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GENERALIZED EXPECTED UTILITY ANALYSIS AND THE NATURE 

OF OBSERVED VIOLATIONS OF THE INDEPENDENCE AXIOM 

l 
Mark J. Machina 

1. Introduction 

First expressed by Allais in the early fifties, dissatisfaction 

with the expected utility model of individual risk taking behavior has 

mushroomed in recent years, as the number of papers in this volume, its 

predecessor (Allais & Hagen (1979)) , and elsewhere
2 

indicates. The 

nature of the current debate, i . e., whether to reject a theoretically 

elegant and heretofor~ tremendously useful descriptive model in light of 

accumulating evidence against its underlying assumptions, is a classic 

one in science, and the spur to new theoretical and empirical research 

which it is offering cannot help but leave economists, psychologists, 

and others who study this area with a better understanding of individual 

behavior toward risk. 

In terms of its logical foundations, the expected utility model may 

be thought of as following from three assumptions concerning the indi­

vidual's ordering of probability distributions over wealth: complete­

ness (i . e., any two distributions can be compared), transitivity of both 

strict and weak preference, and the so-called "independence axiom." 

This latter axiom , really the cornerstone of the theory, may be stated 
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as "a risky prospect A is weakly preferred (i.e., preferred or indiffer­

ent) to a risky prospect B if and only if a p:(l - p) chance of A or C 

respectively is weakly preferred to a p:(l - p) chance of B or C, for 

arbitrary positive probability p and risky prospects A, B, and C." 

While the first two assumptions serve to imply that the individual's 

preferences may be represented by a real-valued maximand or "preference 

functional" defined over probability dist ributions , it is the indepen­

dence axiom which gives the theory its main empirical content by placing 

a restriction on the functional form of the preference functional, 

implying that it (o r some monotonic transformation of it) must be 

"linear in the probabilities" and hence representable as the mathemat­

ical expectation of some van Neumann-Morgenstern utility index defined 

over the set of pure outcomes. 

Although the normative validity of the independence axiom has often 

been questioned in the past (see for example Allais (1952), Tversky 

(1975), Wold (1952), and the examples offered in Dreze (1974) and 

Machina (1981)), the primary form of attack on the expected utility 

hypothesis has been on the empirical validity of the independence axiom. 

Beginning with the famous example of Allais (discussed in detail below), 

the empirical/experimental research on the independence axiom has 

uncovered four types of systematic violations of the axiom: the "common 

consequence effect," the " common ratio effect" (which includes the 

"Bergen Paradox" and "certainty effect" as special cases), "oversensi­

tivity to changes in small probabilities," and the "utility evaluation 

effect" (desc ribed below). While defenders of the expected utility 

model have claimed that such violations, systematic or otherwise, would 

disappear once the nature of such "errors" had been pointed out t o 

subjects (e.g. , Raiffa (1968, pp. 80- 86) , Savage (1972 , pp. 102-103)), 

empirical tests of this assertion (MacC rimmon (1968, pp. 9-11), Slavic & 

Tversky (1974)) have fairly convincingly refuted it, and it is now 

generally acknowledged that, as a descriptive hypothesis, the indepen­

dence ax i om is not able to stand up to the data. 



Accordingly, the defense of the expected utility model has shifted 

to the other two sine qua non's of a useful theory , namely analytic 

power and the ability to generate refutable predic tions a nd policy 

implica tions in a wide variety of situations. 3 Expec t ed utility sup­

porters have pointed out that descriptive models are like lifeboats in 

that "you don't' abandon a leaky one until something better comes along ," 

and insist tha t a mere ability to rationalize "aberrant" observations is 

not enough for an alternative model to replace expected utility--to be 

accep t able, the alternative must a t least approximate the analytic power 

and versatility of expected utility analysis. On the whole they have 

been correct in so arguing, as many of the alternatives which have been 

offered have had little predictive power, and various ones have been 

r est ric ted t o .only pairwise choice , have implied intransitive behavior, 

were able to accommodate only discre te probability distributions , o r 

even possessed the property that the individual can be led into "making 

book against his/herse°lf." 

The purpose of this chapter is to describe an alternative to 

expected utility analysis (in fac t, a generalization of it) which is 

designed to possess the high analytic power of expected utility as well 

as to parsimoniously capture the nature of observed departures from the 

independence axiom . On the one hand, this technique, t ermed "gener­

alized expec t ed utility analysis," allows us to apply the major con­

cepts , tools, and results of expected utility theory to the analysis of 

almost completely general preferences (specifically, any se t of prefer­

ences which is complete, transitive, and " smooth" in the sense described 

below). On the o ther hand, however , this technique is capable of simply 

character izing any add itional behavioral restrictions we might feel are 

warrant ed , s u ch as general risk aversion, declining risk aversion, 

comparative_ risk aversion between individuals , and in particular , a 

simple condition on preferences which serves t o generate all four of the 

above mentioned systematic violations of the independence axiom . In 

addition , because of the very weak assumptions required , it turns out 
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that many of the other al terna t ives and generaliza tions of expected 

utility theory which have been offered a r e special cases of the present 

analysis, wh i ch can the refore be used to derive f urther resul t s in these 

special cases. 

The following section offers a b rief overview of those aspects of 

expected utility theory which will be relevant for the present purposes. 

Section 3 offers a simple gr aphical and a lgebraic description of gener­

alized expected utility analysis, including extensions of the expec ted 

utility concepts of the "risk ave r se concave utility function" and the 

Arrow- Prate: measure of risk aversion to the general case of "smooth" 
4 prefe r ences. Section 4 offers a survey of the four known types of 

sys t ema tic violations of the independence axiom , as well as a descrip­

tion and discussion of the simple condition on prefe r ences which serves 

t o generate each of these four t ypes of behavior. Section 5 offers a 

brief conclusion . 

2 . The Expected Utility Model 

In this and the following sections, we adopt the standard choice­

theoretic app r oach of assuming that the individual has a complete, 

transitive preference ordering over the se t D[O, M] of all cumula t ive 

dis tribution functions F(·) over the wealth interval (O , M]. As in 

standard consume r theory (see , for example , Debreu (1959 , Ch. 4)) , 

completeness and transitivity are sufficient to imply that we can 

represen t the individual ' s ranking by some real-valued preference 

functional V( · ) over 0(0 , M), so that the probability distribution F*(·) 

is weakly pr eferred to F(·) if and only if V(F*) ~ V(F). 

cases when we fi nd it useful t o consider the subset D{x
1

, 

(In those 

., x } of 
n 

probability dis tributions over the payoffs x1 < • < xn' we shall 

represent the typical distribution in D{x
1

, . , xn} by the vector of 

.. , pn) and represent the corresponding probabilities (p
1

, 

restriction of V( · ) t o D{x
1

, .• . , xn} by V(pl , ... , pn) ) . 



