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A DISCRETE STOCHASTIC PROGRAMMING MODEL
TO ESTIMATE OPTIMAL BURNING SCHEDULES
ON RANGELAND
L. Garoian, J. R. Conner, and C. J. Scifres

Abstract Roller chopping kills relatively few, if any,
Macartney rose is a range management of the Macartney rose plants. Canes severed

problem on 500,000 acres of rangeland in from the parent plant and pressed into the soil
Texas. Roller chopping followed by burning is surface by roller chopping may take root. The
an effective method of improving infested Macartney rose stand density may actually in-
rangeland. However, uncertainty associated crease with roller chopping compared to pre-
with implementing effective burns adversely treatment levels if not followed promptly by
affects economic feasibility of the treatment burning. Prescribed bus must be applied
sequence. Discrete stochastic programming is regularly to prevent Macartney rose re-
used to determine optimal buing schedules growth from nullifying the positive effects of
under uncertainty. Optimal schedules and ex- previous treatments.
pected net returns vary with changes in the Scheduling and implementing burns is a crit-
probability of a successful burn. ical consideration of the roller-chopping treat-

ment. Burning too frequently results in exces-

Key words: Macartney rose, discrete stochastic sive effort and cost. Infrequent burning can
programming, prescribed burn- bring about decreased range productivity.programming, prescribed burn-
ing, rangeland. However, burning is not always successful,

and, in fact, its success is determined by
stochastic factors. A successful burn must be
uniform and of sufficient intensity and dura-

1MN~~~~~,~~ I.an o R rtt n tion to kill the Macartney rose plants. Deter-
Macartney rose (Rosa bracteata Wendl.) is minants of an effective burn are topography;

a range management problem on approx- wind direction, velocity, and gustiness; fuel
imately 500,000 acres of highly productive quantity, continuity, and moisture content;
rangeland in southeast Texas (Scifres). and relative humidity (White). As the time of a
Macartney rose spreads rapidly and may scheduled burn approaches, these factors are
develop canopy covers exceeding 75 percent revealed and the advisability of burning deter-
on the Coastal Prairies of Texas, forming im- mined. Based on research experience of the
penetrable thickets which severely limit third author during a 10-year study period,
forage production on rangelands and tame the probability of an effective burn during any
pastures (Gordon and Scifres). particular winter on the Coastal Prairie is

Economic evaluation of selected multiple- estimated at between 60 and 80 percent.
treatment systems indicates that roller chop- Since uncertainty associated with imple-
ping followed by prescribed burning is the mentation of effective prescribed burns is an
most economically effective treatment alter- essential element of the roller-chopping treat-
native (Garoian et al.). Roller chopping in the ment, the objective of this study is to deter-
fall of the treatment year removes the woody mine an optimal burning policy. An optimal
canopy and releases fine fuels (readily com- burning schedule is derived for each year of
bustible organic materials) for burning during the planning horizon, given the outcomes of
the subsequent late winter-early spring. previous decisions.
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METHODOLOGY a. If the burn in year 1 is unsuccessful,
Dynamic programming is a widely used ap- then it will be necessary to burn in

proach for optimizing sequential decision prob- years 2 and 3. When Macartney rose is
lems. This procedure has received considera- roller chopped in the fall it is recom-
ble theoretical and applied attention. Dynamic mended that the initial burn be applied
programming's usefulness is due to: 1) the in the winter. Waiting until the winter
diversity of problems that may be formulated of the second year will reduce the effec-
in a multi-stage manner; 2) the ease with tiveness by about 50 percent when
which integer restrictions and uncertainty measured by stocking rates. A second
may be included, and 3) the efficiency of solu- fire in year 3 is necessary to obtain the
tion algorithms. Limitations of dynamic pro- equivalent benefit of a fire in year 1.
gramming are: 1) problem size and 2) the lack With burns in years 2 and 3, stocking
of a general algorithm (Budnick et al.). rate improvements occur two years

