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Abstract I propose a likelihood ratio criterion for identifying

outliers among individual observations to which a probability

model has been fitted. Outliers are found to occur especially

among the rare sample categories, and further analysis suggests

that the fit of a probability model is systematically biased

in favour of the predominant categories. I intend to pursue

the analysis with drawing further conclusions from Figure 1,

and this may possibly lead to a proposal for (re)weighting

observations in the estimation of a probability model.

The analysis is throughout illustrated by the application of

a multinomial logit model to four automobile ownership modes

of some 3 000 households from a budget survey.
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1. A logit analysis of automobile ownership

We have studied the ownership of (private) automobiles among

2819 households of the Dutch CBS household budget survey of 1980

by means of a standard multinomial logit analysis. Four ownership

classes or categories are distinguished, viz.

NONE - no automobile owned.

USED - one automobile, bought second-hand

NEW - one automobile, first owner

MORE - two or more automobiles

These ownership classes all refer to private automobiles only, in

contrast to business cars as defined below.

Let s = 1, 2, .. S denote these categories or states, with

S here equal to 4, A
s 
the corresponding index sets, and i = 1, 2,

n with n = 2819 indicate the sample households. The logit

model then is

P(iE A
s
) = P • =

exp(xijs)

exp (xl)

We normalize the parameter vectors by writing

(1)

=0 (2)

where 1 refers to the class NONE.

The vector x. consists of a unit constant and four regressor

variables. These are

BUSC - a business car dummy for the presence of a business car,

a company car, an expense account car or a tax deductible

car; 1 if such a car is present, 0 otherwise.



URBA - degree of urbanization, graded in six classes from

1 (cities) to 6 (country).

LPER - household size, measured by log of number of persons.

LYPP - income level, measured by log of disposable household

income per person.

With four states, the normalization (2), and five coefficients

in 13.
s
, we have fifteen coefficients. These have been estimated by

maximizing the loglikelihood function

logL(0) = E
s iEA 

logp .(0)
si (3)

Here psi is taken from (1) and 0 is the fifteen element vector

comprising (3
2' 

13
3 

and P.
4. 

The (asymptotic) variances of the estimates

follow from the information matrix.

To facilitate the interpretation we give a somewhat redundant

presentation of the results. By (1) we have

log(psi/p = x!(P. - t) 
(4)

ti 1 s

These regression coefficients of the log of the odds ratio has been

reported in the upper half of Table 1 for all pairs (s, t). We have

also calculated the partial derivatives of the probabilities of the

four states in respect of the regressor variables, or

9Ps 
P ff3 . E
s 

-
Pstilp

(5)

These derivatives have been evaluated at the sample mean frequencies.

They are shown in the bottom half of Table 1. All estimates are

accompanied by their (asymptotic) t-ratio's, given in absolute value.
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- see here Table 1 -

The estimated coefficients have quite small standard errors, and

the results make sense. The presence of an expense account car (BUSC)

discriminates only between NONE and any form of private automobile

ownership, and so does URBA. Household size, represented by LPER,

has a strong effect on the number of cars owned, but none on the

choice between USED and NEW. Income (LYPP) once again works in

favour of all types of ownership, but particularly in favour of new

cars. All this is as it should be.

We can also assess the model's performance by the equivalent

of the F test of a regression equation. When we ignore all the

regressor variables, but retain the constant and its intercept

coefficient, this is equivalent to equating twelve parameters to

zero. The Maximum Likelihood estimates of the p
si 

in this case

correspond to the sample frequencies, or

Psi
= n

s
in (6)

The loglikelihood of this primitive base-line model is therefore

logL = nlogf = E n log n - nlogn (7)
0 s s s s s s

This must of course be less than the maximum of (3), since we have

imposed twelve restrictions, and we may test these by a likelihood

ratio test. In the event we find

logLo = - 3527, logL(e) = -2954.

Twice the difference is 1146, and this is of course highly significant

for a chi-square variable with 12 degrees of freedom.