Now, if we in addition assume that the individual satisfies the 

independence axiom, it follows (see, e.g . , Herstein & Milnor (1953)) 

that V( · ) or some monotonic transformation of V(•) will possess the 

functional form V(•) : /U(x)dF(x) (or in the discrete case, 

V(p
1

, •• • , pn) : 1:U(xi, pi), i.e., the mathematical expectation of the 

von Neumann-Morgenstern utility function U(·) with respect to F(·) 

(or (p
1

, • • • , pn)). In other words, V ( ·) can be represented as a 

linear functional of F(·) (or in the discrete case, as a linear function 

of (p
1

, ... , pn)), hence the phrase that the preferences of an 

expected utility maximizer are "linear in the probabilities." In this 

case it is also clear that the distribution F*( · ) will be weakly 

preferred to F(•) if and only if /U(x)dF*(x) > /U(x)dF(x) , or 

equivalently, if and only if 

/U(x)[dF*(x) - dF(x)] > 0. (1) 

For purposes of illustration, it i s useful to consider the subse t 

O{x
1

, x
2

, x
3

} of all probability distributions ove r the wealth levels 

xl < 

unit 

p = 
2 

x2 < x
3 

in [O, M], which may be represented by the points in the 

triangle in the (p
1

, p
3

) plane, as in Figure l (with p
2 

defined by 

(1 - pl - p
3
). Because of the " linearity" property of expected 

utility maximizers, s uch individuals' indif ference curves in this space 

(the solid lines in Figure l) will be parallel straight lines , with 

preferred indifference curves lying to the northwest. 5 The dashed line s 

in the figure are what may be termed "iso-expected value loci," i.e., 

loci of probability distributions with the same mean . Northeast move­

ments along such loci, s ince they represent changes in the distribution 

which preserve the mean but increase the probability of the wor s t and 

best outcomes (i.e., increase p
1 

and p
3

_at the expense of p
2

) , are seen 

to be precisely the set of "mean preserving spreads" in the sense of 

Rothschild & Stigli tz (1970). Thus, if the indifference curves are 

steeper than these loci, as in Figure l, mean preserving spreads will 
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always make the individual worse off, or in other words, the individual 

is risk averse. Conversely, if the indif fe rence curves are flatter than 

the iso-expected value loci, the individual will be risk loving in the 

sense that mean preserving spreads will be preferred. 

0 

FIGURE 1 

In fact, there i s even a s tronger sense in which the steepness of 

the indifference curves provides a measure of risk aversion. Solving 

the equation in footnote 5, we ob t a in that the slope of these indi ff er-

ence curves i s equal to 

(U(x
3

) - U(x
2
)) - (U(x2) - U(x 1)) 

U(x
3

) - U(x
2

) + l. 
(2) 

Neglecting the addition of the constant 1, this expression ( nega tive ~he 

ratio of a second difference of utility to a fi r st difference) may be 

thought of a s the discrete analogue of the Arrow-Pratt measure 

- U' ' (x) / U'(x) , and indeed, Pratt (1964 , Thm. 1) has shown tha t they a r e 



related in that the more concave the utility function, the greater the 

value of expression (2) f or fixed x
1

, x
2

, and x
3

. Thus, given two 

expected utility maximizers , the one with the steeper indifference 

curves will be t he more risk averse over D{x
1

, x2 , x
3

}. 

3. Generalized Expected Utility Analysis: A Brief Overview 

Although there certainly have been studies which have found indi­

vidual prefere nces over unce rtain and ce rtain prospects which viola te 

b h . . . d 1 6 b f h 1 d ot transitivity an comp eteness , y ar t e argest an most sys tem-

atic body of empirical results are thos e r evealing systematic violations 

of the independence axiom. Of the three, it is in some sense fortunate 

that it i s independence a nd not the other two which is most frequently 

violated--while dropping either transitivity or completeness would le~d 

t o a fundamental break with the tradi t ional theory of choice, dropping 

independence (i . e. , linearity of V( · )) amounts to simply changing the 

functional form of the preference functional, something which is done 

frequently in economic theory and econometrics . 

One of the virtues of generalized expected utility analys i s is that 

it can be developed with ext r emely weak assumptions on the functional 

form of the preference functional. Specifically , we need on l y assume 

that V( •) is a differentiable functional of F( · ) ( i.e., " smooth in the 

probabilities" ), which is equivalent to assuming that indifference 

curves in D{x
1

, x
2

, x
3

} (or more generally , indifference hypersurfaces 

in D(O, M] ) are smoo th (i .e., are differentiable manifolds) . Different­

iability or smoo thness of prefe rences is considered to be an extremely 

weak assumption in s tandard choice theory, and it is sufficiently weak 

so that many ( though not al l) of t he functional fo rms which have been 

offered to replace expected utility are s pecial cases of it (see below). 

Algebraical l y , the assumption that the preference f unctional~( · ) 

is differentiable in F( · ) means that we can take the us ual first order 

Taylor expansion of V( • ) about a ny point in its domain, i . e . , about a ny 
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distribution F (·) in D[O, M], so that for each F (•) in D[O, M] there 
0 0 

will exist some linear functional ~( · · F ) (linear in its first • 0 

argumen t ) such that 

V(F) - V(F) =HF- F; F) + o<llF - F II>. 
0 0 0 0 

(3) 

where, as in s tandard calculus , o(•) denotes a function of higher order 

than its argument, and 11 • 11 is 
1 the L norm, a s tandard measure of the 

"distance" between two functions . 

Because ~( F - F
0

; F
0

) is linear in its first a rgument , it can be 

represented as the expectation of some function with re s pect to 

F(·) - F ( •) , So that we ma y rewrite (3) as 
0 

V(F) - V(F) = JU(x; F )[dF(x) - dF (x)] + o<l IF - F 11>. (4) 
0 0 0 0 

where the notation U(•; F) is used to denote the depende nce of 
. 0 

~( · ; F ), and hence its integral representation, upon the function 
0 

F ( · ), i .e., upon the point in the domain about which we a re taking the 
0 

Taylor expansion . As in s t a ndard calculus , we know that fo r 

diffe rentia l movement s about the domain of V( · ) , (i . e., for changes from 

F (') to some "very close" F(- )), the first order or linear term in (4) 
0 

will dominate the higher order term, so that the individual with 

preference functional V(·) wi ll rank di ffe rential shift s from F ( · ) 
0 

acco rding to the sign of the term !U(x ; F )[dF(x) - dF (x)] . Recalling 
0 0 

expression ( 1), however, we see that this is precisely the same r anking 

that would be used by an expected ut i lity maximizer with a utility 

function U( ·; F ) . Of course in some sense this is no su rprise : 
0 

preferences which are "smooth" (i.e ., differentiable) are locally 

linear, and we know that in ranking probability distributions, linearity 

i s equivalent to expected utility maximization. 



Thus, even though an individual with smooth preference function 

V(•) will not necessarily satisfy the independence axiom and possesses 

no "global" von Neumann-Morgenstern utility function, we see that at 

each distribution F (·) in D[O, M] there will exist a "local utility 
0 

function" U(·; F) over [O, M] which represents the individual's prefer­
o 

ences at F (·). Because of the analogy between equations (1) and (4), 
0 

it is clear that if U(x; F ) is increasing in x then the individual will 
0 

prefer all differential first order stochastically dominating shifts 

from F ( · ) , 7 and U(x; F) will be concave in x if and only if the 
0 0 

individual is made worse off by all diffe rential .mean preserving spreads 

about F ( · ) (i.e ., is locally risk averse in the neighborhood of F( · )) . 
0 

Of course, as. with any linear approximation to a differentiable 

function, the ranking determined by the first order linear term (i.e. , 

by the local utility function U(·; F )) will typically not correspond 
. 0 

exactly to the ranking determined by V(•) over any open neighborhood 

of F (•) in D[O, M]. However, and again by analogy with standard 
0 

calculus, it is possible to completely and exactly reconstruct the 

preference functional from knowledge of what its linear app r oximations 

(i .e., derivatives) look like at every point in the domain, by use of 

the Fundamental Theorem of Integral Calculus. To do this, we take any 

path of the form {F( ·; a) la e: [O, l]} from F (-) t o F( · ) (no t 
0 

necessarily "near" F ( · )) so that 0 , F(-; 0) = F
0

(•) and F(-; 1) = F(-), 

and use the fact that V(F) - V(F ) will be simply the integral of 
0 

dV(F(·; a))/da as a runs from 0 to 1. In the case of the "straight 

line" path F(·; a): aF( · ) + (l - a)F (-) , for example, we have 
0 

V(F) - V(F ) 
0 

l 
J dV(F(·; a)) da 

0 da 

l 
J {JU(x ; F(·; a))[dF(x) - dF (x)]}da, 

0 
0 

(S) 
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since the derivative of the higher order term in (4) as a increases will 

be zero (see Machina (1982a) for details). 

