher incomes. We find that the overall output increases by 10.6%, while

the aggregate real income rise by 7.3%. The aggregate land rent decreases by 0.6% in the

absence of amenities. We also construct a measure of income mixing, which is the standard

deviation of skills in adjacent neighborhoods, to see how the counterfactual scenario affects

income mixing within the Netherlands. A uniform amenity distribution implies substantially

less income mixing as the standard deviation is much lower than the baseline estimate. More

specifically, income mixing is reduced by about two-thirds, which is substantial. This confirms

the anecdotal evidence that European, especially Dutch, cities are more socially mixed than

American cities.

Furthermore, a priori one would expect households to be better off because the net income is

significantly higher. However, things are not that simple. Even though households are able to

consume more, they no longer enjoy the historic and natural amenities. As a result, the result

is a priori ambiguous. Our analysis shows that no less than 95% of the whole population of

households are worse-off, despite their higher income, than in the situation in which amenities

are available.

A uniform distribution of amenities also has strong repercussions on the spatial distribution of

skills, hence of incomes. Indeed, the correlation between the values observed in the data and

in the counterfactual is 0.556. Hence, amenities are a key determinant of the spatial sorting

of households within and between cities. We report maps in Figure 2. Figure 2(a) shows the

relative changes in skills at each location. In locations with high levels of exogenous amenities,

such as the city center of Amsterdam, The Hague or Utrecht, we observe a relatively large

decrease in skills, e.g. up to 20% in Amsterdam, thus confirming that high-skilled people

value amenities more. The most skilled households in the Netherlands live in the city center of

Amsterdam in the baseline scenario. However, this would change in the no amenity scenario.
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(a) % change in sx (b) % change in sx in Amsterdam

(c) % change in Rx (d) % change in Rx in Amsterdam

Figure 2: Counterfactual analysis: no amenities

Notes:sx denotes the level of skills of households residing in location x. Rx denotes the rent in location x.

In Figure 2(b), where we zoom in on Amsterdam, we show that skills decrease by 10%–20% in

the historic city center of Amsterdam. High skilled households are found in the suburbs where

there is an abundance of space. For the lower skilled households changes are less severe: they

can mostly be found in the more sparsely populated northern provinces of the Netherlands in

both scenarios.

As shown in Figure 2(c), the land rent generally decreases in locations with initially high ameni-

ties. However, because consumers earn higher incomes they bid more for land, leading to in-

creases in land rent in locations with a high employment accessibility. This is illustrated in
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Figure 2(d) where we zoom in on Amsterdam. The city center, where amenities are now gone,

witnesses decreases in land rents. By contrast, the port area, which has a good employment

accessibility, experiences increases in land rents (up to 5.6%).

So far, we did not discuss the implications of the counterfactual for the spatial employment

distribution. This distribution is hardly affected by changes in amenities that affect mainly res-

idential choices. The impact on employment centers is second order because agglomeration

economies are relatively weak (δ) compared to locational fundamentals Ai, which are unaf-

fected by changes in amenities. Production is, to a large extent, anchored in the same locations,

thus reflecting the impact of history, like in Bleakley and Lin (2012). We have tested this con-

tention by assuming unrealistically strong agglomeration economies. In this case, the spatial

distribution of jobs changes considerably.

7. Concluding remarks

In this paper, we used a new setup in which any location is differentiated by two attributes,

i.e. the benefit generated by the amenity field at this location and its distance to employment

locations. The bid rent function of urban economics may be used to show that the uneven

provision of exogenous amenities is sufficient to break down the perfect sorting of households

across the space-economy. Under Stone-Geary preferences, there exists a location-quality in-

dex that blends amenities and commuting costs into a single aggregate whose behavior drives

households’s residential choices. Studying this index allows us to gain insights about how gov-

ernments and urban planners can design policies whose aim is to redraw the social map of cities.

For example, the higher the index of a particular location, the higher the income of households

who choose to locate there. The relevance of exogenous amenities and commuting costs to ex-

plain the residential choices of heterogeneous consumers is confirmed by the empirical analysis,

where both effects are found to be significant. More generally, policies that aim at a uniform

distribution of public services push toward more spatial segregation, as residential choices are

mainly driven by commuting costs. Rather, if social mixing is a major policy objective, our

results suggest that governments or related bodies should target specific neighborhoods where

to build public facilities providing services to the population.
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Appendix A

A.1 The bid rent

Since ω(s) is strictly increasing in s, we work with variable ω(s) and write the equilibrium

utility level as follows: U∗(ω(s)). Differentiating (15) w.r.t. x and using (14), we obtain:

Ψx(x, ω(s)t(x), U∗(ω(s))) =
ωt

H

(
tx

t
−

Qb

ωt
bx

)
. (A-1)

Differentiating (A-1) w.r.t. ω and rearranging terms yields the following expression:

Ψωx(x, ω(s)t(x), U∗(ω(s))) =
t

H

{
tx

t

[
1 −

ω

H
(Hω + HUU∗

ω)
]

+
bx

t

[
Hω + HUU∗

ω

H
Qb − (QbH(Hω + HUU∗

ω) + QbUU∗
ω)

]}
.

(A-2)

It is readily verified from (1) that

Q(h, U/b(x)) =

[
1

(h − h)µ

U

b

] 1
1−µ

, (A-3)

while it follows from (A-3) that

QU =
1

1 − µ
U

1
1−µ

−1

[
1

b(h − h)µ

] 1
1−µ

=
1

(1 − µ)

Q

U
,

QUb = −
QU

(1 − µ)b
,

Qb = −
U

b
QU ,

Qh = −
µ

1 − µ

[
1

(h − h)

U

b

] 1
1−µ

QbH =
U

b

µ

1 − µ
(h − h)−1QU .

Plugging Qb, QbH and QbU into (A-2) and rearranging terms leads to

Ψωx(x, ω(s)t(x), U∗(ω(s))) =
t

H

{
tx

t

[
1 −

ω

H
(Hω + HUU∗

ω)
]

+
bx

b

[
Hω + HUU∗

ω

H

(
−

U

t
QU

) (
h − (1 − µ)h

(1 − µ)(h − h)

)

+
QU

(1 − µ)t
U∗

ω

]}
. (A-4)
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Plugging Qh and Q in (14) and solving the corresponding equation yields

h − (1 − µ)h

(1 − µ)(h − h)
= ωt

[
b

U
(h − h)µ

] 1
1−µ

. (A-5)

Using QU , (A-5) may be rewritten as follows:

(
−

U

t
QU

) [
h − (1 − µ)h

(1 − µ)(h − h)

]
= −

ω

1 − µ
. (A-6)

Differentiating (15) with respect to ω and using (14), we obtain:

Ψω(x, ω(s)t(x), U∗(ω(s))) =
t

H

(
1 −

QU

t
U∗

ω

)
, (A-7)

which is equal to 0 if and only if

U∗
ω =

t

QU

. (A-8)

Plugging (A-6) and (A-8) in (A-4) yields

Ψωx(x, ω(s)t(x), U∗(ω(s))) =
t

H
·
[
1 −

ω

H
(Hω + HUU∗

ω)
]
·

1

1 − µ
·

[
(1 − µ)

tx

t
+

bx

b

]
. (A-9)

Applying the implicit function theorem to (A-5) yields

HU =
(h − (1 − µ)h)(h − h)

Uµh

and

Hω = −
t(1 − µ)2

µh
U− 1

1−µ b
1

1−µ (h − h)1+ 1
1−µ .

Given QU , (A-8) is equivalent to

U∗
ω = t · (1 − µ)

[
b · (h − h)µ

] 1
1−µ (U∗(ω))− µ

1−µ . (A-10)

Using the above three expressions, we obtain:

Hω + HUU∗
ω = t · (1 − µ)(h − h)

[
b

U∗(ω)
(h − h)µ

] 1
1−µ

.
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Therefore, by implication of (A-5), we have:

1 −
ω

H
(Hω + HUU∗

ω) =
(1 − µ)h

H
. (A-11)

Substituting this expression into (A-9) yields the desired expression:

Ψωx(x, ω(s)t(x), U∗(ω(s))) =
t

H
·

h

H
· [B(x) − (1 − µ)T (x)] .

A.2 Proof of Proposition 1

The proof involves six steps.

(i) The bid-max lot size. From the definition of the location-quality index given by (18),

(A-5) can be rewritten as follows:

H − (1 − µ)h

(1 − µ)(H − h)
= ω∆

1
1−µ

[
(H − h)µ

U

] 1
1−µ

, (A-12)

which implies H(ω(s)t(x), U/b(x)) ≡ H(∆(x), ω(s), U) so that the bid-max lot size depends

on b(x) and t(x) only through the location-quality index ∆(x).

