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Introduction

This paper presents a method whereby linear programming can be
utilized to implement safety first decision rules with a discrete and
finite population or sample. The method utilizes a stochastic inequality
constructed with a lower partial moment. Should only a sample be
available a statistical estimator of the lower partial moment is utilized
which can be shown to be both unbiased and strongly convergent. A brief
discussion of safety first and expected utility theory is followed by a

presentation of the model with an empirical example.

Safety First and Expected Utility

Real world decisions must often be made in a setting of uncertainty
when the outcomes of decisions are realized in future periods. Decision
processes in such settings continue to stimulate considerable research
efforts on the part of decision theorists and research economists.
Several approaches to decision making are discussed in the literature.
Included are expected utility theory, safety first, satisficing and game
theory. In agricultural economics perhaps the most developed and
accepted of the approaches is that of expected utility maximization. A
rich literature field has developed dealing with the axiomatic
foundations of utility theory, utility elicitation, stochastic dominance
applications and other aspects of utility theory.l/

Expected utility theory has not been the only decision method
discussed in the literature nor has it been free of criticism. The
French school of utility, founded in the early 1950's by Allais and
others, argues that expected utility maximization is not consistent with

many observed behavioral phenomenon. They argue that the higher moments

of utility (especially the second and third) are as important as mean
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utility in decision making. Expected utility maximization in this case

- might give relatively good approximations of behavior should the choices
considered be in a sufficiently small subset of all possible choices.
Methods to so constrain the feasible set of actions are not immediately
apparent. A possible method might be to eliminate from consideration all
distributions where the probability of failing to achieve some critical
goal of the firm exceeds some threshold level. This concept is similar
to certain safety first concepts discussed in following sections.

Several alternative approaches have been proposed. Included among
these is the concept which has commonly been termed safety-first
behavior, Safety-first behavior can be defined as behnv%or wvhich is
impacted or constrained by the probability of failing to achieve certain
goals of the firm. This probability can be denoted as Pr(x ¢ g) ¢ A with
g a goal of the firm and A an acceptable limit on this probability.
Various models of safety-first behavior have been discussed in the
literature including those of Roy. Telser, Kataoka, and various chance
constrained models. Roumasset presented a lexicographic system of safety
first decision criteria for subsistence farmers in the Philippines.

While these models have been proposed and discussed since the
1950's, they have not gained widespread popularity among researchers,
perhaps due to the common acceptance of expected utility theory. Many
tend to feel that safety—-first behavior is of questionable theoretical
content or can be approximated by expected untility theory. Pyle and
Turnovsky demonstrated that, with distributions uniquely defined by mean
and variance (such as the normal), safety first solutions could also be
obtained with properly specified expected utility models if borroving and
lending were excluded. If borrowing or risk free lending was allowed,

the results were not consistent with expected utility. The methods
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utilized by Pyle and Turnovsky are applicable should the decision maker
desire to select a portfolio from a set of investments with a
multivariate normal distribution. Should the set of investments be non-
normally distributed and dependent, then implementing safety-first models
is much more difficult. In many cases, constructing probability
statements over a large set of possible linear combinations of non
normal, dependent random variables will be exceedingly difficult. As
safety first models require probability information on these linear
combinations, the ability to practically implement safety first models
has been quite limited. One method which has been utilized is to use
stochastic inequalities such as Chebychev’s to generate sharp upper
bounds on the probaﬁility. Chebychev’'s inequality is

Pellx - ul < ko) £ (1/K)%

The inequality places a sharp opper bound of (llk)2 on the probability of
the random variable x falling more than k standard errors from the mean.
Such upper bounds tend to be quite conservative. This paper presents an
alternative method to implement safety first models should the decision
maker face a discrete and finite set of possible state vectors. The
method presented utilizes linear programming. A linear constraint
guarantees that the probability concerns of the safety first model are
satisfied. The linear constraint is constructed by utilizing a lower
partial moment stochastic inequality.

Lower partial moments are intimately related to stochastic
dominance. Stochastic dominance concepts are attractive in that a
partial ordering of distributions is often possible for individuals whose
utility functions satisfy certain conditions. These conditions can be

quite broad in which cese stochastic dominance tests may eliminate only a
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small proportion of all possible outcomes. Imposing additional
conditions on the utility function allow further reductions in the
undominated set of possible outcomes. Commonly known forms of stochastic
dominance include first order (F.S.D.), second order (S.5.D.) and third
order stochastic dominance (T.S5.D.). These forms will not be redefined
here but will be referred to in the following sections. Other forms of
stochastic dominance have been defined and have proven useful. Meyer's
stochastic dominance with respect to a function allows the elimination of
dominated distributions for all individuals whose risk aversion
characteristics lie within certain bounds (see Meyer, King and Robison).

