

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

1

Using Hamiltonian Monte Carlo to Estimate Crop Response

Functions with Stochastic Plateaus

John N. Ng’ombe and B. Wade Brorsen

John N. Ng’ombe (ngombe@okstate.edu) is a visiting assistant professor at Auburn University.

B. Wade Brorsen (wade.brorsen@okstate.edu) is regents professor and A.J. and Susan Jacques

Chair in the Department of Agricultural Economics at Oklahoma State University.

Selected presentation at the 2020 Southern Agricultural Economics Association Annual

Meeting, February 1-4, 2020, Louisville, Kentucky

This research received funding from the Oklahoma Agricultural Experiment Station; the

National Institute for Agriculture (NIFA) [Hatch project OKL02939]; and the A.J. and Susan

Jacques Chair. The authors acknowledge helpful suggestions from Dayton Lambert.

Copyright 2020 by John N. Ng’ombe and B. Wade Brorsen. All rights reserved. Readers may

make verbatim copies of this document for non-commercial purposes by any means, provided

that this copyright notice appears on all such copies.

mailto:ngombe@okstate.edu
mailto:wade.brorsen@okstate.edu

2

Abstract

This paper seeks to make the latest in Bayesian methods easier for others to use with a focus on a

stochastic plateau production function. A few studies have used Bayesian techniques to model a

stochastic plateau function. No published work provides estimation of a stochastic plateau function

by taking advantage of computationally efficient Hamiltonian Monte Carlo (HMC). HMC

converges to high-dimensional target distributions much faster than the Gibbs Sampler and

Metropolis algorithms. HMC is the default choice in Stan software, but the learning curve to master

the software is high. This study aims to provide HMC estimation instructions of a univariate

stochastic plateau function using brms and RStan. The programs are relatively compact and we

include them within the paper for easy access. For our empirical example, we rely on experimental

data from the Oklahoma Agricultural Experiment Station. Simulation results from HMC are

consistent across different priors. As a robustness check, we compare empirical results from HMC

and those obtained from maximum likelihood estimation. Empirical results from HMC are close

to maximum likelihood parameter estimates obtained using SAS software. This paper serves as a

tutorial for using HMC to estimate plateau-type production functions as well as other functions.

Introduction

Bayesian methods have received wide applications in the past decade thanks to the “Computational

Revolution” (Basturk et al. 2013) since the 1990s. According to Lee and Wagenmakers (2014),

and Jiang and Carter (2018), the number of publications with terms “Bayes” and/or “Bayesian”

found on Google Scholar has from the early 2000s increased fivefold. When the search is extended

to agricultural economics journals (e.g., the American Journal of Agricultural Economics,

Agricultural Economics, Journal of Agricultural Economics, Journal of Agricultural and Applied

Economics), dozens of papers that have used Bayesian technique. Adding to this evidence, the

2019 Agricultural and Applied Economics Association Annual (AAEA) annual meeting in

Atlanta, GA, had a session titled “Bayesian Econometrics in Agricultural Economics.” Taken

together, this confirms proliferation of applied Bayesian econometrics in agricultural and resource

economics (Bessler et al. 2010).

The learning curve required to learn Bayesian techniques limits their use. One example of

where Bayesian methods have been used is in estimating the stochastic plateau crop-input response

3

function by Tembo et al. (2008). McFadden, Brorsen and Raun (2018), Ouédraogo and Brorsen

(2018), and Ng’ombe (2019) use Bayesian techniques to model the stochastic plateau function to

answer their research questions. McFadden, Brorsen, and Raun (2018) use Bayesian methods to

combine prior information with plant sensing information assuming a stochastic plateau

production function. Ouédraogo and Brorsen (2018) for winter wheat and Brorsen (2013) for

cotton estimate stochastic plateaus with Bayesian methods. Ouédraogo and Brorsen consider

nonnormal distributions to estimate the stochastic production function between wheat and N

fertilizer. Ng’ombe (2019) uses a stochastic plateau production function with Monte Carlo data to

determine optimal ways of conducting large-scale, on-farm field experiments assuming a

stochastic plateau response function between corn and nitrogen (N).

 Furthermore, studies by Ouédraogo and Brorsen (2018), and Ng’ombe (2019) do not take

advantage of modern computationally efficient Markov chain simulation – Hamiltonian Monte

Carlo (HMC). All these studies primarily use Metropolis-Hastings updates (Metropolis et al. 1953;

Hastings 1970) and Gibbs sampling (Geman and Geman 1984; Gelfand and Smith 1990) in either

SAS software (SAS Institute 2016) or JAGS (Plummer 2013). HMC and its extension, the no-U-

turn sampler are the default choice in Stan software (Hoffman and Gelman 2014; Stan

Development Team 2018). HMC employs “momentum” variables that fasten each iteration in a

parameter space to allow faster mixing and convergence (Neal 2011; Gelman et al. 2013; Hoffman

and Gelman 2014). Girolami and Caderhead (2011) show that both Gibbs sampling and

Metropolis-Hastings (M-H) algorithms are generally less efficient than HMC. In addition, Gibbs

sampling works more efficiently with conjugate priors (Gelman et al. 2014), which reduces the

liberty of researchers in choosing priors that reflect their beliefs (Bürkner 2017a). In contrast,

HMC and no-U-turn sampler algorithms converge much more quickly regardless of whether priors

4

are conjugate or not (Hoffman and Gelman 2014; Bürkner 2017a). Hoffman and Gelman (2014)

suggest HMC much more quickly converges to high-dimensional target distributions than the

Gibbs Sampler and M-H algorithm, which could speed up estimation of a stochastic plateau

production function.

