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Abstract  

 

Farm efficiency analysis provides significant insights into farms’ potential to enhance agricultural 

productivity. This article reports on an investigation of technology adoption and technical efficiency 

(TE) in the Ethiopian maize sector. We estimated TE while accounting for the potential technological 

difference between improved and local maize varieties and addressing self-selection bias resulting 

from farmers’ decisions to adopt new crop varieties. Using comprehensive household-level data 

collected in 2011 from five major maize-producing regions in Ethiopia, we specified a stochastic 

frontier model to estimate TE and employ propensity score-matching technique to address self-

selection bias. The result confirm that imposing a homogenous technology assumption for improved 

and local maize varieties biases efficiency estimates and the ranking of farmers based on their 

efficiency scores. The mean TE of 66.18%, estimated after correcting for technology difference and 

self-selection bias, indicated that an increase of around 33.82% in maize productivity could be 

achievable with the current input levels and technology.  

 

Key words: technology adoption; technical efficiency; improved maize; propensity score matching; 

Ethiopia 

 

1. Introduction  

 

Although agriculture remains the primary source of food and livelihood for rural households in many 

developing countries, its contribution to food security and poverty reduction is minimal. Particularly 

in sub-Saharan Africa, where the majority of the rural population relies on agriculture for livelihood 

purposes, the massive gap between food production and consumption has made the region one that is 

characterised by severe food shortages. Because farm efficiency analysis provides significant insights 

into farms’ potential to enhance agricultural productivity, estimating farm efficiency has been a 

subject of considerable interest to researchers in the past few decades. There are a growing number 

of studies examining efficiency in crop production within the context of developing countries (see 

Coelli et al. 2002; Alene & Hassan 2006; Haji 2007; Ndlovu et al. 2014). In many of the previous 

studies, however, the focus has been on estimating efficiency without accounting for potential 

technological differences in crop production. Such an approach could bias efficiency estimates and 

potentially could lead to inappropriate policy choices. Tsionas (2002) argues that the failure to 
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adequately account for technology differences may yield biased estimates of technical efficiency 

(TE). For Mayen et al. (2010), this failure may bias the TE modelling and estimations. The focus on 

estimating efficiency while controlling for the potential technology differences is therefore crucial 

for implementing effective policies for enhancing crop productivity.  

 

As argued by Alene and Manyong (2007), when farmers have access to different crop technologies 

that have different output potentials, estimating aggregate production function assumes that the 

conventional and non-conventional inputs are independent of the farmers’ technology adoption 

decision-making. Despite the presence of considerable differences in the adoption of yield-enhancing 

crop technologies in smallholder crop production, the approach to analyse farm efficiency has 

traditionally been to employ an aggregate production function that implicitly assumes homogenous 

technology. Some exceptions are Alene and Hassan (2006), Aye and Mungatana (2011) and Ndlovu 

et al. (2014), who investigated the impact of agricultural innovation efficiency in smallholder crop 

production. Although these studies attempted to account for the differences in crop varieties by 

assuming different production frontiers for adopters and non-adopters, a major limitation is that the 

studies ignore the self-selection bias resulting from farmers’ decisions to adopt new crop varieties. 

Further, these studies assumed different frontiers for adopters of a given crop technology and local 

crop growers, without conducting a formal test to discover whether the two varieties are indeed 

different.  

 

The current article makes two important contributions to the growing body of knowledge on farm 

efficiency. First, we estimate technical efficiency by correcting for the influence of the potential 

technological difference between improved maize variety (IMV) and local maize variety (LMV). By 

identifying adopters and non-adopters of IMV, we examine to what extent efficiency results (the 

parameter estimates and TE estimates) can be affected by the failure to account for technological 

differences between crop varieties. Second, we provide new empirical evidence on the link between 

technology adoption and farm efficiency by correcting for self-selection in the modelling of efficiency 

using the propensity score-matching (PSM) technique. Previous studies on the efficiency of the maize 

sector in Ethiopia are scarce and, if available, limited to a specific region or zone (see, for example, 

Seyoum et al. 1998; Alene & Hassan 2006; Haji 2007). A recent meta-analysis of efficiency studies 

on Ethiopian crop sub-sector (see Geffersa et al. 2019) indicates that most of the previous national-

level studies focused on estimating household-level efficiency by integrating outputs from multiple 

crops. To the best of the authors’ knowledge, this is the first crop-specific efficiency study at the 

national level in Ethiopia. We extend and complement the policy implications of previous studies 

using comprehensive and nationally representative household-level data collected from about 2 000 

maize farmers in Ethiopia.  

 

2. Methodological approach 

 

2.1 Theoretical framework 

 

We employed the non-separable farm-household theoretical model of Singh et al. (1986) to 

understand farmers’ decisions to adopt IMV, in combination with a production frontier approach 

proposed by Farrell (1957). Due to the market imperfections prevalent in developing countries, we 

assume, following Singh et al. (1986), that household 𝑖’s maize production and consumption 

decisions are non-separable. The household produces maize for its own consumption and for sale to 

maximise profit (ᴨ): 

 

ᴨ𝑖  = 𝑓 𝑝𝑀 , 𝑀𝑖 , 𝑤𝑥 ,                    (1) 

 

where 𝑝 and 𝑤 are output and input price vectors respectively. 𝑀𝑖 is a maize output, which is a 

function of farm inputs (𝑋𝑖  and IMV adoption:  
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𝑀_𝑖 = 𝑓(𝑋_𝑖, 𝐼_𝑖 ).                       (2) 

 

For each maize farm, a decision to grow IMV depends on optimising the expected return, which can 

be reflected through yield gains. Thus, household 𝑖 adopts IMV if the expected utility from adopting 

(𝑈𝐼) is higher than the expected utility from dis-adopting (𝑈0). As the utilities are unobservable, we 

use a latent variable, 𝐼𝑀𝑉𝑖
∗, which captures the benefit of adopting: 

 

IMVi 
∗ = ziα + ei     𝑓𝑜𝑟      { IMVi =

 1 if ziα + ei > 0
0 otherwise            

,        𝑈𝐼 − 𝑈0 > 0,             (3) 

 

where 𝐼𝑀𝑉𝑖 is a binary variable (= 1 if a farmer adopts IMV; 0 otherwise), which is a function of 

exogenous variables (𝑧 , and 𝑒𝑖 is an error term. 

