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Spatially Smoothed Crop Yield Density Estimation:
Physical Distance versus Climate Similarity

Eunchun Park, B. Wade Brorsen, and Ardian Harri

Many crop insurance studies have pointed out that considering spatial yield similarity can help
provide more precise premium rating. We use Bayesian Kriging for spatial smoothing to consider
such similarities when estimating crop yield densities. This article’s innovation is that the spatial
smoothing is based on climate space, which is composed of climatological measures. We compare
the climate-space smoothing with a general physical space (longitude–latitude space) smoothing.
The test results are favorable to the proposed climate-smoothing method. Climate smoothing
performs particularly well in states that have many missing counties and varied climate due to
varying topography.

Key words: Bayesian hierarchical structure, Bayesian Kriging, Bayesian spatial smoothing, corn,
crop insurance, rainfall, spatial dependence, temperature

Introduction

Crop yield densities are spatially similar due to nearby locations having similar soil and weather.
As previous literature (Annan et al., 2014; Du et al., 2015; Goodwin and Hungerford, 2015; Ker,
Tolhurst, and Liu, 2016; Park, Brorsen, and Harri, 2019) has found, considering data from nearby
locations when estimating crop yield densities could help provide more accurate crop insurance
premium rates and thus reduce adverse selection. Since U.S. crop insurance is subsidized, more
accurate densities can also reduce the political problem of some locations receiving more subsidies
than others.

Several statistical methods have been used to include spatial similarity when estimating crop
yield density. Goodwin and Ker (1998) use pooled observations from surrounding counties. Ozaki,
Goodwin, and Shirota (2008) use a spatial weighting matrix and impose uniform weights on
parameter estimates from surrounding counties with no weight on other counties. Ozaki and Silva
(2009) also impose weights of 0 beyond surrounding counties. Current area-based crop insurance
programs are rated with a model suggested by Harri et al. (2011). To reflect the spatial structure, their
model imposes a district level restriction on county level parameters. Studies based on Bayesian
model averaging (BMA) estimate a conditional yield density for a target county and then use
Bayesian averaging of its own conditional density and densities from other counties (Ker, Tolhurst,
and Liu, 2016; Ker and Liu, 2017; Liu and Ker, 2020). Zhang (2017) shrinks an individual county’s
density toward the density of a pooled model, which is similar to the applications of BMA in that
it does not use a measure of distance. Park, Brorsen, and Harri (2019) suggest Bayesian Kriging as
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a method for spatial smoothing. They produce spatially smoothed density parameter estimates that
vary smoothly over longitude–latitude space (i.e., physical space).

These past methods measured distance by contiguity or physical distance or—in the case of
BMA—did not consider distance at all. We extend previous literature by using climatological
coordinates, which is a climate space, to measure distance. Climate space potentially offers greater
precision when physical distance is not a good measure of climate similarity and when there
are many locations with inadequate data. We follow Park, Brorsen, and Harri (2019) by using
the Bayesian Kriging method for spatial smoothing. The climate space uses temperature and
precipitation as coordinates rather than latitude and longitude. We use two climate data sources
as well as various climatological measures to define two- and three-dimensional climate spaces. Our
focus is on how the distribution of crop yield varies over different types of spaces (physical and
climate spaces). We compare the ability of the approaches to provide premiums that give the same
expected relative payout across space using out-of-sample tests.

We choose corn as a crop for evaluating the ability of our approach to produce accurately rated
crop insurance premiums. We use annual county-level yield data from the U.S. Department of
Agriculture National Agricultural Statistics Service (NASS) for Iowa, Illinois, Nebraska, Minnesota,
Indiana, and Colorado. Colorado was chosen because of its unique topography and climate, while
the others were chosen to represent major corn-producing states. Climate-space smoothing should
offer little advantage where climate varies gradually across space, but it should be more accurate than
using physical distance in Colorado, Nebraska, or other states with multiple geographical features
or many missing counties.

Bayesian Kriging

Bayesian Kriging for spatial smoothing is a geostatistical spatial interpolation method used in a
broad variety of disciplines. The method assumes that the similarity of probability density functions
smoothly decreases with the distance between locations.

Overview of the Bayesian Hierarchical Structure

Our Kriging method has a Bayesian hierarchical structure. With a Bayesian hierarchical model,
the Bayesian modeling structure is written in multiple levels (i.e., hierarchies). In a Bayesian
hierarchical framework, a prior distribution of the general Bayesian model can be structured as
additional prior parameters, called hyperpriors.

We consider two specifications of the process layer: a general Gaussian spatial process (GP)
and an autoregressive with Gaussian spatial process (AR).1 GP only considers a spatial structure,
whereas AR has both spatial and temporal structure (spatio-temporal). The Bayesian hierarchical
structure has three layers: likelihood layer, process layer, and prior layer. In the likelihood layer,
the crop yield distribution for each county is a normal distribution in which the random effects are
taken as given. The process layer contains the distribution of the spatial random effects as well
as deterministic mean effects. The spatial smoothing is in the process layer. The third layer of the
hierarchy consists of the priors. This hierarchy is

YYY |µµµ,ΘΘΘ∼ p1 (YYY |µµµ,ΘΘΘ) ;

µµµ|ΘΘΘ∼ p2 (µµµ|ΘΘΘ) ;(1)

ΘΘΘ∼ p3 (ΘΘΘ) ;

1 The Gaussian spatial process is a stochastic process in which any finite subcollection of random variables (i.e., mean
parameters of any set of counties) is multivariate normally distributed. The covariance of those random variables between any
two locations (i.e., covariance between µi and µ j) is determined by a Euclidean distance between two locations and spatial
covariance matrix Σ.
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where p1, p2, and p3 are the densities associated with each layer of the hierarchy, likelihood layer,
process layer, and prior layer; YYY is a matrix of crop yield observations that spans all counties
(n = 1, . . . ,N) and all years (t = 1, . . . ,T ); µµµ is a matrix (or vector for GP model) of random
parameters; and ΘΘΘ is a vector of hyperparameters, where ΘΘΘ =

[
β1, . . . ,βK ,ω,θ ,ρ,σ2

]′. By Bayes’
theorem, the joint posterior distribution is proportional to the multiplication of the three layers:

(2) p(µµµ,ΘΘΘ|YYY ) ∝ p1 (YYY |µµµ,ΘΘΘ) p2 (µµµ|ΘΘΘ) p3 (ΘΘΘ) .