Porter first demonstrated the relationship between target
semivariance and second order stochastic dominance. Target semivariance
is defined as

(1) 03" = __[f(t - x)* f(x) dx )
Solutions which are mean-target semivariance efficient were shown by
Porter to be members of the S.S.D. efficient set. Target semivariance is
a special case of a lower partial moment (L.P.M.). Fishburn presented a
general form of the lower partial moment which is defined as follows

(2) pla,t) = __fY(t - )% £(x) dx
Fishburn showed that models which examined mean—lower partial moment
tradeoffs generated solutions which were 5.5.D. efficient for all a 2 1
and T.S.D. efficient for all a > 2. Thus Porter's target semivariance
model actually generated subsets of the T.S5.D. set.

Tauer recently reported similar results for the discrete case with
@ = 1. McCamley and Kleibenstein likewise reported that, with a = 2 and

a discrete distribution, mean—-target semivariance efficient solutions are

elements of the T.S.D. efficient set. In addition to the properties

discussed by Fishburn, L.P.M.'s are useful in a stochastic inequality
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which can be utilized in safety first programming.

Lower Partial Moments and Safety First
Berck and Hihn first presented a mean-semivariance stochastic
inequality which generated considerably less conservative upper bounds
than Chebychev'’s inequality. Atwood presented a general L.P.M.
inequality and demonstrated the ability of alternative forms to provide
less conservative upper probability bounds than the Chebychev or mean-—
semivariance inequality.
The general inequality is
(3) Pr(x ¢ g) =Pr(x <t - pO(a,t)) ¢ (1/p)°
with g a goal of the firm as previously defined,
t a reference level of income,
a the power to which deviations are raised in Fishburn’s
L.P.M. p(a,t),
O(a,t) is the a'th positive root of p(a,t) i.e.
0(a,t) = [P(a.t)]lla 2 0, and
p is the number of ©(a,t) units that g falls below t.;/
Utilizing inequality (3) it can be shown that enforcing the

following constraint is sufficient to guarantee that Pr(x ( g) { A. The

constraint is
(4) t - q*9(a,t) 2 g
with (1/q*)® = A or q* = (1/1)(1/a)
Should a = 1 then (4) becomes
(5) t - q*0(1,t) 2 g
with q* = 1/
Constraint (5) requires that p(1,t) = 0(1,t) be known. With a

finite discrete distribution this can be computed in a target-MOTAD



model. Should the decision maker possess an independently and
identically distributed sample of size n, the following statistic can be
shown to be both unbiased and strongly convergent as an estimator of

pla,t). The statistic is

n
pla,t) = L [(t - xi)“ I(xi)]
i=1 (==, t]

with x. the i'th observation of the random variable and
{(li)]is the indicator or zero-ome function which
.tuultiplies by 1 if x, {tor
0 if x, p 11 /

If the decision maker desires to select a portfolio of k activities
which maximize expected aggregate income subject to a safety-first type
constraint on aggregate income, the above inequality can be utilized as
aggregate income in a univariate random variable. The sample in this
case would consist of a set of vectors. Using p(1,t) = 0(1,t) as an
estimator of p(a,t) = 6(a,t) this problem can be modeled by system

(6) Max u'c

Subject to
Ac (b
Yg~-1t+H20
t - q* (L)' d 2
¢, d, 20
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with iT = transposed kxl vector of sample means for the k
activities,
g = kx1 choice vector of activity levels,
Y = [11. Tps eee xn]T with y. = a kxl vector conmsisting
of the i’th observation of the k activities'
income levels,
| = nxl vector of omnes,
t = the reference level of income for the L.P.M.,
I = nxn identity matrix
d = pnxl vector with i'th element = t - 11TQ if zirg L -
oz & D if xiT;_ > t,
0 = column vector of zeros,
q* = 1/A,
(1/n) = nxl vector with all elements equal to 1/n, and
g = the safety first goal.

The above system is a modification of the model presented by Held, Watts,
and Helmers. As constraint (5) is valid for all feasible levels for t,
the optimization model endogenously selects the least constraining level
of t. Should Y be a population or a subjectively estimated set of state
vectors, the vector (1/n) can be replaced with a probability vector ¢
with T, the probability of state y.. The above model then becomes a
modified version of Tauer's anget-MOTAD.i/
In the following section an empirical example will be presented.