The LHS of (A-12) is decreasing and tends to +∞ when H → h and to 1/(1 − µ) > 0 when

H → +∞. The RHS of (A-12) is increasing in H . It tends to 0 when H → h and to +∞

when H → +∞. Therefore, (A-12), equivalently (14), has a single solution H(ωt(x), U/b(x)),

which implies that the housing demand is uniquely determined.

Applying the implicit function theorem to (A-12) yields

∂H

∂∆
= −

[
U

1
1−µ (H − h)− 1

1−µ
−1 µH

(1 − µ)

]−1

ω∆
µ

1−µ < 0. (A-13)

(ii) The equilibrium utility level. Using the definition of the location-quality index, (A-10)

implies that the equilibrium utility level is a solution to the differential equation in U∗:

U∗
ω = ∆

1
1−µ (1 − µ)(H − h)

µ
1−µ (U∗(ω))− µ

1−µ , (A-14)

so that U∗(ω) depends on ∆ only.
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(iii) Supermodularity of the equilibrium utility level. Differentiating (A-14) w.r.t. ∆, we

obtain:

∂

∂∆

dU∗

dω
= ∆

µ
1−µ (H − h)

µ
1−µ (U∗(ω))− µ

1−µ ·

[
1 + µ∆(H − h)−1 ∂H

∂∆

]
.

Using (A-13), this expression may be rewritten as follows:

∂

∂∆

dU∗

dω
= ∆

µ
1−µ (H − h)

µ
1−µ (U∗(ω))− µ

1−µ ·


1 − (H − h)

1
1−µ

(1 − µ)ω∆
1

1−µ

(U∗(ω))
1

1−µ H


 .

From (A-12), the expression in the bracketed term is equivalent to

1 − (H − h)
1

1−µ
(1 − µ)ω∆

1
1−µ

(U∗(ω))
1

1−µ H
= (1 − µ)

h

h
> 0.

Therefore,
∂

∂∆

dU∗

ds
=

∂

∂∆

dU∗

dω

dω

ds
> 0.

The Spence-Mirrlees condition thus holds, which implies the existence of a positive assortative

matching between skills and the values of the location-quality index. In other words, there is a

unique one-to-one and increasing relationship between s and ∆ (Chiappori, 2017). Regardless

of the value of Y > 0, households ordered by increasing skills must be assigned to locations

endowed with rising values of the location-quality index. Since a single value of ∆ is associated

with x, a unique value of s must be associated with x. Therefore, the equilibrium condition (16)

has a unique solution, which means that s∗(x) is a mapping.

Note that the supermodularity of U∗(ω) is equivalent to the inequality Ψω∆ > 0. Indeed,

differentiating (A-7) w.r.t. ∆ and using (A-8) yields:

Ψω∆(x, ω(s)t(x), U∗(ω(s)))|Ψω=0 =
t

H

[
∂(t/QU)/∂∆

U∗
ω

]

=
t

H

∂U∗
ω/∂∆

U∗
ω

> 0.

(iv) Uniqueness of the equilibrium shares ζ∗(x, s∗(x)). The proof follows Montesano (1972).

Assume that there are m ≥ 2 points x1 Ó= x2... Ó= xm such that ∆(x1) = ∆(xj) for j = 2, ..., m.

Using (12) and Step (i), we have:

|ζ(xj, s)f(s∗(xj))H {∆(xj), ω(s∗(xj)), U∗ [ω(s∗(xj))]} ds| = dx j = 1, ..., m. (A-15)

The supermodularity of U∗ w.r.t. ∆ implies s∗(x1) = s∗(xj), so that f(s∗(x1)) = f(s∗(xj)) for
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j = 2, ..., m. In other words,

H {∆(x1), ω(s∗(x1)), U∗ [ω(s∗(x1))]} = H {∆(xj), ω(s∗(xj)), U∗ [ω(s∗(xj))]} .

Hence, dividing relationships (A-15) between themselves leads to

ζ(x1, s∗(x1))

ζ(xk, s∗(xk))
= 1 k = 2, ..., m.

Since
∑m

j=1ζ(xj, s) = 1, we obtain:

ζ∗(xj, s∗(xj)) =
1

m
j = 1, ..., m.

Since b(x) and t∗(x) are never constant on a nonegligible subset of N , we may assume that

there is an integer M such that m ≤ M .

(v) Existence of a spatial equilibrium. Since t(x) is the mean of the upper envelop of n

continuous functions of Li, the mapping s∗(x, L) is continuous in L. Let Nm ⊂ N be the set of

locations, which may be empty or negligible, such that ζ(x, s∗(x, L)) = 1/m for x ∈ Nm and

∪M
m=1Nm = N for m = 1, , .., M (up to a negligible set).

Let Z be the number of arcs az of the network N . The set Nm is the union of a finite number

of subarcs; a subarc of az links the points αm
z ∈ az and βm

z ∈ az. For notational simplicity,

we assume that each arc az includes at most one subarc (αm
z , βm

z ) in Nm (otherwise a third

summation over the subarcs of az included in Nm is needed).

Hence, the function

Fi(L) ≡ Lδ
i , i = 1, ..., n

=

{
M∑

m=1

1

m

Z∑

z=1

∫ βm
z

αm
z

f [s∗(x; L)]
Ki[ti(x, Li)]

ε

∑n
j=1 Kj [tj(x, Lj))]

ε dx

}δ

(A-16)

is also continuous in L.

Since F(L) ≡ (F1(L), ...,Fn(L)) is a continuous mapping from the simplex

Sn ≡ {L; L1 ≥ 0, .., Ln ≥ 0 and Σn
i=1Li = 1}

into itself, F(L) has at least one fixed point L
∗.
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(vi) Uniqueness. We determine a sufficient condition for the spatial equilibrium to be unique.

It is well known that uniqueness holds when the function F(L) given by (A-16) is a contrac-

tion. This is so when the matrix norm ||·||∞ of the Jacobian J(F) of F(L) is smaller than 1.

The function F(L) is differentiable everywhere but over the negligible set I of L ⊂ Sm such

that ti(x) = tj(x) or Lδ
i /Lδ

j = Ajℓj(x)/Aiℓi(x) for i Ó= j since the function ℓi(x) is strictly

increasing in the distance d(x, i) for i = 1, ..., n.

Differentiating (A-16) with respect to Lk yields the following expression defined on the interior

of Sn − I:

∂Fi(L)

∂Lk

= δ

{
M∑

m=1

1

m

Z∑

z=1

∫ βm
z

αm
z

f [s∗(x; L)]
Ki[ti(x, Li)]

ε

∑n
j=1 Kj [tj(x, Lj))]

ε dx

}δ−1

·

{
M∑

m=1

1

m

Z∑

z=1

f [s∗(βm
z (L); L)]

Ki[ti(β
m
z (L), Li)]

ε

∑n
j=1 Kj [tj(βm

z (L), Lj)]
ε ·

∂βm
z (L)

∂Lk

−
M∑

m=1

1

m

Z∑

z=1

f [s∗(αm
z (L); L)]

Ki[ti(α
m
z (L), Li)]

ε

∑n
j=1 Kj [tj(αm

z (L), Lj)]
ε ·

∂αm
z (L)

∂Lk

+
M∑

m=1

1

m

Z∑

z=1

∫ βm
z

αm
z

∂

∂Lk

[
f(s∗(x; L))

Ki[ti(x, Li)]
ε

∑n
j=1 Kj [tj(x, Lj))]

ε

]
dx

}
, i, k = 1, ..., n.

Since all the terms in the right-hand side of this expression are continuous on Sn−I, ∂Fi(L)/∂Lk

has a supremum Cik Ó= 0. Therefore, we have:

n∑

k=1

∣∣∣∣∣
∂Fi(L)

∂Lk

∣∣∣∣∣ < δ
n∑

k=1

|Cik| < 1,

where the second inequality holds for all 0 < δ < δi ≡ 1/(Σk |Cik|). Let δmin be the minimum

of δi over i = 1, ..., n. If δ < δmin, ||J(F)||∞ is smaller than 1. In other words, when δ > 0 is

small enough, F(L) is a contraction.

A.3 The equilibrium land rent under Fréchet distributions

Using (14), we may rewrite (15) as follows:

Ψ(x, ωt, U) = −QH(H, U/b(x)).

Using QH leads to

Ψ(x, ωt, U) =
µ

1 − µ
(H − h)

−1
1−µ

[
U

b

] 1
1−µ

. (A-17)
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Rearranging terms in (3) yields:

H − h = µ

[
ωt

Ψ(x, ω, U)
− h

]
(A-18)

and plugging the above expression into (A-17) leads to

Ψ(x, ω, U) = µ− µ
1−µ (1 − µ)−1

[
ωt

Ψ(x, ω, U)
− h

] −1
1−µ

[
U(ω)

b

] 1
1−µ

.

