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Abstract 

This paper seeks to make the latest in Bayesian methods easier for others to use with a focus on a 

stochastic plateau production function. A few studies have used Bayesian techniques to model a 

stochastic plateau function. No published work provides estimation of a stochastic plateau function 

by taking advantage of computationally efficient Hamiltonian Monte Carlo (HMC). HMC 

converges to high-dimensional target distributions much faster than the Gibbs Sampler and 

Metropolis algorithms. HMC is the default choice in Stan software, but the learning curve to master 

the software is high. This study aims to provide HMC estimation instructions of a univariate 

stochastic plateau function using brms and RStan. The programs are relatively compact and we 

include them within the paper for easy access. For our empirical example, we rely on experimental 

data from the Oklahoma Agricultural Experiment Station. Simulation results from HMC are 

consistent across different priors. As a robustness check, we compare empirical results from HMC 

and those obtained from maximum likelihood estimation. Empirical results from HMC are close 

to maximum likelihood parameter estimates obtained using SAS software. This paper serves as a 

tutorial for using HMC to estimate plateau-type production functions as well as other functions.  

 

Introduction 

Bayesian methods have received wide applications in the past decade thanks to the “Computational 

Revolution” (Basturk et al. 2013) since the 1990s. According to Lee and Wagenmakers (2014), 

and Jiang and Carter (2018), the number of publications with terms “Bayes” and/or “Bayesian” 

found on Google Scholar has from the early 2000s increased fivefold. When the search is extended 

to agricultural economics journals (e.g., the American Journal of Agricultural Economics, 

Agricultural Economics, Journal of Agricultural Economics, Journal of Agricultural and Applied 

Economics), dozens of papers that have used Bayesian technique. Adding to this evidence, the 

2019 Agricultural and Applied Economics Association Annual (AAEA) annual meeting in 

Atlanta, GA, had a session titled “Bayesian Econometrics in Agricultural Economics.” Taken 

together, this confirms proliferation of applied Bayesian econometrics in agricultural and resource 

economics (Bessler et al. 2010).  

The learning curve required to learn Bayesian techniques limits their use. One example of 

where Bayesian methods have been used is in estimating the stochastic plateau crop-input response 
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function by Tembo et al. (2008). McFadden, Brorsen and Raun (2018), Ouédraogo and Brorsen 

(2018), and Ng’ombe (2019) use Bayesian techniques to model the stochastic plateau function to 

answer their research questions. McFadden, Brorsen, and Raun (2018) use Bayesian methods to 

combine prior information with plant sensing information assuming a stochastic plateau 

production function. Ouédraogo and Brorsen (2018) for winter wheat and Brorsen (2013) for 

cotton estimate stochastic plateaus with Bayesian methods. Ouédraogo and Brorsen consider 

nonnormal distributions to estimate the stochastic production function between wheat and N 

fertilizer. Ng’ombe (2019) uses a stochastic plateau production function with Monte Carlo data to 

determine optimal ways of conducting large-scale, on-farm field experiments assuming a 

stochastic plateau response function between corn and nitrogen (N).  

 Furthermore, studies by Ouédraogo and Brorsen (2018), and Ng’ombe (2019) do not take 

advantage of modern computationally efficient Markov chain simulation – Hamiltonian Monte 

Carlo (HMC). All these studies primarily use Metropolis-Hastings updates (Metropolis et al. 1953; 

Hastings 1970) and Gibbs sampling (Geman and Geman 1984; Gelfand and Smith 1990) in either 

SAS software (SAS Institute 2016) or JAGS (Plummer 2013). HMC and its extension, the no-U-

turn sampler are the default choice in Stan software (Hoffman and Gelman 2014; Stan 

Development Team 2018). HMC employs “momentum” variables that fasten each iteration in a 

parameter space to allow faster mixing and convergence (Neal 2011; Gelman et al. 2013; Hoffman 

and Gelman 2014). Girolami and Caderhead (2011) show that both Gibbs sampling and 

Metropolis-Hastings (M-H) algorithms are generally less efficient than HMC. In addition, Gibbs 

sampling works more efficiently with conjugate priors (Gelman et al. 2014), which reduces the 

liberty of researchers in choosing priors that reflect their beliefs (Bürkner 2017a). In contrast, 

HMC and no-U-turn sampler algorithms converge much more quickly regardless of whether priors 
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are conjugate or not (Hoffman and Gelman 2014; Bürkner 2017a). Hoffman and Gelman (2014) 

suggest HMC much more quickly converges to high-dimensional target distributions than the 

Gibbs Sampler and M-H algorithm, which could speed up estimation of a stochastic plateau 

production function. 