 

To model TE in maize production, we re-specify the production function in a frontier production 

framework, following Farrell (1957):  

 

𝑀𝑖 = 𝑓 𝑋𝑖, 𝐼𝑀𝑉𝑖;  𝛽, 𝜃 + 𝜀𝑖,                    (4) 

 

where 𝑀𝑖 denotes the maximum possible maize output, 

 𝑋𝑖 is an input vector, 

 𝛽 denotes a vector of parameters corresponding to production inputs, 

 θ captures the productivity gain resulting from the yield-enhancing effect of IMV, and 

 ε𝑖 is a composed error term. 

 

To account for the stochastic nature inherent in agricultural production, we adopted a stochastic 

frontier (SF) approach to estimate TE. Compared with other, alternative frontier methodologies such 

as the deterministic frontier model and data envelopment analysis, there is a predominance of farm 

efficiency studies using the SF model because it is capable of disentangling inefficiency from random 

noise. The non-parametric approaches, on the other hand, ignore random errors, thereby attributing 

all deviations from the frontier to inefficiencies. This assumption is restrictive in the context of 

smallholder agriculture, because the sector is susceptible to stochastic factors such as rainfall 

variability, natural hazards and pests (Battese 1992). The added advantage of the SF approach is that 

it allows estimating parameters and conducting hypothesis testing. This attractive feature of the SF 

approach permits directly testing the influence of the technology variable using the parameter 

estimates by introducing a categorical variable that characterises the production technology (i.e. IMV 

in our case). The general SF model proposed by Aigner et al. (1977) can be specified as: 

 

𝑀𝑖 = f 𝑋𝑖;  𝛽 exp εi  ,                    (5) 

 

where εi is a composed error term, = vi − ui; v𝑖 is the disturbance error term that is independently 

and identically distributed (i.i.d.) as iv  ),0(
2

vN   and intended to capture events beyond the control 

of the farmers; and ui is a non-negative random variable intended to capture technical inefficiency. 

Assuming ui to have a half-normal or exponential distribution, the 𝑇𝐸𝑖 score for 𝑖𝑡ℎ farmer is 

measured as the ratio of observed output to maximum feasible output: 𝑇𝐸𝑖 = exp  −𝑢𝑖 . 
 

2.2 Empirical stochastic frontier (SF) model 

 

2.2.1 Empirical model specification and estimation issues  

 

Our empirical model was specified following the SF specification proposed by Coelli et al. (1999) 

that accommodates ‘environmental factors’. This model makes it possible to account for factors that 
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are not directly related to the farm production process but are assumed to affect farmers’ production 

performance in the production frontier. Thus, it allows for incorporating variables such as a soil 

quality indicator and a technology dummy (IMV) directly into the production frontier. The general 

empirical model is specified as: 

 

𝑀𝑖 = {𝑓 𝑋𝑖, 𝐼𝑀𝑉𝑖, 𝐿𝑎𝑛𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑖;  𝛽, 𝜃 } + 𝑣𝑖 − 𝑢𝑖 ,                 (6) 

 

where 𝑓 .   represents the appropriate maize production function and 

 𝐿𝑎𝑛𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑖 denotes an average land quality index for household 𝑖. 
 

One of the recent extensions to include potential exogenous inefficiency variables in the stochastic 

frontier framework involves directly parameterising the variance of the inefficiency term by treating 

the efficiency determinants as heteroscedastic in the inefficiency function (see Kumbhakar & Lovell 

2000; Wang 2002; Hadri et al. 2003). This approach ensures consistency in the SF parameter 

estimates and TE estimates because it relaxes the restrictive assumption of homoscedasticity in the 

variance of the inefficiency term imposed by earlier SF models (Kumbhakar & Lovell 2000; Wang 

2002). This extension is analogous to a one-step estimation procedure, which allows the simultaneous 

estimation of the frontier parameters and the parameters of the inefficiency variables. 

 

As argued by Kumbhakar and Lovell (2000), heteroscedasticity is a serious issue in an SF model 

because it could occur in both random terms (disturbance term and inefficiency component). We 

therefore generalised Coelli et al.’s (1999) specification in Equation 6 to allow for heteroscedasticity 

in the variances of both terms (vi and ui) following a double-heteroscedasticity approach proposed by 

Hadri et al. (2003). Formally, the specification in Equation 6 is extended as: 

 

𝑀𝑖 = {𝑓 𝑋𝑖, 𝐿𝑎𝑛𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑖, 𝐼𝑀𝑉𝑖;  𝛽, 𝜃 } + 𝑣𝑖 − 𝑢𝑖                 (7) 

 

𝜎𝑢𝑖
2  = exp  δ𝑍𝑖

′)                    (7a)

                              

𝜎𝑣𝑖
2  = exp  η𝑍𝑖

′ ),                   (7b) 

 

where 𝑍𝑖
′ is a vector of exogenous variables expected to determine inefficiency, 

 𝜎𝑢𝑖
2  is the variance of the inefficiency term, 

 𝜎𝑣𝑖
2  is the variance of the inefficiency term, and 

 δ and η are parameters to be estimated. 

 

2.2.2 Empirical model parameterisation and variables 

 

There is considerable debate about the selection of an appropriate functional form in SF modelling, 

with the Cobb-Douglas and translog forms being the most widely used (Abdul‐Salam & Phimister 

2017). As a result of its computational simplicity, the Cobb-Douglas functional form has been used 

most commonly. Given its flexibility, a translog functional form can be interpreted as a true 

representation of any underlying production frontier (Battese 1992). Based on this argument, and a 

likelihood ratio (LR) test1 that supported the translog functional form, we specified Equation 7 using 

a translog specification.  

 

The first specification, which imposes a homogenous technology assumption by assuming an 

aggregate production function for IMV and LMV, is specified as: 

 
1 Based on the LR test statistic of 211.96 (P < 0.01), with the degrees of freedom equal to the number of parameters, a 

null hypothesis that the coefficients of all interaction and squared terms in the translog function are equal to zero (H0: 

𝛽𝑗𝑘  = 0) was rejected. 
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𝑙𝑛𝑀𝑖 =  𝛽0 +  𝛽𝑗 𝑙𝑛𝑋𝑖𝑗

7

𝑗=1

 +   𝛽𝑗𝑘  𝑙𝑛𝑋𝑖𝑗   𝑙𝑛𝑋𝑖𝑘  

7

𝑘=1

7

𝑗=1

+ 𝜇𝑖𝑙𝑛𝐿𝑎𝑛𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑖 +  vi − ui ,             (8)

 
 

where  𝑙𝑛𝑀𝑖 denotes the log of the total maize output (in kg) obtained from the 𝑖𝑡ℎ  farmer, 

 𝑋𝑖 denotes a vector of input variables, 

  𝑙𝑛𝑋𝑖𝑗  𝑙𝑛𝑋𝑖𝑘  denote the squared and interaction terms,  

 𝛽0, 𝛽𝑗, 𝛽𝑗𝑘 and 𝜇𝑖 are parameters to be estimated, 

 And all other terms are as defined above. 