Likelihood Layer

A likelihood function of the crop yield distribution forms the first layer of the model. Let yit be
the crop yield of county i at year t, where i = 1, . . . ,N and t = 1, . . . ,T . We assume that yit is
decomposed as yit = µit + εit , where µit is a county-specific mean of the county i at year t, and εit is
an independently identically distributed error εit ∼ n

(
0,σ2

)
. Both GP and AR assume normality of

crop yield distributions. The likelihood layer is

(3) p1 (YYY |µµµ,ΘΘΘ) =
T

∏
t=1

1√
2πσ2

exp
(yyyt − µµµ t)

′(yyyt − µµµ t)

2σ2 ,

where yyyt denotes a vector of crop yield at year t that spans all counties, yyyt = [y1t , . . . ,yNt ]
′, and

YYY = [yyy1, . . . ,yyyT ]; µµµ t is a column of µµµ so µµµ t = [µ1t , . . . ,µNt ]
′
; and ΘΘΘ is a vector of hyperparameters,

ΘΘΘ =
[
β1, . . . ,βK ,ω,θ ,ρ,σ2

]′.
Process Layer

The second layer provides the spatial processes. The spatial correlation is in the mean for each
location and not in the error term. The GP has spatial random effects. The AR has spatial
random effects and deterministic temporal effects. Since we assume a Gaussian spatial process,
the distributions are multivariate normal.2 The spatial dependency is measured from a spatial weight
matrix that depends on the Kriging parameters.

The autoregressive model with a Gaussian spatial process (AR) model is

µµµ t = ωµµµ t−1 + ψψψ t + ηηη ,

ψψψ t = XXX tβββ ,
(4)

ηηη ∼MV GP(000,Σ) ,

Σ =


w11 . . . w1N

...
. . .

...
wN1 . . . wNN

 ,
where µµµ t is a vector of mean parameters for counties at year t, µµµ t = [µ1t , . . . ,µNt ]

′; ψψψ t is a
deterministic part of the mean structure at year t (linear trend for example); XXX t is a N × K matrix of
explanatory variables at year t; XXX t = [xxxt1, . . . ,xxxtK ]; βββ is a K × 1 vector of coefficients of explanatory
variables, βββ = [β1, . . . ,βK ]

′
;ηηη is the time-independent Gaussian spatial process term that generates

spatial smoothing, ηηη = [η1, . . . ,ηN ]
′, that is assumed to follow an exponential type spatial weight

matrix Σ, where Σi j = ρe−Di j/θ , which is a function of distance, Di j, between counties i and j on the

2 Under the Bayesian framework, the vector of a stochastic part of mean parameters across the locations ηηη is a vector of
random variables. When the random vector ηηη = (η1, . . .ηN)

T follows a Gaussian spatial process, the mean parameters of the
counties η1, . . .ηN are jointly normally distributed.
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corresponding spaces (physical and climate), sill parameter ρ , and range parameter θ . The parameter
of the first-order autoregressive process ω is assumed to be in the interval−1 < ω < 1. When ω = 0,
AR is the same as the GP model. Maximum likelihood methods typically integrate out the random
effects, ηηη , but the Bayesian approach estimates a distribution for them that is spatially correlated
and thus the mean varies across space.

Then the process layer densities for the AR model can be specified as

(5) p2 (µµµ t |ΘΘΘ) =
1√

(2π)N |Σ|
exp
[
−1

2
(
µµµ t − ωµµµ t−1 − ψψψ t

)′
Σ
−1 (

µµµ t − ωµµµ t−1 − ψψψ t
)]

,

where ψψψ t is a vector of the deterministic part of the mean process at time t defined by equation (4)
and ΘΘΘ =

[
β1, . . . ,βK ,θ ,ρ,σ

2
]′ is a vector of parameters; ΣΣΣ is spatial covariance matrix, where

Σi j = ρe−Di j/θ . Since we are in the Bayesian framework, the parameters are treated as random
variables. We impose independent priors for the hyperparameters (β1, . . . ,βK ,θ , ρ , σ2) in the
following prior layer. As explained by Park, Brorsen, and Harri (2019), the GP process is defined
similarly, except ω = 0.