The learning curve to master Stan software, which does HMC, is rather high. So, the main goal 

of this study is to provide a tutorial about using HMC to estimate a stochastic plateau production 

function. We provide relatively compact programs showing how the stochastic plateau production 

function can be easily estimated via Stan. Stan software is an open source programming language 

for Bayesian inference and optimization. The Stan that we implement is done within the R 

programming language. The Stan software writes a program in C and calls a C++ compiler and 

thus avoids the operational overhead that slows many R programs. 

The stochastic plateau response function 

In agricultural economics, the stochastic plateau response function (Tembo et al. 2008) is a 

common response function to characterize crop-input relationships (see for example: Biermacher 

et al. 2009; Tumusiime et al. 2011; Boyer et al. 2012; Brorsen and Richter 2012; Boyer et al. 2013; 

Dhaka et al. 2019). The stochastic plateau response function is mathematically defined as 

1)                          𝑦𝑖𝑡 = min(𝛽0 + 𝛽1𝑥𝑖𝑡, 𝑃 +𝑠𝑡) + 𝑢𝑡 + 휀𝑖𝑡  

where 𝑦𝑖𝑡  is the response variable (i.e., yield) from the ith plot in year t, 𝛽0and𝛽1 are model 

parameters to be estimated,𝑥𝑖𝑡 is the amount of the limiting input from the ith plot in year t, 𝑃 is 

the average plateau yield, 𝑠𝑡~𝑁(0, 𝜎𝑢
2) is the plateau year random effect, 𝑢𝑡~𝑁(0, 𝜎𝑢

2) is the 

intercept year random effect, and 휀𝑖𝑡~𝑁(0, 𝜎𝜀
2) is the random error term. The three random terms 
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in the model (𝑠𝑡,𝑢𝑡, and 휀𝑖𝑡) are assumed to be independent of each other. Extending equation (1) 

to Bayesian inference implies that the model and plateau parameters are stochastic and therefore 

have prior distributions. By Bayes’ rule, we can obtain model parameter’s posterior distributions. 

The model in equation (1) can be specified in a Bayesian framework as 

2)                         𝑦𝑖𝑡 = min(𝛽0 + 𝛽1𝑥𝑖𝑡, 𝑃𝑡 +𝑠𝑡) + 𝑢𝑡 + 휀𝑖𝑡 

                    𝛽0~𝑁(𝛽00, 𝜎𝛽0
2 ),𝛽1~𝑁(𝛽11, 𝜎𝛽1

2 ), 𝑃𝑡~𝑁(𝑃0, 𝜎𝑃𝑡
2 )   

             𝜎𝑢
2~𝑁(𝛾𝑢 , 𝛿𝑢

2), 𝜎𝑠
2~𝑁(𝛾𝑠, 𝛿𝑠

2), 𝜎𝜀
2~𝑁(𝛾𝜀 , 𝛿𝜀

2) 

where 𝛽00, 𝛽00 , 𝑃0, 𝛾𝑢 , 𝛾𝑠, and𝛾𝜀 are prior means for respective parameters while  𝜎𝛽0
2 , 𝜎𝛽0

2 , 𝜎𝑃𝑡
2 , 𝜎𝛽𝑢

2 , 

𝜎𝛽𝑠
2 , and𝜎𝛽𝜀

2  are the variances of the priors. 

Hamiltonian Monte Carlo and no-U-turn sampler 

HMC algorithms substitute probability distributions assumed in a Markov chain with Hamiltonian 

dynamics to facilitate reaching the target distributions more efficiently. Stated differently, HMC 

extends the M-H procedure by providing proposal values that are more precise by using 

Hamiltonian dynamics (Jiang and Carter 2018). HMC shortens the time it takes to reach the 

posterior density space by ensuring that for every iteration, parameter values “leapfrog” to states 

closer to their posterior densities. This reduces the autocorrelation that plagues MCMC. After new 

values have been proposed, HMC uses M-H techniques to accept or reject them making HMC a 

more efficient type of Monte Carlo sampling (Neal 2011; Jiang and Carter 2018). 
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Following Jiang and Carter (2018), HMC algorithm originally has a trajectory length and 

step size. The step size indicates the size between possible solution points on a single leap 

trajectory. On the other hand, the trajectory length represents the length of a leap trajectory. But 