Discrete stochastic programming was de- later than with a successful burn in
veloped to solve sequential decision problems year .
with uncertain outcomes (Dantzig). Theoreti- b. Three years have elapsed since the
cal considerations have extended the applica- last successful burn and less than
bility of the technique (Cocks; Rae, 1971b). three burns have been applied.
Tutorial efforts have provided assistance to Longer periods between burns allow
the researcher (Anderson et al.; Hansotia; Macartney rose canopy cover to
Rae, 1971a; Apland and Kaiser). Despite shar- develop to the extent that fine fuel is
ing many of the positive characteristics of inadequate to carry a fire through the
dynamic programming, applications are not regrowth. But, if three successful
overly abundant (Klemme; Tice; Leatham; burns have been applied since roller
O'Brien; Gebremeskel and Shumway; Yaron chopping, it is possible to apply a
and Horowitz). This method enables solution single effective burn. The earlier burn-
of multi-stage problems where the objective ing pressure will reduce regrowth to a
function coefficients, input-output coefficients, level where fine fuel will be adequate
or resource endowments (RHS values) are to carry a fire.
subject to uncertainty (Cocks). An advantage 3. It is possible to terminate burning at
of discrete stochastic programming is that anytime.
problems are formulated in a linear program- Production parameters for feasible burning
ming framework. Accessibility of linear pro- schedules are determined from research re-
gramming algorithms is the primary reason sults and best estimates of the third author
discrete stochastic programming is utilized to based on experience gained during a 10-year
determine an optimal burning policy, study period. Parameters that vary with re-

Similar to dynamic programming, discrete spect to schedules are stocking rates, weaning
stochastic programming suffers from the percentages, and weaning weights.
"curse of dimensionality." Formulation re- Embedded in a discrete stochastic program-
quires including activities for all possible out- ming model is an underlying decision tree.
comes. Simple problems can generate large The three-stage decision tree shown in
matrices with even a limited number of stages Figure 1 demonstrates the procedure for de-
and states. termining optimal burning schedules for

Results from Macartney rose field experi- Macartney rose. Initially it may be deter-
ments established rules for determining feasi- mined that burning in year 1 is desirable. The
ble burning schedules. Feasible schedules pro- decision is made before the prevailing state of
vide reasonable beef production parameters nature is revealed and preparation must be
while reducing the infestation. Forming sched- undertaken before the uncertainty is re-
ules based on the following rules considerably solved. Resolution of the uncertainty results
reduced the dimensionality problem. in good weather and bad weather with proba-

b atte d. ya bilities P1 and P2, respectively. Depending on
1. A burn will not be attempted in year 2 this outcome a return, Rjk occurring in the ith

unless there is an unsuccessful burn in stag emanating from te j set of state i-
stage, emanating from the jtn set of state i' 

year 1. activities, and under the kth state of nature is
2. Burning in two consecutive years will not determined. If "good" weather prevails, the

be attempted except under the following burn is applied and the return R 11 is
conditions. achieved. At R11 , it is known that the burn
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No Decision R213

Permanently
Feasible Decision Probability R
Node Node

Good

—m Weather R^221e
Bad

1R12 Weather

No Burn
R223

No Burn No Decision
R1,3 R233

Year 0 Year 1 Year 2

Figure 1: Three Stages of Macartney Rose Decision Tree.

was successful and that a burn in year 2 tained 51 different burning schedules and 381
should not be applied. The return in year 2, branches. Many of the branches represent the
R 213, is obtained with probability P3 =l, or same burning schedule. However, because
complete certainty. The joint probability asso- they come about by different decisions and
ciated with R,1 , and R213 is PlxP 3. If "bad" outcomes, there are different probabilities
weather prevails, the initial burn is not suc- associated with the various returns. An unre-
cessful and the return R112 is obtained. At stricted decision tree with a 10-year planning
R112, the decision to burn is again considered. horizon and three possible outcomes for each
Deciding to burn and "good" weather produce decision would have produced 103 branches.
the return at R22,. Deciding to burn and Eliminating infeasible schedules resulted in a
"bad" weather produce the return at R222. more manageable problem.
The joint probability associated with R,12 and A general representation of the unrestricted
R221 is P2xP1; similarly, the probability of discrete stochastic programming model for
R112 and R222 is P 2xP2 . Deciding not to burn Macartney rose is presented for two years (3
at any point results in obtaining the cor- stages)of the planning horizon. This represen-
responding return with certainty. tation can be extended without difficulty, but