By the usual standards of this rather superficial inspection

the present analysis is reasonably successful. This should be borne

in mind in the sequel.
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Table 1. Estimates of logit model parameters) n=2819

(absolute values of t-ratio's in brackets)

regression coefficients of equ.(4)

(s/t)

,

BUSC URBA LPER LYPP

USED/NONE -2.89 -0.14

.

+2.90

,

+2.10

(15.29) (4.53) (16.12) (13.06)

NEW/NONE -3.03 -0.10 +2.90 +3.15

(14.32) (3.09) (14.84) (17.59)

MORE/NONE -3.56 -0.08 +6.81 +4.55

(9.57) (1.44) (19.60) (15.38)

 , r , 

NEW/USED -0.14 +0.03 +0.00 +1.05

(0.58) (1.12) (0.02) (6.78)

MORE/USED -0.67 +0.06 +3.92 +2.46

(1.76) (1.08) (12.24) (8.95)

,

MORE/NEW -0.53 +0.02 +3.91 +1.41

(1.37) (0.42) (11.91) (5.13)

partial derivatives of equ.(5)

state BUSC UREA

,

LPER LYPP

NONE +0.69 +0.03 -0.75 -0.63

(18.87) (4.27) (19.71) (18.12)

USED -0.32 -0.02 +0.27 +0.11

(8.07) (3.70) (8.16) (4.00)

NEW -0.27 -0.01 4-0.20 +0.34

(7.28) (1.29) (6.56) (12.89)

MORE -0.10 -0.00 4-0.29 +0.17

(4.84) (0.09) (15.90) (11.19)

-
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2. Identification of outliers

The 2819 individual household observations may be expected

to contain a certain number of outliers, or atypical observations.

Such observations may be due to errors of observation or to

eccentric behaviour of the household concerned; in either case we

should like to eliminate the observation from the analysis, whether

it materially affects the parameter estimates or not. We wish to

identify these observations, and to gauge their effect on the

estimates.

A probability model does not yield residuals, like a regression

equation; the nearest analogy to a large residual, and prima facie

evidence of an outlier, is severe misclassification, or a very small

value of the predicted probability of the state that actually occurs.

This is given by

P . =3 s k3,3
(8)

where s(j) denotes the observed state of the j' th observation.

We shall indeed use this criterion to delete observations. To

delete the j'th observation is equivalent to the introduction of a

(0,1)dulmnyD.in (1), which is 1 for the j'th observation and 0
7

elsewhere. The extended model is

psi =

As in (2) we have

while moreover

13
1 
= 0

exp(xif3s)
+ y D 

Si 
E exp(xif3t)

Is = 0

(9)

(10)
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This last condition (10) must be imposed in order to preserve the

properties of probabilities Forthe left-hand side of (9).

Inspection will show that in the extended model (9) the i can

be adjusted to ensure a perfect fit for the j'th observations,

regardless of the values of the or e. At the maximum of the

loglikelihood we will therefore have

P i) = i() = 1,
.  

= 0.

The j'th observation therefore does not contribute to logL, regardless

of the values of the 
s
, and the addition of three new parameters

- four y
s 
subject to (10) - is equivalent to deleting a single

observation. It is easy to see that this holds for any specification

of the probability model, and that the removal of an observation is

always equivalent to the addition of (S - 1) extra parameters.

The effect of deleting one observation on the maximum of the

loglikelihood function is to omit one term from the summation of (3),
(\,

and to change the parameter estimates from 0 to 0. As a result the

loglikelihood increases by

eAlogL(j) = - 
logP 

( )
3

r‘,
+ E E {logp 

s-
4(0) - logp

5i
(0)1

s iEA
s

The increase in logL upon the removal of the j'th observation can

thus be decomposed in (i) a part which is directly due to the

removal of an awkward observation, and (ii) a part which reflects

the improved fit to the remaining observations. Note that both

terms are nonnegative.