Hoffman and Gelman (2014) have shown that the performance of HMC largely depends on two 

parameters. For example, even if longer step sizes are likely to speed up computations, they may 

increase the number of rejections. In a similar manner, when the trajectory is short, HMC’s random 

walks may be inefficient. Moreover, computation powers would be wasted when a trajectory is 

unnecessarily long. This is where the no-U-turn sampler comes in. According to Hoffman and 

Gelman (2014), the no-U-turn sampler reduces HMC’s dependence on the two parameters by pre-

establishing the sampling space and tuning the step size to a target acceptance rate rather than 

using a fixed step-size. In this manner, Bentacourt, Byrne and Girolami (2014) suggest a target 

acceptance rate of 0.8 to be optimal. The no-U-turn sampler uses a recursive tree-building 

technique to double the leap until when the U-turn when it comes across a computationally 

worthless exploration (Jiang and Carter 2018). Thus a trajectory length adapts only to a certain 

optimal range. More technical details about HMC can be found in Neal (2011), Hoffman and 

Gelman (2104) and Bentacourt, Byrne, and Girolami (2014). 

Data 

In our illustrations, we use both simulated and real data. For simulated data, we assume an 

agronomist who collects data on corn response to N from agronomic experiments conducted over 

a 10-year period. In each year, there are 100 plots resulting in 1000 data points for both corn and 

N. Equation (2) is the underlying data generating process.  
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For empirical analysis, we use cross-sectional time series data on wheat yield response to 

N. Data were obtained from the Oklahoma Agricultural Experiment Station in Oklahoma, U.S.A. 

The experiment (E502) was established in 1970 to determine effects of levels of N on winter wheat 

yield (in bushels) under conventional tillage. While phosphorus and potassium were also varied 

those plots are not used here. Regarding soil type, the soils are Grant silt loamy while wheat is 

seeded at 25.4 cm row spacing.  In the regression, a single input response production function is 

used with N fertilizer being the only variable input. The experimental design used in the 

experiment is a randomized complete block design containing four replications and six N levels: 

0, 22, 45, 67, 90, and 112 lbs. of N per acre. More information about the experiment can be found 

in Raun et al. (2010). 

Stan Codes and Results 

We demonstrate the use of HMC in Stan by using R and RStudio (RStudio Team 2015; R 

Core Team, 2018). R is used to call Stan and the latest versions of both are assumed to be installed 

on the computer. R can be installed from https://www.r-project.org/ while RStudio can be obtained 

from https://www.rstudio.com/. RStudio is not essential but we recommend it because of its ease 

at writing, editing, and running R code. Its particular feature is the capability to highlight Stan 

syntax (Lambert 2018). Another useful tool required to run the code is Toolchain. Stan depends 

on the computer’s tools that handle C++ files because Stan code is translated into C++ code and 

then compiled. For ease of doing so, it is recommended that the RTools package is installed.  

We assume that the reader uses Windows. The Stan website (https://mc-stan.org) has useful 

resources and outlines the procedure for installing these packages. We recommend similar 

resources to Linux users. Another required package used in this paper is RStan. RStan can be 
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installed within R using the install.packages function. But researchers may still waver to use 

Stan directly because every model written may have to be debugged or if possible optimized which 

could be time-consuming and an error-prone process despite their familiarity with Bayesian 

inference (Bürkner 2017a). Thus, we mostly use Bürkner’s (2017a) package brms to make writing 

the Stan code easier. The brms package is user friendly and can estimate complex nonlinear 

models.  

The following procedure is used to demonstrate our estimations: first we simulate some 

data that will be used to estimate equation (2). The R code to generate the data is in Listing 1.  

{Listing 1} 

We then use the brms package to recover the true parameters of the model. We do so by using two 

different prior distributions: normal and truncated Student t-distribution. The code to estimate the 

model using normal priors is presented in Listing 2. 