 

2.3 Accounting for technological heterogeneity and self-selection 

 

The frontier production function can differ for farmers producing IMV and LMV due to the different 

yield potentials and complementary services associated with the technology package. We account for 

such a potential technological difference by introducing a technology dummy (IMV) in the SF model, 

along with its interactions with production inputs, denoted by  𝑙𝑛𝑋𝑖𝑗  𝐼𝑀𝑉𝑖𝑗 . As such, we extend 

the SF specification in Equation 8 that imposes a homogenous technology assumption to allow for 

different technologies for IMV and LMV: 

 

𝑙𝑛𝑀𝑖 =  𝛽0 +  𝛽𝑗 𝑙𝑛𝑋𝑖𝑗

7

𝑗=1

 + 
1

2
  𝛽𝑗𝑘 (𝑙𝑛𝑋𝑖𝑗 )(𝑙𝑛𝑋𝑖𝑘)

7

𝑘=1

7

𝑗=1

+ 𝜇𝑖𝑙𝑛𝐿𝑎𝑛𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦𝑖 + 𝜃1𝐼𝑀𝑉𝑖

+
1

2
 𝜃𝑗 (𝑙𝑛𝑋𝑖𝑗 )(𝐼𝑀𝑉𝑖𝑗 )

7

𝑗=1

+  vi − ui  

           (9) 

 

𝜎𝑢𝑖
2  = exp  δ𝑍𝑖

′                      (9a) 

 

𝜎𝑣𝑖
2  = exp  η𝑍𝑖

′                    (9b) 

 

The inclusion of a technology adoption variable would present a potential endogeneity problem due 

to self-selectivity by the farmers, as the two groups of farmers may differ systematically in terms of 

certain household and farm characteristics. To address this, we employed a propensity score-matching 

(PSM) technique that accounts for differences in observed covariates between adopters and non-

adopters of IMV. The basic idea behind the PSM procedure is estimating the probability or the 

propensity score (p-score) for the farmers based on their socio-economic characteristics. The 

empirical process follows a three-step procedure. The first step involves estimating a probability 

model for producing IMV and estimating p-scores for each farmer growing LMV. Following Imbens 

and Wooldridge (2009), the p-score is defined as:  

 

𝑃 𝑦 = 1 𝑋 ≡  𝑃𝑟 𝑇𝑖 = 1 𝑥1, 𝑥2 … . , 𝑥𝑗  = 𝐸[𝑇𝑖|𝑋𝑖]  ,              (10)
 

 

where y is a response variable representing technology adoption, x denotes a set of explanatory 

variables for a given farm household, and 𝑇 refers to a technology. The prediction of p-scores follows 

a non-linear binary (probit or logit) model:  

 

IMVi 
∗ =  Ziα +  ψi       𝑓𝑜𝑟      { IMVi =

 1 if Ziα +  ui > 0
            

     

                                                                 0 otherwise,  
                  (11) 

where IMVi is a binary variable as defined above, 
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 Z is a vector of factors that may influence farmers’ adoption decision, and 

 ψi is an error term assumed to be normally i.i.d., with mean 0 and variance 𝜎2.  

 

In the second step, we used the p-scores to compare the outcomes from IMV growers (treated) and 

LMV growers (untreated) with the most similar characteristics. Finally, we matched the LMV 

subsample using the predicted p-scores (i.e. the propensity to produce IMV). All other LMV 

producers were discarded from further analysis. As such, we created an approximation of a condition 

in which the two groups of farmers could be comparable in terms of observable characteristics. 

Although PSM eliminates the baseline differences between IMV and LMV farmers, it fails to account 

for the unobservable variables that may influence the choice of technology. To minimise concerns 

about possible unobservable heterogeneity that could influence the choice of maize varieties, we 

included region dummies to control for potential region-level fixed effects.  

 

3. Data source and variables 

 

The dataset for this study comes from a survey conducted in Ethiopia by the International Maize and 

Wheat Improvement Centre (CIMMYT) in collaboration with the Ethiopian Institute of Agricultural 

Research. CIMMYT conducted the survey in 2011 as part of the project known as the Sustainable 

Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern 

Africa. The survey employed a multi-stage sampling technique. The first stage involved a purposive 

selection of 39 districts from the five major maize-producing regions of Ethiopia (Tigray, Amhara, 

Oromia, Benshangul-Gumuz and SNNP).2 The agro-ecological potential for maize production was 

used as an important criterion to select sample districts. In the second stage, 74 kebeles3 were 

randomly chosen with a probability proportional to size. In the final stage, 2 454 maize farmers were 

interviewed. The dataset consists of information on maize production and input use, technology 

adoption, and socioeconomic and farm characteristics. Out of the total of 2 454 maize-producing farm 

households, 2 364 households were left after the data-cleaning process. Table 1 presents a description 

of the variables. Hybrid varieties, improved open-pollinated varieties (OPV), and local open-

pollinated varieties (Zeng et al. 2015) are the commonly grown maize varieties in Ethiopia. Based on 

previous studies (e.g. Zeng et al. 2015) and consultation with expert maize breeders from CIMMYT, 

this study differentiates the maize varieties as either improved or local (recycled or OPV that has been 

recycled).4 We used seven conventional inputs for maize production to estimate our SF model.  

 

The descriptive results show that there is a large output difference between farmers who produced 

IMV and those who produced LMV. The mean output for IMV (mean = 2 821.8 kg) is more than 

twice that of the mean output from LMV production. This indicates a potential technological 

difference between the two maize varieties. Aside from the direct inputs of production, we used a 

land quality index (𝐿𝑎𝑛𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦) to capture the differences in plot quality characteristics. Following 

Abro et al. (2014), a composite variable was created using both slope and nutrient status indicators 

reported by the farmers.5 Potential inefficiency factors included as heteroscedastic variables in the 

inefficiency function are also described in Table 1.  