Prior Layer

The third layer of the hierarchy has the priors for the parameters ΘΘΘ, which are coefficients for
explanatory variables, Kriging parameters, and the variance parameter in the process layer. Since
the model assumes the parameters in the prior layer are independent, multiplying the individual
priors gives the joint density for the prior layer. For convenience, we group hyperparameters into
three different types depending on their role in the process layer: coefficient, variance, and Kriging
parameters. First, all coefficient parameters β1, . . . ,βk are given N

(
0,104) priors. For the variance

parameter σ2, we impose general inverse gamma priors IG(0.1,0.1) as Ozaki, Goodwin, and Shirota
(2008) did. However, imposing priors for the Kriging parameters (ρ,θ ), which describe the spatial
structure of the Gaussian spatial process, is more problematic. The Bayesian statistics literature
(Berger, De Oliveira, and Sansó, 2001; Banerjee, Carlin, and Gelfand, 2004; Cooley, Nychka,
and Naveau, 2007) regarding consistency of proper priors for the Kriging parameters argues that
improper priors for such parameters may induce improper posteriors. Some statistics literature
(Banerjee, Carlin, and Gelfand, 2004; Sahu, Gelfand, and Holland, 2010; Cooley, Nychka, and
Naveau, 2007) suggests an empirical Bayes method where the Kriging priors are estimated from
the data to give proper priors. We use the empirical information to find the priors of the Kriging
parameters. We first estimate the mean parameter of each county using maximum likelihood. Then,
using the estimated MLE parameters for each county, we fit the empirical variogram.3 The empirical
variogram is used to specify an inverse gamma prior for the sill parameter ρ since the value of the
sill parameter determines the maximum of the variogram.

The next step is to find the prior distributions for the range parameter θ that determines the
maximum distance of the spatial effect. We use empirical distance information to impose the prior
of the range parameter. Two parameters of the gamma prior for the range parameter θ are imposed
based on the previous empirical distance information and maximum likelihood estimation.

With the priors as above, the third layer in equation (2) can be expressed as

(6) p3 (ΘΘΘ) = p(β1) · · · p(βk) p(ω) p(ρ) p(θ) p
(
σ

2) .
3 We use the empirical variogram to impose proper priors for the sill parameter ρ . For MLE estimates of mean parameter

µ̂i for county location i = 1, . . . ,N, the empirical variogram is

γ̂
(
Di j
)
=

1
2M ∑

(i, j)∈M

(
µ̂i − µ̂ j

)2
,

where M is the number of all possible pairs of counties, Di j is Euclidean distance between two counties i and j, and µ̂i and
µ̂ j are MLE estimates of the mean parameter of county i and j, respectively.
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Joint Posterior Distribution

We now have densities for each hierarchy, p1 (YYY |µµµ t ,ΘΘΘ), p2 (µµµ t |ΘΘΘ), and p3 (ΘΘΘ) from the previous
sections. The joint posterior distribution is obtained by multiplying these three layers. The logarithm
of the joint posterior distributions of the AR is

log p(µµµ,ΘΘΘ|YYY ) ∝− NT
2

logσ
2 − 1

2σ2

T

∑
t=1

(yyyt − µµµ t)
′(yyyt − µµµ t)−

∑
T
t=1 log |Σ|

2
(7)

− 1
2
(
µµµ t − ωµµµ t−1 − ψψψ t

)′
Σ
−1 (

µµµ t − ωµµµ t−1 − ψψψ t
)
+ log(p3 (ΘΘΘ)) .

Data and Methods

Our study uses county-level yearly corn yield data from NASS. The data contain 1955–2014 annual
yields (bushels per acre) for Iowa, Illinois, Nebraska, Minnesota, and Indiana and 1963–2009 annual
yields for Colorado. Counties with missing observations are discarded. Therefore, the final dataset
includes 99 counties for Iowa, 77 for Illinois and Nebraska, 68 for Minnesota, 75 for Indiana, and
18 counties for Colorado.

The states of Iowa, Illinois, and Nebraska have been the first, second and third largest corn
producers in the United States. In 2015, Iowa produced around 2.5 billion bushels, Illinois produced
2.01 billion bushels, and Nebraska produced 1.7 billion bushels (U.S. Department of Agriculture,
2016). Minnesota and Indiana are the fourth and fifth largest corn-producing states. Colorado is the
14th largest corn producer in the United States. Colorado is included because it has more varying
climatic conditions than the other states, such as mountainous terrain, vast plains, desert canyons,
and mesas. We expect such climate diversity in Nebraska as well, which comprises two main parts
of the geographical regions, from the till plains of the lowland (eastern part of the state) to the Great
Plains (center of the state).

A coordinate of physical space consists of longitude and latitude of each county; thus, the spatial
smoothing from physical space uses distance between the locations on the physical space (i.e.,
physical distance). The physical distance is calculated using SpTimer with the option geodetic:km,
which gives the great circle distance. On the other hand, a coordinate of each point in climate space
is given by its climatological quantities. Our climate-space smoothing uses the Euclidean distance
between the locations on the climate space. Both the coordinates of the physical and the climate
space are standardized to avoid the scale issue arising from the different units of the dimensions.

Several empirical studies have tried to determine the relationship between climate factors and
crop yields. Schlenker and Roberts (2009) estimate the impact of climate change on agricultural
output using panel data. They find that temperature above a threshold level has a negative impact on
crop yields since it increases heat exposure and water stress. They use temperature and precipitation
as the main climate variables for their research. Other, related studies (Hendricks and Peterson,
2012; Lobell et al., 2013; Dell, Jones, and Olken, 2014) employ temperature and precipitation
as explanatory variables. In accordance with the previous literature, we choose temperature and
precipitation at each location as the climate coordinates.

We use two data sources. Climate space I uses the Global Historical Climatology Network
Database (GHCND) under the National Oceanic and Atmospheric Administration (NOAA), which
has 18 meteorological variables. We use the average number of days in months (July and August)
with maximum temperature greater than or equal to 90◦F (Max Temperature Days) and average
precipitation (mm) for the months from May to August (Mean Precipitation) from 1955 to 2014
as the climate coordinates. We standardize the coordinates to get equally weighted smoothing from
the Max Temperature Days and Mean Precipitation. We average the climate quantities for counties
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with multiple weather stations. Counties with no weather stations (five counties in the dataset) are
discarded.