{Listing 2} 

The code in Listing 2 for Line 1 defines the stochastic plateau production function using 

the bf function, which is activated useful upon successful installation and loading of brms. The 

function fmin is equivalent to the min function in equation (2) while b0 and b1 represent 𝛽0and𝛽1 

in equation (2). The variables plate and intermain in line 1 are respectively the plateau indexed by 

𝑃𝑡 and plateau year random effect (i.e., 𝑠𝑡 in equation (2)). The formula b1+b2~1 implies that both 

b1 and b2 are stochastic. In the case of plate ~ 1+(1|TIME), it means that the plateau intercept is 

stochastic and varies with TIME through the plateau year random effect 𝑠𝑡. The intercept year 

random effect is denoted as 𝑢𝑡 in equation (2) and is shown in line 2 of Listing 2 as intermain ~ 

0+(1|TIME). This is basically to tell Stan that the intercept year random effect is group-level and 
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varies with TIME. The option nl = TRUE tells Stan that the function being defined should be 

treated as non-linear.  

Next, we set the priors for all stochastic parameters in the model. Following Bürkner 

(2017a) and Bürkner (2017b), brms requires the user to specify priors explicitly. For the code in 

Listing 2, all the priors are in line 4 through 8 defined by the set_prior function. We place a 

normal distribution with respective parameters on population-level effects (b1, b2, and plate), the 

group-level effects (intermain), and family-specific parameter (sigma). We assume a default prior 

for the plateau year random effect– a strictly positive truncated Student t-distribution with 3 

degrees of freedom and scale parameter of 44 – out of preference. Using the fake data generated 

in Listing 1, the next step is to run the model using the brm function. The estimation code is 

presented in line 10 through 12 in Listing 2. The object containing priors, the model function 

previously defined and the data are specified in line 10 of Listing 2, while we specify control 

variables adapt_delta and max_treedepth to aid convergence. More details of these can be 

found in Burkner (2017a). Estimation results are saved in the object fit. The option warmup 

represents the burn-in phase while iter denotes the total MCMC samples. We use 4 cores and 4 

chains to ensure that the chains are run in parallel cores. The results from our model are obtained 

using the summary function in R as shown in line 14 of Listing 2. Summary results of the fitted 

model are shown in table 1.  

{table 1} 

Results in table 1 indicate that we are able to recover the true parameter values pretty well. 

For example, the true values for population-level parameters are (40, 0.86, and 151.11) while the 

recovered parameters are respectively (41.33, 0.81, and 153.51). In terms of convergence, the 

Gelman-Rubin statistic (Gelman and Rubin 1992) (the�̂�) is equal to 1 for all parameters indicating 
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successful convergence of the HMC chains. This result is consistent with trace plots of respective 

parameters shown in both panels of Figure 1.  

{Figure 1} 

All the trace plots indicate good mixing. While we imposed normal priors for model parameters 

of preceding results presented in table 1, we try to use a different prior for the next results as 

mentioned before. They are mainly weakly-informative priors. This is to check if the results would 

be robust to any prior change. We use truncated Student t-distribution priors with 4 degrees of 

freedom with a scale parameter of 10 on all the parameters. The brms code associated with these 

priors is presented in Listing 3.  

{Listing 3} 

The code in Listing 3 is syntactically similar to the one in Listing 2 except the section containing 

priors and thus we do not spend time detailing it. However, the priors shown are expected to be 

weakly informative and with heavier tails than the normal distribution. Results from the code in 

Listing 3 are presented in table 2. As can be observed in table 2, they are on average close to 

findings from table 2.  

{table 2} 

On average, we are able to recover true parameter values as in the first case implying that a change 

of priors in our example did not affect the novelty of our results. The trace plots from results in 

table 2 are shown in Figure 2. Both panels in Figure 2 indicate good mixing of the chains which 

suggests successful convergence of the chains to their target posterior distributions – a result that 

collaborates the Gelman-Rubin statistic which is equal to one for all parameter estimates.  

{Figure 2} 
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As mentioned previously, we also estimate the stochastic plateau production function using 

empirical data. The brms code to estimate the stochastic plateau production function is presented 

in Listing 4. Like before, we impose weakly informative priors – the truncated Student t-

distribution for all parameters.  The rest remains the same as in Listing 3 except the data used.  

{Listing 4} 

Results from the code in Listing 4 are shown in table 3. The MCMC chains successfully converged 

based on the �̂� values which are equal to one for model parameters. We find that an increase in N 

by an extra lb. per acre would result in an increase in wheat yield by 0.49 bushels per acre, when 

all other factors are held constant. The average plateau of wheat yield is about 44.47 bushels per 

acre. 