The learning curve to master Stan software, which does HMC, is rather high. So, the main goal

of this study is to provide a tutorial about using HMC to estimate a stochastic plateau production

function. We provide relatively compact programs showing how the stochastic plateau production

function can be easily estimated via Stan. Stan software is an open source programming language

for Bayesian inference and optimization. The Stan that we implement is done within the R

programming language. The Stan software writes a program in C and calls a C++ compiler and

thus avoids the operational overhead that slows many R programs.

The stochastic plateau response function

In agricultural economics, the stochastic plateau response function (Tembo et al. 2008) is a

common response function to characterize crop-input relationships (see for example: Biermacher

et al. 2009; Tumusiime et al. 2011; Boyer et al. 2012; Brorsen and Richter 2012; Boyer et al. 2013;

Dhaka et al. 2019). The stochastic plateau response function is mathematically defined as

1) 𝑦𝑖𝑡 = min(𝛽0 + 𝛽1𝑥𝑖𝑡, 𝑃 +𝑠𝑡) + 𝑢𝑡 + 휀𝑖𝑡

where 𝑦𝑖𝑡 is the response variable (i.e., yield) from the ith plot in year t, 𝛽0and𝛽1 are model

parameters to be estimated,𝑥𝑖𝑡 is the amount of the limiting input from the ith plot in year t, 𝑃 is

the average plateau yield, 𝑠𝑡~𝑁(0, 𝜎𝑢
2) is the plateau year random effect, 𝑢𝑡~𝑁(0, 𝜎𝑢

2) is the

intercept year random effect, and 휀𝑖𝑡~𝑁(0, 𝜎𝜀
2) is the random error term. The three random terms

5

in the model (𝑠𝑡,𝑢𝑡, and 휀𝑖𝑡) are assumed to be independent of each other. Extending equation (1)

to Bayesian inference implies that the model and plateau parameters are stochastic and therefore

have prior distributions. By Bayes’ rule, we can obtain model parameter’s posterior distributions.

The model in equation (1) can be specified in a Bayesian framework as

2) 𝑦𝑖𝑡 = min(𝛽0 + 𝛽1𝑥𝑖𝑡, 𝑃𝑡 +𝑠𝑡) + 𝑢𝑡 + 휀𝑖𝑡

 𝛽0~𝑁(𝛽00, 𝜎𝛽0
2),𝛽1~𝑁(𝛽11, 𝜎𝛽1

2), 𝑃𝑡~𝑁(𝑃0, 𝜎𝑃𝑡
2)

 𝜎𝑢
2~𝑁(𝛾𝑢 , 𝛿𝑢

2), 𝜎𝑠
2~𝑁(𝛾𝑠, 𝛿𝑠

2), 𝜎𝜀
2~𝑁(𝛾𝜀 , 𝛿𝜀

2)

where 𝛽00, 𝛽00 , 𝑃0, 𝛾𝑢 , 𝛾𝑠, and𝛾𝜀 are prior means for respective parameters while 𝜎𝛽0
2 , 𝜎𝛽0

2 , 𝜎𝑃𝑡
2 , 𝜎𝛽𝑢

2 ,

𝜎𝛽𝑠
2 , and𝜎𝛽𝜀

2 are the variances of the priors.

Hamiltonian Monte Carlo and no-U-turn sampler

HMC algorithms substitute probability distributions assumed in a Markov chain with Hamiltonian

dynamics to facilitate reaching the target distributions more efficiently. Stated differently, HMC

extends the M-H procedure by providing proposal values that are more precise by using

Hamiltonian dynamics (Jiang and Carter 2018). HMC shortens the time it takes to reach the

posterior density space by ensuring that for every iteration, parameter values “leapfrog” to states

closer to their posterior densities. This reduces the autocorrelation that plagues MCMC. After new

values have been proposed, HMC uses M-H techniques to accept or reject them making HMC a

more efficient type of Monte Carlo sampling (Neal 2011; Jiang and Carter 2018).

6

Following Jiang and Carter (2018), HMC algorithm originally has a trajectory length and

step size. The step size indicates the size between possible solution points on a single leap

trajectory. On the other hand, the trajectory length represents the length of a leap trajectory. But

Hoffman and Gelman (2014) have shown that the performance of HMC largely depends on two

parameters. For example, even if longer step sizes are likely to speed up computations, they may

increase the number of rejections. In a similar manner, when the trajectory is short, HMC’s random

walks may be inefficient. Moreover, computation powers would be wasted when a trajectory is

unnecessarily long. This is where the no-U-turn sampler comes in. According to Hoffman and

Gelman (2014), the no-U-turn sampler reduces HMC’s dependence on the two parameters by pre-

establishing the sampling space and tuning the step size to a target acceptance rate rather than

using a fixed step-size. In this manner, Bentacourt, Byrne and Girolami (2014) suggest a target

acceptance rate of 0.8 to be optimal. The no-U-turn sampler uses a recursive tree-building

technique to double the leap until when the U-turn when it comes across a computationally

worthless exploration (Jiang and Carter 2018). Thus a trajectory length adapts only to a certain

optimal range. More technical details about HMC can be found in Neal (2011), Hoffman and

Gelman (2104) and Bentacourt, Byrne, and Girolami (2014).