The other data for climate space comes from the Agro-Climatic Data by County (ACDC),
designed by Yun and Gramig (2019). Their data provide county-level growing degree days for
1◦C intervals between −60 to +60◦C and total precipitation for the growing season from 1981 to
2015. The climate variables are estimated using PRISM weather data. A noticeable advantage of the
dataset is that all variables are calculated at the county level and include only data for land being
used for agricultural uses based on the USGS NLCD (U.S. Geological Survey National Land Cover
Database) Land Use and Land Cover (LULC) data.

Corn yields are often modeled as being reduced when temperatures are above a threshold,
commonly suggested in agronomy studies to be 86◦F (McMaster, 1997). Schlenker and Roberts
(2009) assumed the temperature and precipitation effects on corn yields are cumulative over the
growing season (March to August). Following Schlenker and Roberts, we use the temperature
threshold and the growing season to define the climate variables. From the data source, we calculate
the growing degree days for 32◦F to 86◦F (i.e., 0◦C to 30◦C) from March to August (Medium
Temperature), the growing degree days above 86◦F (i.e., 30◦C) from March to August (High
Temperature), and the total precipitation from March to August (Total Precipitation) and use them
as the climate coordinates. We then create two- (Medium Temperature and Total Precipitation)
and three- (Medium Temperature, High Temperature, and Total Precipitation) dimensional climate
coordinates by using the standardized climate factors and define them as climate space II and III,
respectively.

In climate space, counties with similar climate features are weighted more, even when they
are physically distant. Since Colorado has diverse geographical features, we expect that county
locations in Colorado on the two different spaces are substantially different. Figure 1 translates
county locations in Colorado from physical space (longitude/latitude) to climate space II (Medium
Temperature and Total Precipitation). The county locations in the physical and climate spaces tend to
be clustered differently. For instance, Pueblo and Otero Counties are neighbors in physical space but
distant in climate space. Also, Cheyenne County is adjacent to Kit Carson County, but the climate
in Kit Carson County is more similar to that in Logan County than that in Cheyenne County. In
contrast to Colorado, counties in corn-belt states such as Iowa or Illinois that are close in climate
space are also close in physical space.

To highlight the difference between Colorado and Iowa, we calculate Pearson correlations
between the distances from the types of space. Since our dataset includes 99 counties for Iowa and
18 counties for Colorado, there are 4,851 and 153 possible pairs of distances among the counties for
each state, respectively. We first obtain the distances from each type of space (physical and climate).
We then calculate the Pearson correlation coefficient between the two types of distance. Aligning
with our expectation for the two states, the correlations between two types of distances are 0.51 in
Iowa and 0.23 in Colorado.

Posterior Predictive Distribution

As suggested by Ozaki, Goodwin, and Shirota (2008), we compute premium rates from posterior
predictive values. The posterior predictive distribution p(yyy∗|YYY ) is obtained by integrating over the
parameters with respect to the joint posterior distributions. The posterior predictive distribution
can be used to estimate densities of counties with insufficient historical observations (i.e., missing
observation) or even no observations.

The prediction quality of the model is evaluated by calculating the predictive model choice
criteria (PMCC) suggested by Gelfand (1998):

(8) PMCC =
T

∑
t=1

E
[
(yyy∗t − yyyt)

′ (yyy∗t − yyyt)
]
+ var (yyy∗t ) ,
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Figure 1. Translation of Counties of Colorado in Physical Space to Climate Space II

where yyy∗t denotes a vector of predicted yield level from p(yyy∗|YYY ) at year t and yyyt is a vector of actual
yields at year t. The first term of the PMCC represents the goodness of fit of the model, and the
second term represents a penalty for model complexity. We calculate each state’s PMCC using the
predictions from 1985–2014. Several specifications for GP and AR models are tested as potential
candidates for the empirical analysis. A model with lower PMCC is chosen as the preferred model.
We test specifications for the process layer structure with a moving average of historical yields
(tested for different lengths from the last 5 years to 10 years), simple linear trend, and quadratic
linear trend. Among these alternatives, the AR model including 5 years of moving average and
simple linear trend minimizes PMCC in all states in our dataset and thus is selected as our main
model.

Computer Algorithm

Several R packages provide Markov chain Monte Carlo (MCMC) algorithms for Bayesian Kriging
estimation. While our estimation cannot be completely done with any existing R package, we rely
heavily on three existing packages: spTimer, spBayes, and SpatialExtremes. These packages are
used to estimate posterior distributions, posterior predictive distributions, and PMCC of the models.
All models are fit using a Metropolis–Hastings (MH) algorithm within Gibbs sampling algorithm.
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We run 20,000 iterations for MCMC chains and burn in the first 5,000 observations. We check for
all parameters the graphical diagnostics of convergence using trace plots and autocorrelation plots.
All posterior densities achieve fast convergence with no substantial autocorrelation.

Results

Table 1 presents the averages and standard deviations of the posterior parameter values for four
states in the dataset. (The results of Minnesota and Indiana are presented in Table S1 in the Online
Supplement.) The slopes are similar across states for the GP model. The slopes of the time trends
(β2) differ across states for the AR models. Table 1 shows significant temporal correlations (ω) in
Nebraska and Colorado (i.e., above 0.34 for Nebraska and 0.56 for Colorado in all models). This
significant level of ω makes the trend parameter estimates β2 in both Nebraska and Colorado far
smaller than that in Iowa and Illinois.4

Out-of-Sample Performance

Providing actuarially sound premiums is a goal of the Risk Management Agency (RMA). Crop
producers are less likely to purchase insurance contracts when premiums are overrated (Coble et al.,
1996). Likewise, underrated premiums may induce insurance losses to agencies through adverse
selection (Coble, Dismukes, and Glauber, 2007). The premium rate of crop insurance represents
expected payouts as a proportion of total liability:

(9) premi =
P(yi < λ ŷi)(λ ŷi − E[(yi|yi < λ ŷi)])

λ ŷi
,

where λ is the coverage level, 0 < λ < 1, ŷi is an expected crop yield at county i, the function P()
denotes probability, and the function E() denotes expectation.

