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Introduction 

This paper presents a method whereby liuear progr&mJDing can be 

utilized to implement safety first decision rules wi th a discrete and 

finite population or sample. The method utilizes a stochastic inequality 

constructed with a lower partial moment. Should only a sample be 

available a statistical estimator of the lower partial moment is utilized 

which can be shown to be both unbiased and strongly convergent . A br i ef 

discussion of safety first and expected utility theory is followed by a 

presentation of the model with an empirical example. 

Safety First and Expected Utility 

Real world decisions must often be made in a setting of uncertainty 

when the outcomes of decisions are real iz ed in future peri ods . Decision 

processes in such settings continue to stimulate considerable research 

efforts on the part of decision theorists and research economists. 

Several approaches to decision making are discussed in the literature . 

Included are expected utility theory, safety first, s at i sfi cing and game 

theory. In agricultural economics perhaps the most developed and 

acc epted of the appro aches is that o f expected utility maximiza t ion . A 

rich literature field bas developed dealing with tho axiomatic 

f oundations of utility theory, utility elicitation, st ochastic dominance 

applications and other aspects of utility theory .1/ 

Expected utility theory bas not been the only decision method 

discussed in the literature nor has it been free of criticism. The 

French school of utility, f ounded in the early 1950's by Allais and 

others, argues that expected utility maximization is not consistent with 

many observed behavioral phenomenon. They ar1uo that the higher moments 

of utility (especially the second and third) are as important as moan 



utility in decision making. Expected utility maximization in this case 

might give relatively good approximations of behavior should the choices 

considered be in a sufficiently small subset of all possible choices. 

Methods to so constrain the feasible set of actions are not immediately 

apparent . A possible method might be to eliminate from consideration all 

distributions where the probability of failing to achieve some critical 

goal of the firm exceeds some threshold level. This concept is similar 

to certain safety first concepts discussed in following sections . 

Several alternative appro aches have been proposed. Included among 

these is the concept which has commonly been termed safety-first 

behavior . Safety-first behavior can be defined as behavior wh ich is 

impacted or constrained by the probabi·lity of failing to achieve cert ain 

goals of the firm. This probability can be denoted as Pr (x < g ) i A wit h 

g a goal of the firm and A an acceptable limit on this probabilit y. 

Various models of safety-first behavior have boon discussed in the 

literature including those o f Roy. Telser, Kataoka, and vari ous chance 

constrained models. Roumasset presented a lexi cographic system of safety 

first decision criteria for subsistence farmers in tho Ph ilippine s. 

While these models have been proposed and discussed since the 

1950's , they have not gained widespread popularity amo ng resear chers, 

perhaps dne to the common acceptance of expected utility the ory. Many 

tend to feel that safety-first behavior is of questionable theoretical 

content or can bo approximated by expected utility theory. Pyle and 

Turnovsky demonstrated that, with distribntions uniquely defined by mean 

and variance (such as the normal), safety first s ol utions could also be 

obtained with properly specified expected utility models if borrowing and 

lendin& were excluded. If borrowing or risk !rec lendin& was all owed, 

tho ro1ult1 wore not consistent with expected utility. The methods 
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utilized by Pyle and Turnovsky are applicable should the decision maker 

desire to soloct a portfolio from a set of investments with a 

multivariate normal distribution. Should the set of investments be non

normally distributed and dependent, then implementing safety-first models 

is much moro difficult. In many cases, constructing probability 

statements over a largo set of possible linear combinations of non 

normal. dependent random variables will be exceedingly difficult. As 

safety first models require probability information on these linear 

combinations, the ability to practically implement safety first models 

has been quite limited. One method which has been utilized is to use 

stochastic inequalities such as Chebychev's to generate sharp upper 

bounds on tho probability. Chebychev's inequality is 

PrClx - µIi ka) i (1/k)
2 

Tho inequality places a sharp upper bound of (l/k) 2 on the probability of 

the random variable x falling more than k standard errors from the mean. 

Such upper bounds tend to be quite conservative. This paper presents an 

alternative method t o implement safety fir st models should the decision 

maker face a discrete and finite set of possible state vectors. The 

method presented utilizes linear programming. A linear constraint 

guarantees that the probabil ity concerns of the safety first model are 

satisfied. The linear constraint is constructed by utilizing a lower 

partial moment stochastic inequality. 