Data

In our illustrations, we use both simulated and real data. For simulated data, we assume an

agronomist who collects data on corn response to N from agronomic experiments conducted over

a 10-year period. In each year, there are 100 plots resulting in 1000 data points for both corn and

N. Equation (2) is the underlying data generating process.

7

For empirical analysis, we use cross-sectional time series data on wheat yield response to

N. Data were obtained from the Oklahoma Agricultural Experiment Station in Oklahoma, U.S.A.

The experiment (E502) was established in 1970 to determine effects of levels of N on winter wheat

yield (in bushels) under conventional tillage. While phosphorus and potassium were also varied

those plots are not used here. Regarding soil type, the soils are Grant silt loamy while wheat is

seeded at 25.4 cm row spacing. In the regression, a single input response production function is

used with N fertilizer being the only variable input. The experimental design used in the

experiment is a randomized complete block design containing four replications and six N levels:

0, 22, 45, 67, 90, and 112 lbs. of N per acre. More information about the experiment can be found

in Raun et al. (2010).

Stan Codes and Results

We demonstrate the use of HMC in Stan by using R and RStudio (RStudio Team 2015; R

Core Team, 2018). R is used to call Stan and the latest versions of both are assumed to be installed

on the computer. R can be installed from https://www.r-project.org/ while RStudio can be obtained

from https://www.rstudio.com/. RStudio is not essential but we recommend it because of its ease

at writing, editing, and running R code. Its particular feature is the capability to highlight Stan

syntax (Lambert 2018). Another useful tool required to run the code is Toolchain. Stan depends

on the computer’s tools that handle C++ files because Stan code is translated into C++ code and

then compiled. For ease of doing so, it is recommended that the RTools package is installed.

We assume that the reader uses Windows. The Stan website (https://mc-stan.org) has useful

resources and outlines the procedure for installing these packages. We recommend similar

resources to Linux users. Another required package used in this paper is RStan. RStan can be

8

installed within R using the install.packages function. But researchers may still waver to use

Stan directly because every model written may have to be debugged or if possible optimized which

could be time-consuming and an error-prone process despite their familiarity with Bayesian

inference (Bürkner 2017a). Thus, we mostly use Bürkner’s (2017a) package brms to make writing

the Stan code easier. The brms package is user friendly and can estimate complex nonlinear

models.

The following procedure is used to demonstrate our estimations: first we simulate some

data that will be used to estimate equation (2). The R code to generate the data is in Listing 1.

{Listing 1}

We then use the brms package to recover the true parameters of the model. We do so by using two

different prior distributions: normal and truncated Student t-distribution. The code to estimate the

model using normal priors is presented in Listing 2.

{Listing 2}

The code in Listing 2 for Line 1 defines the stochastic plateau production function using

the bf function, which is activated useful upon successful installation and loading of brms. The

function fmin is equivalent to the min function in equation (2) while b0 and b1 represent 𝛽0and𝛽1

in equation (2). The variables plate and intermain in line 1 are respectively the plateau indexed by

𝑃𝑡 and plateau year random effect (i.e., 𝑠𝑡 in equation (2)). The formula b1+b2~1 implies that both

b1 and b2 are stochastic. In the case of plate ~ 1+(1|TIME), it means that the plateau intercept is

stochastic and varies with TIME through the plateau year random effect 𝑠𝑡. The intercept year

random effect is denoted as 𝑢𝑡 in equation (2) and is shown in line 2 of Listing 2 as intermain ~

0+(1|TIME). This is basically to tell Stan that the intercept year random effect is group-level and

9

varies with TIME. The option nl = TRUE tells Stan that the function being defined should be

treated as non-linear.

Next, we set the priors for all stochastic parameters in the model. Following Bürkner

(2017a) and Bürkner (2017b), brms requires the user to specify priors explicitly. For the code in

Listing 2, all the priors are in line 4 through 8 defined by the set_prior function. We place a

normal distribution with respective parameters on population-level effects (b1, b2, and plate), the

group-level effects (intermain), and family-specific parameter (sigma). We assume a default prior

for the plateau year random effect– a strictly positive truncated Student t-distribution with 3

degrees of freedom and scale parameter of 44 – out of preference. Using the fake data generated

in Listing 1, the next step is to run the model using the brm function. The estimation code is

presented in line 10 through 12 in Listing 2. The object containing priors, the model function

previously defined and the data are specified in line 10 of Listing 2, while we specify control

variables adapt_delta and max_treedepth to aid convergence. More details of these can be

found in Burkner (2017a). Estimation results are saved in the object fit. The option warmup

represents the burn-in phase while iter denotes the total MCMC samples. We use 4 cores and 4

chains to ensure that the chains are run in parallel cores. The results from our model are obtained

using the summary function in R as shown in line 14 of Listing 2. Summary results of the fitted

model are shown in table 1.

{table 1}

Results in table 1 indicate that we are able to recover the true parameter values pretty well.