Besides yielding a way to completely reconstruct the preference 

functional V(·) from knowledge of the local utility functions, equation 

(S) yields insight on how generalized expected utility analysis may be 

used to obtain global characterizations of behavior in terms of 

"expected utility" type conditions on the local utility func tions . For 

example, say that F
1
(·) differs from F

0
( · ) by a "large" mean preserving 

spread. If the local utility functions U( ·; F) are concave in x at each 

F(•), then it follows that the term in curled brackets in (5) will be 

nonpositive for each a , so that V( · ) will weakly prefer F
1 

( • ) to F
0

( · ) . 

Indeed, it is shown formally in Machina (19.82a) that the "expect ed 

utility" condition of concavity of (all) the local utility functions is 

equivalent to the individual being averse to all mean 'preserving 

spreads, or in other words, to the individual being globally risk 

averse. 

A similar method was used in Machina (1982a) to prove two other 

extensions of "expected utility" analysis to the case of individuals 

with preference functionals which do not necessarily satisfy the inde­

pendence axiom . Using straight line paths as in the previous paragraph, 

it is straightforward to show that the individual's preferences will 

exhibit "monotonicity," i.e ., preference for first order stochastically 

dominating distributions, if and only if all the local utility functions 

are increasing in x. The second result ex t ends the wel l known "Arrow­

Pratt theorem" of comparative ri s k aversion: if we form the natural 

analogue t o the Arrow-Pratt measure in our more general se tting, i.e ., 

-u
11

Cx; F) /U
1 
(x; F) (where subscripts denote successive partial deriva­

tives with respect to x), we have that one individual will be everywhere 

more risk averse than another in the standard behavioral senses (see 

Machina (1982a)) if and only if the "generalized Arrow-Pratt term" of 

the first individual is everywhere higher than that of the second, or 



equivalently, if and only if the first individual's local utility 

functions are everywhere more concave than the second's. 

Note that while these types of ex tended expected utility theorems 

might seem "more complex" than those of expected utility theory since 

they involve checking all the local utility functions rather than a 

single von Neumann-Morgenstern utility function, they are in fact " less 

complex" in that the expected utility theorems may be thought of as 

derived from the more general theorems with the add itional restric tion 

that all of the local utility functions a r e identical. 

The above algebraic arguments admit of a nice graphical interpre ta­

tion in terms of the unit triangle diagram of Sec tion 2 above. Since we 

are now considering preferences over the s ubset D{x
1

, x
2

, x
3

} of 

0(0, M], we shall use the symbol p = (p
1 

, p2 , p
3 

) instead of 
0 ,o , o , o 

F ( · ) to denote the probability distribution about which we expand the 
0 

preference functional. Figure 2 illustrates the general principle that 

if preferences (and hence indiffe rence curves) are smooth, then there 

will exist a "tangent" (i.e., linear approximating) expected utility 

0 

FIGURE 2 FIGURE 3 
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preference field to the individual's indifference curves at each dis­

tribution, as illustrated by the parallel straight lines which are 

tangent to the individual's actual (nonlinear) indifference curves at 

p . Figure 3 illustrates the above result that global risk aversion is 
0 

equivalent to all the local utility functions being concave. Graphi-

cally, it is clear that what is necessary and sufficient for all mean 

preserving spreads (i.e., all northeast movements a long iso-expected 

value lines) to make the individual worse off is not that the indiffer­

ence curves necessarily be linear, but rather that they be everywhere 

steeper than the (dashed) iso~expected value lines. Of course, this i s 

equivalent to the condition that the tangents to the indiffe r ence curves 

be everywhere steeper, which from the a nalysis of Section 2 is seen t o . 

be equivalent to the condition that all the local utility func tions are 

concave in x . Finally, we could illustrate the above generalized 

Arrow-Pratt theorem on comparative risk aversion by a pair of nonlinear 

preference fields, one of whose indifference curves always intersected 

the other's from below (i.e., were everywhere steeper). 

Having developed the above results for the case of general differ­

entiable preference functional s , it is useful to see how they might be 

applied to specific special cases, i .e., t o specific nonlinear func­

tional forms. Pursuing the Taylor expansion analogy fur t her , we see 

that the simples t generalization of "linearity in the probabilities" is 

"quad r a tic in the probabilities," or in other wo rd s , a functional fo rm 

such as 

V ( F) 
l 2 

- fR(x)dF(x) + 2 [JS(x)dF (x) ] , (6) 

whose local utility function can be calculated to be 

U (x; F) R(x) + S(x)[!S(z)dF(z)]. ( 7) 



Thus , if R{ · ) and S( · ) a r e bo th positive, increasing , and concave , 

i t follows that V( · ) will exhibit both monotonicity and global risk 

aversion , and conditions under which one preference functi onal of this 

fo rm was eve r ywhe r e mo r e risk averse than another could similarly be 

de termi ned. Tabl e . l presents several s pec i fic f unctional forms whi ch 

have been sugges t ed by r esearche r s which a r e examples of smooth prefer­

ence functionals, together with the i r calculated local utility 

functions. 

It is clear that many more generalizations of "expected utility" 

type results to non- expected utility maximizers can be derived. For 

some examples, the r eader is refe rre d t o Machina (1982a, 1982b , 1982c) . 

We conclude this section with remarks on two issues which seem to have 

caused a lot of confusion in the " expected utility vs. non-expected 

ut ility" debate, namely whether non-expected ut ili t y maximizers can 

necessarily be tricked into " making book against t hemselves , " and the 

na ture of " car dinali t y vs . or dinal i t y of pr eferences" in the context of 

expected utili t y vs . non-expect ed utili t y ma xi mization. 