Lower partial moments are intimately related to stochastic 

dominance. Stochastic dominance concepts are attractive in that a 

partial ordering of distributions is often possible for individuals whose 

utility functions satisfy certain conditions . These conditions can be 

quite broad in which case stochastic dominance tests may oliminato only a 
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small proportion of all possible outcomes . Imposing additional 

conditions on the utility function allow further reductions in the 

undominated set of possible outcomes. Commonly known forms of stochastic 

dominance include first order (F.S.D.), second order ( S.S.D.) and third 

order stochastic dominance (T.S.D.). These forms will not be redefined 

here but will be referred to in the following sections. Other forms of 

stochastic dominance have been defined and have proven useful. Meyer's 

stochastic dominance with respect to a function allows the elimination of 

dominated distributions for all individuals whose risk aver s ion 

characteristics lie within certain bounds (see Meyer, King and Robison). 

Porter first demonstrated the relationship between target 

semivariance and second order stochastic dominance. Target semivariance 

is defined as 

(1) a~ 

Solutions which are mean-target semivariance efficient were shown by 

Porter to be members o f the S.S.D. efficient set . Target semivariance is 

a special case of a lower partial moment (L. P.M .) . Fishburn presented a 

general f o rm of the lower partial moment whi ch is def ined as f ollows 

(2) p(a ,t ) = ft ( t - x )a f(x) dx 
-m 

Fishburn showed that mode l s whi ch examined mean-lower partial moment 

tradeoffs generated solut~ons Yh ic h Yere S.S.D. efficient f or all al 1 

and T.S.D. efficient for all a L 2. Thus Porter 's target semivariance 

model actually generated subsets of the T.S.D. set. 

Tauer recently reported similar results for the discrete case Yith 

a = 1. McCamley and Kle ibenstein likewise reported that, with a = 2 and 

a discrete distribution, mean- target semivariance efficient solutions are 

elements of the T.S.D. efficient set. In addition to the properties 

discussed by Fishburn, L.P.M.'s are useful in a stochastic inequality 
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which can bo utilized in safoty first programming. 

Lower Partial Moments and Safoty First 

Berck and Hihn first presented a moan-semivarianco stochastic 

inequality which generated considerably less conservative upper bounds 

than Chebychev's inequality. Atwood presented a general L.P.M. 

inequality and demonstrated the ability of alternative forms to provide 

less conservative upper probability bounds than the Chebychev or mean-

semivariance inequality. 

Tho general inequality is 

(3) Pr(x < g) = Pr(x < t - p9(a,t)) i (l/p)a 

with g a goal of the firm as previously defined, 

t a reference level of income, 

a the power to which deviations aro raised in Fishburn's 

L.P.M. p(a,t), 

9(a,t) is the a'th pos i tive root of p(a,t) i.e. 

9(a,t) = [p(a,t)]l/a L 0, and 

p is the number of 9 (a ,t ) units that g falls below t.~/ 

Utilizing inequality (3) it can be shown that enforcing the 

following constraint is sufficient t o guarantee that Pr(x < g) i A. The 

constraint is 

(4) t - q•9(a,t) lg 

with (1/q•)a A or q• 

Should a = 1 then (4) becomes 

(5) t - q•9(1,t) 2 g 

with q• = 1/A 

Constraint (5) requires that p(l,t) : 9(1,t) bo known. With a 

finito discrete distribution this can bo computed in a targot-MOTAD 



model. Should the decision maker possess an independently and 

identically distributed sample of size n, the following statistic can be 

shown to be both unbiased and strongly convergent as an estimator of 

p(a,t). The statistic is 
n 

p(a,t) = 1: [(t - x.)a l(x.)] 
i=l 

1 
(-m!tJ 

with x. the i'th observation of the random variable and 
1 

I(x . ) is the indicator or zero-one function which 
c-!tJ 

multiplies by 1 if x. it or 
1 

0 if x. > t 
1 

If the decision maker desires to select a portfolio of k activities 

which maximize expected aggregate income subject to a safety- first type 

constraint on aggregate income, the above inequality can be utilized as 

aggregate income in a univariate random variable. The sample in this 

case would consist of a set of vectors. Using p(l,t) = 0(1,t) as an 

estimator of p(a,t) 0(a,t) this problem can be modeled b y s ystem 

(6) T 
Max ll £. 