This process demonstrates the adaptive na- for compactness will not be shown. The model
ture of the problem. Each decision is made is as follows:
with the knowledge of the past. But for the maximize
most part, the future remains uncertain. Co Xo + P'R1 I X1, + PiP'R2 i X21 +

The decision tree for the 10-year planning P2P'R2 2 X 22 + P3PR 2 3 X 23,
horizon based on experimental rules con-
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subject to: A detailed description of the restricted
model used in this study is shown in Figure 2
in a linear programming format. In this formu-

Aoo 0 0 0 0 Xoo boo lation all uncertainty has been transferred to
A100 A 1il X1i 0 the objective function by multiplying dis-

A200 A211 2X21 • 0 counted net returns, Rijk's, by the probability
200 211 21 <0 of obtaining the returns. These values are an

A300 A3 11 0 : X22 0 aggregation of all activities associated with a
o A411 A421 0 0 cow-calf operation on a 500-acre pasture. The

0 A A ' 0 returns included in the Rjk's are primarily
0 A511 0 A5 2 2 0 dependent on stocking rates, weaning
0 A611 0 0 A623 weights, and weaning percentages offered by

a particular burning schedule. Weaned calves
are sold for $70/cwt. Against this contribution

and Xij > 0 i=0,1,2 j =0,1,2,3; are variable costs of $105/cow unit and a 5 per-
where cent return to a fixed livestock investment of

rj~~~- -~ ~$35/cow unit. Additionally, livestock herd size
Coo = LCi C2 ] adjustments are accounted for by including

costs and returns from buying and selling live-
= a vector of cost parameters at stock in response to stocking rate changes.

stage 0; Salvage values for improved pastures are in-
cluded in the returns of the final year. These
values are measures of productivity above the

Rj = Rij 0 roller-chopping treatment without burns and
0 Rj 2 0 beyond the 10-year planning period. Costs and

0 R returns are expressed in constant 1983 dol-
= ajm lars, and a 5 percent discount rate is used in

= a diagonal matrix of income param- determining net present value. The objective
eters received at stage i= 1,2; result- function represents expected net present
ing from decision node j at stage i-I, value of annual returns to land, capital (ex-
where j =1 if i=1 and j = 1,2,3 if i=2; luding livestock), management, and over-
and under state of nature k, with head.
k=l if good, k=2 if bad, and k=3 if Pasture is the only resource constraint in
certain; the model. The pasture constraint allocates

XOO = Xone pasture (500 acres) between burn and no[J =^IX] burn activities at stage 0. The remaining con-
LXU „..straints link the stage i activities with the

a vector of activities at stage 0; stage i+ activities. A characteristic of this
_~x. ~~-u =X~~ ~formulation is that the sum of the probabilities

Xl= - i associated with returns from activities that
Xi 2 come into solution equal unity in each stage.

.x In stage 1, either the permanently feasible ac-
u- .. . tivity X113 or both Xm11 and X112 will come

= a vector of activities at stage i, result- into solution. Similarly, in stage 2, three possi-
ing from decision node at stage i-, ble solution combinations exist-the perma-

and under state of nature k; nently feasible activity X233, X213 and X223 or
X21 , X221 and X222. It is this feature that per-

P = P1 mits determination of the best course of action
2 given a particular decision node.

,P3 RESULTS
= a vector of probabilities (P1 =prob- Optimal burning schedules for 60, 70, and 80

ability of good state of nature, P2 - percent probabilities of implementing success-
probability ofbadstate, and P3 = 1 is ful burns are shown in Table 1. Non-optimal
a certain state, with P1 +P2 = 1); and schedules are also obtained by constraining

Ahu = matrices of input-output coefficients the model to meet specific assumptions con-
(h=0., . ., 6). cerning the timing of the second burn.
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Obj. Function P1* P2 P3 P P3 P 2*P P2*P2 PP3 P3 P3Coefficient C, C2 R,11 R112 R113 *R213 *R21 *R222 *R223 *R233 RHS

s. t.