The Y matrix is assumed to be a sample rather than a population. As such

the statistical estimator O(1,t) = (lig)ri will be ntilized.

Empirical Model

The empirical example of this section assumes that the decision




maker wishes to select a combination of activities which maximize

expected income while satisfying certain safety goals of the firm. The
decision maker can select from six activities subject to a set of linear
technical constraints. Ten observations of the six activities are
available, The assumption is made that each of the tenm observations is
from the same population of possible events that is currently anticipated
by the decision maker. Table 1 present the sample mean, standard error,
and coefficient of variation levels for the six activities. Table 2
presents the sample correlation coefficients. Note that while activity
six has by far the highest coefficient of variation in Table 1, it is
also the only activity which is negatively correlated to the others.
Activity six can thus not be eliminated from consideration a priori.

The tableau for this problem is presented in Table 3. An additional
row has been added to system 6 to allow separate conputatioQ of
0 = (l[g)ri. The final row enforces constraint (5) while allowing the
endogenous selection of the least constraining level for t. The tableau
as presented maximizes expected income subject to
Pr(income ¢ $90000) ¢ .2 = 1/q*. This gives q* = 5. The solution to
this problem and for alternative levels of g and A are presented in Table
4. Also reported in Table 4 are the actual number of times that income
fell below the goal (i.?. ziTg { g) as well as the buffer between g and
the smallest 1iTg 2 I

Several points should be noted when examining Table 4. The
solutions for all levels of A { .1 = 1/n are identical. System (6) can
not effectively discriminate at A levels between 0 and 1/n. Note for A
levels of 0, .05, or .1 that no observations of income below either
$90000 or $95000 occur. However, for each the smallest value of IiTg

equals g. Thus even though no observations actually occur below g, there
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may be one or more observations of IiTg exactly equal to g. In this
case, there is little room for specification or estimation error at
levels of A { 1/n. The same results hold if subjective probabilities r
are utilized rather than (1/n). The model will then not be able to
discriminate at probability levels less than the smallest r, value.

Note also that at A levels above 1/n, the solutions tend to be
conservative in that the number of observations below g divided by n are
less than the allowable A levels. This results from the fact that
inequality (3) generally provides conservative upper bounds for
Pr(x ¢ g). An idea of the conservativeness of the solution can be gained
by examining the value of thg minimum valuoe of 1irg - g given that y, ¢ 2
g. This level represents the distance from g to the 'mext highest’
income level observed. The greater this number, the more conservative
the solution can be said to be. For g = $90000 and A = .20, one
observation of 1iTg was below $90000 with the next lowest observation at
$90788. It can be seen that a certain buffer for specification error
exists before the associated solution mix actually violates the condition
Pr(x < 90000) ¢ .2. The use of stochastic inequality (3) in safety-first
models as opposed to exact probabilities is thus seen to result in a
tradeoff. This tradeoff is between the conservativeness implicit to the
use of stochastic inequalities and specification error protection.

As demonstrated by Atwood, the use of inequality (3) potentially
results in less conservative upper bounds than Chebychev’s or Berck and
Hibhn's inequality. However, by reducing the conservativeness of the
upper bounds, the likelihood of underestimating Pr(x ¢ g) has increased

should specification or sampling error exist. The seriousness of each

type of error will depend upon the specific problem being analyzed.



Should the first type of error i.e. excess conservativeness be viewed as
more serious by the decision maker, the use of system (6) or perhaps an
even less conservative method may be warranted. Should the
underestimation of Pr(x ( g) be viewed as more serious, the decision
maker may wish to utilize Berck and Hihn's or Chebychev's inequality with
a non-linear programming routine. Alternatively, system (6) could be
ntilized with a more conservative g or A level.

A final point will be made concerning a comparison of the goals and
the expected income levels of Table 4. As the income goal of concern was
increased from $90000 to $95000, at a given A levei, the maximum possible
mean income declined. No attempt will be made to rigorously prove why
this occur; but an intuitively based explanation might be in order at
this time., Maximizing expected net income with no probability
restrictions yields an expected income of $161088. The associated
activity mix yields no observations of xiTg ¢ $84721. Thus any
probability restrictions on g { $84721 would be satisfied and the L.P.
Solution would be optimal. As g is increased above $84721, the acti;ity
mix may need to be modified depending on A. This modification is likely
to require a reduction in the expected income as the feasible set of
solutions has now become more constrained. Increasing g further, given
A, constrains the model, resulting in previously attainable mean income
levels being non—attainable. As g increases from $90000 to $95000 the

model has become more constrained.