There a r e two senses in which non-expected u t ility maximizers might 

make book against themselves (i .e ., violate a preference for fi rst order 

stochastic dominance in either a single choice or a sequence of 

choices). The first is that in certain t ypes of non- expected utility 

models , most notably the " subjective expected utility" or "prospec t 

theory" mod e l (Edwards ( 1955), Kahneman & Tversky (1979)), it is neces­

sarily true that the individual will strictly pref er some prospects to 

o t hers which stochastically dominate them (see Kahneman & Tversky (1979 , 

pp. 283-284)). Such a property of a model is clearly undesirable , and 

in the pr esent author's view, makes s uch models unacceptable as descrip­

tive theories (it is straightforward to show that this model i s not a 

special case of a general differentiable preference functional) . The 

second sense i s that if an individual has a differentiable preference 

functional and the local utility functions are not all increasing, then 

the individual will pref er some distributions to others which 

13 
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stochastically dominate them. Of course, the analogous result is also 

t rue of expected utility maximizers: to achieve a preference for firs t 

order stochastic dominance, we must posit utility functions, von 

Neumann-Morgenstern or local, which a re increasing in x. It is clea r 

that the real issue is whether there can exist non-expected utility 

maximizing individuals who will not make book against themselves , or 

whether making book against oneself is an intrinsic property of 

non-expected utility maximizers . The answer is easy--we know from above 

that individuals with increasing local utility functions always prefer 

stochastically dominating distributions in pairwise choices, and the 

transitivity which follows from the maximization of V( · ) ensu r es that 

sucb individuals will never violate s tochastic dominance preference in a 

sequence of choices either. 

The final issue is the apparent confusion that going from expected 

utility to non-expected utility involves going from "cardinal" prefer­

ences to "ordinal" preferences. This is not true. There are two 

related, though distinct, functions for the expected utility maximizer: 

the preference functional V( • ) over D[O , M] (which happens to be linear) 

and the von Neumann-Morgenstern utility functio~ U( · ) over [O, M]. The 

first of these is ord inal in that any monotonic transformation of V( ·) 

will represen t the same preference r a nking over D[O, M], and the second 

is cardinal in that another von Neumann-Morgenste rn utility function 

U*( · ) will represent the individual' s preferences if and only if 

U*(x) aU(x) + b (a > 0) . Precisely the same is true of non- expected 

utility maximizers: clea rly the preference functional V( · ) of a non­

expected utility maximizer is ordinal , and in Machina (1982a) it wa s 

shown that the local utility functions U( · ; F) a re cardinal in that 

another set of local utility functions will represent the same prefer­

ences if and only if they are a positive linear transformation of the 

original set . Thus, the preference functionals of all individuals, 

expected utility maximizing or otherwise, are always ordinal , and the 



utility functions, von Neumann- Morgens tern or l ocal , are a lways cardi­

nal. Whether or not the independence axiom is satisfied i s irrelevant. 

4. The Nature of Sys t ematic Vio l ations of the Independence Axiom 

One of the most important points made by · the defenders of expected 

utility theory is that dropping the independence axiom (i.e., linearity) 

a nd retaining only transitivity and completeness (and poss ibly smoo th­

ness) results in a model which possesses a lmos t no predictive power . We 

have seen in the previous section how generalized expec t ed ut ili t y 

a nalysis , while no t requiring s t rong behavioral assump tions in order to 

apply, nevertheless s till admi t s of refutable hypo t heses s u ch as mono­

tonicity and risk aversion, via assumptions on the local ut i lity func­

tions which are analogous to the expected utility conditions. In the 

present section we review the evidence on the four known t ypes of 

systematic violations of the independence axiom, and s how tha t they will 

all follow from a single assumption on the s hape of the individual 

preference functional V( · ), which we term "Hypo thesis II.
118 

Thus, in 

addit ion to the usual hypo theses of monotonicity and risk aversion, 

generali zed expected utility analysis admit s of an evidently quite 

powerfu l refu t able hypothesis on precisely how individuals violate the 

independence axi om, and one which has been substantially confirmed by 

the evidence so fa r . 

4.1 . The Common Consequence Effec t 

As an example of the firs t type of sys t ema tic viola tion of t he 

15 

axiom , the common consequence effec t, we sha ll consider the first, and 

s till mos t famous , specific example of this effect , namely the so-called 

"Allais Paradox" (see Allais (1952, p . 89) , Mor r ison (1967) , Moskowitz 

(1974) , Raiffa (1968), and Slavic & Tversky (1974) , for example) . First 

proposed by Allais in 1952 , this example consists of obtaining the 

subject's preference r anking ove r the two pairs of ri sky pr ospects 
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10% chance of $SM 

al: {100% chance of $1M versus a2: 89% chance of $1M 

1% chance of $ 0 

and 

10% chance of $SM 11% chance of $ lM 
a): 90% chance of $ 0 

versus a 4 : 89% chance of $ 0 

where $1M = $ 1,000,000. While it is eas y t o show that an expected 

utility maximizer would prefer either a
1 

a nd a4 ( if 

[.lOU (SM) - .llU(lM) + .OlU(O)] < 0) or else a2 and a) ( if 

[.lOU(SM) - .llU(lM) + . OlU (O)) > 0) , experimenters such as those list ed 

above have repeatedly found that the modal if not majority choice of 

subjects has been a
1 

and a
3

, which violates the independence axiom. 

The common consequence effect is really a generalization of the 

type of violation exhibited in the Allais Paradox, and involves choices 

between pairs of prospects of the form: 

probability 

prospect p 1 - p 

bl k C* 

b 2 a* C* 

b3 k c* . 

b4 a* c* 

where a*, C*, and c* are (pos sibly) random prospec t s wi th C* stochastic­

ally domina ting c*, and k i s a s ure outcome l y ing be twe en t he highest 

and l owest out comes of a*, so that, f o r example , b2 is a prospect with 



the same ultimate probabilities as a compound prospect yielding a p 

chance of a* and a l - p chance of C*. It is clear that an indiv idual 

satisfying the independence axiom would rank b
1 

and b
2 

the same as b
3 

and b4 : whether the "common consequence" was C* (as in the first pair) 

or c* (as in the second) would be "irrevelant." However , researchers 

such as Kahneman & Tversky (1979), MacCrimmon (1968) and MacCrimmon & 

Larsson (1979) as well as the five listed on the previous page have 

found a tendency for individuals to violate t he independence ax i om by 

preferring b
1 

to b
2 

and b
4 

to b
3 

in problems of this type ( this is the 

same type of behavior as exhibited in the Allais Paradox , since the 

prospects a
1

, a
2

, a
3

, and a
4 

there correspond to b
1

, b
2

, b
4

, and b
3

, 

respectively, with k = C* = $1M, c* = $0 , and a* a 10/ 11:1 / 11 chance of 

$SM or $0). In ·other words, the better (in the sense of stochastic 

dominance) the "common consequence," the more risk averse the choice 

(since a* is riskier thank). 

4.2 . The Common Ratio Effect 

A second t ype of sys tematic violation of the independence axiom, 

the so- called " common ratio effect," also follows f r om an early example 

of Alla is' (Alla is ( 1962, p. 91)) and includes the "Bergen Paradox" of 

Hagen (1979) and the " ce rtainty effect" of Kahneman & Tversky (1979) as 

special cases . This effect evolves rankings ove r pairs of prospects of 

the form: 

{p chance of $X {q c hance of $Y 
cl : chance of $0 versus c2 : of $0 l - p l - q chance 

and 

{ap chance of $X {aq c hance of $Y 
c3: chance of $0 

versus c4 : of $0 l - ap l - aq chance 

where p > q, X < Y, and 0 < a < l ( the term "common ratio" derives f r om 

the equality of prob(X) /p rob (Y) in c
1 

vs. c
2 

and c3 vs . c4) . Once 

again, it is clear tha t an individual satisfying the independence axiom 

17 
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would rank c
1 

and c
2 

the same as c
3 

and c
4

, however, r esearchers have 

fo und a systematic tendency for subjects to depart f r om the independence 

axiom by preferring c
1 

to c
2 

and c
4 

to c
3

. Thus, Kahnernan & Tversky 

(1979) found, for example, that while 86% of their subjects preferred a 

.90:. 10 chance of $3 , 000 or $0 t o a .4S: . SS chance of $6,000 or $0 , 73% 

preferred a .001:.999 chance of $6 , 000 or $0 to a . 002 : .998 chance of 

$3 , 000 or $0. Besides Kahnernan and Tversky, other researchers who have 

f ound this effect are Hagen (1979 , pp. 28S-296) , MacCrirnmon & Larsson 

(1979 , pp. 3S0- 3S9) , and Tversky (197S). 