For example, the true values for population-level parameters are (40, 0.86, and 151.11) while the

recovered parameters are respectively (41.33, 0.81, and 153.51). In terms of convergence, the

Gelman-Rubin statistic (Gelman and Rubin 1992) (the�̂�) is equal to 1 for all parameters indicating

10

successful convergence of the HMC chains. This result is consistent with trace plots of respective

parameters shown in both panels of Figure 1.

{Figure 1}

All the trace plots indicate good mixing. While we imposed normal priors for model parameters

of preceding results presented in table 1, we try to use a different prior for the next results as

mentioned before. They are mainly weakly-informative priors. This is to check if the results would

be robust to any prior change. We use truncated Student t-distribution priors with 4 degrees of

freedom with a scale parameter of 10 on all the parameters. The brms code associated with these

priors is presented in Listing 3.

{Listing 3}

The code in Listing 3 is syntactically similar to the one in Listing 2 except the section containing

priors and thus we do not spend time detailing it. However, the priors shown are expected to be

weakly informative and with heavier tails than the normal distribution. Results from the code in

Listing 3 are presented in table 2. As can be observed in table 2, they are on average close to

findings from table 2.

{table 2}

On average, we are able to recover true parameter values as in the first case implying that a change

of priors in our example did not affect the novelty of our results. The trace plots from results in

table 2 are shown in Figure 2. Both panels in Figure 2 indicate good mixing of the chains which

suggests successful convergence of the chains to their target posterior distributions – a result that

collaborates the Gelman-Rubin statistic which is equal to one for all parameter estimates.

{Figure 2}

11

As mentioned previously, we also estimate the stochastic plateau production function using

empirical data. The brms code to estimate the stochastic plateau production function is presented

in Listing 4. Like before, we impose weakly informative priors – the truncated Student t-

distribution for all parameters. The rest remains the same as in Listing 3 except the data used.

{Listing 4}

Results from the code in Listing 4 are shown in table 3. The MCMC chains successfully converged

based on the �̂� values which are equal to one for model parameters. We find that an increase in N

by an extra lb. per acre would result in an increase in wheat yield by 0.49 bushels per acre, when

all other factors are held constant. The average plateau of wheat yield is about 44.47 bushels per

acre.

{table 3}

We further try to estimate the same model in Stan using another useful package mentioned

previously: RStan. The code that relies on RStan is presented in Listing 5. The code in Listing 5

differs from previous brms codes in that Listing 5 explicitly contains all Stan blocks. A block is

simply a set of statements preceded by the block name and surrounded by statements (Sorensen,

Hohenstein, and Vasishth 2016). Basic Stan blocks include: (1) data block, 2) parameter block,

and (3) model block. Other blocks which are not mandatory are functions, transformed data,

transformed parameters, and generated quantities. Based on Listing 5, the code is saved in an

object named model_2 (line 2) but can also be saved in a text file with an extension .stan for it to

be executed. The data block as the name suggests is where data used to pass to Stan are declared.

The number of observations, groups (i.e., years) and a variable that maps observations to groups

are defined here. The word int refer to variables considered in integer form while vector implies

the variable is a vector (it could be row or column vector).

12

{Listing 5}

The next block is parameters where all parameters to be used are defined. For example,

real plateau_error[M] means that a plateau_error is a continuous variable that contains up to

M elements. The variables named sigma and/or with some modifications are defined to range

between 0 and 100 or 0 and 1000 are respective standard deviations. They range between the

mentioned values to indicate that standard deviations are strictly positive. The next block is the

model code block. This is where both the model’s likelihood and priors for the parameters are

specified. As shown in Listing 5, it is this section where parameters in the parameter block are

assigned their prior distributions. For example, plateau ~ normal(50, 100) means that the wheat

plateau follows a normal distribution with the mean of 50 bushels per acre and standard deviation

of 100 bushels per acre. The response variable is defined from line 34 through 37 which is the

stochastic plateau. The model’s likelihood is defined in lines 38-41 of Listing 5, which completes

the full code. The next codes in line 43 through 53 are R codes to define the dimensions of the

variables for use in a data list. RStan recognizes data saved as a list as shown in line 54 of Listing

5. Next we execute the model using the stan function as shown in line 55. The arguments are

almost similar to those used in brms. We then print the results of the parameters of interest by

running the code in line 59. Results from this code are shown in table 4.

{table 4}

The results in table 4 are close to those in table 3 which suggests that we were able to

demonstrate the estimation of the same empirical stochastic plateau production function for wheat

in Stan using both brms and RStan. As a diagnostic check, we further estimate the model using

maximum likelihood in SAS. We use the PROC NLMIXED procedure to do so and results are

presented in table 5.

13

{table 5}

As shown in table 5, our maximum likelihood estimates are close to the posterior means obtained

using brms and RStan. This suggests that our Bayesian computations illustrating estimation of

the stochastic plateau in using HMC in Stan is working. The only difference is that SAS produces

variances for random parameters when using maximum likelihood estimation (plateau year

random effect, intercept year random effect and random error). In contrast, Stan reports standard

deviations for the same parameters.