Dividing this expression by t(x) and setting Φ ≡ Ψ/t, we get

Φ = µ− µ
1−µ (1 − µ)−1

(
ω

Φ
− h

)− 1
1−µ

[U(ω)]
1

1−µ (∆∗)
−1

1−µ .

Rearranging terms, this expression becomes:

Φ = µ(1 − µ)
1−µ

µ

(
ω − Φh

) 1
µ [U(ω)]−

1
µ (∆∗)

1
µ . (A-19)

Applying the first-order condition to Φ yields the following differential equation in ω:

U∗
ω(ω) =

1

ω − Φh
U∗(ω).

Let

U∗(ω) =
(
ω − Φh

)
X(ω) (A-20)

be a solution to the above differential equation where X(ω) is determined below. Differentiating

(A-20) with respect to ω, we obtain

Uω(ω) =

[
1

ω − Φh
−

h

ω − Φh
Φω +

Xω(ω)

X(ω)

]
U(ω).

Totally differentiating Φ leads to

Φω ≡
dΦ

dω
=

∂Φ

∂ω
+ Φ∆∆ω = Φ∆∆ω. (A-21)

Differentiating (A-19) with respect to ∆ yields:

Φ∆ = Φ

[
1

µ
(∆∗)−1 −

1

µ
Φ∆h

(
ω − Φh

)−1
]

,
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whose solution in Φ∆ is

Φ∆ =
1

∆∗

Φ

µ

[
µ(ω − Φh)

µ(ω − Φh) + hΦ

]
.

Therefore, we may rewrite (A-18) as follows:

HΦ = µ(ω − Φh) + hΦ. (A-22)

Plugging (A-22) into Φ∆ leads to

Φ∆ =
ω − Φh

∆∗H
.

Using Φω and ∆ω, (A-21) becomes:

Φω = Φ∆∆∗
ω =

1

γ

ω − Φh

ωH
=

1

γµ

(H − h)Φ

ωH
> 0.

Since Uω(ω)/U(ω) is equal to 1/(ω − Φh) in equilibrium, it must be that

Xω(ω)

X(ω)
=

h

ω − Φh
Φω =

h

ω − Φh

1

γµ

(H − h)Φ

ωH
.

Therefore, using (A-22) leads to the following differential equation in ω:

Xω(ω) =
1

γ

h

ωH
X(ω),

whose solution is

X(ω) = k
(

ω

H

) β
1−µ

, (A-23)

where k > 0 is the constant of integration. Indeed, differentiating the above equation with

respect to ω leads to

Xω(ω) =
1

(1 − µ)γ

H − ω(Hω + H∗
UUω)

H2

H

ω
X(ω).

Using (A-11), we obtain:

Xω(ω) =
1

(1 − µ)γ

(1 − µ)h

H

1

ω
X(ω) =

1

γ

h

ωH
X(ω).

Substituting (A-23) into (A-20) yields:

U(ω) =
(
ω − Φh

)
k

(
ω

H

) 1
(1−µ)γ

.
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Plugging this expression into (A-19) and rearranging terms, we obtain the following implicit

solution for the equilibrium land rent:

R∗(x) = µ(1 − µ)
1−µ

µ k− 1
µ t(x)(∆∗(x))

1
µ

[
µt(x)

R∗(x)
+

(1 − µ)h

K1/γs [∆∗(x)]γ (Y ∗)1/σ

] 1
(1−µ)µγ

. (A-24)

Since the RHS of (A-24) is strictly decreasing and tends to 0 (∞) when R(x) → ∞ (0), (A-24)

has a unique solution in R∗(x).

The lowest income in the sample, denoted by ω, is strictly positive. It follows from (21) that the

lowest location-quality index associated with the poorest household is given by

∆ =
(

KS

K∆

)−γ/γS

(Y ∗)−γ/σ (ω)1/γ > 0.

The constant k may be obtained by evaluating R∗(x) at the least enjoyable location x where

∆∗(x) reached its minimum ∆. We assume that x is unique. Furthermore, the land rent at x is

equal to the opportunity cost of land, R0. Therefore, it is readily verified that k is given by

k− 1
µ = R0µ

−1(1 − µ)− 1−µ
µ [t(x)]−1 ∆− 1

µ

[
µt(x)

R0

+
(1 − µ)h

ω

] −1
(1−µ)µγ

.

Plugging this expression into (A-24) yields the equilibrium land rent at x:

R∗(x) = R0
t(x)

t(x)

[
∆∗(x)

∆

] 1
µ




µ t(x)
R∗(x)

+ (1 − µ) h
ω∗(x)

µ t(x)
R0

+ (1 − µ) h
ω




1
(1−µ)µγ

.

Note that this expression captures several effects: the commuting costs at x and x, the location-

quality index at x and x, and the mapping ω∗(x).

A.4 The real wage under Stone-Geary preferences

With a Stone-Geary utility function, we have U = b · u(q, h)

u = (1 − µ)−(1−µ)µ−µq1−µ
(
h − h

)µ
(A-25)

and the budget constraint is given by q + Rh = ωt. The price index under Stone-Geary prefer-

ences is given by

P = Rµ ωt

ωt − Rh
.
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Proof. Inserting the equilibrium consumption of numéraire and housing in (A-25) yields the

indirect utility of consumption:

u∗ = (ωt − Rh)R−µ = ωtR−µ ωt − Rh

ωt
.

Hence, total expenditures are given by

ωt = u∗Rµ ωt

ωt − Rh

so that the price index is

P = Rµ ωt

ωt − Rh
.

Because the Stone-Geary utility function is non homogeneous, the price index P depends on

income and varies across individuals.�

Hence, the real wage is given by

ωt

P
=

ωt − Rh

Rµ
.
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Appendix B

In this appendix, we first pay attention to the construction of the various datasets. In Appendix

B.1 we elaborate on how we calculate network distances and show the relationship with Euclid-

ian distance. Appendix B.2 continues by explaining how we measure land prices and lot sizes

for all locations. This is followed in B.3 by more information on our proxies for amenities: the

picture index and the construction of the hedonic amenity index. In Appendix B.4 we introduce

the historical data based on 1900 land use maps and the 1832 Census. Appendix B.5 reports

distributions of the variables of interest.

The second part of this appendix reports various additional econometric results. In Appendix

B.6, we report bias-corrected estimates using Oster (2019)’s methodology. First-stage results

are presented in Appendix B.7. We undertake additional robustness checks in Appendix B.8.

Appendix B.9 discusses the outcomes of alternative specifications of the gravity model. In

Appendix B.10, we outline the procedure to solve for counterfactual outcomes of the model.

B.1 Commuting and travel times

To estimate the commuting time for each household, we use the tax register information, which

provides information on individual jobs and the number of hours worked in each firm for each

year. From the ABR Regio dataset, we get information on all firms which provide information

on each establishment in the Netherlands, such as its exact location, the industrial sector, and

the estimated number of employees in each establishment. To avoid miscoding and to exclude

employment agencies (where people do not actually work), we exclude firms with more than 10

thousand employees. Since we do not know the exact establishment, but only the firm, people

work for, we assume that they work at the nearest establishment of the firm. This assumption

may be problematic for firms having a large number of establishments (e.g., supermarkets or

large banks). Therefore, we keep only firms with a maximum of 15 establishments throughout

the Netherlands. As many such firms have establishments in different cities, it is reasonable to

assume that people work in the nearest establishment.14 Overall, we are left with 95% of firms.

We first calculate the commuting time from each home location x to each job location i for

each year. Then, we determine the commuting time of each household by computing the aver-

age commuting time of each adult household member weighted by the number of hours (s)he

worked. To calculate the travel time (as well as the time to travel to amenities) we obtain infor-

mation on the street network from SpinLab, which provides information on average free-flow

speeds per short road segment (the median length of a segment is 96 m), which are usually

lower than the speed limit.

14Alternatively, we could consider a distance-decay average of distances to the firm’s establishments. Instead,

we test robustness by keeping households which have only one working-member who works during the whole year

in a single-establishment firm leading to nearly identical results.
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The dataset from SpinLab provides information on actual free-flow driving speeds for every

major street in the Netherlands. The actual speeds are usually well below the free-flow driving

speeds, due to traffic lights, roundabouts and intersections. For each neighborhood we calculate

the straight-line distance to the nearest access points on the network and then calculate the

network distance. The median distance from an observation in the dataset to the nearest access

point of the network is 195 m (the average is 326 m). We assume that the average speed to get to

the nearest access points is 10 km/h. This is the speed based on the Euclidian distance; in reality

the distance to get to the network will be higher because streets are usually curved. Hence, the

assumption of 10 km/h seems reasonable as the minimum speed on roads in the network is

20 km/h. Furthermore, because of the dominance of the bicycle, this would be close to the

average cycling speed. Using these information, we calculate the total driving time, which is

the sum of the driving time to access the network, the network driving time and the time it takes

from the network to arrive at the destination. Alternatively, we calculate for each location pair

the Euclidian distance and assume again an average speed of 10 km/h.