4 . 3 . Over sensitivi t y to Changes in Small Probability- out lying Events 

A third t ype of systematic violation of the independen~e axiom i s 

t hat , relative to the "lineari t y" pr operty of expec t ed utility, indi­

viduals tend to exhib i t what may be termed an "oversensitivity to 

changes in the probabilities of small probability- outlying events . " 

While the fo rmalization of this notion requires bo th a precise defini­

tion of what it means for an individual t o become " mo r e sensi tive" to 

changes in the probability of an event (relative to changes in the 

probabilities of certain o ther events) as weli as what it means for an 

event to become "more outlying" relative to other events, we begin with 

an intuitive discussion of this notion, using the Allais Paradox of 

Section 4.1 as an example . 

Note that, in the Allais example, the changes from prospects a
1 

to 

a
2 

and f r om a
4 

to a
3 

both consist of a (beneficial) shift of . 10 units 

of probability mass from the ou t come $1M t o the ou tcome $SM and a 

(detrimental) shif t of .01 units from $1 to $0 . Since the typical 

individual prefers a
1 

to a
2

, we see that when the initial di s tribution 

is a
1

, i.e. , when the outcome $0 is a l ow probability event , the 

increase in its pr obabili t y (a t the expense of the preferre d ou t come 

$1M) is not compensated for by the beneficial shift of mass up t o $SM . 

However , when the initial distribution is a 4 , we see that the event $0 

is no longer s uch a low probability-outlying event (s ince its 



probability is now . 89) a nd we find that the individual is no longer as 

sensitive t o the increase in its probabil ity, and in t he sense that t he 

beneficial shif t fr om $ 1M t o $SM is now enough to compensate and the 

change t o a
3 

is prefe rred . In o ther words, when the initial dis­

tribution changed in a manner which made the out come $0 "less outlying," 

the individual became less sensitive to c hanges in its probability 

r ela tive to changes in the probabilities of $SM and $1M. 

There is an alterna tive way to view this example which helps bring 

out a nother aspec t of the notion of " outlyingness ." Note that the 

change in the initial dis t ribution from a
1 

t o a
4 

may be thought of as 

making the event $SM "mo r e outlying" relative to the events $1M and $0 

since , although the probability of the event $SM hasn't changed , the 

bulk of the distribution has moved far ther away f r om the even t $SM. And 

in response , the individual has become more sensi tive to changes in the 

probability of $SM, since the beneficial increase in its probability (at 

the expense of $1M) which was not enough t o outweigh the detrimental 

shift when the initial distribution was a l is now enough to outweigh it 

when t he initial distribution is a
4

. 

The above di scussion serves as motivation for our formalitizations 

of the notions of " changes in sensitivi t y" and "outlyingness ." Noting 

t hat any change in a probability distribution must consist of one or 

more "shifts" of pr obability mass from one event to another, we define 

the marginal rate of substitution MRS(x2 + x
3

, x2 + x
1

; F) as the amount 

of probability mass which must be shifted from payoff level x2 to x
3 

per 

unit amount shifted from x
2 

t o x
1 

i n order to leave the individual 

indifferent, when the amounts s hifted are i nfinitesimally small and the 

initial distribution is F(· ). (In the following discussion, we assume 

x
1 

< x
2 

< x
3

. ) Then , the notion of increased sensitivity in the above 

discussion of the Allais Paradox may be formalized by saying that a 

change in the initial distribution F( · ) makes the individual more 

sensitive to chang~s in the probability of xl versus changes in the 
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probabilities of x2 and x
3 

(and equivalently, less sensitive to changes 

in the probability of x
3 

relative to changes in the probabilities of 

~l and x2l if the change serves to raise the value of MRS(x2 + x
3

, 

x
2 

+ x
1

; F) (i .e . , the individual is more sensitive to changes in the 

probability of x
1 

if a shift of probability mass from the intermediate 

value x2 to x1 now requires more of a compensating shift of mass from x2 
up to x

3
, and similarly for the case of a decreased sensitivity to 

changes in the probability of x
3 

relative to changes in the probabil­

ities of x 1 and x2). 

Again using the discussion of the Allais Paradox as motivation, we 

will say that any rightward shift of mass within the interval [x
2

, 00 ) 

serves to change - the initial distribution in a manner which makes the 

event x
3 

less outlying relative to events x
1 

and x
2

, since rightward 

shifts of mass within the interval [x
2

, x
3

] clearly move the dis­

tribution away from x
1 

and x
2 

and toward x
3

, and rightward shifts within 

the interval [x
3

, 00) also serve to make x
3 

less of a "large" outcome 

relative to the bulk of the distribution, since they result in x
3 

being 

farther from the "right edge" of the distribution. Similarly, leftward 

shifts of mass within the interval ( - 00 , x2 ] serve to make the event x1 
less outlying relative to the events x2 and x

3
. Thus, our formalization 

of the "oversensitivity condition" is: 

any change in the initial distribution whic h serves to make an 
event more (less) outlying relative to a pair of other event s 
serves to change the relevant marginal rate of s ubstitution so 
as to make the individual more (less) sensitive to changes in 
the probability of that event relative to changes in the 
probabilities of the other two events. 

While us ing a no tion (the marginal rate of s ubstitut ion ) which is 

not typically seen in the analysis of preferences over probability 

distributions, the above condition is very mu ch in the s pirit of the 

Hicks -Allen "diminis hing marginal rate of s ubsti tution" assumption of 

nons tochastic demand theory, in that it relat es changes in a fundamental 

marginal rate of substitution to changes in the " current consumption 

bundle" (in this case, the initial distribution). Furthermore, this 



condition may be shown to be equivalent to the common consequence effect 

and to imply the common ratio effect (see Machina (1982a)), and in 

Section 4.5 below will be shown to possess a nice graphical in t e rp reta­

tion in terms of the indifference curves in the unit t riangle diagram. 

4.4 . The Utility Evaluation Ef fec t 

The final type of systematic violation of the independence axiom 

may be termed the "utility evaluation effect ." It is well-known that 

there are several ways of evaluating or " assessing" the von Neumann­

Morgenstern utility function of an expec t ed ut ility maximizer, all of 

which, according to the theory, will yield the same function subject to 

positive l inear transformations (see , fo r example , Farquhar (1982)). 

However, in actual practice different techniques have "recovered" 

utility functions from the same individual which differ in systematic 

ways . 