 

 

 
 

2 SNNP stands for the Southern Nations, Nationalities, and People’s Region. 
3 Kebele refers to the lowest administrative unit in Ethiopia. 
4 OPVs and any hybrid the farmer recycled for more than three cropping seasons is categorised as local (Zeng et al. 2015). 
5 Prior to indexing, values of 1 for a flat slope, 2 for a medium slope and 3 for a steep slope were assigned to every plot. 

Similarly, if the soil fertility was good, we assigned a value of 1; if medium, we assigned a value of 2; and if bad, we 

assigned a value of 3. Finally, a quality indicator was developed by multiplying the slope and fertility indicators in such 

a way that a plot with a value of 1 had the best land quality, while a plot with the lowest quality had a value of 9. According 

to our coding, a higher value indicated lower land quality. 
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Table 1: Descriptive statistics of variables used in the efficiency estimations (N = 2 364)  
Variables Variable descriptions Mean 

SF production variables 

Output  Maize output (in kg): Pooled sample 2 485.20 (19 232.00) 

                                    IMV growers 2 821.80 (21 121.50) 

                                    LMV growers 876.80 (1 634.40) 

Inputs 

    Labour The total family and hired labour (in man-equivalent units) 36.57 (50.33) 

    Land The total area of land utilised for maize production (in hectares) 0.86 (0.88) 

    Fertiliser 
The total quantity of chemical fertiliser applied for maize production (in 

kg)  
81.20 (138.96) 

    Seed The total quantity of maize from its own source and purchased (in kg) 25.83 (157.16) 

    Chemicals  
The total cost of pesticide and herbicide used for maize production 

(ETB)a   
8.88 (53.79) 

    Bullock Total days of bullock labour used for maize production 13.12 (27.87) 

    Equipment 
A proxy of farm capital, measured as a total value of farm equipment 

(sickles, hoes and ploughs) used for maize cultivation 
81.29 (233.56) 

    IMV Improved maize adoption (= 1 for adopters of IMV, 0 for LMV) 0.83 (0.38) 

 𝐿𝑎𝑛𝑑𝑄𝑢𝑎𝑙𝑖𝑡𝑦 An average land quality index (1 = best, …, 9 = worst) 2.22 (1.33) 

Inefficiency determinant and heteroscedasticity variables 

Age Age of the household head (in years) 42 (12) 

Age_squared The squared term of the age of the household head 1 968 (1 206) 

Gender Gender of the household-head (1 = Male) 4.92 (0.27) 

Education Education level (formal years of schooling) of the household head 2.94 (3.32) 

Family_size  Total size of the household (family members in AEU)b 4.84 (2.08) 

Farm_size  Total cultivated land in hectares 8.26 (6.88) 

Fragmentation The total number of plots managed by the farmer 1.65 (1.12) 

Livestock  Total livestock resources owned by the family (measured in TLU)c 10.98 (11.09) 

Asset  Total value of household assets (in ETB) 502.89 (1 127.69) 

Off-farm_income  Per capita income (in ETB) earned from working outside own farm  18.86 (148.16) 

Savings Total household savings in ETB 1 679.21 (5 977.00) 

Farmer_group Membership in farmers group (= 1 for member of farmer groups) 0.37 (0.48) 

Extension Number of extension contacts 3.93 (5.41) 

Notes: Standard deviations are in parentheses.  

 All values of the production variables reported here are the actual values before the logarithm transformation. 
a All monetary values are in Ethiopian Birr (ETB), the local currency, where 1 USD was equivalent to 17.01 ETB in 2011. 
b AEU: adult-equivalent unit, converted using appropriate conversion factors to account for age and gender differences 

across family members. 
c TLU: tropical livestock units 

 

4. Results and discussion 

 

The econometric results of this study are divided into two major sections. First, we present the 

estimations of the SF model using an aggregate production function (i.e. assuming a homogenous 

production technology for IMV and LMV). The second section reports the results estimated by 

relaxing the homogenous technology assumption.  

 

4.1 Estimates of the SF model using an aggregate production function 

 

Table 2 presents the results of the SF model that assumes homogenous production technology for 

IMV and LMV (as specified in Equation 8).  

 

4.1.1 SF parameter estimates and TE 

 

The positive signs of the first-order coefficients of the production inputs indicate that all inputs used 

in maize production have a positive relationship with the output variable. However, only operated 

area, the quantity of seed, and bullock labour significantly increased the level of maize output in the 
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best practice.6 The gamma7 estimate of the model (γ = 0.595) suggested that about 60% of the 

deviation of the output from the frontier was due to inefficiency. Of the input variables, the large first-

order coefficient Land emphasises the role of land in enhancing maize yield. This result supports the 

theoretical prediction that land, as physical capital, plays a positive role in farm production. The 

negative influence of land quality on maize output indicates that land with a poor quality decreases 

maize yield. This could be because land with poor quality reduces the soil responsiveness to chemical 

fertiliser and applications of improved seeds. The result agrees with the findings of Abro et al. (2014). 

The overall mean TE was 61.22%. This implies that, when adopters and non-adopters of IMV are 

assumed to be operating under the same technologies, an increase in maize productivity of about 

38.78% can be achieved with the current input level and technology. Figure 1 shows the frequency 

distribution of individual TE scores. 

 

 
Figure 1: Frequency distribution of TE scores 

 

On average, farmers producing IMV have a TE score that is about 6.64% higher than that of LMV 

farmers. The mean difference in TE between the two groups was statistically significant at a 1% level 

of significance. Moreover, as Figure 2 shows, the density of the mean TE of IMV producers was 

higher than that of the LMV producers. This result suggests that – besides the direct yield advantage 

of IMV shown in the descriptive results – farmers producing IMV also achieved an increase in TE. 

However, we cannot conclude this result at this stage, for two reasons. First, a potential technology 

difference was not taken into consideration while estimating the SF model. Second, the two groups 

may not be comparable directly, as the mean difference could be due to initial differences among 

farm households that would possibly lead to self-selection into the adoption of IMV. We address 

these issues in section 4.2. 