{table 3} 

We further try to estimate the same model in Stan using another useful package mentioned 

previously: RStan. The code that relies on RStan is presented in Listing 5. The code in Listing 5 

differs from previous brms codes in that Listing 5 explicitly contains all Stan blocks. A block is 

simply a set of statements preceded by the block name and surrounded by statements (Sorensen, 

Hohenstein, and Vasishth 2016). Basic Stan blocks include: (1) data block, 2) parameter block, 

and (3) model block. Other blocks which are not mandatory are functions, transformed data, 

transformed parameters, and generated quantities. Based on Listing 5, the code is saved in an 

object named model_2 (line 2) but can also be saved in a text file with an extension .stan for it to 

be executed. The data block as the name suggests is where data used to pass to Stan are declared. 

The number of observations, groups (i.e., years) and a variable that maps observations to groups 

are defined here. The word int refer to variables considered in integer form while vector implies 

the variable is a vector (it could be row or column vector). 
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{Listing 5} 

The next block is parameters where all parameters to be used are defined. For example, 

real plateau_error[M] means that a plateau_error is a continuous variable that contains up to 

M elements. The variables named sigma and/or with some modifications are defined to range 

between 0 and 100 or 0 and 1000 are respective standard deviations. They range between the 

mentioned values to indicate that standard deviations are strictly positive. The next block is the 

model code block. This is where both the model’s likelihood and priors for the parameters are 

specified. As shown in Listing 5, it is this section where parameters in the parameter block are 

assigned their prior distributions. For example, plateau ~ normal(50, 100) means that the wheat 

plateau follows a normal distribution with the mean of 50 bushels per acre and standard deviation 

of 100 bushels per acre. The response variable is defined from line 34 through 37 which is the 

stochastic plateau. The model’s likelihood is defined in lines 38-41 of Listing 5, which completes 

the full code. The next codes in line 43 through 53 are R codes to define the dimensions of the 

variables for use in a data list. RStan recognizes data saved as a list as shown in line 54 of Listing 

5. Next we execute the model using the stan function as shown in line 55. The arguments are 

almost similar to those used in brms. We then print the results of the parameters of interest by 

running the code in line 59. Results from this code are shown in table 4.  

{table 4} 

The results in table 4 are close to those in table 3 which suggests that we were able to 

demonstrate the estimation of the same empirical stochastic plateau production function for wheat 

in Stan using both brms and RStan. As a diagnostic check, we further estimate the model using 

maximum likelihood in SAS. We use the PROC NLMIXED procedure to do so and results are 

presented in table 5.  
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{table 5} 

As shown in table 5, our maximum likelihood estimates are close to the posterior means obtained 

using brms and RStan. This suggests that our Bayesian computations illustrating estimation of 

the stochastic plateau in using HMC in Stan is working. The only difference is that SAS produces 

variances for random parameters when using maximum likelihood estimation (plateau year 

random effect, intercept year random effect and random error). In contrast, Stan reports standard 

deviations for the same parameters.  

Conclusion 

We showed how to estimate a stochastic plateau function using the Hamiltonian Monte 

Carlo (HMC) utilizing the no-U-turn sampler. We do so by using brms and RStan packages in R 

and RStudio. The intention of this study is to serve as a tutorial for estimation of the stochastic 

plateau production function (Tembo et al. 2008) for it has gained wide use in agricultural 

economics research.  

Simulation results were consistent across different sets of priors suggesting that HMC 

yields robust results of the stochastic plateau model regardless of the type of priors used. As put 

forward by (Bürkner 2017a), HMC in Stan gives researchers the freedom to choose priors that may 

reflect their beliefs. Simulation results provided evidence that brms can both appropriately and 

accurately estimate the stochastic plateau production function with ease. 

The findings from empirical data further show that the stochastic plateau model can be 

easily estimated in Stan by taking advantage of brms and RStan. Results from using both packages 

were consistent despite specifying different sets of priors in respective codes. A comparison of 

empirical results from Stan with those obtained by maximum likelihood estimation (obtained in 

SAS software) showed that they are very similar results. This result is an indication that the tutorial 
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provided in this paper is novel and would assist agricultural and applied economists interested in 

modeling production functions.  