Conclusion

We showed how to estimate a stochastic plateau function using the Hamiltonian Monte

Carlo (HMC) utilizing the no-U-turn sampler. We do so by using brms and RStan packages in R

and RStudio. The intention of this study is to serve as a tutorial for estimation of the stochastic

plateau production function (Tembo et al. 2008) for it has gained wide use in agricultural

economics research.

Simulation results were consistent across different sets of priors suggesting that HMC

yields robust results of the stochastic plateau model regardless of the type of priors used. As put

forward by (Bürkner 2017a), HMC in Stan gives researchers the freedom to choose priors that may

reflect their beliefs. Simulation results provided evidence that brms can both appropriately and

accurately estimate the stochastic plateau production function with ease.

The findings from empirical data further show that the stochastic plateau model can be

easily estimated in Stan by taking advantage of brms and RStan. Results from using both packages

were consistent despite specifying different sets of priors in respective codes. A comparison of

empirical results from Stan with those obtained by maximum likelihood estimation (obtained in

SAS software) showed that they are very similar results. This result is an indication that the tutorial

14

provided in this paper is novel and would assist agricultural and applied economists interested in

modeling production functions.

Being open source, Stan offers promising frontiers and we recommend its use for its ability

to estimate complex nonlinear models. Even though we demonstrate it in R, Stan can be called

from Matlab, Stata, Python, and Julia (Gelman, Lee, and Guo 2015). While we do not perform

model selection tests and other avenues such as extending the univariate case to the multivariate

case, we hope that this tutorial will give the reader a taste of fitting a Bayesian mixed effects model

in a form of stochastic plateau production function and other functions.

Acknowledgments

The research was funded by the A. J. & Susan Jacques Chair and the Oklahoma Agricultural

Experiment Station and USDA National Institute of Food and Agriculture, Hatch Project number

OKL02939.

15

References

Basturk, N., C. Çakmaklı., S.P. Ceyhan., and H.K.V. Dijk. 2014. “On the Rise of Bayesian

Econometrics after Cowles Foundation Monographs 10, 14.” Œconomia. History,

Methodology, Philosophy (4-3): 381-447.

Bessler, D. A., J.H. Dorfman., M.T. Holt., and J.T. LaFrance. 2010. “Econometric Developments

in Agricultural and Resource Economics: The First 100 Years.” American Journal of

Agricultural Economics 92(2), 571-589.

Biermacher, J. T., B.W. Brorsen., F. M. Epplin, J.B. Solie., and W.R. Raun. 2009. “The

Economic Potential of Precision Nitrogen Application with Wheat Based on Plant

Sensing.” Agricultural Economics, 40(4):397-407.

Boyer, C. N., Tyler, D. D., Roberts, R. K., English, B. C., and Larson, J. A. 2012. “Switchgrass

Yield Response Functions and Profit-Maximizing Nitrogen Rates on Four Landscapes in

Tennessee.” Agronomy Journal, 104(6):1579-1588.

Boyer, C.N., J.A. Larson, R.K. Roberts, A.T. McClure, D.D. Tyler., and V. Zhou. 2013.

“Stochastic Corn Yield Response Functions to Nitrogen for Corn after Corn, Corn after

Cotton, and Corn after Soybeans.” Journal of Agricultural and Applied Economics

45(1379-2016-113848):669.

Brorsen, B.W. 2013. “Using Bayesian Estimation and Decision Theory to Determine the Optimal

Level of Nitrogen in Cotton.” Selected paper, Southern Agricultural Economics

Association annual meeting, Orlando, Florida, Feb. 3-5, 2013.

Brorsen, B.W., and F.G.C. Richter. 2012. “Experimental Designs for Estimating Plateau-Type

Production Functions and Economically Optimal Input Levels.” Journal of Productivity

Analysis 38(1):45-52.

Bürkner, P. C. 2017a. “brms: An R Package for Bayesian Multilevel Models using Stan.” Journal

of Statistical Software 80(1), 1-28.

Bürkner, P. C. 2017b. “Advanced Bayesian Multilevel Modeling with the R package brms.” arXiv

preprint arXiv:1705.11123.

Dhakal, C., K. Lange., M.N. Parajulee., and E. Segarra. 2019. “Dynamic Optimization of Nitrogen

in Plateau Cotton Yield Functions with Nitrogen Carryover Considerations.” Journal of

Agricultural and Applied Economics 1-17.

Gamerman, D., and H.F. Lopes. 2006. Markov Chain Monte Carlo: Stochastic Simulation for

Bayesian Inference. Chapman and Hall/CRC.

Girolami, M., and B. Calderhead. 2011. “Riemann Manifold Langevin and Hamiltonian Monte

Carlo Methods.” Journal of the Royal Statistical Society: Series B 73: 123–214.

Gelfand, A.E., and A.F. Smith. 1990. “Sampling-Based Approaches to Calculating Marginal

Densities." Journal of the American Statistical Association 85(410):398-409.

Gelman, A., D. Lee., and J. Guo. 2015. “Stan: A Probabilistic Programming Language for

Bayesian Inference and Optimization. Journal of Educational and Behavioral Statistics

40(5):530-543.

Gelman, A., and D.B. Rubin. 1992. “Inference from Iterative Simulation using Multiple

Sequences.” Statistical Science, 7(4), 457-472.