Subject to 

Y£. - 1 t + I~ l Q 

t - q•Cl..Lll>T ~Lg 

£., ~. l Q 
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T 
with ll. = transposed kil vector of sample means for the k 

activities, 

kxl choice vector of activity levels, 

y T 
(y1 , Y.i• .. . ~] with Yi =a kxl vector consisting 

of the i'th observation of the k activities' 

income levels, 

1 = nxl vector of ones, 

t the reference level of income for the L.P.M., 

I nin identity matrix 

nil vector "it h i'th element 
T 

if 
T 

~ = t - Yi £. y . £. t 
l 

0 if 
T 

) or y. £.. t • 
l 

Q column vector of zeros, 

q* = It>., 

ClLB.) nxl vector with all elements equal to 1/n, and 

g =the safety first goal. 

The above system is a modification of the model presented by Held, Watts, 

and Helmers. As constraint (5) is valid f or all feasible levels fort, 

the optimizati on model endogenousl y selects the leas t constraining level 

of t. Should Y be a population or a subjectively estimated set of state 

vectors, the vector C.!lA) can be replaced with a probability vector~ 

with r . the probability of state y . . The above model then becomes a 
l l 

modified version of Tauer's Target-MOTAD.1/ 

In the following section an empirical example will be presented. 

The Y matrix is assumed to be a sample rather than a population. As such 

the statistical estimator a(l,t) = (JlA)T~ will be utilized. 

Empirical Model 

The empirical example of this section assumes that the decision 



maker wishes to select a combination of activities which maximize 

expected income whilo satisfying certain safety goals of the firm. The 

decision maker can select from six activities subject to a set of linear 

technical constraints. Ten observations of the six activities are 

available. The assumption is made that each of the ten observations is 

from the same population of possible events that is currently anticipated 

by the decision maker. Table 1 present the sample mean, standard error, 

and coefficient of variation levels for the six activities. Table 2 

presents the sample correlation coefficients. Note that while activity 

six has by far the highest coefficient o f variation in Table l, it is 

also the only activity which is negatively correlated to the others. 

Activity six can thus not be eliminated from consideration a priori . 

The tableau for this problem is presented in Table 3. An additional 

row has been added to system 6 to allow separate computation of 

T 
9 = <l.L!!.> ~. The final row enforces constraint (5) while allowing the 

endogenous selection of the least constraining level for t. The tableau 

as presented maximizes expected income subject to 

Pr (income ( $90000) i .2 = 1 /q• . This gives q• = 5. The solution t o 

this problem and for alternative levels of g and A are presented in Table 

4. Also repor ted in Table 4 are the actual number of times that income 

T fell below the goal (i.e. yi £ ( g) as well as the buffer between g and 

T 
the smallest yi £ 2 g. 

Several points should be noted when examining Table 4. The 

solutions for all levels of Ai .1 = 1/n are identical. System (6) can 

not effectively discriminate at A levels between 0 and 1/n. Note for A 

levels of 0, .05, or . 1 that no observations of income bel ow either 

$90000 or $95000 occur. However, for each the smallest value of yiT~ 

equals &• Thus even thou1h no observations actually occur below i• thore 
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T 
may be one or more observations of yi ~exactly equal to g. In this 

case, there is little room for specification · or estimation error at 

levels of A i 1/n. The same results hold if subjective probabilities ~ 

are utilized rather than (ll!l.). The model will then not be able to 

discriminate at probability levels less than the smallest r . value. 
1 

Note also that at A levels above 1/n, the solutions tend to be 

conservative in that the number of observations below g divided by n are 

less than the allowable A levels. Th i s results from the fact that 

inequality (3) generally provides conservative upper bounds for 

Pr(x < g). An idea of the conservativeness of the solution can be gained 

T . h T , by examining the value of the minimum value of yi ~ - g given t at yi £ L 

g. This level represents the distance from g to the 'next highest' 

income level observed. The greater this number, the more conservative 

the solution can be said to be. Fo r g = t90000 and A= .20, one 

T 
observation of v . c was below t90000 with the next lowest observation at 

Ll -

$90788 . It can be seen that a certain buffer for specification error 

exists before the associated so lution mix ac tually v i o late s the condition 

Pr(x < 90000) i .2. The use of st ochastic inequality ( 3) in safet y-f i rst 

models as opposed to exact probabilities is thus seen to result in a 

tradeoff. This tradeoff is between the cons ervativeness implicit to the 

use of stochastic inequalities and spec i fication error protectio n. 