Being open source, Stan offers promising frontiers and we recommend its use for its ability 

to estimate complex nonlinear models. Even though we demonstrate it in R, Stan can be called 

from Matlab, Stata, Python, and Julia (Gelman, Lee, and Guo 2015).  While we do not perform 

model selection tests and other avenues such as extending the univariate case to the multivariate 

case, we hope that this tutorial will give the reader a taste of fitting a Bayesian mixed effects model 

in a form of stochastic plateau production function and other functions.  
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Listing 1: Generation of Fake Data for the Stochastic Plateau Model  
1         rm(list=ls())                    #Clear the console 
 
2         set.seed(1)                      #set the seed for reproducibility 
 
3         n=1000                           #number of observations        
 
4         nt<-100                          #number of plots 
 
5         plterror <-  rnorm(nt, 0, 25)    #plateau year random effect 
 
6         plate <- rep(150+plterror, nt)   #plateau 
 
7         interror <-  rnorm(nt, 0, 10)    #error for intercept year random effect 
 
8         intermain<-rep(0+interror, nt)   #intercept year random effect 
 
9         corn    <-  numeric(n)           #empty object to store corn values 
 
10        beta0 <-40;  beta1 <-0.86;       #true values for beta 0 and beta 1 
 
11        NITROGEN<-runif(n, 0, 156)       #Nitrogen values drawn from uniform dist 
 
12      for (k in 1:n){                    #Simulate corn values 
 
13            rand_error<- rnorm(1, 0, 17 )#random error 
 
14            corn0[k]<-min(beta0+beta1*NITROGEN[k], plate[k])+intermain[k]    
              +rand_error 
14                              } 
 
15           summary(corn)                 #summary statistics for corn 
 
16       #create a dataframe to store the variable TIME for each 100 observations 
 
16    data1<-data.frame(y=corn0, x=NITROGEN, TIME=rep(1:10, each=100)) 
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Listing 2: Stan Code for the Stochastic Plateau Production Function Using brms 
1     function_1<- bf(y~fmin(b0+b1*x, plate)+intermain, b1+b2~1, plate~ 1+(1|TIME), 
          
2        intermain~0+(1|TIME), nl = TRUE)               //function defining equation (2) 
         
3        #priors for parameters are saved in the object priors                          
  
4   priors <-c(set_prior("normal(39,2.5)", nlpar="b1", class = "b"), //prior for beta  
 
5            set_prior("normal(0.8, 2.5)", nlpar="b2", class = "b"),//prior for beta 2 
          
6     set_prior("normal(150,10)", nlpar="plate",class = "b"),      //prior for plateau 
   
7   set_prior("normal(0,5)", nlpar =  "intermain", class = "sd"), //plateau rand effect 
  
8   set_prior("normal(0,17)", class = "sigma"))                 //prior for sigma   
      
9   # run the model using brm function, model results will be saved in object fit 
  
10     fit<-brm(function_1, prior = priors, data = data1,                                      
                
11              control = list(adapt_delta=0.99, max_treedepth=15),  
                
12                warmup = 2500, iter = 5000, cores = 4, chains = 4)                                                
            
13     #summarize the results 
            
14     summary(fit)    
            
15          #plot of the model parameters 
           
16          plot(fit, pars = c("sd", "b", "sigma"))                                                        
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Table 1: Summaries of the Fitted Model Using brms and Normal Priors 

Parameter  True Value Posterior Mean Standard Deviation 2.5% 97.5% �̂� 

�̂�0 40.00 41.33 1.33 38.67 43.88 1.00 

�̂�0 0.86 0.81 0.02 0.78 0.85 1.00 

�̂�𝑡  151.11 153.51 5.63 143.31 165.84 1.00 

�̂�𝑠 23.53 17.69 8.66 6.98 39.79 1.00 

�̂�𝑢 9.38 2.06 1.17 0.15 4.67 1.00 

�̂�𝜀 17.68 20.90 0.47 19.99 21.84 1.00 
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Listing 3: Stan Code Using brms with Truncated Student t-Distributions 
1     function_1<- bf(y~fmin(b0+b1*x, plate)+intermain, b1+b2~1, plate~ 1+(1|TIME), 
          
2        intermain~0+(1|TIME), nl = TRUE)               //function defining equation (2) 
         
3        #priors for parameters are saved in the object priors                          
  
4  priors <-c(set_prior("student_t(4,0,10)", nlpar="b1", class = "b"), //beta 0 prior 
 
5        set_prior("student_t (4,0,10)", nlpar="b2", class = "b"), //beta 1 prior 
          