One of the mo st frequently used asses sment methods is termed the 

"fractile met hod" (see ·McCord & de Neufville (1982)). This method 

begins by arbitrarily defining U(O) = 0 and U(M) = l for some positive 

M, and picking some fixed pr obability p between ze ro and unity. The 

first step in the me thod then consists of determining the individual's 

certain t y equivalent of a p:l - p chance of Mor 0 . If we term this 

cer tainty equivalent c
1

, it follows f r om the equation 

U(c
1
) = pU(M) + (1 - p)U (O) that U(c 1) will have the value p. The 

second and third step consists of finding the certain t y equivalent c 2 o f 
- - - 2 

a p:l - p chance of c
1 

and 0 (so that U(c2) = pU(c 1) + (1 - p)U(O) = p) 

and the ce rtainty equivalent cJ of a p:l - p chance of Mor c 1 (so that 

U(cJ) = pU(M) + (1 - p)U (c
1

) = p + (1 - p)p). Further points on the 

utility curve are determined by finding the certainty equivalents of a 
- - - - - -
p:l - p cha nce of c

2 
or 0 , a p:l - p chance of c 1 or c2 , a p : l - p 

chance of cJ or c
1

, a p :l - p chance of Mor cJ, etc., always inter­

polating by let ting p be the probability of the higher of the two 

payoffs. Thus, if p = 1/2 , the first s t ep would find that monetary 
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value whose utility was 1/2, the second and third steps would find the 

values with utility levels 1/4 and 3/4 , and so on through 1/8 , 3/8, 5/8, 

7/8, 1/16, 3/16 , etc. Let uP( · ) denote the utility function derived in 

this way, for a given value of p. 
Of course, if the individual is an expected utility maximizer, this 

method ought to recover the same utility function for each value of p 

used, i.e., the functions u112 ( · ) and u113 ( · ) ough t to be identical, 

since both would have the same normalization U(O) = 0 and U(M) = 1. 

However, Karmarkar (1974) discovered an almost universal tendency for 
p p* -the recovered U (•) to lie above the U (·) curve whenever p was higher 

than p*. 9 This same effect was found (though less markedly) by McCord & 

de Neufville (1982) and can also be recovered from the expe rimental data 

presented by Allais (1979).lO Once again , individuals are seen to be 

evidently departing from the expected utility hypothesis of linearity in 

a systematic manner. 

4.5. Hypothesis II 

The previous subsections have presented four types of systematic 

violations of the independence axiom that have been found by empirical 

researchers. Needless to say , if these four types of behavior were 

entirely unrelated (or even mutually contradictory), then supporters of 

expected utility theory would have a valid point in maintaining that any 

generalization of expected utility designed to accommoda t e them would be 

nothing more than an ad hoc extension of the model in each of these four 

directions. 

However, it turns ou t that not only are each of the above four 

aspects of behavior compatible , but they all follow from a sing!~ 

assumption on the shape of the preference functional V( · ). Thus , the 

data are telling us that not only do individua l s ' preferences depart 

from linearity, but they do so in a single systematic manner , which in 

addition may be modelled quite easily a nd which (expected utility 

theoris ts no te) leads to further refutable restrictions on behavior. 



As in standa rd calculus, one particularly compact way of specifying 

the nature of a nonlinearity in a preference functiona l is to specify 

how the derivative (i.e., the local utility function) of the functiona l 

varies as we move about the domain D[O, M]. Our formal hypothesis , 

termed "Hypothesis II , 11 11 basically states that as we move from one 

probabil ity distribution in D[O, M] to a no ther which (first order) 

stochas tically dominates it , the local utility func tion becomes more 

concave at each point x, or stated formally in terms of the Ar r ow-Pratt 

r atio -u
11 

(x ; F)/U
1 

(x ; F): 

Hypo thesis II : If the distribution F*(·) first orde r 

s t ochastically dominates F( · ) , then 

for all x £ [O , M). 

Hypothesis II possesses a straightforward graphical in t erpretation 

in terms of the indifference curves in the unit triangle diagr am . Note 

first that the set of all probability distributions in the triangle 

which s t ochastically domina t e a given dis tribution corresponds to all 

the points which are northwest of the point representing the 

distribution . 12 According to Hypothesis II , therefore, the local 

ut ility f unctions at these northwest distributions will be more concave. 

However, we know from Section 3 that the more concave the (von 

Neumann-Morgenste r n or local) utility f un c tion , the steeper the s lope of 

the indifference curves through the point . Accordingly, Hypothesis II 

implies that indifference curves in the unit tr iangle are "fanned ou t" 

as in Figure 4, with steepe r curves lying to the northwest and flatter 

curves lying to the southeast . 
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Mathematical Form 

Linear {i.e ., 
expec ted utility) 

Hean & variance of util ity 
(special case of s imple & 
general quadratic) 

Simpl e quadrati c (spec ial 
case of general quadrati c) 

General quadra tic 

First three moment s 
of utility 

Rational (i.e. , 
ratio o f two 
linear forms ) 

TABLE 1--LOCAL UTILITY FUNCTIONS FOR VARIOUS FUNCTIONAL FORMS OF V( ·) 

Reference* 

von Neuma nn & Morgens te r n 
( 1944) 

Allais (1952 , p. 108) 

Hachina (1982a, p . 295) 

Hachina (1982a, fn . 45) 

Hagen (1979, p . 272) 

Chew & HacCrimmon ( 1979) 
Fi s hburn (198lb) 
Bolker ( 1967) 

V(F) 

/U{x)dF(x) 

u - A/{U(x) - u) 2dF(x) 

(u • /U{x)dF(x)) 

/R{x)dF(x) 1 2 
! 2 [/S(x)df(x)) 

//T(x , z)dF(x)dF(z) 

(T(x , z) - T(z , x)) 

u + 
2 3 f(s , m ) 

(u • /U(x)dF(x), 

s 2 • /(U(x) - u) 2dF(x), 

m3 • /{U(x) - u) 3dF(x)) 

/w(x)dF(x) 
/a{x)dF(x) 

U (x; F) 

U(x) 

U{x) - AU(x) 2 
+ 2AU{x)u 

R(x) ! S(x)/S(z)dF(z) 

2/T(x, z)dF( z) 

2 U(x) + f 1·(U (x) - 2U(x)u) 

2 
+ f 2 ·U(x)(U(x) - 3U(x)u 

+ Ju
2 - Js

2J 

w(x) - V(F)a(x)** 
/a{z)dF(z) 

*The referenc~ c ited f o r each fun c tiona l f orm is not necessar ily the first appearance of that form, nor shou ld it be infe rred that the 
r es pective author necessa rily "pre f e r s" tha t f o nn over othe r s they may have presented. In some ins tances I have slightly changed the exact 
f o rm as given in the refe r ence f o r grea t e r simplic ity. 

••1 am indebt ed t o Ke nne th MacC rimmon (private correspond ence) f o r the derivation of the local utility function of the rational fonn. The 
expression in th e Table di ffer s f rom hi s due t o a diffe rence in notation. 
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FIGURE 4 

To get a n idea of how Hypothesis II implies the common consequence 

effect, let us refer back to its general f o rmula tion ( the t ab l e in 

Section 4.1) and consider the s pecial case wh en the value k and the 

payoff levels of the prospects c* , C*, and a* are 

all e lements of {x
1

, x
2

, x
3

} fo r some x1 < x2 < x3 , so that the 

prospects b
1

, b
2

, b
3

, and b
4 

are all in the se t D{x1 , x2 , x3 } and hence 

may be plotted in the unit triangle diagram . In s uch a case it is 

straightforward to show that the four pro spec t s will always fo r m a 

parallelogram with b
2 

and b
4 

to the northeast of b 1 and b3 respectively, 

and the segment b~b; parailel t o and to the north and/or west of b;bz , 
e.g., as shown in Figure S . In this case it is easy to see how the 

" fanning out" property of indifference curves implies by Hypothesis 11 

would lead a n indiv idua l t o violate t he indepe ndence axiom by prefer r ing 

b
1 

t o b
2 

a nd b
4 

to b
3

, which is prec i sely the common consequence effec t. 