As demonstrated by Atwood, the use of inequality (3) potentially 

results in less conservative upper bounds than Chebychev's or Berck and 

Hihn's inequality. However, by reducing the conservativeness of the 

upper bounds, the likelihood of underestimating Pr(x < g} has inc reased 

should specification or sampling error exist. The seriousness of each 

type of error will depend upon the specific problem being analyzed. 
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Should the first type of error i.e. excess conservativeness be viewed a' 

more serious by the decision maker, the use of system (6) or perhaps an 

even less conservative method may be warranted. Should the 

underestimation of Pr(x < g) be viewed as more serious, the decision 

maker may wish to utilize Borek and Hihn's or Chebychev's inequality with 

a non-linear program.ming routine. Alternatively, system (6) could be 

utilized with a more conservative g or A level. 

A final point will be made concerning a comparison of the goals and 

the expected i ncome levels of Table 4 . As the income goal of concern was 

increased from $90000 to $95000, at a given A level, the max i mum possible 

mean income declined. No attempt will be made to rigorously prove why 

this occurs but an intuitively based explanation might be in order at 

this time. Maximizing expected net income with no probability 

restrictions yields an expected income of $161088. The associated 

T 
activity mix yields no observations of yi ~ < $84721 . Thus any 

probabil i ty restrictions on & i $84721 would be satisfied and the L.P. 

So lution would be optimal. As g is increased ab ove $84721 , the activity 

mix may need to be modif i ed depending on A. This modification i s li kely 

to require a reduction in the expected income as the feasible set of 

solutio ns has now become more constrained. Increasing g further, given 

A, constrains the model, resulting in previously attainable mean income 

le vel s being non-attainable. As g increases from $90000 to $95000 the 

model has become more constrained. 

Summary and Conclusion 

This paper has demonstrated a method to implement safety-first or 

probability constrained program.ming with linear programming. Probab i lity 

bounds on linear combinations of nonnormal and dependent random variables 
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can be constructed utilizing a linear lower partial moment (L.P.M.) 

inequality and a set of discrete state vectors. The inequality in 

general provides considerably less conservative upper bounds (and 

activity mixes) than other published i nequalities . 

If only a sample is available, an unbiased and strongly convergent 

estimator of the L.P.M. can be utilized in lieu of tho actual parameter. 

(A subjective distribution can also be utilized.) As the solutions tend 

to be conservative, some level of spec i fication or samplin& error can 

exist with violating the probability constraint Pr(x < g). The 

s tatistical properties o f p(a,t) as an estimator o f p(a,t) appear to 

merit further study. 

The potential usefulness of linear probability constraints appears 

to bo significant. All three safety-first criteria discussed by Pyle and 

Turnovsky can be modeled although only one criteria bas been demonstrated 

in this paper. In add i tion , tho possibility of expected utility 

maximization within a probability constrained space could be expl o red. 

Such a concept or approach mig h t be more consi stent with the views of the 

French sc h oo l of utility. The solution t o system ( 6) will be a member of 

the S . S.D. efficient set . Methods to generate additio nal stochastically 

efficient s o luti ons wi t hin the probability constrained space would be 

useful. Such a procedure would reduce tho F.S.D., S.S . D., or T . S . D. 

efficient sets, perhaps sianificantly. 

Tho probability constrained random variable need not be aggregate 

income. The new method can thus be utilized to implement various forms 

of chance c onstrainta. E.xaaplea would be chance constraints on various 

resources, internal flows, intermediate products or financial ratios if 

discrete potential outcomes can be listed or derived. Moat previous 

applications of this type have utili&ed normality a1sumption1. 