We also calculate the travel time using the train, using a similar approach. The median distance

of each centroid to the nearest station is 5.25 km. We then choose the minimum of the travel

time over the road, using the train or taking the Euclidian travel time.

The correlation between travel time and Euclidian distance is modest (ρ = 0.643). For short dis-

tances (< 10km) the correlation is, however, much higher (ρ = 0.862). We plot the relationship

between distance and travel time in Figure 1(a). This relationship is monotonic. Figure 1(b)

shows the share of commuting people who travel at most τ minutes, which we use to calculate

employment accessibility in 1900.

(a) Distance and travel time (b) Commuting time distribution

Figure B.1: Calculation of travel time and speed
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B.2 Land prices and lot sizes

Information on land values and lot sizes is not directly available but may be inferred from data

on home sales. We use information on home sales from NVM (The Dutch Association of Re-

altors), which comprises the large majority (about 75%) of owner-occupied house transactions

between 2003 and 2017. We know the transaction price, the lot size, inside floor space size

(both in m2), the exact address, and a wide range of housing attributes such as house type, num-

ber of rooms, construction year, garden, state of maintenance, and whether a house is equipped

with central heating. We make some selections to make sure that our results are not driven by

outliers. First, we exclude transactions with prices that are above e1 million or below e25, 000

and have a price per square meter which is above e5, 000 or below e500. We also leave out

transactions that refer to properties that are larger than 250 m2 or smaller than 25 m2, or have lot

sizes above 5000 m2. These selections consist of less than 1% of the data and do not influence

our results. We follow a similar procedure as Rossi-Hansberg et al. (2010), implying that we

can only use information on residential properties with land. We are left with 1,337,445 housing

transactions.

Let P(x) denote the house price in year y, H(x̃) the observed lot size and C(x̃) the housing

characteristics of property x̃. The log of land rent R(x) is equal to the fixed effects at the level

of the postcode (about 15–20 addresses), which we denote by ς(x), while ϑ(y) denote year y

fixed effects. For each city, we estimate:

log
P(x̃, y)

H(x̃, y)
= η1C(x̃, y) + ς(x) + ϑ(y) + ǫ(x̃, y), (A-26)

where ǫ(x̃, y) is an identically and independently distributed error term that is assumed to be

uncorrelated to land rents and housing characteristics, while η1 are parameters to be estimated.

As log Rx are given by the very local fixed effects, we do not impose any structure on how

land rents Rx vary across locations. For about 80% of the data we do not observe land prices

directly, because either there were no multiple sales in our study period or because there is

no owner-occupied housing in the respective postcode. We therefore also estimate the above

equation with neighborhood fixed effects instead.

Descriptive statistics for the housing sample are reported in Table B.1. Coefficients η1 related to

the housing attributes are reported in Table B.2. It appears that the house price per square meter

of land is generally a bit lower when the property is larger. However, the house price per square

meter of land of properties that are (semi-)detached is generally higher. Furthermore, when the

maintenance state of a property is good, prices are about 502/1269 = 40% higher. When a

property has central heating, the price per square meter is about 5.1% higher. The dummies

related to the construction decades show the expected signs. Properties constructed after World

War II until 1970 generally have lower prices because this is a period associated with a lower
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Table B.1: Descriptives for NVM dataset

Mean Std. dev. Min Max

Price (in e per m2) 1,269 927.2 25 25,000

Lot size (in m2) 445.7 1,189 25 25,000

Size of property (in m2) 132.4 45.16 26 538

Number of rooms 4.944 1.363 0 25

Terraced property 0.417 0.493 0 1

Semi-detached property 0.370 0.483 0 1

Detached property 0.189 0.392 0 1

Private parking space 0.454 0.498 0 1

Garage 0.394 0.489 0 1

Garden 0.966 0.182 0 1

Number of bathrooms 0.929 0.483 0 8

Number of kitchens 0.677 0.484 0 5

Number of balconies 0.132 0.354 0 4

Number of roof terraces 0.0674 0.257 0 3

Number of floors 2.717 0.636 1 13

Internal office space 0.00444 0.0665 0 1

Maintenance score of the outside 0.758 0.131 0 1

Maintenance score of the inside 0.753 0.143 0 1

Number of types of insulation 2.381 1.831 0 5

Central heating 0.920 0.271 0 1

Listed building 0.00652 0.0805 0 1

Newly built property 0.0417 0.200 0 1

Construction year 1,967 34.95 1,362 2,017

Year of observation 2,011 4.389 2,004 2,017

Notes: The number of observations is 1,337,495. Because of confidentiality restrictions the min-

imum and maximum values refer to the 0.01% and 99.99% percentile. This implies that

we exclude the bottom and top observations.

building quality. Lot sizes are inversely related to pattern of land prices (ρ = −0.245). In other

words, more expensive locations generally have smaller lots, which makes sense.

B.3 Amenities

Hedonic amenity index. We test whether our results are robust to using an alternative hedo-

nic amenity index, rather than relying on geocoded pictures. Following (Lee and Lin, 2018),

we construct an aggregate amenity index that describes the amenity level in every neighbor-

hood x.15 We make a distinction between historic amenities and natural amenities.

Let A(x̃) be a set of variables that describe amenities of property x̃ (so the location is more

detailed than the neighborhood x). For example, we calculate the share of historic districts,

15(Albouy, 2016) uses information on wages and housing costs to infer the level of amenities for U.S. cities.

However, his approach is not applicable here because we are also interested in intra-city variation in amenities.

Using Albouy’s proxy for amenities could capture the sorting of rich households in certain locations, but this is

exactly the relationship we aim to test.
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Table B.2: Estimating land prices and lot sizes

Dependent variable: log land price per m2

Rooms -6.1664∗∗∗

(0.4506)

Terraced property 702.4875∗∗∗

(6.5087)

Semi-detached property 510.0447∗∗∗

(6.5516)

Detached property 360.7740∗∗∗

(6.7580)

Private parking space -56.3558∗∗∗

(1.9988)

Garage -42.8166∗∗∗

(2.0556)

Garden 47.5907∗∗∗

(2.8356)

Number of bathrooms 17.3274∗∗∗

(0.9885)

Number of kitchens -7.2575∗∗∗

(1.0818)

Number of balconies 47.8147∗∗∗

(1.5204)

Number of roof terraces 109.0801∗∗∗

(1.8878)

Number of floors 94.9407∗∗∗

(1.0148)

(Internal) office space -55.3454∗∗∗

(6.3595)

Maintenance score of the outside 29.5137∗∗∗

(6.3366)

Maintenance score of the inside 501.7345∗∗∗

(5.8143)

Number of types of insulation 8.3945∗∗∗

(0.3138)

Central heating 65.8404∗∗∗

(1.7719)

Listed building 27.9334∗∗∗

(6.2691)

Newly built property -13.3758∗∗∗

(4.3108)

3th-order polynomial of property size Yes

Construction decade dummies Yes

Year fixed effects Yes

Postcode fixed effects Yes

Observations 1,280,031

R2 0.8295

Notes: Standard errors in parentheses. ∗∗∗ p < 0.01.
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the number of listed buildings, water bodies and open space within 500 m of each property.

Let P(x̃, y) denote the house price, C(x̃, y) – housing characteristics at location x̃, and ϑ(y) –

year y fixed effects. We also include neighborhood fixed effects ς(x) , permitting to identify the

effects of amenities on prices within neighborhoods. We then estimate:

log P(x̃, y) = η0A(x̃) + η1C(x̃, y) + ϑ(y) + ς(x) + ǫ(x̃, y), (A-27)

where η0 and η1 are parameters to be estimated and ǫ(x̃, y) is an identically and independently

distributed error term. We then use η̂0 and A(x̃) to predict the amenity level in each location x

in the Randstad:

b̃(x) =
1

N(x)

Nx∑

x̃=1

η̂0A(x̃), (A-28)

where b̃x is the (alternative) amenity value at x and N(x) are the number of observations in

neighborhood x. Hence, we take the mean amenity value within neighborhood x.

We use data on the universe of housing transactions in the Netherlands between 2010 and 2015

from the NVM. Additional descriptive statistics of the NVM data are reported in Table B.3. We

have 695,709 observations and the average house price is e229 thousand.