By the argument given above, the same result can be obtained

by the introduction of (S 1) new parameters, and the hypothesis

that these are all zero, or that the j'th observation is not an

outlier, is amenable to a likelihood ratio test. Under the null

twice AlogL(j) is (asymptotically) chi-square distributed with
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(S - 1) degrees of freedom. In the present case, with S = 4, the

j'th observation is a significant outlier at the 5% level if

AlogL(j) exceeds 7.815/2 = 3.907. As both terms of (11) are non-

negative, the j'th observation may register significance by the

first term alone; it is sufficient that

that is

-logP 
.(6)> 3.907
3

13 
< .0201

3
(12)

This is an easy criterion fog identifying outliers. There is

no need for repeated estimation; all we have to do is to calculate

the n values

= p sk ,j) (6)P3 3

for a single set of estimates from the analysis under review. As the

derivation above shows, the critical minimum (here .0201) depends

only on the number of categories S, not on the fit of the model or

on any characteristic of the analysis. As S increases, this

critical value declines rapidly, as can be seen from Table 2.

- see here Table 2 -

The present criterion primarily identifies atypical observations,

and we can only hope that these include the observations that are

influential in determining the parameter estimates, for these are of

course the observations we are after. As the second term of (11) is

ignored, influential observations that do not show up by their

eccentric position are overlooked. This is a drawback of the method.

If we really wish to concentrate on influential outliers, we must

look at the second term, and there is nothing for it but to

re-estimate 0 with each of the n observations omitted in turn.
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Table 2. Critical minimum value of p3 -. for various S 

S

critical value of

significance levels

.05

- pi at

of

.01

• 2 .1465 .0362

3 .0500 .0100

4 .0201 .0034

5 .0087 .0013

6 .0039 .0005

7 .0018 .0002

8 .0009 .0001

9 .0004 -

10 .0002 -

- less than .00005
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3. An application

When we apply the criterion (12) to the logit analysis of

automobile ownership we at first find 16 significant outliers among

the 2819 observations. This is far less than the number we would

normally expect to exceed the 5% significance level, and it reflects

the fact that we use a lower limit of the true test statistic since

part of (11) is neglected. It may also suggest that the right-hand

tail of the distribution of the pi is abnormally thin; this would

mean that the outliers are indeed far out, and indicate genuine

freak observations.

Upon deleting the 16 observations from the analysis, the

loglikelihood increases by 83.9. When we partition this overall

effect along the lines of (11), the major part (80.3) is due to

the removal of awkward observations, and only 3.6 reflects the

improved adjustment to the remaining observations. It is clear

that the effect on the estimates is small; yet they still change

enough for the same criterion (12) to yield another six outliers

at the revised estimates. When we delete these in turn, one new

outlier appears. Deleting this one yields no new outliers.

The effect of omitting the 23: outliers on the estimates of

the parameters can be gauged by comparing Table 3 with Table 1.

While there is a further overall improvement in the t-ratios, the

results are not very much different from what we had before; but

it should be realized that the change is due to the removal of

less than one per cent of the sample observations.

- see here Table 3 -

We should of course also find out by inspection in what sense

the outliers diverge from the norm, or from the model. The first

thing we observe is that their distribution over the four ownership

categories is very uneven; we find the following incidence
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Table 3. Estimates of logit model .parameters after removing outliers

(absolute values of t-ratio's in brackets)

regression coefficients of equ.(4)

(s/t) BUSC URBA LPER LYPP

USED/NONE -3.15 -0.15 +3.22 +2.39

(16.00) (4.92) (16.99) (14.07)

NEW/NONE -3.38 -0.12 +3.27 +3.53

(15.07) (3.45) (15.81) (18.61)

MORE/NONE -4.22 -0.12 +7.78 +5.40

(10.09) (2.13) (20.32) (16.64)

NEW/USED -0.23 +0.03 +0.05 +1.14

(2.54) (1.12) (0.25) (7.16)

MORE/USED -1.07 +0.03 +4.57 . +3.01

(2.54) (0.49) (12.96) (10.06)