A000Aooo

Pasture I 1 1 I
A,10 A,,,

Go,, | -1 i 1 I <0

A20 0 A211

Bo012 -1 IL 1 I s 

A300 A311

No,13 -1 I 1 I O

A411 A421

N121 -1
N, 1 A51-1 11 A5 21 I

G122 - 1 1 1< 0

B123 - 1 1 < 

A6 
1 A 1 1 I2 3

N124 | -i1 I 1 0

Stage 0 Stage 1 Stage 2

Key for Objective Function:
Pk = probability of state k; good weather if k= 1, bad weather if k=2, and certainty if k = 3;
Ri = discounted net returns from 500-acre pasture in stage i, decision node j, and state of nature k; and
C = initial allocation of pasture burn if m = 1 and don't burn if m = 2.

Key for constraints: G = good weather, B = bad weather, and N = no burn; the first two digits indicate transfers from stage i to
stage i + 1; and the last digit refers to the number of transfers between stage i and stage i + 1.

Figure 2: Three Stages of Macartney Rose Linear Programming Matrix.

The optimal schedule under a 60 percent cent probability. A relatively large reduction
probability is to burn in years 1, 3,5,8, and 10. of $515.26 occurs from scheduling the second
Expected net returns associated with this burn in year 3 under an 80 percent probabil-
schedule are $3,960.87. Delaying the second ity. Applying the second burn in year 5 pro-
burn until year 4 resulted in scheduling burns vides large reductions of returns under both
for years 1, 4, 7, and 10. This delay reduced in- 70 and 80 percent probabilities.
come by only $124.93. Attempting the second These results demonstrate the relationship
burn in year 5 and following with burns in 6,8, between the probability of a successful burn
and 10 reduced income by $2,061.44. In fact, and expected returns from effective burning
following this schedule produced a return sub- schedules. As the probability of a successful
stantially lower than not burning. With the burn increases, expected returns increase at
exception of burning in years 1, 5, 6, 8 and 10, an increasing rate for non-optimal burning
the variation between alternative schedules is schedules. This is also true for optimal burn-
relatively small. ing schedules where an increase in probability

At a probability level between 60 and 70 of a successful burn from 60 to 80 percent
percent, burning schedules converge. Burning brought about a 46 percent increase in ex-
in years 1, 4, 7, and 10 is optimal under 70 and pected returns. Substantial benefits are ob-
80 percent probabilities with returns of tained from maintaining a burning schedule,
$4,670.79 and $5,781.15, respectively. Schedul- but weather conditions play an important role
ing the second burn one year earlier results in in realization of benefits.
a modest reduction of $123.84 under a 70 per- Also, higher probabilities of success produce
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optimal burning schedules that have fewer TABLE 1: ALTERNATE BURNING SCHEDULES AND EXPECTED NET
burns and longer periods between burns. PRESENT VALUES ASSOCIATED WITH PROBABILITIES OF

SUCCESSFULLY BURNING MACARTNEY ROSE
Obtaining the benefits of burning with more
certainty reduces the necessity of frequent Probability of Successful Burn
burning.

Since it may not always be possible to follow Ye o unin .60 .70 .80

the optimal burning schedule, alternative Burn (Years)
schedules are of interest. The discrete Dollars Per 500-Acre asture
stochastic programming model provides burn- 3 1,3,5,8,10 3960.87a 4546.95 5265.89
ing strategies given the outcomes of previous 4 1,4,7,10 3835.94 4 6 7 0 .79 a 5 7 8 1 .1 5a

burning attempts as shown in Figures 3 and 4 5 1,5,6,8,10 1899.43 1854.07 1888.77Recommended burning schedules given the No Burn No Burns 3467.46 3467.46 3467.46Recommended burning schedules given the
current year and the years that successful aoptimal burning schedule for given probability of success-
burs have been applied are found by moving ful burn.
horizontally from year to year. The decision 8. The optimal burning schedule from that
rule following an unsuccessful burn is found time is burning again in year 10. If the burn in
by moving diagonally. Illustrating determina- year 8 is unsuccessful, the best course is not to
tion of burning schedules, Figure 4 shows that attempt any other burns. Macartney rose re-
if inyear 7 burns have been applied in years 1 growth would be too substantial for an
and 4, then a burn should be attempted in year economically-effective fire.