In Table B.4 we report the results of the regression of equation (A-27). We first investigate the

impact of listed buildings. It can be seen that the share of historic districts leads to higher price.

A 10 percentage point increase in the share of land designated as historic district increases

prices by 1.8%. Listed buildings do have a small additional effect of 0.5% per listed building.

In column (2), we investigate the impact of water bodies and open space. For a 10 percentage

point increase in water bodies, prices rise by 3%. Moreover, a 10 percentage point increase in

open space implies a price increases of 0.6%, so this effect is considerably smaller. When we

put historic amenities and natural amenities together, the coefficients are essentially unaffected.

We consider this as the preferred specification. In the last specification we investigate whether

Table B.3: Other descriptive statistics for NVM data

Mean Std. dev. Min Max

Price of home (in e) 229,238 116,074 25,000 1,000,000

Share land in historic district <500m 0.0695 0.192 0 1

Listed buildings <500m 0.179 0.894 0 19.53

Share water bodies <500m 0.0411 0.0713 0 0.920

Share open space <500m 0.244 0.217 0 1

Shops, <500m 0.254 0.394 0 4.711

Hotels, restaurants, cafés <500m 0.159 0.364 0 7.983

Leisure establishments <500m 0.0127 0.0215 0 0.318

Notes: The number of observations is 695,709. Because of confidentiality restrictions the minimum

and maximum values refer to the 0.01% and 99.99% percentile. This implies that we exclude

the bottom and top 70 observations.
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Table B.4: Determining the hedonic amenity index

Dependent variable: log of house price per m2

OLS OLS OLS OLS

(1) (2) (3) (4)

Share land in historic district <500m 0.1796∗∗∗ 0.1710∗∗∗ 0.1695∗∗∗

(0.0210) (0.0204) (0.0209)

Listed buildings <500m 0.0047∗∗ 0.0052∗∗ -0.0043

(0.0024) (0.0024) (0.0029)

Share water bodies <500m 0.3014∗∗∗ 0.2824∗∗∗ 0.2869∗∗∗

(0.0255) (0.0253) (0.0251)

Share open space <500m 0.0604∗∗∗ 0.0636∗∗∗ 0.0690∗∗∗

(0.0084) (0.0084) (0.0085)

Shops <500m -0.0084

(0.0074)

Hotels, restaurants, cafés <500m 0.0423∗∗∗

(0.0118)

Cultural establishments <500m 0.0480

(0.0640)

Leisure establishments <500m 0.0232

(0.0730)

Housing controls Yes Yes Yes Yes

Neighborhood fixed effects Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

Number of observations 695,709 695,709 695,709 695,709

R2 0.8206 0.8207 0.8217 0.8219

Notes: Housing controls include house type, house size, whether the property has a garage, garden and/or

central heating, the number of layers of insulation, the maintenance quality, the number of rooms,

construction year dummies and whether a building is listed. Standard errors are clustered at the

neighborhood level and in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05.

the results change when we include endogenous amenities, such as shops, cafés, and leisure

establishments. This appears not to be the case. Only hotels, restaurants and cafés have a

statistically significant impact on prices, which suggests that exogenous amenities related to the

built environment and land use are more important than endogenous amenities.

Pokémon amenity index. Pokémon was a hugely popular game in 2017. The game could

be played at certain places of interest, the so-called ‘Pokéstops’.16 The locations of Pokéstops

were determined in the geolocation game by Ingress. The developers then chose some of the

first portals based on sites with historic or cultural significance, such as The Washington Mon-

ument, Big Ben, or museums. Other locations were chosen based on geotagged photos from

Google. Many more portals were submitted as suggestions by Ingress players. There were

approximately 15 million player-submitted portal locations, 5 million of which have been ap-

16Another type of locations that are used in the game are the so-called ‘Gyms’. The latter types are unfortunately

less useful, as these are almost uniformly distributed within urban areas in gardens, open spaces and public squares.
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proved. In other words, these Pokéstops are not randomly located across space and signify

locational attractiveness. We construct the Pokémon Go amenity index by using the density of

Pokéstops in a neighborhood.

B.4 Historic data

To instrument current amenity levels and commuting time, we use information on land use, the

railway network and amenities in 1900. For the 1900 land use maps, Knol et al. (2004) have

scanned and digitized maps into 50 by 50 meter grids and classified these grids into 10 cate-

gories, including built-up areas, water, sand and forest. We aggregate these 10 categories into

built-up, open space and water bodies. Knol et al. (2004) document large changes in land use

across the Netherlands from 1900 to 2000. For example, the total land used for buildings has

increased more than fivefold. On the other hand, the amount of open space has decreased by

about 10%. We also use information on municipal population in 1900 from NLGIS. Municipal-

ities were much smaller at that time and about the size of a large neighborhood nowadays. We

impute the local population distribution using the location of buildings and assuming that the

population per building is the same within each municipality. We further use information on

railway stations from Koopmans et al. (2012). We enrich these data by adding missing stations

from various sources on the internet and create a network with travel times. To approximate

the speed, we fit a regression of the length of (current) railway segments between stations on

current travel time on the railway network. Based on historic sources, it appears that the average

speed was about 50% of its current level (about 70 km/h).

We show a map of land use and the railway network for the Netherlands in 1900 in Figure B.2.

Panel (a) shows that cities like Amsterdam, Rotterdam, The Hague, and Utrecht were already

large by 1900. It can also be seen that some areas that have been reclaimed from the sea (e.g.,

to the northeast of Amsterdam) did not exist in 1900. Panel (b) of Figure B.2 shows the railway

network. In particular, places around Amsterdam and Utrecht have a high accessibility. The

first railway line in the Netherlands was opened in 1839 between Amsterdam and Haarlem,

soon followed by the opening of many other lines.

We use data composed by HISGIS, which has compiled and digitized data from the first Dutch

census in 1832. This dataset provides information on the land use of each parcel in the current

inner cities of Amsterdam, Rotterdam, Leiden, Delft, Hoorn, as well as for the province of

Utrecht, Drenthe, Groningen, Friesland, Overijssel, Gelderland, and parts of Noord-Brabant.

The HISGIS data also provide information on the cadastral income for about one-third of the

observations, which was used to determine the tax at that time and is a proxy for land values. In

Panel (a) of Figure B.3, we show that the study area is much smaller and excludes the city of The

Hague. Hence, the results using data from 1832 is only based on a subsample of the population.

We rely on municipal population data from NLGIS to calculate the accessibility in 1832. We
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(a) Built-up land (b) The railway network and accessibility

Figure B.2: Historic data from 1900

(a) Built-up land (b) The railway network and accessibility

Figure B.3: Historic data from 1832

assume that population is uniformly distributed within the municipality. Rail networks did not

exist yet, so in order to calculate the population that could be reached within commuting time,

we use information on the road network from 1821 obtained from (Levkovich et al., 2017).

Panel (b) of Figure B.3 shows the network back then.

In Table B.5, we provide descriptives for all instruments. The average share of built-up area in

1900 was 4.3%, while it was 4.2% in 1832. However, this figure is a bit misleading because for

1832 we have more data near urban areas. On average about 38 thousand jobs and 89 thousand
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Table B.5: Descriptive statistics for historic data

Mean Std. dev. Min Max

Employment accessibility in 1909 38,029 23,884 1,494 163,349

Share of high-skilled workers in 1909 0.0298 0.0285 0 0.197

Share of medium-skilled workers in 1909 0.216 0.128 0.00386 0.688

Population accessibility in 1900 89,184 62,641 3,008 422,544

Share built-up land in 1900 0.0432 0.103 0 0.930

Share water in 1900 0.0591 0.175 0 1

Share locals in 1899 0.643 0.102 0.217 0.950

Share protestants in 1899 0.518 0.337 0 0.998

Population accessibility in 1832 40,389 20,970 1,986 135,168

Cadastral income in 1832 per ha 603.6 2,235 0 61,866

Share buildings in 1832 0.00726 0.0338 0 0.412

Share built-up land in 1832 0.0416 0.0890 0 1

Share water in 1832 0.120 0.264 0 1

Notes: The number of observations is 10,213,524. For the 1832 data it is 5,556,498. Because of confi-

dentiality restrictions the minimum and maximum values refer to the 0.01% and 99.99% percentile.

This implies that we exclude the bottom and top 1,024 observations.

people could be reached within commuting distance in 1900. Not surprisingly, this was much

lower (40 thousand) in 1832.

B.5 Other descriptive statistics

In Figure B.4, we report the distributions of the log of income and the log of land price. The

distributions of land prices is somewhat positively skewed.

