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DEVELOPING REALISTIC AGRICULTURAL PRODUCTION
FUNCTIONS FOR USE IN UNDERGRADUATE CLASSES

David L. Debertin

Abstract in mathematics are limited. The production
function also provides the technical param-This note describes an approach for teach- function also provides the technical param-This note describes an approach for teach- eters needed to derive the corresponding costsing undergraduate students basic properties e ter needed to dere the corresponding costs

of cost and production functions with the fu nction s. A) ower production
aid of computer-generated illustrations. Pa- the thee stae oduction funcn in 
rameters of a third degree polynomial are age production function that
raderived by making use o pboth ltheoretical it has neither an inflection point nor a max-derived by making use of both the theoretical imum. The transcendental production func-
restrictions and the specific agricultural pro- tion proposed by Halter et al. (for example
duction process. The function is then used PPO y Halter etal. (for example,
as the basis for the development of a simple where e is the base of the natural
duction process. The function is then used y = Ax ~ e>x, where e is the base of the natural

as the basis for the development of a simple log) will represent all three stages of pro-computer graphics program which generates duction (when A and f are positive and y is
illustrations of the corresponding MPP, AC, negative). However, differentiation involves
and MC functions. Such illustrations can be the chainrule, the product rule and e, and
used to make technically accurate visual aids. procedure ore araeeprocedures for obtaining the parameters P
Key words: teaching, undergraduate, graph- and y involve some complicated expressions.

ics, computer, production func- Therefore, the transcendental function is not
tions, cost functions. necessarily the best choice for the first pres-
The devel n of e tive e s entation to undergraduates, particularly when
he development of effective examples some students may lack proficiency in cal-for illustrating production relationships in culus

agriculture is a problem that has long plagued A better choice to represent the three stage
undergraduate instructors. An effective ex- production function for a presentation to
ample should deal with a production process undergraduates is a third degree polynomial.
familiar to the student and the units in The production function:
which the production relationship is expressed
should be realistic. Moreover, the example (1) y = ax + bx2 + cx 3

should illustrate accurately the basic mar- iscandidate. The functioncorrespond-
ginal relationships. This paper outlines a sim- ig to equation is esto eterine een
ple approach for developing functional ing to equation (1) is easy to determine evenrelationships for depictveloping functional pro- for students with little background in cal-relationships for depicting agricultural pro- culus. However, a simple method is neededculus. However, a simple method is needed
duction processes for use as a part of un- to estimate the values for a, b, and c in orderdergraduate instruction and for developing to meet the requirements of the undergrad-
visual aids consistent with these exampl^ to meet the requirements of the undergrad-visual aids consistent with these examples uate instructor and still reflect the agricul-

tural production process and the appropriate
theory. If the requirements are treated as

THE FUNCTIONAL REPRESENTATION constraints, the solution for the parameters
a, b, and c is readily obtainable.

First, a production function is needed that In order to obtain realistic values for the
illustrates the familiar marginal relationships parameters of equation (1), the agricultural
with agricultural data and is simple enough economist should elicit the cooperation of
to not overwhelm undergraduates whose skills plant or animal scientists for basic response
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data from field or feeding trials. Consider the (5) 2b + 6cx = 0
case in which the undergraduate instructor or
wishes to describe a production relationship
between nitrogen application rates and corn (6) 2b + 6c(70) = 0.
yields. Through conversations with agrono- Equations (2), (4), and (6) are three equa-
mists and by studying fertilizer response trial tions in three unknowns. Each equation rep-
data that links corn yields to nitrogen ap- resents a restriction supplied by the instructor
plication rates, the instructor might conclude based on marginal principles and the agri-
that a maximum corn yield of 140 bushels cultural production process. Equations (2),
per acre is realistic. The yield also appears (4), and (6) are rewritten as:
to be in line with corn yields for the top
farmers under nearly ideal weather condi- (7) 140 = 180a + 32400b + 5832000c,
tions. University agronomists feel that this (8) 0 = la+ 360b + 97200c
yield can be achieved with a nitrogen ap- 
plication rate of 180 pounds per acre. Stu- and
dents could be given access to actual data 
from nitrogen response trials and could be (9) 
involved in decisions regarding the yield- Equations (7), (8), and (9) can be solved
maximizing level of nitrogen to be used for algebraically by the usual substitution meth-
the production function. If the production ods and the instructor might ask the students
function is to indicate a corn yield of 140 to determine the unknown parameter values.
bushels per acre at a nitrogen application However, an easier way is to find the solution
level of 180 pounds per acre, then: with matrix algebra. Let A represent the col-