Current Year

0 2 3 4 5 6 7 8 9 10

1 13 1,3,5 11,3,5 1,3 1,3,5,8 1,3,5, 8 1, 3,5 15,8,10
1,3,5,8

1,3,5 t 1,3,5,9 1,3 5,9
1,3,5 , 1,3,5

\ 1,3 1,3,6 1,3,6 1,3,6,8 1,3,6,8 1,36,8,10
1,3,6,8

1,3,6 1,3,6,9 1,3,6,9

1,3,6 1 36,103,

1,3 1,3,7 1,3,7 1,3,7,9 1,3,7,9
1,3,7 1,3,7,10

\ ' ' ' \ . 1 3 ' 1 ^ ^'^' 1 3 7
1,3 1,3 1,3 1,3

\ 1 — 1, 4 1,44 1,4,6 ,1,4,6 1,4,6 1,4,6,9' 1,4,6,9
1,4,7 1,4,6,10

1,4,6
'\\1~~4~1,4 1,4,7 1,4,7 1,4,7 1,4,7 1, 4,710

\14,7
\1,4 — 1,4,8 1,4,8z 1,4,8,10

1,4,8
\''1,4 1,4 1,4

1,5,6,8

' '1 1 1 i 1 1
No Burn'No Burn No Burn No Burn No Burn o Burn No Burn No Burn' No Burn N o Burn

aSchedules refer to the years that successful burns have been applied.
Note: Horizontal movement between years provides recommended burning schedule given the current year and burning

history. Diagonal movement provides optimal schedules after an unsuccessful burn.

Figure 3: Determination of Alternate Schedules Given the Year and Burning
Historya Under 60 Percent Probability of Successful Burning of Macartney
Rose.
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Current Year

0 1 2 3 4 5 6 7 8 9 10

—1 .1 ' 1—-1,4 4 1,4 1,,4 1,4,7 ' 1,4,7 1,4,7 1,4,7,10

1\ \1, 4, 1,44 1,4 ,8 , 4 ,8,10

1,4 1, 1, 4
a \ W , 1- — 1, 5S 1,5,6 1,5,6 1,5,6,8 1,5, 6, 8 1,5,6, 8,10

1 ' 1 1 ' 1 1 1
No Burn 2 2, 2 , 3 2, 3, 2 , 3, 5 2,3,5, 7 2,3,5,7 2, 3,5, . 2,3,5,7,10

2, 3,5,7
2,3,5 2,3,5,8 2 3 5,f8 2,23,5,8,10

2,3,5 2,3,5,9 2,3,5,9
\nfl

2
^ ^ "^ ~~2,3,5 2,3,5

\ 2, 3 — 2,3,6 2,3, 6 2,3,6,8' 2,3,6,8^ 2,3, 6,8,10
2,3,6,8A ' ^2, 3 6,8

2,3,63 2,3,6,9 2 3,6,9
2, 3,6 2,3,6,10

2, ' 2,3 2,3 2,3 2,3
2 2 2 2 2 2 2 2

No Burn No Burn No Burn' No Burn No Burn' No Burn No Burn No Burn No Burn

aSchedules refer to the years that successful burns have been applied.
Note: Horizontal movement between years provides recommended burning schedule given the current year and burning

history. Diagonal movement provides optimal schedules after an unsuccessful burn.

Figure 4: Determination of Alternative Schedules Given the Year and Burning Historya
Under 70 and 80 Percent Probability of Successful Burning of Macartney Rose.

CONCLUDING REMARKS Developing rules to limit the number of
Under a 60 percent success probability, possible outcomes can greatly reduce the size

attempting a burn in year 2 following an un- of sequential decision problems with uncertain
successful attempt in year 1 would not be con- outcomes. The Macartney rose problem illus-
sidered. A relatively low probability of apply- trates that dimensionality can also be reduced
ing two successive successful burns dictates by aggregating activities. In most applica-
this decision. At this point roller chopping or tions, data requirements are probably a more
some other treatment may be appropriate. restrictive problem than dimensionality. A
Following an unsuccessful burn in year 1 with vast amount of data may be required since in-
a burn in year 2 is recommended under 70 and formation associated with each outcome at
80 percent probabilities. Otherwise the gen- each stage must be available. If these prob-
eral decision rules are: 1) follow the optimal lems can be overcome, discrete stochastic pro-
burning schedule, if possible, and 2) attempt a gramming is a readily available method for
burn immediately following a missed burn. studying sequential decision problems.
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