(a) Incomes (b) Land prices

Figure B.4: Histograms for the variables of interest

In Figure B.5, we show maps of income and land price distributions across the Netherlands. As

expected, land prices are generally higher in cities. The pattern for incomes is less clear, but

generally speaking we find that wealthier households locate close to or in cities.
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(a) Average gross income (in e) (b) Average land prices per m2 (in e)

Figure B.5

B.6 Bias-corrected estimates

Many non-experimental papers use coefficient movements after the inclusion of control vari-

ables to investigate whether the omitted variable bias is important. Oster (2019) argues that

coefficient movements alone are not a sufficient statistic to calculate the bias. Instead, she ar-

gues that whether the omitted variable bias is a concern depends on the variance of added con-

trol variables, as well as coefficient movements. In other words, changes in the coefficient(s)

of interest after adding controls should be scaled by the change in the R2. Oster (2019) then

derives an estimator to correct estimates for the omitted variable bias under the assumption that

the relationship between the variables of interest and unobservables can be recovered from the

relationship between the variables of interest and observables. In our context, this assumption

makes sense as control variables that are added bear some potential relationship to unobserv-

ables. In our case, we add many housing controls, as well as workplace fixed effects, which are

likely to have at least some correlation to unobservables.

Oster (2019) then derives a GMM estimator to derive bias-corrected estimates of the impact

of amenities and employment accessibility on incomes. There are two key input parameters

that have to be determined. First, there is the maximum R2 from a hypothetical regression

of income on amenities, accessibility and controls, which we denote as R̄. Given that our

variables are neighborhood-specific, rather than household-specific variables, R̄ is likely to be

much smaller than 1. Second, one needs to choose a parameter that determines the relative

degree of selection on observed and unobserved variables, which we denote by ̟. Although

this parameter is fundamentally unknown, Altonji et al. (2005) and Oster (2019) show that
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Table B.6: Bias corrected estimates

R̄2 = 1.000, ̟ = 1.000 R̄2 = 0.357, ̟ = 1.000
+ Controls + Workplace + Controls + Workplace

fixed effects fixed effects

GMM GMM GMM GMM GMM GMM

(1) (2) (3) (4) (5) (6)

log Pictures per ha 0.2735∗∗∗ 0.5509∗∗∗ 0.2105∗∗∗ 0.0326∗∗∗ 0.0345∗∗∗ 0.0239∗∗∗

(0.0495) (0.0802) (0.0162) (0.0017) (0.0011) (0.0009)

log Employment accessibility 0.1900∗∗∗ 0.1900∗∗∗ 0.0778∗∗∗ 0.2377∗∗∗ 0.1044∗∗∗ 0.0936∗∗∗

(0.0647) (0.0647) (0.0285) (0.0154) (0.0054) (0.0045)

Household controls Yes Yes Yes Yes Yes Yes

Housing and job controls No Yes Yes No Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes

Workplace fixed effects No No Yes No No Yes

R̄ 1.000 1.000 1.000 0.357 0.357 0.357

̟ 1.000 1.000 1.000 1.000 1.000 1.000

Number of observations 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540 10,213,540

Notes: Household controls include household size, mean age of adults, mean gender, household type (couple, single, kids), the

share of the household that is foreign-born. Job controls are the total hours worked, whether the household has a company

car, the share of full-time contracts, the share of permanent contracts. Housing controls include house type, height of the

building, construction year dummies and whether a building is listed. Standard errors are bootstrapped (250 replications) and

in parentheses; ∗∗∗ p < 0.01.

̟ = 1 is a reasonable (upper-bound) value. Oster (2019) then shows that

α∗
1 ≈ α̂1 − ̟ [α̊1 − α̃1]

R̄2 − R̂2

R̂2 − R̊2
1

and α∗
2 ≈ α̂2 − ̟ [α̊2 − α̂2]

R̄2 − R̂2

R̂2 − R̊2
2

, (A-29)

where α̂1 and α̂2 are parameter estimates obtained from a regression with controls (say house-

hold, job and housing controls, as well as workplace fixed effects), and R̂2 is the corresponding

R2. α̊1 and α̊2 are parameter estimates obtained from a regression without controls and R̊2
1

and R̊2
2 are the corresponding R2s. Hence, this equation provides a simple way to evaluate the

robustness of the results. We report bootstrapped bias-corrected estimates of the coefficients of

interest in Table B.6, where we replicate the first three specifications reported in Table 3.

In columns (1)-(3) of Table B.6, we naively assume that in theory we can fully explain variation

in wages, so that R̄ = 1. Given this assumption, we find in column (1) – where we only

include household controls and year fixed effects – that the effect of amenities is about 10

times as strong, and the effect of employment accessibility is about twice as strong, as in the

corresponding OLS specification. The effect of amenities becomes even stronger once we add

housing and job controls in column (2), and is again comparable to column (1) once we add

workplace fixed effects. This may lead to the conclusion that the OLS estimates are not robust

and subject to an omitted variable bias. However, the assumption that R̄ = 1 is likely to be
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wrong because the dependent variable is a variable measured at the micro-level (the household),

while amenities and employment accessibility are measured at the neighborhood level. Hence,

the maximum attainable R̄ when omitted variables are important is likely substantially lower.

To determine R̄ we therefore run a regression of income on household, job and housing controls,

as well as residence, workplace and year fixed effects. This leads to an R2 of 0.357, which is

considerably smaller than 1. Moreover, it is around the value of R̄ = 1.3R̂2, which is supported

by experimental data (Oster, 2019).

Columns (4)-(6) then show that the effect of amenities and employment accessibility are very

similar to the OLS estimates. In our preferred specification, we find an elasticity of 0.0239,

which is close to 0.0166 found in the OLS specifications. For employment accessibility, we find

an elasticity of 0.0936, which is essentially the same as 0.0881 reported in the corresponding

OLS specification.

In other words, these results strongly suggest that the omitted variable bias is not a major issue.

Having said this, Oster (2019)’s methodology does not account for measurement error in ameni-

ties or employment accessibility or reverse causality. It is therefore still important to apply our

instrumental variables strategy.

B.7 First-stage results

We report first-stage estimates in Table B.7. In column (1), we use contemporary instruments

for amenities. We show that current proxies for amenities are strongly positively correlated to

picture density. For example, when the number of listed buildings per hectare increases by 1,

picture density increases by 12.7%. Also, the share of a neighborhood designated as historic

district is positively correlated to the picture density. Furthermore, we find positive correlations

with the share of built-up land and water bodies located in the neighborhood. Hence, picture

density seems a meaningful proxy for amenities.

In column (2), we use historic instruments. This means that we use the share of built-up land in

1900 and the share of water in 1900 as instruments for picture density. We find strong positive

effects of the share of built-up land in 1900 on picture density. This effect is about twice as

strong as the share of contemporary built-up land, likely because the share of built-up land in

1900 is positively correlated to the current intensity of historic amenities.

Column (3) also includes the instruments for employment accessibility: the share of built-up

land in 1900 within 500 m, the share of built-up land in 1900 between 500 m and 1000 m and,

most importantly, employment accessibility. This leaves the effects of the share of built-up land

in 1900 in the own neighborhood almost unaffected.

In column (4), we take employment accessibility as dependent variable. The instruments for
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Table B.7: First-stage regression results

Dependent variable: Dependent variable:

log Pictures per ha log Employment

accessibility

OLS OLS OLS OLS

(1) (2) (3) (4)

Listed buildings per ha 0.1269∗∗∗

(0.0346)

Share historic district 2.2677∗∗∗

(0.1894)

Share built-up land 2.4775∗∗∗

(0.0847)

Share water 2.5560∗∗∗

(0.3015)

Share built-up land in 1900 5.4119∗∗∗ 4.4326∗∗∗ -0.2133∗∗∗

(0.2521) (0.2908) (0.0400)

Share water in 1900 0.6163∗∗∗ 0.6727∗∗∗ 0.0211

(0.1520) (0.1525) (0.0253)

Share built-up land in 1900, 0-500m 0.2646 0.0612

(1.1085) (0.1824)

Share built-up land in 1900, 500-1000m 5.8759∗∗∗ 0.3781∗∗

(1.3125) (0.1928)

log Employment accessibility 0.3448∗∗∗ 0.7939∗∗∗

(0.0420) (0.0443)

log Employment accessibility in 1909 0.3150∗∗∗ 0.4204∗∗∗

(0.0458) (0.0112)

Household controls Yes Yes Yes Yes

Housing and job controls Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes

Workplace fixed effects Yes Yes Yes Yes

Observations 10,213,524 10,213,524 10,213,524 10,236,308

R2 0.6046 0.5036 0.4989 0.7875

Notes: Household controls include household size, mean age of adults, mean gender, household type (couple, single,

kids), the share of the household that is foreign-born. Job controls are the total hours worked, whether the

household has a company car, the share of full-time contracts, the share of permanent contracts. Housing controls

include house type, height of the building, construction year dummies and whether a building is listed. Standard

errors are clustered at the neighborhood level and in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05.

accessibility are relevant. We find a strong positive effect of the share of built-up land in 1900

between 500 m and 1000 m on accessibility, which makes sense. Also, employment accessibil-

ity in 1909 has a strong positive effect on current employment accessibility. More specifically,

doubling employment accessibility in 1909 is associated with an increase in current employ-

ment accessibility of 29%.