6     set_prior("student_t(4,0,10)", nlpar="plate", class = "b"), //plateau prior 
   
7 set_prior("student_t(4,0,10)",nlpar ="intermain",class = "sd"),//int rand effect prior   
                                                                        
8 set_prior("student_t(4,0,10)",nlpar="plate", class = "sd"),//plate year rand eff prior                                                                  
  
9 set_prior("student_t(4,0,10)", class = "sigma"))   //prior for sigma   
      
9   # run the model using brm function, model results will be saved in object fit 
  
10     fit<-brm(function_1, prior = priors, data = data1,                                      
                
11              control = list(adapt_delta=0.99, max_treedepth=15),  
                
12                warmup = 2500, iter = 5000, cores = 4, chains = 4)                                                
            
13     #summarize the results 
            
14     summary(fit)    
            
15          #plot of the model parameters (not shown to conserve space) 
           
16          plot(fit, pars = c("sd", "b", "sigma"))                                                        
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Table 2: Summary Results Using Truncated Student t-Distribution Priors. 

Parameter  True Value Posterior Mean Standard Deviation 2.5% 97.5% �̂� 

�̂�0 40.00 41.95 1.60 38.77 45.07 1.00 

�̂�0 0.86 0.81 0.02 0.77 0.84 1.00 

�̂�𝑡  151.11 155.43 9.40 140.69 178.07 1.00 

�̂�𝑠 23.53 19.91 10.92 7.42 48.16 1.00 

�̂�𝑢 9.38 2.16 1.24 0.18 4.99 1.00 

�̂�𝜀 17.68 20.91 0.47 20.02 21.87 1.00 
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Listing 4: Stan Code using brms with Truncated Student t-Distribution for Empirical Data 
1           #Empirical Data 
 
2           setwd("C:/Users/njohn/Documents/brorsen") 
 
           
3          lahoma<-read.csv(file = “lahoma.csv”) 
 
4          #check names and missing values 
 
5     model<-bf(BUAC~fmin(b1+b2*N, plate)+intermain, b1+b2~1,   //define equation (2) 
       
6      plate~ 1+(1|YR),intermain~0+(1|YR),  nl=TRUE )           
 
7 prior_model<-c(set_prior("student_t(4,0,10)",nlpar="b1",class = "b"),//beta 0 prior 
           
8    set_prior("student_t(4,0,10)", nlpar="b2", class = "b"),   //beta 1 prior 
           
9    set_prior("student_t(4,0,10)", nlpar="plate", class = "b"), //plateau prior 
           
10 set_prior("student_t(4,0,10)",nlpar = "intermain",class= "sd"),//int ran eff prior 
            
11 set_prior("student_t(4,0,10)", nlpar = "plate",class = "sd"),//plat rand eff prior 
           
12   set_prior("student_t(4,0,10)", class = "sigma")) //sigma prior 
 
13   fit<-brm(model, prior = prior_model,data = lahoma,  //fit the model in Stan 
           
14      control = list(adapt_delta=0.99, max_treedepth=15), //to help convergence 
  
15       warmup = 2500, iter = 5000, //burn-in phase and sampling 
 
16      cores = 4, chains = 4, seed=1)   //cores and chains for parallel computation  
 
17           #summarize the results 
 
18    summary(fit) 
 
19    plot(fit, pars = c("sd", "b", "sigma")) 
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Table 3: Summary Results for Wheat Response (bu/Acre) to Nitrogen (lb/acre) Using brms. 
Parameter  Posterior Mean Standard Deviation 2.5% 97.5% �̂� 