Gelman, A., H.S. Stern., J.B. Carlin., D.B. Dunson., A. Vehtari, D.B. Rubin. 2013. Bayesian Data

Analysis, Third Ed. Chapman and Hall/CRC.

Geman, S., and D. Geman. 1984. “Stochastic Relaxation, Gibbs Distributions, and the Bayesian

Restoration of Images.” IEEE Transactions on Pattern Analysis and Machine

Intelligence (6):721-741.

16

Hastings, W.K. 1970. “Monte Carlo Sampling Methods Using Markov Chains and their

Applications." Biometrika 57(1):97-109

Hoffman, M. D., and A. Gelman. 2014. “The No-U-Turn Sampler: Adaptively Setting Path

Lengths in Hamiltonian Monte Carlo.” Journal of Machine Learning Research 15:

1593–1623.

Jiang, Z., and R. Carter. 2019. “Using Hamiltonian Monte Carlo to Estimate the Log-Linear

Cognitive Diagnosis Model via Stan.” Behavior Research Methods 51(2), 651-662.

Lee, M. D., and E.J. Wagenmakers. 2014. Bayesian Cognitive Modeling: A Practical Course.

New York, NY: Cambridge University Press.

Lunn, D. J., A. Thomas., N. Best., and D. Spiegelhalter. 2000. “WinBUGS—A Bayesian

Modelling Framework: Concepts, Structure, and Extensibility.” Statistics and Computing

10: 325–337.

McFadden, B.R., B.W. Brorsen., and W.R, Raun. 2018. “Nitrogen Fertilizer Recommendations

Based on Plant Sensing and Bayesian Updating.” Precision Agriculture 19(1):79-92.

Metropolis, N., A. W. Rosenbluth., M.N. Rosenbluth., A.H. Teller., and E. Teller. 1953.

“Equation of State Calculations by Fast Computing Machines.” The Journal of Chemical

Physics 21(6):1087-1092.

Neal, R. M. 2011. “MCMC using Hamiltonian Dynamics.” In S. Brooks (Ed.), Handbook of

Markov Chain Monte Carlo (pp. 113–162). Boca Raton, FL: CRC Press/Taylor &

Francis

Ng’ombe, J. N. 2019. “Economics of the Greenseeder Hand Planter, Discrete Choice modeling,

and On-Farm Field Experimentation.” Ph.D. Dissertation. Oklahoma State University

Ouédraogo, F. and B.W. Brorsen. 2018. “Hierarchical Bayesian Estimation of a Stochastic

Plateau Response Function: Determining Optimal Levels of Nitrogen Fertilization.”

Canadian Journal of Agricultural Economics 66(1):87-102.

Plummer, M. 2003. “JAGS: A Program for Analysis of Bayesian Graphical Models using Gibbs

Sampling.” In Proceedings of the 3rd International Workshop on Distributed Statistical

Computing (Vol. 124, No. 125, p. 10).

R Core Team. 2018. "R: A Language and Environment for Statistical Computing. R

 Foundation for Statistical Computing." Vienna, Austria.

Raun, R. W., J. B. Solie, and M. L. Stone. 2010. “Independence of Yield Potential and Crop

Nitrogen Response. Precision Agriculture 12: 508–18.

RStudio Team (2015). “RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL

 http://www.rstudio.com/.

SAS Institute Inc. 2016. SAS® 9.4 System Options: Reference, Fifth Edition. Cary, NC: SAS

Institute Inc.

Stan Development Team. 2018. Stan Modeling Language Users Guide and Reference Manual,

Version 2.18.0. http://mc-stan.org

Tembo, G., B.W. Brorsen, F.M. Epplin., and E. Tostão. 2008. “Crop Input Response Functions

With Stochastic Plateaus.” American Journal of Agricultural Economics 90(2):424-434.

Tumusiime, E., B.W. Brorsen, J. Mosali, J. Johnson, J. Locke., and J.T, Biermacher. 2011.

“Determining Optimal Levels of Nitrogen Fertilizer Using Random Parameter Models.”

Journal of Agricultural and Applied Economics 43(1379-2016-113680):541.

http://mc-stan.org/

17

Listing 1: Generation of Fake Data for the Stochastic Plateau Model
1 rm(list=ls()) #Clear the console

2 set.seed(1) #set the seed for reproducibility

3 n=1000 #number of observations

4 nt<-100 #number of plots

5 plterror <- rnorm(nt, 0, 25) #plateau year random effect

6 plate <- rep(150+plterror, nt) #plateau

7 interror <- rnorm(nt, 0, 10) #error for intercept year random effect

8 intermain<-rep(0+interror, nt) #intercept year random effect

9 corn <- numeric(n) #empty object to store corn values

10 beta0 <-40; beta1 <-0.86; #true values for beta 0 and beta 1

11 NITROGEN<-runif(n, 0, 156) #Nitrogen values drawn from uniform dist

12 for (k in 1:n){ #Simulate corn values

13 rand_error<- rnorm(1, 0, 17)#random error

14 corn0[k]<-min(beta0+beta1*NITROGEN[k], plate[k])+intermain[k]
 +rand_error
14 }

15 summary(corn) #summary statistics for corn

16 #create a dataframe to store the variable TIME for each 100 observations

16 data1<-data.frame(y=corn0, x=NITROGEN, TIME=rep(1:10, each=100))