We calculate the 90% coverage premium rates from the posterior predictive distributions
(p(yyy∗|YYY )) and equation (9). The expected yield ŷi in county i is the posterior mean of the predictive
distribution for each county. Table 2 presents each state’s average and standard deviation premium
rates for all counties from 2000 to 2014 except Colorado (1994–2008 in Colorado). Consistent with
our expectation, Colorado shows a notable difference in average premium rates between using the
physical space and the climate space. Also, Colorado shows the most significant regional disparity
when using the physical-space smoothing, but the disparity dramatically reduces when using the
climate-space smoothing.

Figure 2 illustrates absolute differences between estimated premiums of Iowa and Colorado
from the different types of spaces. We use the climate space II (Medium Temperature and
Total Precipitation) premiums for comparison. The Iowa premium estimates show no substantial
difference (all differences are below 0.6%), which reflects the fact that Iowa has similar spatial
structure with both climate and physical distance. In contrast to Iowa, premiums in Colorado show
meaningful spatial differences. Specifically, premiums in eastern-region counties (Cheyenne and
Kit Carson) and northern-region counties (Adam and Larimer) increase when using climate-space
smoothing. The differences in eastern region are 1.58% in Cheyenne and 1.42% in Kit Carson
County. In the northern region, the differences are 1.21% in Adams County and 0.98% in Larimer
County.

We use a loss ratio under the corresponding crop insurance program as a tool to evaluate out-of-
sample performance of the models based on the two types of smoothing space:

(10) lossratioi =
∑

T
t=1 max [λ ŷit − yit ,0]

∑
T
t=1 premit ŷit

,

4 Restricting both β1 and ω to 0 gives even more similar trend parameter estimates for all states in the dataset.
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Table 1. Average Posterior Parameter Values from Selected States
Physical Climate I Climate II Climate III

State/Parameter GP AR GP AR GP AR GP AR
Iowa

β1 1.04 0.94 1.01 1.02 1.05 0.94 1.05 0.94
(0.04) (0.03) (0.02) (0.03) (0.03) (0.03) (0.04) (0.04)

β2 1.91 1.72 1.76 1.78 1.91 1.72 1.76 1.78
(0.01) (0.03) (0.02) (0.02) (0.01) (0.03) (0.02) (0.02)

ω – 0.10 – 0.10 – 0.10 – 0.10
(0.00) (0.00) (0.00) (0.00)

ρ 18.64 18.55 21.16 25.31 18.67 18.54 18.58 18.55
(6.70) (6.54) (4.12) (4.19) (5.25) (6.54) (6.63) (6.54)

θ 19.02 19.89 21.83 22.43 19.02 19.89 19.02 19.89
(2.65) (4.47) (3.65) (3.11) (4.28) (4.47) (4.28) (4.47)

Illinois
β1 1.03 1.01 1.02 1.01 1.04 0.94 1.01 1.02

(0.03) (0.03) (0.02) (0.02) (0.04) (0.03) (0.02) (0.03)
β2 1.72 1.71 1.72 1.72 1.91 1.72 1.76 1.78

(0.02) (0.03) (0.02) (0.02) (0.01) (0.03) (0.02) (0.02)
ω – 0.02 – 0.02 – 0.10 – 0.10

(0.00) (0.00) (0.00) (0.00)
ρ 18.95 18.29 22.18 23.23 20.24 20.25 20.26 20.26

(3.95) (3.99) (5.22) (5.23) (8.74) (6.54) (8.75) (8.79)
θ 19.38 19.22 24.13 24.15 18.98 20.14 18.97 20.14

(3.26) (3.15) (4.82) (5.11) (4.18) (4.48) (4.23) (4.48)
Nebraska

β1 0.78 0.63 0.99 0.63 0.99 0.65 0.99 0.66
(0.03) (0.03) (0.02) (0.03) (0.02) (0.02) (0.02) (0.02)

β2 2.07 1.34 2.13 1.34 2.17 1.41 2.17 1.42
(0.02) (0.02) (0.02) (0.02) (0.02) (0.04) (0.02) (0.04)

ω – 0.37 – 0.36 – 0.34 – 0.34
(0.01) (0.02) (0.01) (0.01)

ρ 21.15 21.32 30.17 31.17 17.92 16.81 17.92 16.81
(5.51) (5.52) (5.23) (5.19) (7.24) (6.46) (7.25) (6.47)

θ 15.12 14.21 20.69 20.66 19.09 19.97 19.09 19.97
(1.11) (1.12) (2.18) (2.26) (4.41) (4.45) (4.41) (4.52)

Colorado
β1 0.3 0.14 0.3 0.15 1.07 0.43 1.07 0.43

(0.02) (0.02) (0.02) (0.02) (0.01) (0.13) (0.14) (0.13)
β2 1.83 0.74 1.81 0.74 1.97 0.65 1.97 0.65

(0.05) (0.01) (0.04) (0.01) (0.01) (0.02) (0.10) (0.15)
ω – 0.56 – 0.58 – 0.63 – 0.63