Summary and Conclusion
This paper has demonstrated a method to implement safety-first or
probability constrained programming with linear programming. Probability

bounds on linear combinations of nonnormal and dependent random variables
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can be constructed utilizing a linear lower partial moment (L.P.M.)
inequality and a set of discrete state vectors. The imequality in
general provides considerably less conservative upper bounds (and
activity mixes) than other published inequalities.

If only a sample is available, an unbiased and strongly convergent
estimator of the L,P.M. can be utilized in lieu of the actual parameter.
(A subjective distribution can also be utilized.) As the solutions tend
to be conservative, some level of specification or sampling error can
exist with violating the probability constraint Pr(x ¢ g). The
statistical properties of p(a,t) as an estimator of p(a,t) appear to
merit further study.

The potential unsefulness of linear probability constraints appears
to be significant. All three safety-first criteria discussed by Pyle and
Turnovsky can be modeled altyough only one criteria has been demonstrated
in this paper. In addition, the possibility of expected utility
maximization within a probability constrained space could be explored.
Such a concept or approach might be more consistent with the views of the
French school of utility. The solution to system (6) will be a member of
the S.5.D, efficient set, Methods to generate additional stochastically
efficient solutions within the probability constrained space would be
useful. Such a procedure would reduce the F,S.D., S$.S.D., or T.S.D.
efficient sets, perhaps significantly.

The probability constrained random variable need not be aggregate
income. The new method can thus be utilized to implement various forms
of chance constrai;tn. Examples would be chance constraints on various
resources, internal flows, intermediate products or financial ratios if
discrete potential outcomes can be listed or derived. Most previous

applications of this type have utilized normality assumptions.



In conclusion, the potential usefulness of lower partial moments for
probability or safety constrained problems appears to be significant.
The method may not be suited to all applications but should prove to be a

useful tool for decision making under uncertainty.
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2/

Footnotes
An interesting recent development in the area of stochastic
dominance has been the relationship discovered between lower partial
moments and stochastic dominance. This relationship will be briefly

addressed in a following section of the paper.
For a proof of the inequality (3) and constraint (4) see Atwood.

Tauer demonstrated that solutions of the Target—-MOTAD model were
subsets of the S.S.D. efficient set. In this case the probability
constrained solution to system (6) will also be a member of the
$.8S.D. efficient set if t - q‘;Tg ) g is constraining. Although the
optimization process endogenously selects the level for t, constraint

(5) effectively constrains 6(1,t) = LTQ to be less than or equal to

some level M = (t — g)/q* while maximizing expected income.



Sample Mean, Standard Error, and Coefficients of Variation

Activity Ky
C1 538.64
C2 318.88
C3 260.78
C4 188.11
C5 123.04

C6 20-

59

Table 1

o,
i
238.48
178.69
65.24
90.33
44.94

110.13

o./p
.526
.560
.250
.480
+365

5.349
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Activity

Table 2

Sample Correlation Coefficients for Example Problem

[

1

1

Cs

516

«297

C4

.838
.706

.567

Cs

.630

.467

.709

.805

.549

.419

.404

.453

.220
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Table 3

Tableau for Empirical Example

ROw o] Q (% 4} (%3 Ce 1 n 0 0: b
OF) PN SIE.6400 J1B.BEOC  260.780¢  108.1100  123.040¢ 20,5900 s

Rl L 1.0000 1. 0000 1. 0000 1. 0000 1.0000 '

RZ L 2.9700 1.7700 1.8200 1. 8500 1.900¢ 0.41%

R L 1.0800 1.0800 1. 2500 1. 7600 0, 2500 A 4 )

L1 L 1.8400 L1100 3.0800 0400 0. 9600 . . ,

RS L 2.3%00 L9100 4,4300 LTl 1.2300 ' . .

b L 5.e800 ‘ . 1.7400 X 0.2700 . " ‘

R? (3 2.7700 1.5600 1.6100 1.46300 0.6700 - 4 & .

L L 1.0400 1.9900 1.2000 1.2200 0.0800 i ; .

LU L 0.57%0 0.8800 0.8900 0, 8200 0.3600 . . s

R1D L 0.1900 3.1500 16400 0. 0800 0. 1500

Rl L 5. 3000 : 5 1.5800 - : : :

R12 L . . 5 . 4 1. 0000 . "

RIZ L . . -1.0000 . . 0.0780 i .