(2) 140 = 180a + 1802b + 180 3c. umn vector [140 0 0], B the column vector
of parameters to be estimated [a b c] and C

Equation (2) must achieve its maximum at represent the matrix:
140 bushels per acre and a nitrogen appli-
cation rate of 180 pounds per acre. The mar- (10) 180 32,400 ,832,00
ginal product function from equation (1) is: 1 0 420

(3) dy/dx = a + 2bx + 3cx:.(3) dy/dx = a+2bx + 3 The equations can be stated as:
Since the necessary condition for a maximum 
requires that the first derivative be equal to (11) A
zero at a nitrogen application level of 180 The solution in terms of the parameters is:
pounds per acre, equation (3) is restated as: 

(12) B' = C - A
(4) 0 = a + 2b(180) + 3c(180)2.

(4) =a+2b(180)+3c(180) 2 . where C-l is the inverse of the matrix C. The
The existence and location of the inflection advantage of this approach is that the instruc-
point from the fertilizer response data can tor can rely on readily available computer
be difficult for either the instructor or the software to invert the C matrix and calculate
students to discern. Instructors might use the the required parameters. An opportunity ex-
inflection point problem as an opportunity ists here to show students uses for simple
to illustrate some of the difficulties in the matrix algebra in solving systems of equa-
verification of theoretical concepts with real tions. The solution to these equations gives
world data. In order to illustrate the funda- the parameter values for a as 0.6222, for b
mental principles of marginal analysis for the as 0.006049, and for c as -0.00002881.
class, a production function with an inflec- Equations (7), (8), and (9) supply only
tion point where marginal product achieves the necessary conditions for the maximum
its maximum is needed. For example, di- of marginal and total products. However, the
minishing marginal returns for nitrogen could sufficient conditions can be checked once
be assumed to start at an application rate of the parameters have been found. Here is an
approximately 70 pounds per acre. If the opportunity to introduce to the students the
marginal product function is to achieve a meaning of the terms necessary and sufficient.
maximum, the necessary condition is that The sufficient condition for maximum total
d2 y/dx 2 be zero when 70 pounds of nitrogen product is met at x equals 180 in that equa-
are applied per acre: tion (4) holds and that:
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(13) d2y/dx2 = 2b + 6cx By expanding the number of terms in the
= .01210 - .03111 polynomial, additional restrictions could be
= -. 01901 < 0. added that would force the production func-

The suffiient condition for maximum mar- tion to cut through points representing otherThe sufficient condition for maximum mar-
yield and application rate combinations.ginal product is met at x equals 70 in that ld and application rate combinations.

equation (6) holds and that: However, the function would no longer nec-equation (o) holds and that: .essarily illustrate the three stages of produc-
(14) d3 y/d 3x = 6c = -. 0001729 < 0. tion.

Care must be taken, however, because it is
possible to develop a set of restrictions that
would not fulfill the sufficient conditions sug- APPLICATIONS FOR VISUAL AIDS
gested by theory. Once the parameters of equation (1) have

This example illustrates but one set of re- been estimated, they can be used as the basis
strictions that could be imposed. Consider for a computer program for plotting graphs
the case in which the instructor is uncon- of production and cost functions with the
cerned about the application level at the aid of computer graphics. The graphs gen-
inflection point, but rather wishes APP to be erated by the computer are technically ac-
maximum and stage II to begin at a nitrogen curate with respect to theory and the units
application level of 120 pounds per acre. are consistent with the specific agricultural
APP is: production process chosen by the instructor

(15) y/x = a + bx + cx 2 and the students.
Debertin et al. illustrated how computer

The necessary condition for maximum APP graphics could be used to generate three
occurs at: dimensional surfaces of various production