�̂�0 25.11 1.46 22.20 27.94 1.00 

�̂�0 0.49 0.01 0.46 0.52 1.00 

�̂�𝑡  44.47 2.63 39.34 49.73 1.00 

�̂�𝑠 14.80 1.71 11.94 18.60 1.00 

�̂�𝑢 9.57 1.08 7.74 11.96 1.00 

�̂�𝜀 5.80 0.12 5.59 6.03 1.00 
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Listing 5: Stan Code to Estimate a Stochastic Plateau Model Using RStan for Empirical Data 
1           #Empirical Data using the Rstan 
2  model_2 <- ' 
3        data { 
4           int N;                             // number of obs  
5           int M;                             // number of groups (years) 
6           int K;                             // number of predictors 
7           vector[N] y;                       // the response variable 
8           row_vector[K] x[N];                // predictors 
9           int g[N];                          // map obs to groups  
10            } 
11        parameters {                         //define parameters 
12            real alpha;                      //define beat 0 parameter 
13            real a[M];                       //define mapping parameter 
14            real plateau_error[M];           //define plateau random effect parameter 
15            vector[K] beta;                  //define beta 1 
16            real<lower=0,upper=100> plateau; //define standard deviations 
17            real<lower=0,upper=1000> sigma;   
18            real<lower=0,upper=1000> sigmae;  
19            real<lower=0,upper=1000> sigma_plateau; //define plateau error  
20            } 
21        model {                               //define the model 
22          vector[N] response;                 //intermediate result variable 
23          sigmae ~ gamma(2,.2);               //weakly informative priors, 
24                                            //see section 6.9 in STAN user guide 
25     sigma_plateau ~ gamma(2,.2);           //expected value is the product of the 1st 
26                                            //parameter times the inverse of the 2nd 
27         sigma~gamma(2,.2);                 //RStan uses inverse scale 
28         plateau ~ normal(50, 100);         //impose priors on define parameters 
29         alpha ~ normal(0,100); 
30         plateau_error~normal(0,1); 
31         a ~ normal(0,1); 
32         beta ~ normal(0,1); 
33        
34     for (j in 1:N) { 
35         response[j]=fmin((alpha + x[j]*beta),   
36                 plateau+sigma_plateau*plateau_error[g[j]]) +  
36        sigma*a[g[j]];                       //define the stochastic plateau function 
37                  } 
38     for(n in 1:N) { 
39       y[n] ~ normal(response[n],sigmae);   //RStan uses standard deviation 
40      } 
41     } 
42     ' 
43     library(rstan)                         #load Rstan package 
46     setwd("C:/Users/njohn/Documents/brorsen") 
47     lahoma<-read.csv(file = “lahoma.csv”) 
48     nobs <- nrow(lahoma) 
49     years <- length(unique(lahoma[,"YR"])) 
50     xx <- lahoma$N 
51     gg <- group_indices(lahoma,YR)             #creates an index for year 
52     y <- lahoma$BUAC 
53     xx <- cbind(xx)                           #intercepts are added in the code 
54     yield_data <- list(N=NROW(y),M=years, K=1,y=y,x=xx,g=gg) 
55     fit <- stan(model_code=model_2, model_name="lrsp",  
56            data=yield_data, iter=5000, warmup=2500, chains=4,  
57           cores=4, seed = 1, control = list(adapt_delta = 0.80, max_treedepth = 15)) 
58     #print results for parameters of interest at 95% credible interval 
59     print(fit, pars=c("alpha","beta[1]","sigma","sigma_plateau", 
60       "sigmae","plateau"), probs=c(0.025, 0.975)) 
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Table 4: Summary Results for Empirical Data Using RStan 
Parameter  Posterior Mean Standard Deviation 2.5% 97.5% �̂� 

�̂�0 25.52 1.45 22.71 28.40 1.00 

�̂�0 0.49 0.01 0.46 0.52 1.00 

�̂�𝑡  45.59 2.64 40.49 50.77 1.00 

�̂�𝑠 14.83 1.72 11.93 18.62 1.00 

�̂�𝑢 9.55 1.07 7.70 11.93 1.00 

�̂�𝜀 5.80 0.12 5.58 6.05 1.00 
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Table 5: Maximum Likelihood Parameter Estimates for the Stochastic Plateau Function from SAS 

Parameter Estimate Standard Error t value 

Dep Variable: Wheat (bu/acre)   

Intercept  25.14 0.74 33.69 

Slope 0.49 0.01 34.99 

Plateau  45.96 0.63 73.19 

Plateau year random effect 201.51 31.24 6.45 

Intercept year random effect 86.57 5.96 14.53 

Random Error 33.43 1.36 24.60 
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Figure 1: panel 1: Marginal densities and trace plots for stochastic plateau production function 

with normal priors 
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Figure 1: panel 2: Marginal density and trace plot for standard deviation of the stochastic plateau 

production function with a normal prior 
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Figure 2: panel 1: Marginal densities and trace plots for stochastic plateau production function 

with truncated student t-distribution priors 
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Figure 2: panel 2: Marginal density and trace plot for standard deviation of the stochastic plateau 

production function with truncated student t-distribution priors 
 