 

 

 

 

 

 
6 As part of the robustness check, we estimated the SF model using a Cobb-Douglas form and found that the results are 

more or less consistent (the results can be obtained upon request). 
7 We conducted a test to detect the presence of inefficiency, because the empirical SF model can be estimated using SF 

analysis only if the inefficiency effects are stochastic (i.e. the one-sided error term is different from zero). The one-sided 

generalised LR test (with a test statistic of 33.40 and P < 0.01) suggested rejecting the null hypothesis that inefficiency 

effects are absent in the model (σ2u = 0).  
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Table 2: SF model results estimated assuming homogenous technology for IMV and LMV 
Stochastic production frontier estimates Technical inefficiency estimates 

Production variables Coefficient Inefficiency variables Coefficient 

Ln(Labour) 0.051 (0.143) Age 0.060*** (0.023) 

Ln(Land) 1.064*** (0.343) Age_squared -0.001** (0.000) 

Ln(Seed) 0.263*** (0.081) Gender -0.460*** (0.152) 

Ln(Fertiliser) 0.068 (0.046) Education -0.028 (0.018) 

Ln(Chemicals) 0.024 (0.088) Family_size  -0.075*** (0.029) 

Ln(Bullock) 0.358** (0.140) Farm_size  -0.058 (0.106) 

Ln(Equipment) 0.091 (0.080) Fragmentation -0.012 (0.051) 

Ln(Labour)*Ln(Labour) 0.026 (0.020) Livestock  0.035 (0.073) 

Ln(Labour)*Ln(Land) -0.068 (0.099) Asset  0.000 (0.001) 

Ln(Labour)*Ln(Seed) 0.034 (0.023) Off-farm_income  -0.039*** (0.014) 

Ln(Labour)*Ln(Fertiliser) -0.037*** (0.014) Savings -0.113*** (0.041) 

Ln(Labour)*Ln(Chemicals) 0.051** (0.023) Farmer_group -0.242** (0.102) 

Ln(Labour)*Ln(Bullock) -0.071* (0.037) Extension -0.014 (0.009) 

Ln(Labour)*Ln(Equipment) 0.009 (0.029) Region: 

Ln(Land)*Ln(Land) -0.762*** (0.112)   Region 2: Amhara -0.789** (0.314) 

Ln(Land)*Ln(Seed) -0.026 (0.050)   Region 3: Oromia -1.233*** (0.313) 

Ln(Land)*Ln(Fertiliser) 0.059* (0.032)   Region 4: Benishanguel-Gumuz -0.781** (0.356) 

Ln(Land)*Ln(Chemicals) 0.006 (0.047)   Region 5: SNNP region -0.942*** (0.318) 

Ln(Land)*Ln(Bullock) 0.083 (0.111) Constant 2.459** (0.970) 

Ln(Land)*Ln(Equipment) 0.247*** (0.078) Heteroscedasticity in idiosyncratic error variancea 

Ln(Seed)*Ln(Seed) -0.009 (0.007) Variables Coefficient 

Ln(Seed)*Ln(Fertiliser) -0.005 (0.007) Age 0.060*** (0.023) 

Ln(Seed)*Ln(Chemicals) 0.015 (0.010) Age_squared -0.001** (0.000) 

Ln(Seed)*Ln(Bullock) 0.025 (0.024) Gender -0.460*** (0.152) 

Ln(Seed)*Ln(Equipment) -0.074*** (0.015) Education -0.028 (0.018) 

Ln(Fertiliser)*Ln(Fertiliser) 0.046*** (0.006) Family_size  -0.075*** (0.029) 

Ln(Fertiliser)*Ln(Chemicals) -0.002 (0.006) Farm_size  -0.058 (0.106) 

Ln(Fertiliser)*Ln(Bullock) -0.021 (0.013) Fragmentation -0.012 (0.051) 

Ln(Fertiliser)*Ln(Equipment) -0.002 (0.008) Livestock  0.035 (0.073) 

Ln(Chemicals)*Ln(Chemicals) 0.004 (0.011) Asset  0.000 (0.001) 

Ln(Chemicals)*Ln(Bullock) -0.032 (0.022) Off-farm_income  -0.039*** (0.014) 

Ln(Chemicals)*Ln(Equipment) -0.034** (0.016) Savings -0.113*** (0.041) 

Ln(Bullock)*Ln(Bullock) 0.003 (0.021) Farmer_group -0.242** (0.102) 

Ln(Bullock)*Ln(Equipment) -0.012 (0.029) Extension -0.014 (0.009) 

Ln(Equipment)*Ln(Equipment) 0.010 (0.010) Regionb:  

Ln(Land Quality) -0.047*** (0.011)   Region 2: Amhara -0.789** (0.314) 

    Constant 5.113*** (0.257)   Region 3: Oromia -1.233*** (0.313) 

    Gamma (γ = σ2
u/ (σ2

v + σ2
u) 0.595   Region 4: Benishanguel-Gumuz -0.781** (0.356) 

    Log-likelihood -1961.25   Region 5: SNNP region -0.942*** (0.318) 

    Observations 1 993 Constant 2.459** (0.970) 

Summary of TE estimates (%)    

     Mean  61.22   

     Standard deviation 16.53   

     Minimum 0.96   

     Maximum 92.67   

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01 
a Positive estimates of the variance parameters indicate that increased use of the associated variable implies a higher 

variance in maize yield, and vice versa. 
 b Region 1, Oromia, was arbitrarily chosen as a reference region. 
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Figure 2: Frequency distribution of TE scores, by the adoption of IMV 

 

4.1.2 Determinants of technical inefficiency in maize production 

 

The technical inefficiency model estimates that were estimated simultaneously with the SF 

parameters (presented in the second half of Table 2) show the impact of various exogenous factors 

on technical inefficiency in maize production. The negative coefficients imply that the associated 

variable reduces inefficiency in maize production. The positive and statistically significant result for 

the Age of the household head suggests that younger farmers are technically less inefficient. The 

possible explanation could be that, despite the lack of farming experience, younger farmers might be 

less conservative in applying new practices that enhance their input allocation skills. This result is 

consistent with previous studies in developing countries, such as those by Seyoum et al. (1998) and 

Abdul‐Salam and Phimister (2017).  

 

The negative effect of Gender of the household head on technical inefficiency suggests that male-

headed households are less inefficient. This can be because, in the rural areas of most of the 

developing countries, the households headed by male farmers have better access to resources 

compared to those headed by female farmers. This result is consistent with previous studies done in 

Africa (see, for example, Abate et al. 2014).  

 

The negative effect of Family size on technical inefficiency indicates that maize farms operated by a 

large household are less inefficient. This finding is consistent with previous findings from developing 

countries, in which it has been argued that, as a primary source of labour force, a farm family plays a 

positive role in agricultural production (Coelli et al. 2002, Ndlovu et al. 2014).  

