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VALIDATION OF LINEAR PROGRAMMING MODELS

Bruce A. McCarl and Jeffrey Apland

Abstract sions or to automate routine decisions (for
Systematic approaches to validation of lin- example, feed blending). Predictive model

ear programming models are discussed for usage refers to applications in which themodel is used to predict or describe theprescriptive and predictive applications to e is used to predct describe the
economic problems. Specific references are reactn age or systems to external or
made to a general linear programming for-al changes. Predictive models may beused by decisionmakers who are interestedmulation, however, the approaches are ap. un ed ctng te onmakers who are interested

~~~~~plicable to mathein predicting the consequences of possible
plicable to mathematical programming decisions (for example, investments) or pol-applications in general. Detailed procedures

icymakers who are interested in predictingare outlined for validating various aspects of icyke who are interested in predicting
model performance given complete or partial t consequences of policy alternatives and/
sets of observed, real world values of varia- environmental factors. Valdation is necessary for both categories ofbles. Alternative evaluation criteria are pre- do necear or ot gories ofmodel use.2 While validation procedures maysented along with procedures for correctinge procedres 
validation problems. be tedious and time consuming, they will

often lead to improvement in programming
Key words: linear programming, math- models. Perhaps equally important, such pro-

ematical programming, vali- cedures can be valuable in providing the
dation. researcher with insight into the behavior of

the model and the interpretation of modelModel validation is an important part of results
any empirical economic analysis. A model e u e f 
cannot be utilized with confidence unless it Thepr urese fo this paper is to present
is considered a valid portrayal of the system gr g e es for he validation of linear pro-
modeled.' Linear programming (LP) models gramming models and to reference examplesmodeled. Linear programming (LP) models of these procedures. The discussion will befrequently receive only superficial validation. most relevant to predictive models, however,most relevant to predictive models, however,LP model builders often bring a great deal the procedures may also be used with pre-

validation procedures, when usede, appear to to mathematica programming applications
be unscientific.din general.

LP models can be utilized in numerous in 
ways. Ultimately, model use can be classified BACKGROUND
into two categories: prescriptive and predic-
tive. In prescriptive applications, a model is Before beginning the presentation, some
used to prescribe actions in a particular de- notation and a simple linear programing
cision environment. Prescriptive models are model are needed. Let the LP model contain
built either to improve the quality of deci- decision vectors X which represents product

Bruce A. McCarl is a Professor, Department of Agricultural Economics, Texas A&M University and Jeffery Apland
is an Associate Professor, Department of Agricultural and Applied Economics, University of Minnesota.

The authors are indebted to Dick Barber, Stan Miller, and anonymousJournal referees for their helpful comments.
Copyright 1986, Southern Agricultural Economics Association.

'For the moment, assume this is possible, i.e., that the underlying model can be adequately represented within
the modeling framework and that the proper situation is being represented.2The authors are aware of the semantic discussion over whether the word validate or verify is appropriate.
Within this paper, validate means exercises designed to determine whether there is a sufficient relationship between
modeled behavior and observed behavior such that the model user is content to use a model as a predicter.
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sales, Y which represents alternative pro- and time-consuming (this is often the reason
duction activities, and Z which represents for modeling in the first place). Thus, models
variable input purchases. The optimal values are frequently validated using historical
of these vectors are denoted X*, Y*, and Z' events and outcomes. Although a particular
and these variables are assumed to corre- LP model may have a potentially broad range
spond to real world observations X, Y, and of uses, it will likely be valid only for a
Z. The model also has associated shadow proper subset of those uses. The validation
prices, U, V, and W which at optimality are process becomes one of determining the
U', V*, and W' and correspond to real world model's usefulness for the intended appli-
observations U, V, and W. The LP model is cation(s) and/or the range of applications for
specified as: which the model is valid.

A fundamental issue underlying the vali-
(1) Maximize: cX - eZ; dation process is subjectivity. Model valida-
(2) subject to: X - FY ' 0, tion is subjective in many ways. Modelers

~~~^(3) _-7 < 0 subjectively choose the tests with which they
GY Z - ' will validate, choose criteria to measure the

(4) AY < b, validity tests with which they will validate,
5 X Y Z 0choose criteria to measure the validity of