 -4 

MORE/NEW -0.84 -0.01 +4.52 +1.87

. (1.96) (0.13) (12.55) (16.27)

partial derivatives of equ.(5)

state BUSC UREA LPER LYPP

t

NONE . +0.77 +0.03 -0.84 -0.71

(19.69) (4.76) (20.71) (19.25)

USED -0.34 -0.02 +0.29 +0.13

(8.23) (3.88) (8.60) (4.47)

NEW -0.30 -0.01 +0.23 +0.38

(7.82) (1.43) (7.23) (13.67)

MORE -0.12 -0.00 +0.32 +0.20

(5.49) (0.75) (16.55) (12.39)
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number of sample number of

observations outliers

NONE 1009 7

USED 944 3

NEW 691 4

MORE 175 9

Thus the least frequent category yields the largest number of outliers,

and the relative incidence of outliers in that class is ten times as

large as elsewhere.

This result prompts a closer look at the adjustment of the model

in terms of the predicted probabilities 
ps(i)i

(0) of each of the four

automobile ownership classes. All loglikelihoods as well as their

differences (like (11)) consist of summations, and they can therefore

be decomposed into separate components for each of the four classes.

This has been done in Table 4. In the top half we show how we proceed

from the primitive base-line model to the standard logit model, and

from there to the further refinement of a logit model with all the

outliers deleted. In the bottom half we characterize the adjustment of

each model for each ownership class by the geometric mean predicted

probability, or

exp
1

logpsw i(6)1.
n
s iE A

s

In an ideal adjustment the predicted probabilities of the state

that actually occurs should be somewhere close to 1; in the more

modest requirement that the state actually occurring has the largest

probability, it should at least be .25 (since we have four alternatives).

The values of Table 4 lag far behind these values, in particular

for the small categorie MORE. Now in the primitive or base-line model

it is immediately clear that rare states are badly predicted, since

the predicted probabilities are equal to the sample frequencies. It is

not so immediately apparent, however, that this bias persists when we

adjust a slightly more sophisticated model. Yet a little reflection

will show that this must be so, since a small improvement in the mean
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predicted probability of a large class contributes more to the

maximization of logL than a substantial improvement in the mean of

a small class. The stakes are thus weighted in favour of the

predominant categories.

- see here Table 4 -

The analysis of Table 4 is still in terms of the overall or

average fit allbeit within separate categories. The argument just

given does not necessarily carry over to individual observations,

for a bad fit (a low probability) for a single observation detracts

as much from logL in a small category as in a large category. Yet in

fact it turns out that the entire distribution of the predicted

probabilities shifts along with their geometric mean. We show these

distributions for each of the four classes in Figure 1, for the

best model we have, i.e. the logit model after removal of 23 outliers.

Against the background of the ideal values of 'close to 1' or at least

'over .25' that we have quoted, the actual distributions are terrible,

and the actual distribution for the class MORE is the worst of all. It

is now plain why most outliers occur in that group. It is also painfully

clear how badly an apparently satisfactory analysis performs when it

comes to the prediction of individual behaviour, even within the sample

used for estimation.

- see here Figure 1 -



Table 4. Decomposition of loglikelihoods by ownership classes

base-line
model

A add 12
f3's

original

logit model
deleting 23

t A obs

outliers

A fit

logit model
without
23 outliers

loglikelihood -3527-4 +573.2 -2954.1 +106.7 +5.9 -2841.5

degrees of freedom +2816 -12 +2804 -23
+2781

s ! n f nlog f
ss s s

1 1009 .358 -1036.5 +254.4 -782.1 -7 +31.9 +4.6 -745.6

2 944 .335 -1032.4 + 93.4 -939.0 -3 + 1.6 +4.1 --923.3

3 691 , .245 - 971;9 + 95.8 -876.1 -4 +22.2 +0.4 -853.5

4 175 .062 - 486.6 +129.7 -356.9 -9 +41.0 -3.2 -319.1

. , . _

gqi geometric mean predicted probabilities

1

2

3

4

.358

.335

.245

.062

.461

.370

.281

.130

.475

.375

.289

.146
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Figure 1. Relative frequency distributions of predicted

probabilities in four ownership classes
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