 

The negative and significant influence of Household saving and Household asset on technical 

inefficiency indicates that farm households with a better wealth position are less inefficient. This 

finding supports the notion that household wealth plays an important role in boosting agricultural 

productivity by facilitating farming activities through solving liquidity constraints in purchasing the 
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necessary inputs. The finding is also consistent with previous studies on the efficiency of crop 

production (see, for example, Haji 2007).  

 

The negative effect of involvement in Famer group suggests that farmers involved in rural farmer 

groups are less inefficient. This could be because members of farmer groups are more likely to have 

access to information on efficiency-enhancing technologies through farmer networks. Previous 

studies (see Tessema et al. 2016) indicate that well-functioning farmer networks enhance technology 

diffusion among farming communities in Ethiopia. The finding is consistent with previous farm 

efficiency studies from Ethiopia (see Abate et al. 2014). 

 

4.2 Results of SF model after accounting for technology differences and self-selection  

 

This section presents the SF model estimated by relaxing the homogenous technology assumption 

imposed in the previous section and addressing a potential self-selection bias.  

 

4.2.1 PSM analysis  

 

We used a probit model to estimate the binary model specified in Equation 11. Following that, we 

generated propensity scores for each farmer to compare the outcomes of IMV adopters and non-

adopters. Table 3 summarises the probit estimates of the propensity to produce IMV. The variables8 

included in the probit estimation have the expected signs, except for the age of the household head.9 

From several matching techniques available for impact assessment, we used the five nearest 

neighbours matching technique to match each IMV user with the mean of the five non-users of IMV 

who had very similar p-scores. We used the PSM result to generate a subsample of maize farmers 

among whom the adoption of IMV was assigned randomly.  

 

Figure 3 shows the density distributions of p-scores for the adoption of IMV to check for the presence 

of enough overlap between adopters and non-adopters. The p-distributions appear with a sufficient 

common support region, suggesting an adequate overlap. We also assessed the overall matching 

quality by using a two-sample t-test.10 We identified significant mean differences for some variables 

before matching. After the matching, however, the differences for all variables turned out to be 

insignificant. This indicates that all the variables were balanced after matching. The matching reduced 

initial differences, with the bias being less than 5% for all covariates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
8 Due to the non-normal distribution of the variables, logarithmic transformation was done for Off-farm income, 

Livestock, Land size and Asset before estimating the adoption equation. 
9 As the aim of using PSM was only to balance the observed distribution of covariates across the adopters and non-

adopters, we have not provided a detailed interpretation of the estimates here.  
10 In order to save space, we have not presented the test results for the matching quality assessment here. The results can 

be obtained from the authors upon request. 
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Table 3: Probit estimates of the propensity to produce IMV (N = 1 896) 
Variable Coefficient Standard error 

Age (of the household head in years) -0.01** 0.00 

Gender (of the household-head: 1 = a male household head) 0.05 0.14 

Education (education level of the household head, years of schooling) 0.00 0.01 

Family size (total family size in AEU) 0.04** 0.02 

Asset (total household asset in ETB) 0.04 0.03 

Off-farm income (per capita, ETB) 0.00 0.00 

Livestock (TLU) -0.01 0.06 

Land size (total land holding in hectares) -0.01 0.07 

Plot distance (walking minutes) 0.17*** 0.04 

Fragmentation (number of maize plots) 0.13*** 0.04 

Soil slope (1 = flat, 2 = medium, 3 = steep) 0.069 0.08 

Soil fertility (1 = good, 2 = medium, 3 = poor) 0.27*** 0.07 

Farmer group (1 = members) 0.25*** 0.08 

Extension service (1 = yes) 1.19*** 0.46 

Information on IMV (1 = yes)  0.03 0.11 

Region a: Region 2: Amhara -0.56 0.37 

                Region 3: Oromia -0.84** 0.36 

                Region 4: Benishanguel-Gumuz -1.55*** 0.39 

                Region 5: SNNP -0.37 0.36 

Constant -0.89 0.90 

Model summary   

    Pseudo R2 11.60%  

    IMV adopters correctly predicted 81.00%  

    IMV non-adopters correctly predicted 76.50%  

    Total correctly predicted 80.00%  

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01  

Standard errors are in parentheses  
a Region 1, Oromia, was used as a reference 

 

 
Figure 3: Propensity score distribution and common support for IMV, after matching 

 

4.2.2 Assessing the influence of technology difference in TE modelling 

 

In this section, we extend the analyses by accounting for a potential technological difference arising 

from the adoption of IMV, to investigate whether neglecting such a difference in the modelling of 

efficiency introduces any bias. Table 4 presents the results (estimated using Equation 9).  
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Table 4: SF results, estimated by relaxing homogenous technology assumption 
Stochastic production frontier estimates Technical inefficiency estimates 

SF production variables Coefficient Inefficiency variables Coefficient 

Ln(Labour) 0.071 (0.143) Age 0.068*** (0.023) 

Ln(Land) 0.878** (0.344) Age_squared -0.001*** (0.000) 

Ln(Seed) 0.251*** (0.084) Gender -0.459*** (0.152) 

Ln(Fertiliser) 0.030 (0.053) Education -0.028 (0.018) 

Ln(Chemicals) 0.041 (0.092) Family_size  -0.074*** (0.028) 

Ln(Bullock) 0.346** (0.146) Farm_size  -0.064 (0.105) 

Ln(Equipment) 0.110 (0.084) Fragmentation -0.002 (0.050) 

Ln(Labour)*Ln(Labour) 0.027 (0.021) Livestock  0.017 (0.073) 

Ln(Labour)*Ln(Land) -0.056 (0.099) Asset  0.000 (0.000) 

Ln(Labour)*Ln(Seed) 0.038* (0.023) Off-farm_income  -0.037** (0.015) 

Ln(Labour)*Ln(Fertiliser) -0.031** (0.014) Savings -0.116*** (0.041) 

Ln(Labour)*Ln(Chemicals) 0.055** (0.023) Farmer_group -0.231** (0.102) 

Ln(Labour)*Ln(Bullock) -0.072* (0.037) Extension -0.014 (0.009) 

Ln(Labour)*Ln(Equipment) 0.014 (0.030) Region:  