(5) X, Y, Z' 0, 'their model, choose what to validate within
where c and e are vectors of output and their model, choose which uses of the model
variable input prices, respectively; F is the will be validated, choose what data to use
matrix of per unit output levels for Y; G is in validating, etc. Thus, the statement "the
the matrix of per unit variable input require- model was judged valid" can mean almost
ments for Y; A is the matrix of per unit anything (See Anderson, and House and Ball
requirements of fixed resources for Y; and b for a more complete discussion of subjectiv-
is the vector of fixed resource endowments. ity in validation.). Nonetheless, a systematic
Constraint (2) balances products sold (X) approach to model validation will provide
with products produced (FY); constraint (3) for a semi-objective evaluation of the strengths
balances variable inputs used (GY) with var- and weaknesses of a model. Further, docu-
iable inputs purchased (Z); and constraint mentation of such model characteristics may
(4) restricts fixed resource use to endowed be invaluable to users and those who must
levels b. The dual variables U, V, and W are extract information from model results.
interpreted as the marginal costs of produc- To some degree, two types of validation
tion (constraint (2)), the marginal values of may be applied to a LP model: validation by
variable inputs (constraint (3)), and the mar- construct and validation by results. Validation
ginal values of fixed resources (constraint by construct refers to a procedure wherein
(4)), respectively. "sensible" techniques motivated by real

world observations are employed in model
construction and because these procedures

G RAL APPROAC S TO LP are used, the model is judged valid. Valida-
RVALIDATION TO LP tion by results refers to a procedure wherein

the results of the model are systematically
Approaches to validation vary widely. Val- compared expost against corresponding real

idation testing involves measuring how well world observations with association tests con-
a model serves its intended purpose. For pre- ducted upon the degree of association.
dictive models, such a test could involve a Before validations by construct and by re-
comparison of model results to observed out- suits are discussed, consider the components
comes of the system modeled within all the of the model which need to be validated.
different contexts in which the model would The output of a LP model consists of at least
be used for prediction. For prescriptive three items: the optimal values of the primal
models, adoption of the model (or the mod- decision variables, the dual variables, and
el's prescriptions) by decisionmakers could the objective function. All of these items need
represent the ultimate validation test. In other to be systematically validated in order to
cases, the efficacy of a prescriptive model judge a LP model valid. However, the least
could be determined through several ex post important item is the objective function value
evaluations of the performance of the pre- as it will be correct if the other items are
scriptions. Unfortunately, these procedures correct. Therefore, objective function value
can rarely be used because they are expensive validation will not be discussed at any length.
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VALIDATION BY CONSTRUCT result in the right answer for the wrong rea-
son. In some studies, imposition of con-Validation by construct is the most com-o by cs is te mt c straints may be a necessary step; however,mon type of LP model validation. Validation s m b such a step should not be undertaken unlessby construct, as the sole method of validation, -• ''c.~~~ ^ i i- one of several events occurs: (a) theory and/is justified by one of several approaches to e ior knowledge of the problem strongly dictatemodeling. One such approach relies on the it a priori, or (b) other scientific validationuse of procedures believed to be appropriate eforts (as dis d later) he failefforts (as discussed later) have failed.by the model builder. This approach involves A final validation by construct approachthe conceptualization of a problem based on en , b a tion tat a ral worexpe e p c (i.., o s ensures, by assumption, that a real worldexperience, precedence (i.e., other's models outcome will be replicated. This approach

and/or writing), and/or theory and the spec- is manifest in the related field of input-output
ification of data for the problem using rea- modeling (Leontief) where the model build-sonable scientific estimation or accounting i c c c ing approach (through the construction ofprocedures (deducing the model data fromprocedures (deducing the model data from the transactions matrix and its inversion) en-
real world observations). A nominal exami- s sures that the model will always give backnation of model results so that it can be said i A the base solution. A similar approach hasthat they do not contradict the model build- recently appeared in quadratic programminger's, user's, and/or associated "experts" per- app tioto markeequilibrim problem
ceptions of reality will also typically occur. ere primal an ual ariable alus 