R4 L " ‘ . =1.0000 . 0.1010 - 5

RIS L " . . . . =0.8000 0.1010 . 5

Yl 6 S14.5200  217.9900 29,5000 132.1400  106.2200  -50.1600 -1.0000 1. 0000

Y2 6 781,5100 412,950 43,0400 203.0B00 126.1800 -92,1200  -1.0000 . 1. 6600

L3 6 420,0700  322.1800  213.4200  [14, 5300 Q11,5500 200, 4900 =1. 0000 ‘ n 1.0000 .
AL B 2807707 139.0006  166.1400 05,5500  101.9900 141,890 -1,0000 . . . }, it
4] 6 132,2400 497.4100 19,0000 10B.EBON 45,7900  -9.430¢  -1.0000

\[] B 73,2500 [IT.7100  339,7200 1743100 173,2600 82,7800 -1, 0000 4 § 3
Y7 6 507,0200 2745300 262.2¢00 273.€100  119.9700  -30.0200 -1, 0000 . . .
AL} B 1137.6000 665.9600 267.1900 JAB.B700  154.9000 -145.1700  -1.0000 .

Y9 6 B0L.7S00  490,1000 13,9600 3027000  153.4400  [19.9304 =1.000¢ B

AR 6 335.6200 136.8900 187.5800 117.7300 515100 26.0730 -1.0000 u . ‘ '
Hela L . - s : i F . 0.1000 0. 1000 0. 100 0,100
SUFCONST § . 8 . B - i 1,000 v . .
PO 0s 0% 07 e 09 pio T-THETE B WS

ORJ Fln . » . . . . ” ITREETEL]

ki L 400, 9000

" L 1084, 0000

RS L 1127.0090

k4 L 1611.0000

¥5 L . 5 S . i 1212.0000

Ré \ 3 i 3 . 3 ? ; 1084. 0000

LY L . § ¥ . ‘ " ] 805, 0000

L} L v i " . . i 0 748. 0000

Re L a é § . i ; . 1230. 0000

RI0 L . ; i . : 904. 0000

Rl L ’ g . . » v i 897, 0000

RI2 L ’ z . . . . " 100, 0000

RI3 L "

Rl L P

LI M L . s . ¢

v - i g . ¥

Y2 b “ s

" 5 : : .

i 6 5 R ; . 5

s [ 1.0000 " 9 . . . . :

\[] 1] . 1.0000 . . . . " ~

n [ . - 1.0000 i . .

8 5 x . . 1.0000 y 3 G §

" & . . . ' 1. 0000 ' . .

Yio & . # s M . 1.0000 .

™AL 0. 1000 0.1000  0.1000 0. 1000 0. 1000 0.1000  -1,0000 :

SUFCONST 6 - . 2 : ; g -5.0000 30000, 0000



Safety First Solutiops for Example Problem

Table 4

Income Probability Constraint Nean Actuoal Distance
Goal Constralint Cosfficient Income Activity Lavels Nl.,hu' of to Pll’llt
5 A e® <, c, <, c, Cy Cs - WEE X, s 2

20000 0 - 159621 164.9 173.6., 28.8 14.5 18.2 144.0 0 0
.03 10 139621 164.9 173.6 8.8 14.3 18.2 144.0 0 [
.10 10 139621 164.9 173.6 28.8 14.5 18.2 144.0 0 0
.15 6.67 159741 164.9 175.3 27.3 14.4 18.0 142.8 1 861
.20 3 159840 165.0 176.8 16.0 14.3 18.0 141.7 1 788
.23 4 160716 165.0 191.8 11.0 14.3 17.9 141.4 1 18
.30 3.1} 161088 165.4 195.4 10.0 13.0 16.2 128.4 2 6484

5000 0 - 154074 163.1 $0.9 99.8 20.3 13.1 203.3 0 0
.03 10 154074 163.1 90.96 99.8 20.5 13.7 103.3 0 0
.10 10 154074 163.1 90.96 99.8 20.5 13.17 203.3 0 0
.13 6.67 157032 164.1 135.0 61.9 17.3 21.7 171.7 1 4321
.20 L] 157331 164.2 142.4 5.6 16.8 21.0 166.4 1 2525
.25 4 158564 162.7 171.1 16.9 1.9 27.4 217.0 2 13140
.30 1.33 159373 163.6 178.9 14.7 19.0 13.8 188.5 1 9402

L.r.

Solution — — 161088 165.4 195.4 10.0 13.0 16.2 128.4 e -—_

042
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