18

Listing 2: Stan Code for the Stochastic Plateau Production Function Using brms
1 function_1<- bf(y~fmin(b0+b1*x, plate)+intermain, b1+b2~1, plate~ 1+(1|TIME),

2 intermain~0+(1|TIME), nl = TRUE) //function defining equation (2)

3 #priors for parameters are saved in the object priors

4 priors <-c(set_prior("normal(39,2.5)", nlpar="b1", class = "b"), //prior for beta

5 set_prior("normal(0.8, 2.5)", nlpar="b2", class = "b"),//prior for beta 2

6 set_prior("normal(150,10)", nlpar="plate",class = "b"), //prior for plateau

7 set_prior("normal(0,5)", nlpar = "intermain", class = "sd"), //plateau rand effect

8 set_prior("normal(0,17)", class = "sigma")) //prior for sigma

9 # run the model using brm function, model results will be saved in object fit

10 fit<-brm(function_1, prior = priors, data = data1,

11 control = list(adapt_delta=0.99, max_treedepth=15),

12 warmup = 2500, iter = 5000, cores = 4, chains = 4)

13 #summarize the results

14 summary(fit)

15 #plot of the model parameters

16 plot(fit, pars = c("sd", "b", "sigma"))

19

Table 1: Summaries of the Fitted Model Using brms and Normal Priors

Parameter True Value Posterior Mean Standard Deviation 2.5% 97.5% �̂�

�̂�0 40.00 41.33 1.33 38.67 43.88 1.00

�̂�0 0.86 0.81 0.02 0.78 0.85 1.00

�̂�𝑡 151.11 153.51 5.63 143.31 165.84 1.00

�̂�𝑠 23.53 17.69 8.66 6.98 39.79 1.00

�̂�𝑢 9.38 2.06 1.17 0.15 4.67 1.00

�̂�𝜀 17.68 20.90 0.47 19.99 21.84 1.00

20

Listing 3: Stan Code Using brms with Truncated Student t-Distributions
1 function_1<- bf(y~fmin(b0+b1*x, plate)+intermain, b1+b2~1, plate~ 1+(1|TIME),

2 intermain~0+(1|TIME), nl = TRUE) //function defining equation (2)

3 #priors for parameters are saved in the object priors

4 priors <-c(set_prior("student_t(4,0,10)", nlpar="b1", class = "b"), //beta 0 prior

5 set_prior("student_t (4,0,10)", nlpar="b2", class = "b"), //beta 1 prior

6 set_prior("student_t(4,0,10)", nlpar="plate", class = "b"), //plateau prior

7 set_prior("student_t(4,0,10)",nlpar ="intermain",class = "sd"),//int rand effect prior

8 set_prior("student_t(4,0,10)",nlpar="plate", class = "sd"),//plate year rand eff prior

9 set_prior("student_t(4,0,10)", class = "sigma")) //prior for sigma

9 # run the model using brm function, model results will be saved in object fit

10 fit<-brm(function_1, prior = priors, data = data1,

11 control = list(adapt_delta=0.99, max_treedepth=15),

12 warmup = 2500, iter = 5000, cores = 4, chains = 4)

13 #summarize the results

14 summary(fit)

15 #plot of the model parameters (not shown to conserve space)

16 plot(fit, pars = c("sd", "b", "sigma"))

21

Table 2: Summary Results Using Truncated Student t-Distribution Priors.

Parameter True Value Posterior Mean Standard Deviation 2.5% 97.5% �̂�

�̂�0 40.00 41.95 1.60 38.77 45.07 1.00

�̂�0 0.86 0.81 0.02 0.77 0.84 1.00

�̂�𝑡 151.11 155.43 9.40 140.69 178.07 1.00

�̂�𝑠 23.53 19.91 10.92 7.42 48.16 1.00

�̂�𝑢 9.38 2.16 1.24 0.18 4.99 1.00

�̂�𝜀 17.68 20.91 0.47 20.02 21.87 1.00

22

Listing 4: Stan Code using brms with Truncated Student t-Distribution for Empirical Data
1 #Empirical Data

2 setwd("C:/Users/njohn/Documents/brorsen")

3 lahoma<-read.csv(file = “lahoma.csv”)

4 #check names and missing values

5 model<-bf(BUAC~fmin(b1+b2*N, plate)+intermain, b1+b2~1, //define equation (2)

6 plate~ 1+(1|YR),intermain~0+(1|YR), nl=TRUE)

7 prior_model<-c(set_prior("student_t(4,0,10)",nlpar="b1",class = "b"),//beta 0 prior

8 set_prior("student_t(4,0,10)", nlpar="b2", class = "b"), //beta 1 prior

9 set_prior("student_t(4,0,10)", nlpar="plate", class = "b"), //plateau prior

10 set_prior("student_t(4,0,10)",nlpar = "intermain",class= "sd"),//int ran eff prior

11 set_prior("student_t(4,0,10)", nlpar = "plate",class = "sd"),//plat rand eff prior

12 set_prior("student_t(4,0,10)", class = "sigma")) //sigma prior

13 fit<-brm(model, prior = prior_model,data = lahoma, //fit the model in Stan

14 control = list(adapt_delta=0.99, max_treedepth=15), //to help convergence

15 warmup = 2500, iter = 5000, //burn-in phase and sampling

16 cores = 4, chains = 4, seed=1) //cores and chains for parallel computation

17 #summarize the results

18 summary(fit)