Such an approach is comwhere primal and dual variable values (equi-Such an approach is common, although it is i q Jc i . .librium quantities and prices) are known adifficult to discover explicit references.Ul to dis cov it rece. priori and the model is specified so that thisUse of special constraints to replicate anbserd ofpci c ins tt acn solution is exactly replicated (see Miller andobserved outcome is a validation by con-serv o om isa vid by c - Millar; Fajardo et al.). Baumes also utilizedstruct. This approach is typified by the ap- such an approach in linear programming ap-plication of so-called "flexibilty" constraints picatn. This tchnie while somewplication. This technique, while somewhatwithin a recursive programming framework palin a also el he ih sappealing, may also yield the right answer(Day and Cigno; Sahi and Craddock) Such for the wrong reason. The desirability of such
constraints impose maximum and minimum a technique depends upon the amount of
bounds on individual activities (or groups of a technique depends upon the amount ofbounds on individual activities (or grouph s of time required to do a study (it is a rather adactivities) within a model based on the values hoc way to build a model) and the qualityhoc way to build a model) and the qualityof lagged variables. An example would beof lagge variabes. An exame woud be of the underlying data base. This approach

addg the cstraints .8Y Y Y to and that involving the use of flexibilty con-
the problem. Rather ambitious claims haveteen p em fra n m ou "cl sve straints may yield a solution close to observedbeen made for such an approach: "Recursive real world values. However the model is not
programming is capable of predicting theprogramming s capable of predicinherently valid for the analysis of adjust-
actual behavior... whereas linear pro-al avo, we n p ments to changes in exogenous variables (thegramming can only estimate an optimal purpose of many modeling efforts).
behavior" (Henderson, pp. 242-3), and "Re.behavior" (Henderson, pp. 242-3), and "Re- Fundamentally, validation by construct suf-
cursive Programming... focuses on the validation offers from the shortcoming that validation of· centralproblem ... namely explaining howcentral prob namelyexa iningw a particular model is assumed, not tested. Ifeconomizing takes place or how economies a model plays an integral part in a study,really work" (Day and Cigno, p. 8). 3 Thisreally wor (Day and Cigno, p. 8) .3 This going forth with a model that is only assumed
procedure, however, is not without its dif- valid doesnot appear to be totally satisfyingvalid does-not appear to be totally satisfying.ficulties. Sahi and Craddock (p. 344) point However, validation by construct is a nec-
out that "... recursive programming has essary precursor to any validation by resultsnot been overly successful in the empirical estin 
estimation of supply response... in part
due to some major weaknesses in the es- VAIATIO T
timation procedures for the flexibility coef-
ficients." The constraining approach is, Validation by results consists of a compar-
however, not solely limited to recursive pro- ison of model solutions with corresponding
gramming. Others have employed similar re- real world outcomes (for example, X' and
strictions somewhat arbitrarily. Simply U° with X and U). Of course, a model should
constraining a model to ensure validation can be built relying on appropriate experience,

3These two quoted statements, while quite reasonable from some viewpoints, embody the assumption that
recursive programming is valid by construct.
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precedence, theory, and estimation and meas- Feasibility Experiment. A feasibility ex-
urement procedures. Thus, a type of vali- periment actually has two forms, the primal
dation by construct will naturally precede feasibility experiment and the dual feasibility
any validation by results. Determining experiment. The basic form of the feasibility
whether the model of the real world system experiment involves setting up the LP model
reproduces real world results is the next (primal or dual) equations, constraining the
logical step. For such an exercise, five distinct variables at their base period levels, then
steps can be identified: first, a set of observed observing whether or not the solution is fea-
outcomes is gathered; second, a validation sible
experiment is selected; third, the experiment The primal test involves solution of the
is applied to the model; fourth, the degree original LP problem (equations (1) through
of association is tested; and, finally, a decision (5)) with the addition of the following con-
is made regarding model validity. Each of straints:
these steps is discussed.

(6) X = X,

(7) Y = YParameter-Outcome Sets
and

Numerical representations of real world
observations consist of parameters which de- (8) Z = Z.
scribe the environment of the system and This particular experiment yields infor-
outcomes describing the corresponding be- mation about the internal consistency of the
havior of the system. A model should not be model in terms of production and resourcevalidated using only the data from which terms ofprodution and resourcevalidated using only the data from which usage. Often, the feasibility experiment is
model parameters were estimated (as argued te exeren 
in Anderson and Shannon). Tests of the model neglected in favor of more advanced exper