(16) d(y/x)/dx = b + 2cx = 0. functions. Bay and Schoney applied similar
techniques to actual agricultural data. Com-

Therefore, puter graphics can also be used to generate
(17) 0 = Oa + b + 240c cost functions from production functions

when the explicit inverse production func-
Equation (17) is substituted for equation (9), tion cannot be directly obtained. The inverse
and the three equations again solved for the function for a polynomial production func-
parameters. The result is: tion such as equation (1), representing the

(18)y =.3889x + .008642x2 cost function expressed in terms of physical
=-.00003603x x3. units of input use, does not exist for all

possible values for a, b, and c. Of course,
The second order conditions to ensure a max- this problem is not unique to polynomials,
imum APP at x = 120 require that: but is also true for any production function

(19) d2(y/x)/d2 x = 2c = -. 00007202 < 0 exhibiting stage III. However, the computer
can generate a graphical representation of

which fulfills the theoretical restriction. the corresponding cost function despite the
The instructor can choose the level of input fact that the equation itself cannot be de-

use to maximize APP or MPP but not the rived, because it uses data points generated
levels for both maximum MPP and maximum from the production function, rather than
APP, since this will result in two constraints from the actual inverse cost function.
that cannot simultaneously hold. For a poly- First, the matrix procedures found in the
nomial of the form of equation (1), the level Statistical Analysis System (SAS Institute) were
of input use that maximizes MPP will be used to invert the needed C matrix and solve
exactly 2/3 the level that maximizes APP, so for the parameters of the production func-
the maximum MPP in this example will occur tion. Assumptions were made with respect
at a nitrogen application rate of 80 pounds to prices for inputs and outputs and a simple
per acre. In the earlier example, APP was program was written to calculate the corre-
maximum at 70(3/2) or 105 pounds per acre. sponding marginal physical product (MPP),
(For equation (1), maximum MPP occurs at average physical product (APP), total value
x equals -b/3c, and maximum APP occurs product (TVP), and marginal value product
at x equals -b/2c, so the ratio of maximum (MVP), Exhibit 1, Appendix. Data points were
MPP to maximum APP is 2/3.) calculated at each quarter pound interval for
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nitrogen application rates between 0 and 220 part of the three stage production function,
pounds per acre. A small interval increases Figure 2. Prices are assigned to inputs and
computer time but results in smoother graph- outputs.2 The corresponding total factor cost
ics. Total cost (TC) was obtained by multi- and total value product, Figure 3, marginal
plying the price of nitrogen times each level and average value product and marginal fac-
of nitrogen use between 0 and 220 pounds, tor cost, Figure 4, and profit functions, Figure
adding a constant representing fixed cost (FC), 5, could then be plotted.
and plotting the resultant data series on the Figure 6 illustrates a total cost function
vertical axis with output, rather than input that results from the production function
on the horizontal axis. Average total cost illustrated in Figure 1. This approach is par-
(ATC) is total cost divided by output and ticularly useful in teaching students about
plotted against output on the horizontal axis. the linkages that exist between the produc-
Marginal cost is the price of the input divided tion function and the underlying cost func-
by marginal physical product and is plotted tions. The computer graphics approach can
against output on the horizontal axis. also uncover the behavior of average and