19 plot(fit, pars = c("sd", "b", "sigma"))

23

Table 3: Summary Results for Wheat Response (bu/Acre) to Nitrogen (lb/acre) Using brms.
Parameter Posterior Mean Standard Deviation 2.5% 97.5% �̂�

�̂�0 25.11 1.46 22.20 27.94 1.00

�̂�0 0.49 0.01 0.46 0.52 1.00

�̂�𝑡 44.47 2.63 39.34 49.73 1.00

�̂�𝑠 14.80 1.71 11.94 18.60 1.00

�̂�𝑢 9.57 1.08 7.74 11.96 1.00

�̂�𝜀 5.80 0.12 5.59 6.03 1.00

24

Listing 5: Stan Code to Estimate a Stochastic Plateau Model Using RStan for Empirical Data
1 #Empirical Data using the Rstan
2 model_2 <- '
3 data {
4 int N; // number of obs
5 int M; // number of groups (years)
6 int K; // number of predictors
7 vector[N] y; // the response variable
8 row_vector[K] x[N]; // predictors
9 int g[N]; // map obs to groups
10 }
11 parameters { //define parameters
12 real alpha; //define beat 0 parameter
13 real a[M]; //define mapping parameter
14 real plateau_error[M]; //define plateau random effect parameter
15 vector[K] beta; //define beta 1
16 real<lower=0,upper=100> plateau; //define standard deviations
17 real<lower=0,upper=1000> sigma;
18 real<lower=0,upper=1000> sigmae;
19 real<lower=0,upper=1000> sigma_plateau; //define plateau error
20 }
21 model { //define the model
22 vector[N] response; //intermediate result variable
23 sigmae ~ gamma(2,.2); //weakly informative priors,
24 //see section 6.9 in STAN user guide
25 sigma_plateau ~ gamma(2,.2); //expected value is the product of the 1st
26 //parameter times the inverse of the 2nd
27 sigma~gamma(2,.2); //RStan uses inverse scale
28 plateau ~ normal(50, 100); //impose priors on define parameters
29 alpha ~ normal(0,100);
30 plateau_error~normal(0,1);
31 a ~ normal(0,1);
32 beta ~ normal(0,1);
33
34 for (j in 1:N) {
35 response[j]=fmin((alpha + x[j]*beta),
36 plateau+sigma_plateau*plateau_error[g[j]]) +
36 sigma*a[g[j]]; //define the stochastic plateau function
37 }
38 for(n in 1:N) {
39 y[n] ~ normal(response[n],sigmae); //RStan uses standard deviation
40 }
41 }
42 '
43 library(rstan) #load Rstan package
46 setwd("C:/Users/njohn/Documents/brorsen")
47 lahoma<-read.csv(file = “lahoma.csv”)
48 nobs <- nrow(lahoma)
49 years <- length(unique(lahoma[,"YR"]))
50 xx <- lahoma$N
51 gg <- group_indices(lahoma,YR) #creates an index for year
52 y <- lahoma$BUAC
53 xx <- cbind(xx) #intercepts are added in the code
54 yield_data <- list(N=NROW(y),M=years, K=1,y=y,x=xx,g=gg)
55 fit <- stan(model_code=model_2, model_name="lrsp",
56 data=yield_data, iter=5000, warmup=2500, chains=4,
57 cores=4, seed = 1, control = list(adapt_delta = 0.80, max_treedepth = 15))
58 #print results for parameters of interest at 95% credible interval
59 print(fit, pars=c("alpha","beta[1]","sigma","sigma_plateau",
60 "sigmae","plateau"), probs=c(0.025, 0.975))

25

Table 4: Summary Results for Empirical Data Using RStan
Parameter Posterior Mean Standard Deviation 2.5% 97.5% �̂�

�̂�0 25.52 1.45 22.71 28.40 1.00

�̂�0 0.49 0.01 0.46 0.52 1.00

�̂�𝑡 45.59 2.64 40.49 50.77 1.00

�̂�𝑠 14.83 1.72 11.93 18.62 1.00

�̂�𝑢 9.55 1.07 7.70 11.93 1.00

�̂�𝜀 5.80 0.12 5.58 6.05 1.00

26

Table 5: Maximum Likelihood Parameter Estimates for the Stochastic Plateau Function from SAS

Parameter Estimate Standard Error t value

Dep Variable: Wheat (bu/acre)

Intercept 25.14 0.74 33.69

Slope 0.49 0.01 34.99

Plateau 45.96 0.63 73.19

Plateau year random effect 201.51 31.24 6.45

Intercept year random effect 86.57 5.96 14.53

Random Error 33.43 1.36 24.60

27

Figure 1: panel 1: Marginal densities and trace plots for stochastic plateau production function

with normal priors

28

Figure 1: panel 2: Marginal density and trace plot for standard deviation of the stochastic plateau

production function with a normal prior

29

Figure 2: panel 1: Marginal densities and trace plots for stochastic plateau production function

with truncated student t-distribution priors

30

Figure 2: panel 2: Marginal density and trace plot for standard deviation of the stochastic plateau

production function with truncated student t-distribution priors