iments. For example, the replication of a realbeyond this data set will generally be more e For exame, te replication of a real
representative of model accuracy in appli- outcome may be attempted when that
cations. The observations must be consistent outcome is in fact not a feasible solution to
with the intended uses of the model. Also, model In such cases, the feasibility ex-
the underlying structure of the system upon periment may provide a more direct means
which observations are made must be con- for determining needed corrections in the
sistent with the structure which the model data or model structure. An attendant pos-
is intended to capture. While complete pa- sibility is that real world data may be incon-
rameter-outcome sets are most desirable for sistent. Such an experiment also finds errors
validation purposes, partial sets will gener- arising due to faulty calculations and coef-
ally be useful as will informal observations ficient placement.
about the direction or relative changes in The dual feasibility experiment involves
system outcomes associated with particular an examination of whether the observed
parameter changes. shadow prices are feasible in the dual prob-

lem. This is done using the following dual
of the LP problem presented earlier:

Validation Experiments (9) Minimize: Wb,

A number of validation experiments are 1 subject to: U c
possible. A proposed set of experiments is 
described below. These experiments are de- (11) -UF + VG + WA >- 0,
signed to yield information on a model's -
ability to replicate various portions of the (2-
outcome sets. These experiments are not mu- (13) U, V, W > 0,
tually exclusive; rather they are a set of se-
quential experiments which should be with the additional constraints:
performed (or at least considered) in a given (14) U = U
order. Five general validation experiments
will be presented: a feasibility experiment, (15) V = V,
a quantity experiment, a price experiment, and
a prediction experiment, and a change ex-
periment. (16) W= W.
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This procedure, in effect, budgets the net
marginal returns of losses to each primal
activity while pricing the resources at ob-
served values. For example, in the production
activities (Y), the dual condition (11) con-
strains the marginal cost of resource usage PRICE IMPLICIT

(VG + WA) less the marginal value of pro- COST

duction (UF) to be greater than or equal to
zero. Using the linear programming tech- DUAL 

nique, those primal variables which are at a
non-zero level in the observed outcome
should lead to dual constraints which are
equalities (marginal revenue equals marginal
cost). Also, those primal variables which are 
zero should ordinarily be associated with a
feasible strict inequality in the dual (mar- Experiment.
ginal revenue less the marginal cost). If the
real world outcome is to be potentially op- through (5)) with the objective function term
timal, the primal variables which are zero on X (c) dropped. The correspondence of
should not lead to a dual constraint which Y*, Z*, UI, V*, W* and the shadow prices on
is infeasible. This would imply that it is equation (17) with their observed values and
profitable to produce these products at the the prices of the products (c) can then be
exclusion of other variables that are in the tested.
solution. Careful execution of this experi- Such a test accomplishes two purposes.
ment quite often reveals inadequacies in First, given the real world quantities to be
structure, data, or the objective function. produced, the optimal levels of the produc-
Again, there is the attendant possibility of an tion (Y') and input supply (Z') activities
inconsistent "real world outcome" which may be examined for consistency with those
requires correction. observed. Second, the imputed values of the

Two observations may be made about the resources (V and W*) may be examined for
feasibility experiments. First, the data re- consistency with the observed imputed val-
quirements are rather strong-they assume ues. Thus, a test is made of the linear pro-
knowledge of a complete solution. Often this gramming optimality conditions that a good
knowledge is unavailable. For example, one is produced to the level at which its marginal
may know output levels (X), input levels cost equals its prevailing price. Further, the
(Z), and aggregate sums of production var- dual values associated with the quantity con-
iables (sums within Y) but not individual straints (equati (17)) should be suffi-
variable values (Y). Thus, partial tests, in- ciently close (by one or more of the criteria
volving totals but not individual Yi values,volving totals but not individual Y, values, discussed later) to the market prices for the
may well be in order. Second, the experi- outputs. 4 These shadow prices, Figure 1, give
ments do not really require a LP solver (al- a indication of the marginal cost of pro-
though it may be convenient). Rather, simple dution at the observed quantities. Uder
matrix multiplication is sufficient. A LP im- ct o etition this shado rie s
plementation would in all likelihood require e th price
some structural alterations (artificial varia- equal the market price.
bles or nonbinding rows) to permit infeasi- The input version of the test is essentiallybles or nonbinding rows) to permit infeasi-
bilities. &identical. The model (equations (1) through