Ln(Land)*Ln(Land) -0.634*** (0.115)  Region 2: Amhara -0.853*** (0.307) 

Ln(Land)*Ln(Seed) -0.043 (0.050)  Region 3: Oromia -1.338*** (0.306) 

Ln(Land)*Ln(Fertiliser) 0.048 (0.032)  Region 4: Benishanguel-Gumuz -1.057*** (0.362) 

Ln(Land)*Ln(Chemicals) 0.006 (0.047)  Region 5: SNNP region -1.008*** (0.312) 

Ln(Land)*Ln(Bullock) 0.021 (0.112) Constant 2.391** (0.968) 

Ln(Land)*Ln(Equipment) 0.207*** (0.079) Heteroscedasticity in idiosyncratic error variance 

Ln(Seed)*Ln(Seed) -0.010 (0.007) Variables Coefficient 

Ln(Seed)*Ln(Fertiliser) -0.005 (0.007) Age -0.003 (0.029) 

Ln(Seed)*Ln(Chemicals) 0.014 (0.010) Age_squared 0.000 (0.000) 

Ln(Seed)*Ln(Bullock) 0.031 (0.023) Gender 0.438 (0.339) 

Ln(Seed)*Ln(Equipment) -0.069*** (0.015) Education 0.037** (0.019) 

Ln(Fertiliser)*Ln(Fertiliser) 0.046*** (0.006) Family_size  -0.009 (0.031) 

Ln(Fertiliser)*Ln(Chemicals) -0.001 (0.006) Farm_size  -0.258* (0.138) 

Ln(Fertiliser)*Ln(Bullock) -0.020 (0.013) Fragmentation 0.064 (0.050) 

Ln(Fertiliser)*Ln(Equipment) 0.001 (0.008) Livestock  0.259*** (0.083) 

Ln(Chemicals)*Ln(Chemicals) 0.002 (0.011) Asset  0.001*** (0.000) 

Ln(Chemicals)*Ln(Bullock) -0.033 (0.022) Off-farm_income  0.022 (0.015) 

Ln(Chemicals)*Ln(Equipment) -0.033** (0.016) Savings 0.227*** (0.045) 

Ln(Bullock)*Ln(Bullock) 0.004 (0.020) Farmer_group -0.173 (0.120) 

Ln(Bullock)*Ln(Equipment) -0.005 (0.030) Extension -0.010 (0.010) 

Ln(Equipment)*Ln(Equipment) 0.008 (0.010) Regiona:  

Ln(Land Quality) -0.052*** (0.011)  Region 2: Amhara 0.277 (0.533) 

Technology variables:   Region 3: Oromia 0.474 (0.513) 

     IMV 0.592*** (0.219)  Region 4: Benishanguel-Gumuz 0.003 (0.654) 

     IMV*Ln(Labour) -0.101 (0.075)  Region 5: SNNP region 0.237 (0.534) 

     IMV*Ln(Land) 0.382** (0.190) Constant -5.896*** (1.858) 

     IMV*Ln(Seed) -0.021 (0.044)   

     IMV*Ln(Fertiliser) -0.003 (0.023)   

     IMV*Ln(Chemicals) -0.030 (0.040)   

     IMV*Ln(Bullock) -0.005 (0.078)   

     IMV*Ln(Equipment) -0.042 (0.046)   

Constant 4.861*** (0.268)   

    Gamma (γ = σ2
u/ (σ2

v + σ2
u) 0.696   

    Log likelihood -1942.29   

    Observations 1 991   

Summary of TE estimates (%)    

       Mean 61.39   

       Standard deviation 16.56   

       Minimum 0.93   

       Maximum 93.10   

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01. Standard errors are in parentheses. a Region 1, Oromia, was used as a reference. 
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Before estimating the empirical models by relaxing the homogenous technology assumption imposed 

in the previous section, we statistically tested whether the two technologies were indeed different, 

following Mayen et al. (2010). We employed the Wald testing procedure to test the restrictions that 

the intercept term and slope shifters are jointly equal to zero. The test result, with a test statistic of 

25.43 (p-value < 0.01 and eight degrees of freedom), suggested a rejection of the null hypothesis that 

the intercept and slope shifters corresponding to the technology dummy are jointly zero. This 

indicates that the homogenous technology assumption for the two crop varieties (IMV and LMV) was 

not appropriate. 

 

As the results presented in Table 4 show, the parameter estimates for the SF model and the 

inefficiency part are consistent with the results estimated with a model imposing a homogenous 

technology assumption (see Table 2). Although the magnitudes of the estimates varied slightly across 

the two models, the statistical significance and the signs of the parameter estimates were consistent. 

This indicates that the parameter estimates are not sensitive to the assumption imposed on the 

production technology. The positive and statistically significant result for the IMV dummy variable 

indicates that farmers growing a yield-enhancing maize variety have indeed achieved a yield gain. 

This result corroborates our descriptive result reported in section 4.1, namely that farmers producing 

IMV had a higher maize yield than did farmers producing LMV.  

 

Following this, we estimated TE under different assumptions about production technology to examine 

the effects on TE estimates. Table 5 summarises the results. The overall mean TE estimates, with and 

without imposing a homogenous technology assumption for the two groups of farmers, are quite 

similar. This indicates that accounting for the potential technological difference between IMV and 

LMV did not significantly influence the overall TE estimate. This holds for the results estimated both 

before and after correcting for self-selection bias. However, the result reveal that the imposition of a 

homogenous technology assumption biased the estimated TE for the two groups of farmers.  

 

Table 5: Summary of TE scores for maize farmers, estimated under different technology 

assumptions  
Assumptions on production technology Mean technical efficiency (%)a 

 Pooled 

sample 

Farmers using 

improved maize  

Farmers using 

local maize  

Difference in 

meansb 

All farms     

Aggregate production function 

(homogenous technology assumed) 

61.22 

(0.37) 

62.31 

(0.39) 

55.66 

(1.01) 

6.64*** 

(0.99) 

     

Different technology 

(homogenous technology assumption relaxed) 

61.39 

(0.37) 

61.67  

(0.40) 

59.94  

(0.98) 

1.73** 

(0.97) 

PSM subsample     

Aggregate production function 

(homogenous technology assumed) 

65.69 

(0.76) 

 

67.87 

(1.16) 

 

64.53 

(0.98) 

 

3.34** 

(1.58) 

Different technology 

(homogenous technology assumption relaxed) 

66.18 

(0.80) 

65.52 

(1.25) 

66.54 

(1.03) 

1.02 

(1.68) 

Notes: * p < 0.1, ** p < 0.05, *** p < 0.01 
a Standard errors are in parentheses; b The mean difference refers to the mean difference in TE scores between farmers 

using improved maize and those using local maize (t-test). 