In this paper, publishable pen and ink marginal cost curves in stage III of the pro-
graphs were needed, so calculated data points duction function. Figure 7 illustrates average
were inserted into a graphics package (SAS cost, average variable cost, average fixed cost,
Graph) capable of providing high quality ink and marginal cost based on the parameters
plots. The program was run on a large main- of the polynomial and including nitrogen
frame computer connected to a drum type application levels in stage III of the produc-
plotter. In an actual instructional environ- tion function. The graphs so far have ap-
ment, students would usually rather work peared very similar to those that appear in
with a microcomputer linked to a graphics undergraduate texts. The behavior of cost
printer or plotter than with a large mainframe curves in stage III of the production function
computer. The problem is an excellent ex- is a topic seldom mentioned in undergraduate
ample to illustrate the usefulness of a mi- texts; Figure 7 is different from that found
crocomputer for inverting a small matrix and in most introductory texts. The illustration
solving for the needed production function found in Goodwin and Drummond (p. 196)
parameters. The microcomputer could also is closest to the cost curve representation
be used to generate data points representing generated by the computer. Within stages I
the other concepts from theory over the cho- and II of the production function, the illus-
sen nitrogen application levels. Such a pro- tration is also similar to that presented in
gram would allow either the instructor or Doll and Orazem (p. 44). The representation
the student to change the constraints on the of marginal cost is quite unlike that appearing
problem and observe what happens to pa- in beginning economics or agricultural eco-
rameter values of the production function. nomics textbooks.
While it would not be difficult to write a Near the start of stage III, marginal cost
complete microcomputer program to per- increases very rapidly. At some arbitrarily
form the calculations and construct the small distance to the left of the technical
graphics, at least one commercial software output maximum that marks the dividing line
vendor has a program available that could be between stage II and stage III, marginal cost
modified to meet the specific requirements is approaching plus infinity. At some arbi-
of the instructor.' trarily small distance to the -right of the di-

Students begin by simply plotting the pro- viding line between stage II and stage III,
duction function itself. Figure 1 illustrates marginal cost is approaching negative infin-
the production function plotted from the ity. Since marginal cost is the input price
parameters of equation (18). Students then divided by the marginal physical product, it
plot the corresponding MPP and APP and is undefined at the dividing point between
observe the resultant relationships that are a stage II and stage III. In order to plot marginal

1 A microcomputer program called MATHEMATICS SERIES is capable of finding a solution to a series of simultaneous
linear equations via matrix procedures similar to those outlined in this paper. Also, it can make plots of production
or cost functions and their derivatives on an IBM PC compatible microcomputer (with a graphics board). Details
concerning availability of the software are available from the authors. The program is written in basic and is
rudimentary, but it appears to be readily modifiable to include instructor or student-written enhancements.

2 The price of corn was assumed to be $4.00, and the price of nitrogen was assumed to be $0.25 per pound
of available N. Total fixed cost was assumed to be $50 per acre.
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CONCLUDING COMMENTS

This paper explained a simple procedure
for developing a specific and meaningful
polynomial production functions for under- TV

graduate teaching applications with the fac- 330

tor-product model, and illustrated how such ...
a production function could be used as the 270

basis for drawing a series of technically ac- 240

curate visual aids. Potential applications uti-
lizing a microcomputer linked to a plotter .
were outlined.

Instructors could also use this approach as 150-

a basis for developing a tabular presentation 120

of production concepts. Students might com-
pare the graph of the function with the exact .25X

marginal products calculated from the de- 0

rivative of the production function and with
those calculated over a finite range from the a.........
tabular data. 1357o89,0 012345a78001iii'ai! o 0

While the example presented used the fa- INPUT
miliar corn response to nitrogen fertilizer, Figure 3. Total Value Product (TVP) and Total Factor
nearly any agricultural production relation- cost (TFC).
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ship of interest to the instructor and students package to obtain plots. Students could then
could be used. The approach is capable of watch what happened to the shape of the
developing parameters of production func- function as restrictions were changed. Sel-
tions for farming enterprises common only dom do opportunities as good as these exist
to a specific geographic area. Therefore, the for teaching students basic marginal princi-
approach potentially makes production eco- pies with examples from familiar farm en-
nomics concepts more meaningful and un- terprises. Yet, at the same time, students can
derstandable to undergraduates. work with current computer hardware and

The functions thus obtained could readily software on a realistic problem to which they
be inserted into a microcomputer graphics can relate.
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APPENDIX

Exhibit 1. Computer Program for Deriving the Plots.