Quantity Experiment. The quantity ex- (5)) is augmented by the constraint Z = Z
periment involves constraining the outputs with the eZ term dropped from the objective
supplied or inputs demanded at their actual function. In this case, the experiment should
levels and removing price parameters c and generate dual variables which can be com-
then observing the shadow prices. The output pared to prevailing market prices of inputs,
version of this experiment (first utilized by Figure 2.
Kutcher) involves adding the constraint Price Experiment. A third type of model

validation experiment is the price experi-
(17) X = X ment. This type of experiment is relevant in

to the original formulation (equations (1) models where price is an endogenous vari-

4Kutcher presents this procedure as a test of the economic assumption of perfect competition.
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particular experiment represents an attempt
to see whether the linear programming model
can replicate agent or system behavior that
has been observed. To some degree, this is
the ultimate experiment in the series in that
it shows whether a model can in fact replicate
reality. However, to some extent, it ignores

DUAL ——_—_______ L - the reason most linear programming models
exist; that is, for comparative statics analysis.

IMPLICIT VALUE
O .MARGINAL This implies a need for the next type of
.PRODUCT experiment.

INPUT (x.) Change Experiment. Many linear program-
ming models are not constructed to "find
THE answer." Often the models are used toFigure 2. Input Quantity Experiment.Figure 2. Input Quantity Experiment.- generate several solutions in studying the

able (such as in the sector models reviewed magnitude of adjustments. The testing of such
in McCarl and Spreen) or in linear program- a model involves an examination of how well
ming models with fixed demand require- the model predicts changes between alter-
ments. This experiment involves fixing the native scenarios. In validation then one must
objective function coefficients at existing real have two real world situations and solve the
world levels for products and/or factors whose model under the two situations to test its
prices are endogenous to the model, then performance (as done by Hazell et al.). Here,
observing quantities (the dual of the named a comparison is made between the change
quantity experiment). The output price ex- in the model solution variables (e.g., X; -
periment is illustrated in Figure 3. The quan- X2) and the change observed in the real world
tities produced (X*) may be compared to the solution (X, - X2),
observed levels (X). One may also examine Tracking Experiment. A model's profi-
how implicit fixed resource values are influ- ciency for predicting a one time change in
enced in the experiment. a real world system may not form an adequate

Prediction Experiment. The prediction ex- framework for validation in analyses of sys-
periment is the most commonly used exper- tem adjustments through time. For applica-
iment for validating linear programming tions of this type (for example, Pieri et al.),
models by results.5 Some examples can be the model can be solved using an appropriate
found in Barnett et al.; Brink and McCarl; series of parameter sets. The focus of the
and Hazell and Pomareda. With the predic- validation would then be on how well the
tion experiment, problem parameters are model "tracks" over time with respect to the
fixed at existing real world levels, the model corresponding observed adjustments in the
is solved, and the solution values of the pri- system. Again, comparisons are made be-
mal and dual variables are compared with tween changes in the model solution and
the existing real world observed values. This observed changes in the real world solution.

Partial Tests

The listed experiments were presented for
PRICE MARGINAL a model as a whole. Obviously, in any par-

COST

ticular validation exercise, it may be desir-
able to perform experiments with some of
the variables fixed at real world levels with

OBSERVED other variables left unconstrained-an at-
PRICE

tempt to validate portions of the model. Often,
I—]| \:~ ~ this type of experiment will be necessary

__]—:~ ;with large models because observations on
xX all decision variables and/or shadow prices

OUTPU (XI) may not be readily available. Validation ex-
Figure 3. Output Price Experiment. periments may then be performed to require

5This experiment is often undertaken prematurely before experiments such as those above are conducted.
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sums of variables to equal observed real world Step 6. If the model does not pass the
levels, for example. validation tests, consider whether:

(a) the data are consistent and correctly
A PROCEDURE FOR EMPLOYING A calculated,

VALIDATION TEST
(b) the model structure provides an ad-

There are several identifiable stages to the equate representation of the real world
process of model validation. The purpose of system, and
this section is to briefly present steps for
conducting one of the named experiments. (c) the objective function is correctly

specified.
Step 1. Specify the model(s) relying on

relevant theory, experience, and/or prece- Procedures for recalculating model param-
dence. eters will be problem specific. If, for ex-

ample, all the variables have been fixed at
Step 2. Enter the constraints and/or activ- "real world" levels and infeasibilities occur,

ities which hold the shadow prices and/or unit input and/or output levels of production
variable values at observed levels for the activities may be incorrect. If the data are
specific validation experiment at hand. considered accurate and model structure