(0.01) (0.01) (0.06) (0.06)
ρ 33.55 35.01 49.89 49.24 17.41 13.42 17.43 13.45

(7.42) (7.44) (5.22) (5.99) (4.12) (4.62) (3.34) (4.47)
θ 12.13 12.12 19.13 19.12 18.83 20.04 18.83 20.04

(1.00) (1.00) (3.65) (3.61) (3.15) (4.41) (4.33) (4.41)

Notes: GP and AR represent a general Gaussian spatial process and autoregressive Gaussian spatial process models, respectively. Numbers in
parentheses are standard deviations. The symbols β1, β2, and ω are coefficients for the moving average, trend, and first-order autocorrelation
parameters, and ρ and θ are sill and range parameters that indicate magnitude and distance of the spatial dependence. Climate I is a
two-dimensional space (Mean Precipitation and Max Temperature Days). Climate II is a two-dimensional space (Total Precipitation and
Medium Temperature). Climate III is a three-dimensional space (Total Precipitation, Medium Temperature, and High Temperature).
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Table 2. Average of 90% Coverage Premium Rates across Counties (%)
Physical Climate I Climate II Climate III

State GP AR GP AR GP AR GP AR
Iowa 1.38 1.39 1.57 1.73 1.59 1.39 1.68 1.39

(0.51) (0.52) (0.32) (0.36) (0.23) (0.28) (0.25) (0.28)

Illinois 1.52 1.54 1.54 1.52 1.47 1.59 1.48 1.50
(0.40) (0.42) (0.42) (0.47) (0.38) (0.38) (0.38) (0.39)

Nebraska 1.38 1.27 1.28 1.38 1.27 1.29 1.27 1.30
(0.42) (0.43) (0.52) (0.52) (0.48) (0.37) (0.43) (0.34)

Minnesota 1.59 1.57 1.63 1.59 1.37 1.36 1.38 1.37
(0.57) (0.58) (0.47) (0.47) (0.43) (0.43) (0.43) (0.43)

Indiana 1.65 1.69 1.64 1.65 1.25 1.24 1.25 1.23
(0.42) (0.43) (0.38) (0.39) (0.23) (0.23) (0.23) (0.23)

Colorado 1.48 1.62 2.41 1.68 2.4 1.95 2.41 1.93
(0.67) (0.97) (0.44) (0.82) (0.19) (0.37) (0.16) (0.36)

Notes: GP and AR represent a general Gaussian spatial process and an autoregressive Gaussian spatial process models, respectively. Numbers
in parentheses are standard deviations. Climate I is a two-dimensional space (Mean Precipitation and Max Temperature Days). Climate II is a
two-dimensional space (Total Precipitation and Medium Temperature). Climate III is a three-dimensional space (Total Precipitation, Medium
Temperature, and High Temperature).

Figure 2. Absolute Differences (%) of Two Types of Spatial Smoothing Premiums in Iowa and
Colorado
Notes: Blank (white-colored) counties in Colorado had insufficient yield history and were discarded from the analysis..
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Table 3. Estimated Loss Ratio under the Physical Space and the Climate Space
State/Smoothing Space Physical Climate I Climate II Climate III
Iowa

Median 1.11 1.01 0.87 0.89
Std. dev. 1.25 1.41 0.96 0.89
1st quartile 0.56 0.36 0.29 0.32
3rd quartile 2.03 2.43 1.38 1.21

Illinois
Median 1.98 1.96 1.59 1.58
Std. dev. 1.07 1.04 0.83 0.95
1st quartile 1.29 1.26 0.8 0.81
3rd quartile 2.88 2.92 2.17 2.23

Nebraska
Median 2.34 1.97 0.48 0.49
Std. dev. 5.99 4.31 1.42 1.41
1st quartile 0.35 0.55 0.00 0.00
3rd quartile 4.51 3.24 1.43 1.43

Minnesota
Median 0.37 0.22 0.48 0.47
Std. dev. 1.17 0.44 1.14 0.89
1st quartile 0.00 0.03 0.00 0.00
3rd quartile 1.26 0.75 1.44 1.19

Indiana
Median 2.90 2.25 2.25 2.25
Std. dev. 1.79 1.63 1.52 1.53
1st quartile 1.61 1.20 1.40 1.39
3rd quartile 4.33 4.15 3.80 3.80

Colorado
Median 3.70 2.08 1.8 1.80
Std. dev. 3.62 3.96 2.78 2.91
1st quartile 1.96 1.34 1.14 1.01
3rd quartile 7.44 7.35 5.68 6.64

Notes: GP and AR represent a general Gaussian spatial process and an autoregressive Gaussian spatial process models, respectively. Climate I
is a two-dimensional space (Mean Precipitation and Max Temperature Days). Climate II is a two-dimensional space (Total Precipitation and
Medium Temperature). Climate III is a three-dimensional space (Total Precipitation, Medium Temperature, and High Temperature). An
actuarially fair loss ratio is equal to 1.

where λ is coverage level, ŷit is predicted yield of county i at year t, yit is actual yield, and premit is
the premium rate, obtained from equation (9).

The premium gains and indemnity losses from equation (10) are obtained using actual yields
and premium estimates from 2000 to 2014 except for Colorado (1994–2008 in Colorado). Since
calculated loss ratios are bounded at 0 and have outliers that could distort the robustness of measures,
we report median, standard deviation, and first/third empirical quantiles of the loss ratio measures
across counties for the six states in Table 3. The loss ratio of fairly rated crop insurance should equal
1. Thus, a model with a median loss ratio close to 1 and with a small standard deviation and narrow
inter-quartile ranges across counties might be a preferred model.
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Figure 3. Loss Ratios from the Physical Smoothing and the Climate Smoothing in Colorado
Notes: The loss ratio is calculated as total indemnity divided by total premium. The loss ratio should be one under the actuarially fair insurance
product.