B.8 Sensitivity checks for the reduced-form income mapping

Identification revisited. We consider additional robustness analyses in Table B.8 that should

increase confidence in the validity of our identification strategy. First, we show that our results

are similar once we focus solely on urban areas. In column (1), we only include observations in
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the Randstad, i.e. the main polycentric metropolitan area in the Netherlands. This reduces the

total number of observations by more than 50%. However, our results are similar, in particular

for amenities. For employment accessibility, we find that the coefficient is somewhat stronger,

which may be due to traffic congestion in some parts of the Randstad (e.g., around Amsterdam

and Rotterdam), which would imply that the commuting time elasticity is underestimated. In

column (2), we exclusively focus on observations close to city centers. That is, we only include

locations within 15 km of the center of an urban area with at least 100,000 inhabitants. The

coefficients are very similar, but for employment accessibility it becomes somewhat imprecise.

In column (3), we go back further in time and use instruments from 1832. This reduces the

number of observations considerably because the 1832 data are not available for whole of the

Netherlands. The Kleibergen-Paap F-statistic in column (3) is lower, which is not too surprising,

as going back further in time implies that correlations between instruments and endogenous

variables become less strong. We find an effect for accessibility that is about twice as strong

as when using instruments from 1900. In column (4), we use the information on the cadastral

income, a proxy for the land value in 1832. This information is missing in two thirds of the

cases, so our number of observations drops further to about 1.8 million observations. Again, we

find that the effect of amenities is very much comparable to the baseline specification. The effect

of commuting time is even somewhat stronger. Interestingly, the effect of cadastral income is

negative. A 10% decrease in the cadastral income in 1832 attracts households whose incomes

are 0.03% higher, meaning that the effect is small. This is in line with anecdotal evidence

that amenities in the past are essentially uncorrelated, or even negatively correlated, to current

amenities.

In column (5) of Table B.8, we estimate specifications where we again use instruments from

1900, but control for the current share of built-up areas and population density to make sure

that our amenity proxy is not just capturing population density or built-up land. We find very

similar effects for amenities and accessibility.

One may be more worried that the concentrations of high-income households are autocorre-

lated, so that our instruments are correlated to the concentrations of high-income households in

1909. To investigate whether this is an issue, we calculate the share of medium and high-skilled

households in 1909. Municipalities then were much smaller, so this is a rather fine-grained

measure of skill sorting across space. We also gather data on the share of Protestants in each

municipality in 1899 and control for population accessibility in 1900. Including these measures

does not impact our coefficients at all. Note that locations of high-skilled and medium-skilled

households in 1909 are correlated to the locations of lower incomes nowadays, which suggests

that the determinants of residential choices in the two periods are fairly different. This also

confirms the negative association of Cadastral Incomes in 1832 to current incomes. Also, con-

ditional on employment accessibility, population accessibility in 1900 is negatively correlated
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Table B.8: Baseline reduced-form regression results

Dependent variable: log household gross income

Only City center 1832 Control for 1909 Other Only obs.

Randstad <15km instruments current land use skills instrument on reclaimed land

2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9)

log Pictures per ha 0.0382∗∗∗ 0.0374∗∗∗ 0.0375∗∗∗ 0.0491∗∗∗ 0.0494∗∗∗ 0.0483∗∗∗ 0.0501∗∗∗ 0.0221∗∗ 0.0201

(0.0048) (0.0046) (0.0048) (0.0061) (0.0050) (0.0053) (0.0044) (0.0101) (0.0153)

log Employment accessibility 0.1544∗∗∗ 0.1647∗∗∗ 0.1134∗∗∗ 0.1503∗∗∗ 0.0597∗∗∗ 0.1081∗∗∗ 0.2170∗∗∗ 0.0413 0.0453

(0.0323) (0.0501) (0.0160) (0.0319) (0.0100) (0.0352) (0.0645) (0.0362) (0.1039)

log Cadastral income in 1832 per ha -0.0050∗∗

(0.0023)

Share built-up land -0.0936∗∗∗

(0.0138)

log Population per ha -0.0074∗∗

(0.0033)

log Population accessibility in 1900 -0.0264∗ -0.0681∗∗∗

(0.0150) (0.0249)

Share of medium-skilled workers in 1909 -0.1630∗∗∗ -0.1860∗∗∗

(0.0211) (0.0248)

Share of high-skilled workers in 1909 -0.1378 -0.1645

(0.1081) (0.1053)

Share protestants in 1899 -0.0169∗∗∗ -0.0133∗

(0.0061) (0.0072)

Household controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Housing and job controls Yes Yes Yes Yes Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Workplace fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Number of observations 4,340,639 6,023,886 5,549,488 1,782,784 10,213,325 9,778,046 9,778,046 270,106 270,106

Kleibergen-Paap F-statistic 70.51 34.43 22.73 33.87 61.92 21.16 15.79 9.468 0.804

Notes: Bold indicates instrumented variables. Household controls include household size, mean age of adults, mean gender, household type (couple, single, kids), the share of the household

that is foreign-born. Job controls are the total hours worked, whether the household has a company car, the share of full-time contracts, the share of permanent contracts. Housing

controls include house type, height of the building, construction year dummies and whether a building is listed. Standard errors are clustered at the neighborhood level and in

parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.
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to current incomes. In column (7), we further study the sensitivity of our results by choosing

another instrument for accessibility. We use the share of the population in 1909 born in the

same municipality. If the mobility of households is correlated over time, the share of locally

born people should be negatively correlated to current accessibility, as the areas that host a high

number of jobs (so have a better accessibility) are expected to attract workers from other places.

Indeed, we find that the share of locally born people in 1909 is negatively associated with cur-

rent employment accessibility. The Kleibergen-Paap F-statistic again indicates that these are

strong instruments. We find a similar coefficient related to employment accessibility.

If one is still worried that household income sorting is autocorrelated, in column (8) we only

include neighborhoods on reclaimed land. The Netherlands is well known for its large-scale

projects that reclaim land from the sea. We consider the three main projects (Wieringermeer,

Noordoostpolder, Oostelijk, and Zuidelijk Flevoland) implemented between 1930 and 1968,

but permission by the government to reclaim those areas was already given in 1930. Most of

the land was intended for agriculture, but a few small settlements were planned on the newly

reclaimed land. Moreover, Lelystad was planned to be the largest city, but nowadays Almere is

by far the largest city in the area. In other words, the plans differ considerably from the current

spatial economic distribution. Since only a small share of the population lives in those areas,

we only keep about 2.5% of the observations.

We then instrument for amenities with the share of planned built-up and green areas in column

(8). We observe that the impact of amenities is slightly lower, but, given the standard error, the

effect is not statistically significantly different from that of the baseline estimate. The coefficient

of employment accessibility is very similar to the baseline estimate, albeit imprecise. When

we also instrument for employment accessibility with the planned accessibility in column (9),

the point estimates are again similar, but we now have weak instruments leading to imprecise

coefficients. In sum, we address reverse causality as no one was living in those locations at that

time, and thus income was zero.

Other sensitivity checks. Table B.9 reports the results of additional robustness checks. Our

dataset contains observations on households. When calculating the commuting elasticity and

when including workplace fixed effects, we focus on the job that generates the most working

hours. This may be problematic when more people are employed in the household and work

in different locations. In column (1), we therefore only include households that are associated

with one job. This does not lead to material differences in outcomes. When calculating the

commuting time, we calculate the commuting time to the nearest plant of a firm, if it has mul-

tiple establishments. We test whether this introduces error by only including households that

are associated with one job in a single plant firm in column (2). In this way we address any

measurement error in commuting time. Again, the estimates are very similar.
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Table B.9: Sensitivity analysis for reduced form regressions

One job + Single Company Education Commuting

households plant firm car level by rail

2SLS 2SLS 2SLS 2SLS 2SLS

(1) (2) (3) (4) (5)

log Pictures per ha 0.0401∗∗∗ 0.0367∗∗∗ 0.0325∗∗∗ 0.0540∗∗∗ 0.0382∗∗∗

(0.0038) (0.0038) (0.0040) (0.0032) (0.0039)

log Employment accessibility 0.0551∗∗∗ 0.0455∗∗∗ 0.0708∗∗∗ 0.0333∗∗∗ 0.0269∗∗∗

(0.0111) (0.0134) (0.0112) (0.0099) (0.0062)

Household controls Yes Yes Yes Yes Yes

Housing and job controls Yes Yes Yes Yes Yes

Year fixed effects Yes Yes Yes Yes Yes

Workplace fixed effects Yes Yes Yes Yes Yes

Number of observations 6,706,524 3,532,906 1,523,567 7,626,355 10,213,524

Kleibergen-Paap F-statistic 85.60 88.36 77.53 82.87 80.51

Notes: Bold indicates instrumented variables. Household controls include household size, mean age of

adults, mean gender, household type (couple, single, kids), the share of the household that is foreign-

born. Job controls are the total hours worked, whether the household has a company car, the share

of full-time contracts, the share of permanent contracts. Housing controls include house type, height

of the building, construction year dummies and whether a building is listed. Standard errors are

clustered at the neighborhood level and in parentheses. ∗∗∗ p < 0.01.

