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ABSTRACT

Some years ago Giguere and Styan [1] considered the expression SABSA, where

B is a pxp nonrandom (not necessarily symmetric) matrix and S
A 
:= X'AX, A being

an nxn nonrandom symmetric idempotent matrix and vec X' having the

distribution N
np

(vec M', I
n
MV).

They presented (without proof) the expectation of 
SABSA 

under the centrality

condition M 1 A= 0.

In this paper the expectation will be derived for arbitrary (not necessarily

symmetric) A.

Earlier results by Magnus and Neudecker [2], Neudecker and Wansbeek [3] and

Neudecker [4] will be invoked.

1. INTRODUCTION

Let x. for i=1,...,n be px1 random vectors that are jointly independent

with (normal) distribution N (p. ,V).
P

If we then define X := (x1,...,xn)' and M:=
1n

)1, then vec X' will

have the distribution N (vec
n
aV).

np
It is well-known that the matrix quadratic form 

SA . 
-= X'AX has expectation

E(SA) = M'AM + (trA)V (1.1)

and dispersion

(vec S
A
) = tr (A' A) (VW) + ( tr A

2
) K (VE4V )
PP

+ m'A'AM t4V+VOM'AA'M

+ K (N1 A
2
may) + {K (m 'A

2 
may)} ,

PP PP
(1.2)

The first result can be found, inter alia, in Giguere and Styan [1]. The second

result was presented by Neudecker [4], who extended an earlier result by

Magnus and Neudecker [2].

It is intuitively clear that E(SABSA) can be obtained from (1.1) and (1.2).
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This will now be achieved.

Two results by Neudecker and Wansbeek [3), viz.

vec (AB) = (I
n
CiK
qm

etI
p
) (vec A CI vec B)

and

vecf(A'QB)K 1 = (I OK QI)vec((AC4B)K }
mq q mn p nq

where A and B are arbitrary mxn and pxq matrices and K is the mnxnn
mn

commutation matrix as studied by Magnus and Neudecker [2] will be used.

Other properties concerning Kronecker multiplication and the commutation

matrix that will be employed are

vec ABC = (C'QA)vec B, for compatible matriees A, B and C (1.5)

K vec A = vec A', where A is an mxn matrix (1.6)
1T111

K (AQB)K
nq 

= BEI A, where A and B are mxn and pxq matrices (1.7)
Pm
(vec A)'vecB = tr A'B, for compatible matrices A and B. ( 1 . 8)

2. THE EXPECTATION OF S
A
BS

A

The following theorem is going to be proved.

THEOREM.Letthepx1randomvectorsx.be independently distributed each as

N (p.,V) for i=1,...,n.
p 1

Let

X:= (x1,...,xn)' and M:=

Consider the matrix quadratic form S
A 
:= X'AX , where the nxn matrix A is

nonrandom and not necessarily symmetric. Let further B be a pxp nonrandom

(not necessarily symmetric) matrix. Then

E(S
A
BS

A
) (trA t A)VB'V +(tr A

2
) (tr BV) V +

+ m'AA'MB'V + (tr BV)M'A
2 
M + (tr M'A

2
MB)V

+ {M'AM + (tr A)V}BCM'AM + (tr A)V} .

Proof It is advisable to examine vec 
S

BS
A 
= I ,,(S 'OS )vec B

A z A A

= vectI
p2

(S
A
'OS

A
)vec Bl = (vec 8611I 

2
)'vec(S 'QS )

A A

(vec BI )'(I QK QI )(K I )(vec SOvec S) . (2.1)
p2 P PP P PP p2 A A

This subresult follows from (1.5) and (1.6).
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Clearly (I 2K OI )(K OI ,) vec n(vec SA)P PP P PP p2

=(i K el ) vec D(vec S
A
)K

ppP PP P

= (I taK ea ) vec[(tr A'A)(V2V)K + (tr A2 )(V0V)P PP P PP

• (M'A'AM2V)K + (V2M'AAWK + \IOWA2M
PP PP

+ (M'A2mewt]

2
= (tr A'A) vec(V2V)K + (tr A ) (vec V 2 vec V)

PP

+ vec(M'A'AM0V)K + vec(V2M'AAWK
PP PP

+ vec V vec M'A
2
M + vec(M'A

2M)' e vec V ,

by virtue of (1.2), (1.5), (1.7), (1.3) and (1.4).

Further (I 21( eI )(K 21 )[E(vec S) 2 E(vec S)]
P PP P PP p2 A A

(I 0K nI )(K eI )[vecfM'AM + (tr A)V} 0 vecIM'AM + (tr A)V}]
P PP P PP p2

= (I ;OK I )[vecfM'AsM + (tr A)V} 0 vecIM'AM + (tr A)V}]P PP P

(2.2)

= vec[{M'A'M + (tr A)V} 0 IM'AM + (tr A)V}] (2.3)

by virtue of (1.1), (1.6) and (1.3).

Premultiplication by (vec aeIp2)1 and addition of the two expressions
(2.2) and (2.3) leads to

(tr A'A) vec VB'V + (tr A
2
) (tr BV) vec V

+ vec VB'M'A'AM + vec M'AA'MB'V

+ (tr BV) vec M'A2M + (tr. M'A2MB) vec V

+ vec{M'AM + (tr A)V}B{M'AM + (tr A)V} ,

by virtue of (1.8)., (1.5), (1.7), (1.6) and (1.3) .

(2.4)

From (2.4) follows E(S 
A 
BS 

A
) after deletion of vec operators.

If A is symmetric idempotent of rank k say, and the noncentrality condition
M'A= 0 is imposed, the result is simplified to

E(S A BS A) = k(tr BV)V + kVB'V + k
2
VBV ,

which is Giguere and Styan's (2.2.8).

(2.5)
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