Step 3. Solve the model(s). problems are suspected, one should consider
whether: errors have been made in con-

Step 4. Evaluate the solution(s). Is it in- structing the matrix; additional constraints
feasible, unbounded, or optimal? are needed which have been omitted; con-

(a) If the model solution is infeasible, straints have been entered which are not
examine the results to find the cause of really constraints; some variables have been
infeasibility. If this in not easily found, omitted which are, in fact, important; or
consider adding artificial variables to those whether such factors as risk and/or willing-
rows which are suspected of creating the ness to adjust (i.e., flexibility constraints)
infeasibilities and solving the model again, should be entered into the model. If the
Once the cause is found, go to Step 6. model has been respecified either structurally

or through its data, proceed back to Step 3
(b) If the model is unbounded, examine and repeat the validation test. If not, go to

it to find the source. If this is difficult, Step 7.
consider first adding large upper bounds
to the individual variables, then solving Step 7. If the preceding steps do not lead
the augmented model and identifying which to a valid model, one must decide whether
variables equal the large upper bounds. to:
These will be the variables that are un- (a) do demonstrations with an invalid
bounded. Complete a hand budget for the model-assuming this is an approximately
unbounded variables, pricing each re- correct structure,
source at the shadow prices, and attempt
to discover the cause of the unbounded (b) abandon the project, or
solution. Once the cause is found, go to (c) limit the scope of validation to a
Step 6. lesser set of variables (aiming at a less strict

(c) If the solution is optimal, perform level of validation), subsequently quali-
association tests to discover the degree of fying model use. This may happen in many
correspondence between the "real world" cases due to some considerations discussed
and the model solutions (except for the subsequently.
feasibility experiment). These tests should
be conducted upon both the primal and
dual variables.

EVALUATION CRITERIA FOR
Step 5. If the model variables exhibit a VALIDATION

sufficient degree of association, then:
Discussion of association tests has been

(a) do higher level validation experi consciously omitted to this point. Such tests
ments if desired, and can be used to measure whether a set of

(b) determine whether the model is model results approximate observed results.
valid and proceed to use the model. Quite a number of association tests have been
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proposed and used-particularly within the ure. If so, the use of techniques such as
simulation literature (Shannon; Anderson; separable, integer, nonlinear, or stochastic
Gass; or Johnson and Rausser, for example). programming may be desirable to construct
These tests have been well presented else- a new model.
where, so elaborate discussion is not needed. Modeling assumptions may also lead to an

A brief summary of some alternative tests invalid linear programing solution. These as-
of association may be in order, however. sumptions embody the correctness of the ob-
Regression techniques have been used to jective function, variables, constraints,
measure the association of model solutions coefficients, and coefficient placements. Lin-
with observed values (for examples see Nu- ear programming algorithms are quite useful
gent; Rodriquez and Kunkel). Here, model in discovering violations of these assump-
results are regressed on observed values- tions. Linear programming solutions are also
perfect association would be indicated by an rather transparent. At an optimal solution,
intercept of zero and a slope of one. The one may easily discover what resources were
Theil U test has been suggested by Leuthold used, how they were used, and marginal re-
for use in validation and an application to source values. Thus, when presented with an
LP appears in Pieri'et al. This is a nonpara- invalid solution, resource usage and resource
metric "goodness-of-fit" test for evaluating valuation should be investigated. Models are
the closeness of two vectors. Garret and most often invalid because of inconsistent
Woodworth refer to the use of the G Index data, bad coefficient calculation, bad coeffi-
for validation-a procedure for comparing cient placement, incomplete structure, or an
vectors of zeros and ones. In LP, such a incorrect objective function. Thus, common
procedure can be used for comparing sets of fixes for a model failing validation involve
basic variables (an example can be found in data respecification and/or structural correc-
Keith). Simple measures such as means, sums, tions.
mean absolute deviations, and correlation When dealing with linear programming,
coefficients, have also been used in LP vali- there are several other aspects of the model
dation (Nugent; Kutcher; Hazell et al.). The which can lead to validation failures. An op-
authors have not found applications of Chi timal solution to a linear program is char-
square, Kolmogrow-Smirnov, or various other acterized by the term basic, i.e., no more
"goodness-of-fit" tests to LP validation ex- activities can be in the model than the num-
ercises. However, these techniques have been ber of constraints. For example, if a disag-
applied in simulation studies (see reviews in gregated regional model is constructed with
Anderson; Johnson and Rausser; Shannon; and a single constraint in each region, at most
Gass). one activity will be produced in each region