Our measures of commuting time rely on the minimum of travel time on the road and rail.

However, in almost all cases travel time over the road is shorter. To make sure that households

actually consider this travel time, we only keep households having a company car in column

(3). This does not materially change the results. Column (4) replaces the dependent variable

income by the share of adults in the household that have a college degree or more. We find very

similar effects. For example, when the picture density doubles this increases the share of highly

educated households by 3.3 percentage points. Conversely, doubling commuting time decreases

the share of highly educated households by 20.3 percentage points. Column (5) tests whether

the results are robust when using commuting time by rail instead of commuting time over the

road or rail. The results are comparable. Overall, the impact of amenities and commuting time

on income sorting choice is robust.

B.9 The gravity model

In Table B.10 we report the results for the travel time elasticity. In column (1), we only include

location pairs that are within 60 minutes drive from each other. Thus, we drop 77% of the

data and we are left with 3.8 million residence-workplace pairs (note that many of these pairs

have zero commuters, meaning that more than 90% of the commutes are within 60 minutes).

The estimated elasticity is -0.732, thus implying that doubling the commuting time reduces the

probability that someone commutes between x and i by about 50%. In column (2), we address
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Table B.10: Regression results of gravity model

Dependent variable: the number of commuters

Baseline Control Flows based Travel time Flow

Poisson function on two jobs by train >25

Poisson Poisson-CF Poisson-CF Poisson-CF Poisson-CF

(1) (2) (3) (4) (5)

Commuting time elasticity, κ̂ -0.7318∗∗∗ -0.5485∗∗∗ -0.5703∗∗∗ -0.3393∗∗∗ -0.5215∗∗∗

(0.0139) (0.0122) (0.0111) (0.0080) (0.0086)

First-stage error -0.2378∗∗∗ -0.2079∗∗∗ 0.3402∗∗∗ 0.4154∗∗∗

(0.0653) (0.0475) (0.0217) (0.0207)

Residence location fixed effects Yes Yes Yes Yes Yes

Workplace location fixed effects Yes Yes Yes Yes Yes

Number of area pairs 3,904,262 3,904,262 3,904,262 3,904,262 66,147

Notes: We use commuting flows between neighborhoods based on the job that generates the most working hours. In

columns (2)-(5) we use as instrument the euclidian distance between two neighbourhoods as instrument. In col-

umn (3) we derive the commuting flow based on the two jobs that generate the most working hours in the household.

Standard errors are bootstrapped (250 replications) and in parentheses; ∗∗∗ p < 0.01.

the potential endogeneity of travel times. That is, locations that attract many commuters may

invite transport investments, thus leading to lower travel times. We instrument travel times with

the Euclidian distance. Unsurprisingly, this is a very strong instrument. We do include the

first-stage residual in the second stage as a control function. As one may observe, the first-stage

residual is highly statistically significant, strongly suggesting that endogeneity is an issue. The

travel time elasticity is now somewhat lower (-0.549), in line with the expectation that reverse

causality would lead to an overestimate. Given that endogeneity is quite important, we consider

this specification as the preferred one.

In previous specifications we focus on commuting flows based on the job that generates the

most hours in the household. In column (3), as a sensitivity check, we consider the two jobs that

generate the most hours (if applicable). This hardly impacts the results. Column (4) investigates

what happens if we use the railway travel time instead of travel time over the road. We show

that this leads to similar estimates, although the elasticity is somewhat smaller. Rather than

making a selection on maximum commuting time, we can also select locations with a sufficient

number of commutes. In column (5), we include location pairs that have at least 25 commuters,

covering about 60% of the commutes. This leads to very similar results.
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B.10 Counterfactual analysis

We outline the procedure for the counterfactual analysis discussed in Section 6.

1. The first step is to determine the location-specific scale parameters Ki and productivity

endowments Ai. We set νkxi = 1 and use the estimated Ω̃i and Ωi to obtain

Ki = eΩ̃i−ε̂Ωi Ai = e
σ

σ−1
Ωi/L̂δ̂

i .

2. We build the values for commuting times τxi, exogenous amenities b̃x and productivity

endowments Ai. If values do not vary for the specific scenario under consideration, we

take the values from the data. Moreover, we set the starting values for Li equal to the

estimated value from the data and the initial value for the parameters γ̂, γ̂∆, K∆, KS to

the values obtained in the structural estimation. We treat the parameters κ̂, ε̂, µ̂, β̂, and δ̂

as given and obtain them from the structural estimation results.

3. We calculate labor productivity txi =
[
AiL

δ̂
i τ

−κ̂
xi

](σ−1)/σ
for each location pair (xi), as

well as the accessibility ãx =
n∑

i=1
t̃xi =

n∑
i=1

Kit
ε̂
xi of location i.

4. We calculate the location-quality indices:

∆x = (b̃x)β̂

[
Γ

(
ε̂ − 1

ε̂

)
(ãx)

1
ε̂

]1−µ̂

.

5. We fit a Fréchet distribution to ∆x to obtain the adjusted values of the shape parameter

γ̂∆. Since the aggregate skill distribution is given, it must be that γ̂ = γ̂∆/γ̂S .

6. We determine the skill mapping sx =
[
(KS/K∆)1/γ̂S (∆x)γ̂

]σ/(σ−1)
and re-adjust K∆ for

the geometric mean of sx to remain equal to 1. Hence, KS , γ̂S and the geometric mean

should not change in the counterfactual.

7. We calculate total counterfactual labor supply in each employment location i. We have:

Li =
N∑

x=1

t̃xi∑I
j=1 t̃xj

f(ŝx).

where

f(ŝx) =
σ − 1

σ
K̂S γ̂Se−K̂S(ŝx)−γ̂S(σ−1)/σ

(sx)−[γ̂S(σ−1)+σ]/σ ,

is the skill density. Since Li is an input to Step 3, we repeat steps (3)-(7) until Li con-

verges, which is usually within 10 iterations.
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8. We now have all the information to solve for the total output in the city:

Y =




n∑

i=1

N∑

x=1

Ki [ti(x)]ε̂

∑n
j=1 Kj [tj(x))]ε̂

txi (ŝx)
σ−1

σ f(ŝx)




σ
(σ−1)

.

9. We also determine the income mapping ωxtxi =
(
KS/K̂∆

)1/γ̂S
(∆x)γ̂ (Y )1/σ (txi), which

enables us to determine the land rent at each location x:

Rx = R0
tx

tx

(
∆x

∆x

) 1
µ




µ̂ tx

Rx
+ (1 − µ̂) h

ωx

µ̂
tx

R0
+ (1 − µ̂) h

ωx




1
(1−µ̂)µ̂γ̂

,

where x is the location where the poorest household (with the lowest ωx) lives, while R0

is the agricultural land rent. We do not have good data on agricultural land prices. In any

case, these will be not very useful as agricultural land prices in the Netherlands are highly

regulated. We therefore set R0 equal to the 5th percentile value of the observed land rents

in our data. We use a standard Newton-Raphson procedure to determine the solution Rx.

10. We find the consumption level of the composite good qx = (1 − µ̂)(ωxtx − Rxh) and the

housing consumption hx = (1−µ̂)h+µ̂ωxtx/Rx, which is identified up to a multiplication

constant, so that the utility level is given by ux = (qx)1−µ̂ (hx − h)µ̂. This enables us to

determine the aggregate land rent and the aggregate real income:

ALR =
N∑

x=1

hxRx, and ARI =
N∑

x=1

1

hx

ωxtx − Rxh

(Rx)µ̂
.

where 1/hx is the density of households in neighborhood x while, as shown in Appendix

A.4, the individual real income is equal to
(
ωxtx − Rxh

)
(Rx)−µ̂.
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