In conclusion, the potential usefulness of lower part ial moments for 

probability or safety constrained problems appears to be significant. 

Tbe method may not be suited to all applications but should prove to be a 

useful tool for decision making under uncertainty . 
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11 

Footnotes 

An interesting recent development in the area of stochastic 

dominance has been the relationship discovered between lower partial 

moments and stochastic dominance . This relationship will be briefly 

addressed in a following sect ion of the paper. 

For a proof of the inequality (3) and constraint ( 4) see Atwood. 

Tauer demonstrated that solutions o f the Target-MOTAD model were 

subsets of the S.S.D. efficient set . In this case the probability 

constrained solution t o system (6) will also be a member of the 

S . S .D. efficient set if t - q•£T~ lg is constra ining . Although the 

optimization process endogenously sele c t s the level for t, constraint 

T (5) effectively constrains 9(1,t) = £ ~ to be less than or equal t o 

some level M = (t - g)/q• while maximizing expected income . 
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Tablo 1 

Sample Mean, Standard Error, and Coefficients of Var i ation 

Activity µ . 
1 

a . 
1 

a . /µ . 
1 1 

cl 538.64 238. 48 .526 

c2 318.88 178.69 .560 

c3 260.78 65.24 .250 

c4 188.11 90.33 .480 

cs 123.04 44 . 94 .365 

c6 20 . 59 110.13 5. 349 
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Table 2 

Sample Correlation Coefficients for Example Problem 

Activity cl c2 c3 c4 cs c6 

c1 1 .877 .516 . 838 . 630 - . 549 

c2 1 .297 .706 .467 -.419 

c3 1 . S61 . 709 - . 404 

c4 1 .80S -.4S3 

cs 1 - .220 

c6 1 
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Table 3 

Tableau for Empirical Example 

R~w Cl C2 Cl C4 C5 C6 DI D: o:: 01 

OPJ rcw 53@.6100 :.1e. 88(\(o 260. 78('(o 188. ll!IO 1 ::..o•oo 10. 500(• 
RI 1.0000 l.(•000 I. 0000 I . (IO(o(I 1.00~ 

R: 2. 9700 I. 1100 1.82(1(1 I. 8~(1(1 1.wic o. • 1!IO 
R:. t .0800 I. 0900 1.2500 1.mo (I. :~.(I() 

Pl U 400 l. 7100 l .08(10 :..11no (I, 06no 

P.5 2. l•(IO l . •1 00 4, •l(l(l n, 6•no I. 2:.00 
R6 5. ~800 I. 7400 o.mo 
R7 2. 72(1(1 1.5600 1. 610<! 1 . ll~(IO 0.'71)(1 
RS 1. 0400 U900 1.20(1(1 1. 2:00 o. oeoo 
n 0.57!1<' um o.am o. e;oo o.:.110!I 
Rl9 0.1•0~ l.15(1(1 ).64('(1 (I , 98!\0 O. ISOO 
Rt I 5. 3000 I. 58('11 
m I ,O(o(\(I 

RI ~ ·I. 0000 O.MBO 
Rl 4 ·I. OllO(I 0. 1010 
Rl5 l · O. 8000 o.1n10 
YI 6 516. 5200 211. ••oo 2•11. 50!\0 131. t •OO 10&. j'200 ·50. 11100 -1.mo 1. 0~00 

Y2 181.5100 412 . •soo :.4; , 01no 20:.. 0900 I :6.l~l)(l ·•2 .1700 ·1.(11100 1. 0<•00 
Yl 420. 01(1~ m.uoo m. • 2(IO 11 • . 5::on 111. ~~·'<' 1o<.. ••oo ·I. (l(l()O 1.0(11\(1 

YI :e-~. )1()11 1::9.0000 166.1 4111l 10~. ~~00 IOI. •l9C'O 14 t. e•or• ·I. (l(IOO J.M'•'· 

Y5 6 m.2•00 197. '100 t •8. nO(IO 1 ~&. e9on 65.1900 ·•. 11::01• ·I .OO!IO 
Y6 6 :1;. rfi.' 111.110• ll•. 1200 t H. ~ion 17;,:6M 6:. 160(1 ·l. (1(\1•0 
Y7 6 50'. 0200 271.t.lOO m.:&oo 2n.t100 1~·.0()0 -so.o:o~ ·I. (11111(1 