(if other constraints are not present in the
model). This is ordinarily inconsistent with

WHAT IF THE MODEL DOES NOT real world performance. Models then may be
VALIDATE? judged invalid because they overspecialize

in production due to the nature of basic
From a practical standpoint, models do not solutions. Several approaches may be taken

always validate. A particular model will prob- when faced with this sort of inadequacy in
ably not validate initially. Since assumptions a model solution. First, one may be satisfied
are made in the process of model building, with validating only aggregate results and not
failure to validate likely indicates that a sub- worrying about individual production re-
set of these assumptions is violated. Conse- suits. Second, one may constrain the model
quently, if a model fails validation tests, the to the observed solution and investigate
relevant question is: What assumptions need whether this solution is an alternative opti-
to be corrected? mal solution (which, as argued by Paris, may

Two different types of assumptions are commonly occur). Third, one may recognize
present in linear programming models: al- that a basic solution will not validate and
gorithmic and modeling. The algorithmic as- enter constraints that limit the adjustment
sumptions are additivity, divisibility, process of the activities within the model
certainty, and proportionality (Hillier and (flexibility constraints as above). Fourth, the
Lieberman, pp. 135-8). These assumptions, model may be expanded by including risk
when severely violated, will cause validation considerations (Hazell et al.). Fifth, one may
tests to fail. The model designer then must feel the model is structurally inadequate in
consider whether these are the cause of fail- that many of the factors that constrain
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production may be inadequately portrayed sequenced after activities which must have
in the model (see the arguments in McCarl). occurred before (for example, acreages of
Such a situation leads to either one of two the legume last year). Thus, unless the model
fixes: more constraints can be added or the has initial conditions identical to those in
activities within the model may be respeci- the "real world," it may be very difficult to
fled so they represent feasible solutions within validate.
omitted constraints.

Models may also fail validation because of CONCLUDING COMMENTS
the objective function. Specification of the Validation is an important concern within
constraints identifies the set of possible so- any modeling exercise. Awell validated model
lutions, while specification of the objective will have gone through both the validation
function determines which feasible solution by construct and validation by results phases
will be optimal. Thus, the objective function with care exercised at all points. Unfortu-
must be carefully specified and reviewed (es- nately, although a model user may nominally
pecially if a feasible real world solution can b satisfied, true validation will never occur.
be investigated through the dual feasibility However, through satisfactory completion of
test). Finally, a correct objective function the experiments outlined, the level of sat-
may for all practical purposes possess alter- isfaction may be increased.
native optimal solutions, one of which is the Finally, one of the ultimate tests of validity
desired solution (see Paris for discussion). deals with adoption of the model by the

Another phenomena may lead to difficulty decisionmaker. Satisfactory validation via the
with model validation, particularly within procedure given is not sufficient for accept-
agricultural models. Activities, quite often, ance. A numerically valid model may solve
have to be performed in a fixed sequence the wrong problem and, thus will never be
through several time periods (for example, valid from the decisionmaker's viewpoint.
a rotation that includes a legume crop for Clearly, under these circumstances, valida-
soil enrichment). An annual model with ac- tion in the broadest sense is only achievable
tivities of this type may well be invalid be- by redefining the model which takes into
cause the activities are not properly account the true problem.

REFERENCES

Anderson, J. "Simulation: Methodology and Applications in Agricultural Economics." Rev.
Marketing and Agr. Econ., 43(1974): 3-55.

Barnett, D., B. Blake, and B. McCarl. "Goal Programming via Multidimensional Scaling
Applied to Senegalese Subsistence Farms." Amer. J. Agr. Econ., 64,4(1982): 720-7.

Baumes, H. "A Partial Equilibrium Sector Model of U.S. Agriculture Open to Trade: A
Domestic Agricultural and Agricultural Trade Policy Analysis." Ph.D thesis, Purdue
University, 1978.