The median loss ratios calculated from the climate-space smoothing tend to be closer to 1 than
the loss ratios from the physical-space smoothing in every state in our dataset. Our results also show
that all types of climate space have a smaller variation of loss ratio across counties. The standard
deviation of the loss ratio falls from 3.62 to 2.78 in Colorado and from 5.99 to 1.41 in Nebraska.

Figure 3 plots county-level loss ratios from the physical space and climate space II in Colorado.
The loss ratios become closer to 1 when using climate-space smoothing for the counties with high
loss ratios under physical smoothing, such as Adam, Cheyenne, Delta, and Kit Carson Counties. Our
results demonstrate that climate-space smoothing more pertinently describes the spatial structure of
the crop yield density compared to physical-space smoothing, especially for a state like Colorado,
where the climate is diverse. Based on the results above, however, whether the climate smoothing
statistically outperforms the physical smoothing is not definitive since the empirical evidence from
those criteria of the median and the standard deviation from our dataset would not guarantee its
statistical significance.

In this regard, we conduct two different premium rating tests. One is based on a state average
loss ratio across counties for each year, and the other is based on a county-level loss ratio across
years. For the first test (Test I), each state has 15 observations of year specific state average loss
ratios across counties. On the other hand, with the second test (Test II), each state has N county-
specific loss ratios calculated over 15 years, where N is the number of counties of each state. We
choose climate space II (Medium Temperature and Total Precipitation) as the primary comparison
model since it provides premiums with more accuracy and less regional inequalities than other types
of smoothing space in terms of the loss ratio calculation.5

Test I evaluates out-of-sample performance by simulating a premium rating game between a
representative private insurance company and the federal government agency. The representative
insurance company is assumed to choose whether to retain or cede policies under the Standard

5 The three-dimensional smoothing space, which is climate space III (Medium Temperature, High Temperature, and Total
Precipitation), also provides almost identical premiums with climate space II. However, we choose climate space II as our
primary model due to its simplicity. The Pearson correlation coefficient between Euclidean distances calculated from climate
space II and III is 0.96.
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Reinsurance Agreement (Harri et al., 2011; Ker, Tolhurst, and Liu, 2016; Park, Brorsen, and Harri,
2019). The out-of-sample simulation is generated over the 15 years from 2000 to 2014 (1994–
2008 in Colorado). We employ the index I suggested by Ker, Tolhurst, and Liu (2016) to reflect
an advantage of the private insurance company that can make decisions after identifying premiums
proposed by the federal agency. The index I can be defined as

(11) I =
LRC

Cede/LRC
Retain

LRP
Cede/LRP

Retain
,

where LRC
Cede and LRC

Retain are the ceded/retained loss ratios that the private insurance company
make decisions based on the premiums from the climate smoothing against the physical smoothing
premiums, and LRP

Cede and LRP
Retain are the loss ratios that the private insurane company selects their

cede/retain decisions based on the premiums from the physical smoothing against the premiums
from the climate smoothing. The index I represents the relative accuracy of the two methods. If
I > 1, then the climate-smoothing method outperforms the physical smoothing method, and vice
versa.

We conduct a statistical test under the null hypothesis that premiums from the two types of
smoothing methods are identically accurate. We first calculate the county-level index I over 15 years
and obtain a state average I for each year. We then define a random variable, I∗, that indicates the
number of I greater than 1 in the 15 years for each state. The random variable I∗ follows a binomial
distribution, where I∗ ∼ binomial(0.5,15).

The second type of premium rating test (Test II) more directly evaluates the performance of the
models. We define an index Di such that

(12) Di =

∣∣LRC
i − 1

∣∣∣∣LRP
i − 1

∣∣ ,
where

∣∣LRC
i − 1

∣∣ and
∣∣LRP

i − 1
∣∣ are absolute deviations of county i’s loss ratio from 1 under the

climate/physical spatial smoothing. The index Di indicates a relative accuracy of two methods. If
Di < 1, then the climate-smoothing method provides more fairly rated premiums at county i than
that of the physical smoothing method, and vice versa.

Like Test I, the null hypothesis of Test II is that premiums from the two types of smoothing
methods are identically accurate. We calculate each state’s county-level index Di over 15 years.
Therefore, each state has N number of Di, where N is the number of counties. We next define a
random variable, D∗, that represents the number of counties in each state in which Di < 1. The
random variable D∗ follows a binomial distribution, where D∗ ∼ binomial(0.5,N).

Tables 4 and 5 present the estimated p-values from the two tests. A low p-value suggests
that the climate-smoothing premiums are more accurate, whereas a large p-value corresponds to
the physical-smoothing premiums being more accurate. Based on results from Test I (Table 4),
climate-space smoothing is significantly (p-value < 0.1) better than physical-space smoothing in all
state/coverage combinations, except Iowa at the 90% coverage level.

Test II results (Table 5) are generally favorable to the climate-smoothing method in all state-
coverage combinations (p-value < 0.5), except Illinois at the 70% coverage level; 2 cases out of
12 state/coverage combinations are statistically significant (p-value < 0.01). Both test results favor
density smoothing based on climate similarity rather than on physical closeness.