In Machina (1982a) it was shown that Hypothesis Il i s in fact equivalen t 

to the common consequence effect in the more gene r al case when c*, C*, 

and a* may be a r bitrary (poss ibly continuous) prospects . 
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FIGURE 5 FIGURE 6 

A s imilar graphical analysis demons trates how Hypothesis II i mplies 

the second type of systemat ic violation of the independence axiom , 

namely the common ratio effect . Letting x 1 = 0 , x2 = X, and x3 = Y in 

the formulation of Section 4 . 2 a nd plotting the prospects c 1 , c 2, c3 , c4 
in the unit triangle diagram , we once again find that c2 and c4 ar e 

northeast of Cl and CJ respectively and that C~C; is parallel to and the 

northeast of c;cz , as seen in Figure 6 . And similar l y, it is clear how 

the " fanning out" property implied by Hypothesis II would lead the 

individual to violate the independence ax i om by prefer ring c 1 to c 2 and 

c
4 

to c
3

, i . e . , exhibit the common ratio effect. 

Hypothesis II's implication that the individual wi ll be systemat­

ically ove r sensitive to changes in the pr obab ilities of low probability­

outlying events may be seen quite simply from Figure 4 above . We begin 

by noting that, just as in nonstochastic demand theory , the marginal 

rate of s ubstitution MRS(x
2 

+ x
3

, x
2 

+ x
1

; F) is precisely equal to the 



slope of the indifference curve t hrough the point corr esponding to the 

distribution F(·) in the diagram, since rightward and upward movements 

in the diagram correspond to the shifts x
2 

+ x
3 

and x
2 

+ x
1 

res pec­

tively . Unde r the fanning out implication of Hypothesis II, we find 

that the indivi dual is most sensitive to changes in the probability of 

x 1 relative t o changes in the probabilities of x2 and x
3 

(i.e., 

MRS Cx
2 

+ x
3

, x
2 

+ x
1

; F) is the highest) near the left edge of the 

triangle, or in other words precisely when x
1 

is a low probability even t 

(i.e., p1 is low). Note also that moving straight up in the triangle, 

which does not change p1 but increases p
3 

at the expense of p2 , also 

serves to make the event x
1 

more outlying (since it moves probability 

mass further away from x 1) and indeed is seen to also increase the 

individual's sensitivity to changes in p1 , as measured by the slope of 

the indifference curves . An analogous argument applies to the individ­

ual 's sensitivity to changes in p
3 

relative to changes in p
1 

and p
2

. 

Finally, we may also use the uni t triangle diagram to illustrate 

how ·Hypothesis II implies the utility evaluation effect. If we were to 

take an individual sa tisfying Hypothesis II and try to "evaluate" his or 

her u112 (·) curve, the first step (as in Section 4.4) would be to 

determine the certainty equivalen t cl of a 1/2: 1/2 chance of M or 0 . 

Consider now Figure 7, where we pick x1 = 0, x2 = c 1, and x) M, so 

that the origin (i.e . ' the sure prospect cl) is seen to lie on the same 

indifference curve as the prospect whi ch offers a 1/2: 1/2 chance of Mor 

0. We then find the s ure amount c 2 which is indiffe rent to a 1/ 2 :1 /2 

chance of c
1 

or 0, and the amount c
3 

which is indifferent to a 1/2:1 /2 

chance of Mand c
1 

(see Figure 7). These three points, with t he ir 

associated u112 (·) values of 1/4, 1/2, and 3/4 , a r e plotted in Figure 8 

as points on the u112 ( · ) curve . 
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1/2 :t/2 chance ot Ill or Ci l-c1l 

pl\ 1 /o 
sure ct\Qoct of ti 1/ 2:1/2 chance of cl orO(- czl 

(-• de no tu indiffmnc.el 

FIGURE 7 

Now , t o eva luate the fi r s t poin t on t he u114 C· ) cu rve, we find the 

certai nty equivalent ci of a 1/4:3/4 chance of M or 0 . However, if we 

note whe r e thi s l atte r prospect lies in Figure 7, we see that it will be 

preferred to a 1/2:1/2 chance of c
1 

or 0 , so tha t its certainty equiva­

lent cl will be h i gher than c 2 . This of course implies that u
112

( · ) 

will attain a value of 1/4 before u114 ( · ) does , so that u112
( · ) lies 

above u114 ( · ) i n this region. Similarly , the fir s t po int on the u314
C· ) 

cu rve wi ll be t he value ci ' which is indifferent to a 3/4 :1 /4 chance of 

M or 0 , and again it is seen from Figure 7 t ha t since this prospect will 

be less pr eferred than a 1/2:1 /2 chance of Mor cl , ci' must be less 

t han c
3

, wh i ch i mplies that u314 C·) lies above u1 2
(·) in this range 

(see Figu re 8) . Thi s analys is may be extended to a further evaluation 

and comparison of t he t hr ee "evaluated utility functions" in a manner 

which continues to exhibit the utility evaluatj on effect . 



FIGURE 8 

Accordingly, it is~ true, as some expected utility defenders 

might suppose, that the violations of the independence axiom which 

researchers have found are r andom and unsystematic departures from 

expected utility, bu t rather, individuals have been found to depart from 

expected utility in a systema t ic and unified manner, as captured by 

Hypo t hesis II in gene r al and by the " fanning out" property in the 

s pecial case of preferences over three-outcome distributions. 

4.6 . Further Predictions and Policy Implications of Hypothesis 11 

It is easy t o see that Hypothesis II possesses that final r equ ired 

proper t y of any replacement of the expected utility hypothesis , namely 

the ability to gene r a t e further r efutable predictions and policy im­

plications . Of course, since each of the four types of systematic 

violations of expec ted utility discussed above is a general principle 

r a the r than a specif i c example , each admits of an infinite number of 

s pecific examples wh i ch serve as refutable predictions . As a new type 

of example, I would like to conside r a problem posed by Professor Arrow 

29 



30 

in his superb and thought provoking Plenary Talk in this conference. 

Arrow noted that one of the canonical problems in choice under uncer­

tainty involves the trade-off between the probability and the outcome 

value of an unfortunate event, and offered the specific example of an 

individual with initial wealth $W facing a p probability of a loss of $X 

(with a 1 - p probability of no loss). A natural question to ask here 

is how does the individual' s marginal rate of substitution between p and 

X depend upon their existing values? Defining expected utility 

~(p , X; W) : pU(W - X) + (1 - p)U(W), we get that this marginal rate of 

substitu tion is 

MRS X p, 
E..e.1 
dX ~ 

= 
-pU'(W - X) 

U(W) - U(W - X) (8) 

In his talk, Arrow noted that this expected utility formulation implied 

a possibly quite useful restriction on behavior, namely that, fixing X 

and W, the marginal rate of substitution between p and X is proportional 

top, i.e., to the probability of the unfortunate event. He quite 

rightly noted that it would be possible to exploit this property t o make 

important predictions as well as policy suggestions, say in determining 

the trade-off between the probability and severeness of a nuclea r acci­

dent, and also noted that any acceptable alternative to expected utility 

would have to pos sess this same type of ability. 