/*SETUP TAPE= (8019,RINGIN)
//S1 EXEC SAS,PLOT=
//PLOTTAPE DD DSN=PLOT,UNIT=PLOT,VOL=SER=8019
//SAS.SYSIN DD *
DATA ONE;
X = 0;
LOOP:;
IF X > 220 THEN STOP;
Y1 = .6222'X + .006049*X**2 -. 00002881X*'3;
Y2 = .3889*X+.008642*X*2 -. 00003601*X*3;
MPP1 = .6222 + 2*.006049*X -3*.00002881*X**2;
MPP2 = .3889+2*.008642*X - 3 .00003601'X*2;
APP1= .6222 +.006049*X - .00002881'X"2;
APP2 = .3889 + .008642*X - .00003601'X2;
TVP1 =Y1*3;
TVP2 =Y2'3;
TFC = 25*X;
MFC=.25;
PR1 =TVP1 -TFC;
PR2 =TVP2 -TFC;
VMP1 = MPP 1'3;
VMP2 =MPP2'3;
AVP1 =APP1*3;
AVP2 =APP2*3;
TC=X.25 + 50;
TVC=X'.25;
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ATC =TC/Y2;
AVC = (TC-50)/Y2;
AFC= 50/Y2;
MC= .25/MPP2;
OUTPUT;
X=X+.25;
GO TO LOOP;
PROC PRINT;VAR X Y2 MPP2 APP2 TC AVC ATC AFC MC;
PROC PRINT;VAR MC AVC ATC AFC;
DATA TWO;SET ONE;
IF _N_ LT 112 THEN DELETE;
IF_N_ GT 706 AND N LT 757 THEN DELETE;
GOPTIONS HSIZE=7 VSIZE= 10;
SYMBOL1 I=JOIN C =BLACK;
SYMBOL2 I=JOIN C=BLACK;
SYMBOL3 I=JOIN,C= BLACK;
SYMBOL4 I=JOIN C=BLACK;
PROC GPLOT; PLOT ATC*Y2 AVC*Y2/ VREF=O OVERLAY HAXIS=O TO 150 BY 10;
LABEL Y2 = OUTPUT ATC = DOLLARS;
PLOT ATC*Y2 AVC*Y2 MC*Y2/ VREF=O OVERLAY HAXIS=O TO 150 BY 10;
PLOT MC°Y2/ VREF=O HAXIS-0 TO 150 BY 10;
LABEL MC= DOLLARS;
PLOT ATC*Y2 AVC*Y2 AFC*Y2 MC*Y2/ VREF=0 OVERLAY HAXIS=0 TO 150 BY 10;
DATA THR;SET ONE;
GOPTIONS HSIZE =7 VSIZE = 10;
SYMBOL1 I=JOIN C=BLACK;
SYMBOL2 I=JOIN C=BLACK;
SYMBOL3 I =JOIN,C= BLACK;
SYMBOL4 I=JOIN C=BLACK;
PROC GPLOT;
PLOT TC*Y2 TVC*Y2/ VREF=O OVERLAY HAXIS=O TO 150 BY 10;
LABEL TC = DOLLARS;
PLOT Y1 * X/ VREF=O VAXIS = 0 TO 150 BY 10 HAXIS = 0 TO 220 BY 10;
LABEL Y1 = OUTPUT X= INPUT;
PLOT Y2 X/ VREF=O VAXIS = 0 TO 150 BY 10 HAXIS = 0 TO 220 BY 10;
LABEL Y2 = OUTPUT;
PLOT MPP1'X APP1X/ VREF=O OVERLAY HAXIS=O TO 220 BY 10;
LABEL MPP1 =MPP OR APP;
PLOT MPP2*X APP2*X/ VREF=O OVERLAY HAXIS=O TO 220 BY 10;
LABEL MPP2 =MPP OR APP;
PLOT TVP1*X TFCX/ VREF=O OVERLAY HAXIS=O TO 220 BY 10;
LABEL TVP1 = TVP;
PLOT TVP2*X TFC*X/ VREF=0 OVERLAY HAXIS=O TO 220 BY 10;
LABEL TVP2 = TVP;
PLOT PRVX/ VREF=0 HAXIS = 0 TO 220 BY 10;
LABEL PR1= PROFIT;
PLOT PR2X/ VREF=O HAXIS = 0 TO 220 BY 10;
LABEL PR2= PROFIT;
PLOT VMP1*X AVP1*X MFC*X/ VREF=O OVERLAY HAXIS=O TO 220 BY 10;
LABEL VMP1 = DOLLARS;
PLOT VMP2*X AVP2*X MFC*X/ VREF=O OVERLAY HAXIS=O TO 220 BY 10;
LABEL VMP2 = DOLLARS;
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