Conclusion

Providing accurate premiums for insurance contracts is a key responsibility of RMA. Bayesian
Kriging with spatial distance is more accurate than the current RMA model and as good as
alternatives such as BMA (Park, Brorsen, and Harri, 2019). Our results show that Bayesian
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Table 4. Out-of-Sample Rating Game Results with Test I (climate smoothing vs. physical
smoothing)

State

70% Coverage
p-Value

(no. of years, I∗)

90% Coverage
p-Value

(no. of years, I∗)
Iowa 0.0592 0.1509

(10) (9)

Illinois 0.0592 0.0175
(10) (11)

Nebraska 0.0037 0.0037
(12) (12)

Minnesota 0.0005 0.0037
(13) (12)

Indiana 0.0176 0.0176
(11) (11)

Colorado 0.0000 0.0004
(14) (13)

Notes: A p-value smaller than 0.5 corresponds to the climate smoothing dominates the physical smoothing, and vice versa. The random
variable I∗ follows a binomial distribution.

Table 5. Out-of-Sample Rating Game Results with Test II (climate smoothing vs. physical
smoothing)

State
No. of

Counties (N)

70% Coverage
p-Value

(no. of years, D∗)

90% Coverage
p-Value

(no. of years, D∗)
Iowa 99 0.3439 0.1574

(51) (54)

Illinois 82 0.7094 0.4561
(38.00) (41)

Nebraska 77 0.2472 0.1272
(41.00) (43)

Minnesota 57 0.3957 0.2135
(29) (31)

Indiana 60 0.4487 0.0002
(30) (43)

Colorado 18 0.0000 0.1189
(15) (11)

Notes: A p-value smaller than 0.5 corresponds to the climate smoothing dominates the physical smoothing, and vice versa. The random
variable D∗ follows a binomial distribution, where D∗ ∼ binomial(0.5,N), where N is the number of counties in each state.
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Kriging model with climate-space smoothing provides more accurate crop insurance premiums than
Bayesian Kriging with physical distance. The advantages are largest for Nebraska and Colorado,
where there is more geographic diversity and numerous counties with missing data.

There are only a few examples of Bayesian Kriging models in the agricultural economics
literature, and this article is the first to use climate-space smoothing. Future research could consider
additional measures of similarity such as soil type and slope of agricultural land.

The Kriging method could be adopted in any research area that involves spatial dependence.
A prominent extension of the model, for example, would be for precision agriculture. Today the
availability of accurate and abundant yield monitoring data allows the development of a crop yield
response model in which parameters are smoothed by site-specific agrological characteristics (e.g.,
soil type, water). This application could provide better site-specific variable rate application (VRA)
fertilizer prescriptions.

A great strength of Kriging is that it can estimate densities for counties with no or limited
historical yield data. In this regard, the method suggests a useful way to produce density measures
for counties with no yield reported. The Kriging method for climate-space smoothing proposed here
clearly has the potential to offer significant efficiency gains in crop yield density estimation, where
historical observations are limited and under varying climate conditions.

Because we are focusing on introducing and comparing the performance of the climate-space
smoothing method compared to the physical distance smoothing, our model treats crop yield density
in a simple manner using the normality assumption. The normality assumption simplifies the MCMC
structure so that a trend variable is easily included, which is something that Park, Brorsen, and Harri
(2019) had to consider using a two-step method. While it may require developing techniques that are
not yet available in the statistics literature, future research should attempt to relax this distributional
assumption.

[First submitted March 2019; accepted for publication March 2020.]
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Table S1. Average Posterior Parameter Values from Selected States
Physical Climate I Climate II Climate III

State/Parameter GP AR GP AR GP AR GP AR
Indiana

β1 1.03 1.12 1.01 1.11 1.03 1.12 1.04 1.12
(0.04) (0.04) (0.02) (0.04) (0.01) (0.03) (0.01) (0.04)

β2 1.68 1.82 1.65 1.83 1.67 1.81 1.68 1.82
(0.02) (0.03) (0.03) (0.05) (0.04) (0.03) (0.02) (0.03)

ω – −0.09 – −0.04 – −0.08 – −0.09
(0.02) (0.01) (0.00) (0.00)

ρ 17.19 18.41 19.82 18.40 18.34 18.40 18.46 18.40
(3.12) (2.79) (2.18) (2.83) (2.84) (2.83) (2.85) (2.83)

θ 18.96 20.12 19.49 21.11 18.94 20.11 18.95 20.12
(4.42) (4.31) (4.37) (5.32) (4.37) (4.31) (4.38) (4.31)

Minnesota
β1 0.99 0.90 0.98 0.91 0.99 0.90 1.00 0.89

(0.02) (0.03) (0.01) (0.05) (0.02) (0.03) (0.02) (0.03)

β2 2.08 1.87 2.12 1.88 2.08 1.87 2.09 1.87
(0.02) (0.04) (0.03) (0.03) (0.02) (0.04) (0.02) (0.04)

ω – 0.10 – 0.09 – 0.10 – 0.10
(0.02) (0.03) (0.02) (0.02)

ρ 19.05 20.03 18.25 20.18 19.05 20.03 19.03 20.08
(4.47) (4.62) (4.12) (4.31) (4.48) (4.62) (4.41) (4.60)

θ 16.93 16.84 16.81 16.87 16.93 16.84 16.87 16.84
(2.63) (2.63) (2.61) (2.61) (2.55) (2.15) (2.43) (2.64)

Notes: GP and AR represent a general Gaussian spatial process and autoregressive Gaussian spatial process models. The numbers in
parentheses are standard deviations. β1, β2, and ω are the moving average, trend, and first-order autocorrelation parameters, and ρ and θ are
sill and range parameters that indicate magnitude and distance of the spatial dependence. Climate I is a two-dimensional space (Mean
Precipitation and Max Temperature Days). Climate II is a two-dimensional space (Total Precipitation and Medium Temperature). Climate III
is a three-dimensional space (Total Precipitation, Medium Temperature, and High Temperature).

[Received March 2019; final revision received March 2020.]
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