YB 6 II ::7. 6000 Ut, H Cl<I :e1. noo !48. 8100 tt• . •ooo -1 • :..1100 · t.(1(1(10 
Y9 6 801. 15<10 190. 101)11 313. •6nO 3<':. 70(1(1 1~a. uil(I 11 •. •:;<-, ·UOC~· 

TIO l:.5. 6200 llt.. 990!1 187, 5800 11'. 7;1\0 5J. 5:(1(1 :6. 07 )0 ·l.000<1 
TH(TA l o. 1ono 0.1000 O. IN•i' 0.1 ~:-· 

surtCNST f 1.01\()(• 

POii 05 06 DJ n D9 010 1-TMEIC p ~ s 
ou r r• 11111111 

RI 1(1{. (•9<•0 
n 1oe• . OOOIJ 
~-.. 1121 . (1(1?~ 

Pl 161 1. (1(1(10 
~5 1:~:.0000 

R6 1084. 0000 
R1 9(1~. 0000 
P8 768. ono« 
Rt 1:lO.00~0 

RIO 901. 000(1 
RI I 897 .0000 
RU 300.0(\(141 
Rl3 
F1 4 
Pl~ 

YI 
Y2 6 
Yl 6 
Y4 6 
Y5 6 1.0000 
u ' 1. 0000 
Y7 ; 1.0000 
T8 ' I. !IOO(I 

" ; 1.0000 
TIO ' 1.0000 
ll'fU l O. lMIO 0.1000 0. 1000 O. IOM 0, 1(11\() 0.1(\(10 ·I. (1(11\() 

SUHO~Sl 5 -5.000~ •0~00.0000 



Table 4 

~.,, ll p 1.1.1 l S2hll!!ll (R[ 

la•O- Probability Coa1tr1lat •••ft 
Ooal Coa1tralat Co1Utchat Jaco•• 

I ~ ,. cl cl 

,0000 0 1'9621 164,, 17),, . 

. OS 10 1'9621 164.t lH.6 

.10 10 1.59621 164., 
17J · ' 

.1s '·" 1'9741 164 .' 17 s . J 

.20 ' 1'9140 165.0 17' , I 

. lS 4 16071' 165.0 191.1 

. JO J . H 1610U 165.4 1'5.4 

'5000 0 1'4074 163 .1 ,0,, 

.os 10 lHOH 163.1 ,O,U 

,10 10 1'4074 163 .1 ,0 . '6 

.15 '·" 1'70Jl 164.1 135 . o 

.10 ' 1'7'31 164.2 142.4 

. 2S 4 1'8'64 162.7 171.1 

, JO J.H 1Hl7l lU .6 171 . ' 

L.P. 
lohtloa 161 0111 165.4 US . 4 

ht!!Rh ll!!l!hl! 

Act I •I t7_ 1Aula 

CJ c. c, c, 

ll . I 14.S 11.2 lH.O 

111 . I 14 . S 11 . l 144 . 0 

211 . I 
14 · ' 

11 . 2 144.0 

27.l 14 . 4 11 . 0 10.I 

26 , 0 14 , ) 11.0 141. 7 

11.0 14 . J 17., 141.4 

10 . 0 u.o 16 . 2 121 . 4 

,,,I 20.S 2 s. 7 203.l 

,,,I 20.s lS. 7 203 . ) 

U . I 20.' lS. 7 20J , ) 

61., 17.J l l. 7 171. 7 

"·' 16 . 1 21.0 1'6. 4 

16 . , 21., 27 . 4 217.0 

14. 7 1' . 0 23. I 1111.S 

10 . 0 13.0 16 . l 121.4 

Aotaal 
N..,.ber oC 

J.i i. < • 

0 

0 

0 

1 

1 

1 

2 

0 

0 

0 

1 

2 

2 

Diataac1 

to'tft•r••t 

1., ' ~ • 

0 

0 

0 

161 

718 

21 

6484 

0 

0 

0 

4321 

2S2S 

13140 

'402 

N 
-...J 
0 
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