To see how generalized expected util ity analysis, and more particu­

larly Hypothesis II, might be applied t o this problem , we replace the 

expected utility maximand ~(p , X; W) with the more general maxirnand 

V(pGW- X + ( 1 - p)GW) , where Ge s tands for the distribution with unit 

mass at c , so that pGW-X + (1 - p)GW represents the distribution in 

question. We then have from equation (4) that 



MRS X p, ~ I dX V 

(after some manipulation) 

w 
-p[ f 

W-X 

z 
exp[- f 

W-X 

(9) 

As usual in gene ralized expec ted utility analysis, we see the formal 

analogy with the expected utility case: the marg i nal ra t e of substi­

tution in (9) is identical to that in (8) with the 

von Neumann-Morgenstern utility func tion U( · ) replaced by the local 

utility function U(·; F) when F = pGW-X + (1 - p)GW. However, since the 

local utility function in (9) now depends on the precise distribution 

pGW-X + (1 - p)GW, the marginal rate of substitution i s no longer 

strictly proportional to p as before. However, this is not to say that 

Hypothesis II i s without implications in this case . Noting that an 

increase in p induces a first order stochastic worsening of the dis ­

tribution pGW-X + (1 - p)GW, we see that under Hypothesis II an increase 

in p will lower the term in curled brackets in (9) (the Arrow- Pratt 

t e rm) for each value of w, so tha t Hypothesis II implies that the 

marginal rate of substitution between p and X varies less than propo r­

tionately with p. The replacement of the expec t ed utility prediction of 

exact proportionality with a weak inequality on proportionality reflect s 

the fact tha t Hypothesis II is a weak inequality which include s the 

expected ut ili t y case (i.e ., the i ndepende nce axiom) as a borderline 

case, just as , geometrically, "fanning out" includes parallel linear 

indifference curves as a borderline case. Nevertheless, weak inequal ­

ities are s till re f utable restric tions on behavio r (we use them all the 

time in economics ) a nd this result is clearly not without policy 
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implications which, if not as strong as the ones generated by expected 

utility , are at least more accurately tied to what we have observed 

about individuals' actual preferences. While this is just a single 

example, it should be clear that Hypothesis II can be used to derive 

other important behavioral · predictions and policy implications .. 

5. Conclusion 

Defenders of the expected utility approach are quite co rrect in 

insisting that any alternative to expected utility not only be consis­

tent with the data, but also be at least on the order of elegance of the 

expected utility theory, and capable of easily derived behavioral 

restrictions and implications for policy analysis. The technique of 

generalized expected utility analysis seems to fit these requirements. 

Specifically, 

while making virtually no requisite assumptions on preferences 
other than ~ompleteness, transitivity, and smoothness, it 
allows us to retain the elegant set of concepts, tools , and 
techniques of expected utility analysis, 

it admits of refutable restrictions on preferences and hence 
on behavior, with the concept s of monotonic ity and risk 
aversion, for example, modeled almost exactly as in expec ted 
utility analysis, and 

it admits of a res triction (Hypo thesis II) which implies the 
four known types of observed systematic violations of the 
independence axiom, and which generates both additional 
refutable behavioral predictions as well as po licy implica­
tions. 

Whether the future will yield empirical observations which contra­

dict Hypothes is II, or even the underlying assump tion of smooth prefer­

ences, is really not the issue at hand. 13 The present point is that 

generalized expected utility analysis seems to offer a theoretically 

powerful and empirically supported generalization of the expec ted 

utility model. Indeed, if generalized expected utility analysis and 

other related models lead to the type of empirical work which will 



require still newer models to replace them, they will have serv~d us 

well. 
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NOTES 

1 . I am indebted to Maurice Allais, Kenne th Arrow, John Harsanyi, a nd 

Ed McClennen for discussions of this material during the confer­

ence, and to Beth Hayes, Joel Sobel, and Halbert White for he lpful 

comments on the manuscript. All errors and opinions, however, are 

my own. 

2 . See for example Chew & MacCrimmon ( 1979) , Fishburn (198la, 198lb) , 

Handa ( 1977) , and Kahneman & Tversky (1979) . 

3 . Of course, any comparison of the r efutable implications of two 

competing mode ls should be followed immedia te ly by a discussion of 

which of these implications have and have not in fact been refuted. 

4. For a more complete and rigorous treatment of much of the material 

in Sections 3 and 4, see Machina (1982a, 1982b , 1982c). 

5. The indifference curves here are the loci of solutions to the 

equation p
1
U(x

1
) + (1 - p 1 - p

3
)U(x2) + p3U(x3) = k for different 

values of the constant k. Northwest movements make the individual 

better off s ince they consist of ei ther increases in p3 at the 

expense of p
2

, increases in p
2 

at the expense of p1 , or a combina­

tion of the two. 

6 . See fo r example Kahneman & Tversky ( 1979 , pp. 271-273), Tversky 

(1967, 1975) , Gr ether (1978) , and Gr e t he r & Plott (1979) . 

7. See Hadar & Russell (1969) for the definition of first o rder 

s t ochas tic dominance. 

8 . "Hypo thesis I " is a separate hypo thesis on the typical shape of t he 

local utility f unction which, in conj unction with Hypothesis II , 

serves t o generate behavior of t he type observed by Friedman & 

Savage (1948) and Markowitz (1952) (see Machina (1982a)) . 

9. Of Karmarker's four subj ects, three exhibited fitted Up( · ) curves 

which s trictly and markedly increased with p . The fourth 

( "Subject B" ) exhibited u9110 (-) and u314 C-) curves which were both 



above the u1/ 2(·) curve, but which crossed each other at one point. 

Since the curves of this subject were much closer to each other 

than the curves of the other subjects, it is possible that this 

crossing is due to the slightly random character of responses which 

is typically found in studies of this type. 

10. McCord & de Neufville found that the greater. majority of their 

subjects exhibited u114 ( · ) curves which were below their u
1

/
2
(·) 

in the region where the curves had a value of 1/4. However, an 

equal number of their subjects had u314 (·) curves above and below 

their u1/ 2 ( · ) curves, indicating no average departure from linear­

ity in either direction in this region. McCord & de Neufville also 

found that whether the u114 (•) ·and u314 (·) curves lay above or. 

below the u1/ 2(·) curve seemed to be correlated with the subjec t's 

degree of risk aversion, with the u112 (·) curve typically lying 

higher relative to the other .curves for risk averters and lower for 

risk lovers. However, since their method of classifying individ­

uals as risk averse or risk loving was based on the concavity or 

convexity, and hence height, of the u112 (·) curve, this finding may 

in part be a statistical artifact introduced by their method of 

categorizing the observations. Finally, since Allais' method of 

constructing his 11s
112

11 curves differed slightly f rom the fractile 

method, his data may only be used to compare u
112

( · ) with uP(·) 

for p < 1/2, where it exhibits the utility evaluation effect 

described in this section (see Allais (1979, pp. 611-654)). 

11. See Note 8. 

12. Stochastically dominating shifts in D{x 1 , x2 , x3 } are shifts 

which increase p
3 

at the expense of p2 and/or increase p2 at the 

expense of p
1

, which correspond respectively to upward and/or 

leftward (i.e., northward and/or westward) shifts in the unit 

triangle diagram. 

13. See Note 6. 
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