 

Both results – prior to and after correcting for self-selection bias – indicate that imposing a 

homogenous technology assumption on the two crop varieties biased the TE scores for both adopters 

and non-adopters of IMV, in two ways. First, it led to an upward bias in the estimate of TE for IMV 

farmers, while it resulted in a downward bias in TE estimate for LMV farmers. Second, the results 

estimated both before and after correcting for self-selection bias indicate that the mean difference 

between adopters and non-adopters of IMV was statistically significant under the assumption of 

homogenous technology. This suggests that imposing a wrong homogenous technology assumption 
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on the two varieties has biased the ranking of maize farmers based on their level of efficiency. In 

contrast, the results estimated after relaxing the homogenous technology assumption for the PSM 

subsample confirm that the mean difference of TE between the two groups is statistically 

insignificant. This suggests that, when measured against the appropriate frontier – where no 

homogenous technology is assumed and self-selection bias is corrected – there is no statistically 

significant TE difference between IMV farmers and LMV farmers. 

 

Overall, the result suggest that an incorrect homogenous technology assumption for crop varieties 

with different yield potential is inappropriate. This finding supports the finding of Mayen et al. 

(2010), who argue that failure to account for technology differences in the modelling of farm 

efficiency biases efficiency estimates.  

 

4.3 Robustness check 

 

We undertook a supplementary analysis to investigate whether the results of the regular SF model are 

consistent with an alternative model specification, in order to check the robustness of the results 

presented in the main sections. Using the classical SF approach might not provide a complete picture 

of the differences in TE between the adopters and non-adopters of IMV if IMV is a distinctive 

technology among maize farmers. To correct for the technological difference in comparing TE in 

situations where groups of firms may differ in production technology, some recent literature suggests 

using a metafrontier framework developed by Battese et al. (2004) and O’Donnell et al. (2008). 

Although the metafrontier framework is capable of correcting for the technological difference by 

disentangling the technology gap from the efficiency gaps, the empirical relevance of this approach 

depends considerably on the accessibility of the available production technology. This is because the 

estimation of a meta-production function is “... based on the idea that all producers in the various 

production groups have potential access to an array of production technologies, but each may choose 

a particular technology, depending on specific circumstances ...” (Huang et al. 2014:241). In the 

context of our study, it was restrictive for us to assume that all maize farmers had unconstrained 

access to IMV, because the diffusion process of maize technologies is constrained by access to 

improved varieties (Abate et al. 2015). Therefore, we estimated the stochastic metafrontier (SMF) 

model as an alternative model specification to check the robustness of our main results (i.e. the SF 

results). Overall, the SMF results are similar to those of the SF and hence are not reported here, but 

are available from the authors on request. 

 

5. Summary and conclusions 

 

Previous farm studies paid little attention to potential technological differences in crop varieties. This 

could bias efficiency estimates and potentially lead to inappropriate policy choices. Focusing on the 

Ethiopian maize sector, we estimated technical efficiency (TE) and examined the impact of 

technological differences on efficiency estimation. Using comprehensive household-level data 

collected in 2011, we specified a stochastic frontier analytical framework and employed a propensity 

score-matching procedure to address a potential self-selection bias in the estimation of efficiency.  

 

We were comforted to find that accounting for a potential technological difference between the 

improved maize variety (IMV) and the local maize variety (LMV) did not affect the overall mean TE 

of maize farmers, or the parameter estimates of the stochastic frontier (SF) model and the inefficiency 

model. However, the results confirmed that imposing a homogenous technology assumption for IMV 

and LMV biases the mean efficiency estimates for adopters and non-adopters. Our findings reveal 

that the homogenous technology assumption biased efficiency scores upward for adopters of IMV, 

while it led to a downward bias in the TE estimate for non-adopters. Further, the efficiency results 

estimated after correcting for self-selection bias confirmed that imposing an incorrect homogenous 

technology assumption for the two maize varieties misleads the ranking of farmers based on their 
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efficiency scores. This suggests that it is inappropriate to make an incorrect homogenous technology 

assumption for crop varieties with different yield potential. Therefore, we argue that, when farmers 

have access to different technologies that have different output potentials, failure to account for 

differences in crop variety in the modelling of farm efficiency biases the efficiency estimates. This 

consequently could lead to a biased ranking of farmers based on their efficiency scores, followed by 

potentially inappropriate policy choices. 

 

The overall mean TE estimate of 66.18%, which was estimated after controlling for technological 

heterogeneity and potential self-selection bias, implies that, measured against the appropriate frontier, 

an increase in maize productivity of around 33.82% could be achievable with the current input levels 

and technology. The results from modelling the inefficiency imply that the factors associated with 

technical inefficiency in maize production are: being an old farmer, being a female household head, 

a small family size, little household savings, a low level of asset ownership, less involvement in 

farmer groups, and less frequent extension contact. The findings indicate that the first possible policy 

direction that could reduce inefficiency in the Ethiopian maize sector, and in other, comparable 

developing countries, could be to empower young farmers through field-based training and crop-

specific extension services. The second policy option could be enhancing household cash savings by 

creating alternative income-generating sources that could facilitate the operation of maize farms by 

solving short-term liquidity constraints on purchasing the necessary inputs. Promoting formal farm 

groupings could also enhance efficiency through well-functioning farmer networks that potentially 

would provide access to basic inputs and information on efficiency-enhancing technologies. 

Moreover, increased maize productivity requires the effort of local and regional government bodies 

to enhance the use of improved land-management practices to maintain or restore land quality.  

 

Finally, there are three important points worth noting in this study. First, our production frontier 

estimations may be influenced by other crops in cases where maize plots were intercropped with other 

minor crops. It was difficult to treat the output from the other crops in the production function because 

it was difficult to allocate the total inputs for each crop separately. Second, efficiency estimates might 

be influenced by other sources of technological heterogeneity. One source of heterogeneity could be 

the adoption of other complementary innovations. Third, as the study is limited to one country and 

cross-sectional data, the findings might be influenced by geographical variations and time patterns. 

Thus, future research taking such issues into account might ensure the generalisability of our 

empirical findings. 
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