Brink, L. and B. McCarl. "The Adequacy of a Crop Planning Model for Determining Income,
Income Change, and Crop Mix." Can. J. Agr. Econ., 47(1979): 13-25.

Day, R. and A. Cigno, editors. Modeling Economic Change: The Recursive Programming
Approach. Amsterdam: North-Holland Publishing Co., 1978.

Fajardo, D., B. McCarl, and R. Thompson. "A Multicommodity Analysis of Trade Policy
Effects: The Case of Nicaraguan Agriculture." Amer. J. Agr. Econ., 63,1(1981): 23-
31.

Garret, H. and R. Woodworth. Statistics in Psychology and Education. New York: David
McKay Co., Inc., 1964.

Gass, S. I. "Decision-Aiding Models: Validation, Assessment, and Related Issues for Policy
Analysis." Operations Research, 31(1983): 603-31.

Hazell, P. and C. Pomareda. "Evaluating Price Stabilization Schemes with Mathematical
Programming." Amer. J. Agr. Econ., 63,3(1981): 550-6.

Hazell, P., R. Norton, M. Parthasarthy, and C. Pomareda. "The Importance of Risk in
Agricultural Planning Models." Programming Studies for Mexican Agricultural Policy,
R. Norton and L. Solis (eds.). New York: Johns Hopkins Press, 1981.

Henderson, J. "The Utilization of Agricultural Land: A Theoretical and Empirical Inquiry."
Rev. Econ. and Stat., 41(1959): 242-59.

163



Hillier, F. and G. Lieberman. Introduction to Operations Research. San Francisco: Holden-
Day, Inc., 1967.

House, P. and R. Ball, "Validation: A Modern Day Snipe Hunt: Conceptual Difficulties of
Validating Models," in S.I. Gass (ed.), Validation and Assessment of Issues in Energy
Models, Proceedings of a Workshop, National Bureau of Standards, Spec. Pub. 564,
Washington, D.C.; 1980.

Johnson, S. and G. Rausser, "Systems Analysis and Simulation: A Survey of Applications in
Agricultural and Resource Economics." in L. Martin (gen. ed.), A Survey ofAgricultural
Economics Literature, 2(1977): 157-301.

Keith, Nancy, "Aggregation in Large-Scale Distribution Systems." Ph.D. thesis, Purdue Uni-
versity, 1978.

Kutcher, G., "A Regional Agriculture Planning Model for Mexico's Pacific Northwest." in
R. Norton and L. Solis (eds.), Programming Studies for Mexican Agricultural Policy,
Chapter 11, New York: Johns Hopkins Press, 1983.

Leontief, W., "Quantitative Input-Output Relations in the Economic System of the United
States." Rev. Econ. Studies, 18(1936): 105-25.

Leuthold, Raymond M., "On the Use of Theil's Inequality Coefficients." Amer. J. Agr. Econ.,
57,3(1975): 344-6.

McCarl, B. "Cropping Activities in Agricultural Sector Models: A Methodological Proposal."
Amer. J. Agr. Econ., 64,4(1982): 768-72.

McCarl, B. and T. Spreen, "Price Endogenous Mathematical Programming as a Tool for Sector
Analysis," Amer. J. Agr. Econ., 62,1(1980): 87-102.

Miller, T. and R. Millar, "A Prototype Quadratic Programming Model of the U.S. Food and
Fiber System." mimeo, CES-ERS-USDA and Department of Economics, Colorado State
University, 1976.

Nugent, J., "Linear Programming Models for National Planning: Demonstration of a Testing
Procedure." Econometrica, 38(1970): 831-55.

Paris, Q., "Multiple Optimal Solutions in Linear Programming Models." Amer. J. Agr. Econ.,
63,4(1981): 724-7.

Pieri, R., K. Meilke, and T. MacAuley, "North American-Japanese Pork Trade: An Application
of Quadratic Programming." Can. J. Agr. Econ., 25(1977): 61-79.

Rodriquez, G. and D. Kunkel, "Model Validation and the Philippine Programming Model."
Agr. Econ. Res., 32(1980): 17-25.

Sahi, R. and W. Craddock, "Estimation of Flexibility Coefficients for Recursive Programming
Models-Alternative Approaches." Amer. J. Agr. Econ., 56,2(1974): 344-50.

Shannon, R., "Simulation: A Survey with Research Suggestions." AIIE Transactions, 7(1975):
289-301.

164


