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EFFICIENCY CRITERIA AND RISK AVERSION:
AN EMPIRICAL EVALUATION
Michael E. Wetzstein, Philip I. Szmedra, Ronald W. McClendon, and David M. Edwards

Abstract analysis. Variation in risk preference assump-

A conceptual link among mean-variance tions are incorporated into a risk function by
(EV), stochastic dominance (SD), mean-risk changing r, the Pratt-Arrow risk aversion co-
(ET), and Gini mean difference (EG) is estab- efficient in SD analysis, and oc, the exponent
lished for determining risk efficient decision conditioning the degree to which segments of
sets. The theoretical relations among the the associated density functions are to be em-
various efficiency criteria are then empirically phasized in ET and EG analyses.
demonstrated with a soybean and wheat The objective of this paper is first to present
double-crop simulation model. Empirical a collection of general results which provide a
results associated with extended Gini mean conceptual link among the efficiency criteria,
difference (EEG) and extended mean-absolute and to demonstrate empirically the varying
Gini (EE) for risk analysis are encouraging. degrees of similarity among the criteria.

Recommendations on the appropriate effici-

Key words: risk, efficiency criteria, Gini mean ency criteria based on research objectives are
difference. provided in a concluding section.

EFFICIENCY CRITERIA
In situations with unknown preferences, a Expected Value (EV) and Stochastic

risk efficient set of decisions is determined Dominance (SD)
based on an assumed preference relation and
various approximations of decision probability Markowitz's EV analysis which employs the
distributions. Numerous efficiency criteria first two moments of a density function as the
specifying restrictions on preferences and criterion for ranking decisions is extensively
probability distributions are prevalent in the employed in the agricultural economics litera-
literature. Efficiency criteria popular in agri- ture. The efficiency criteria determining EV
cultural economics literature include mean- for any two distributions F and G is that F
variance (EV) and stochastic dominance (SD) dominates G if /F > yG and F < a2G hold with
analyses, whereas mean-risk (ET) and Gini at least one strict inequality, where 0 and a2
mean difference (EG) analyses are generally denote a distribution's mean and variance, re-
less popular (Yitzhaki, 1982). spectively. Unfortunately, EV analysis may

A necessary condition for one distribution to lead to unwarranted conclusions when the as-
dominate another, common to all of these cri- sumptions of normality or a quadratic utility
teria under risk aversion, is expected value function are violated. EV analysis penalizes
analysis where a comparison of the first decisions equally for deviations above and
moment of the decision density functions is per- below the expected value which can be a short-
formed. Necessary and sufficient conditions coming given an asymmetric distribution
for various efficiency criteria differ based on (Selley).
their representation of a risk function-a Baumol amends Markowitz's analysis by ex-
measure of dispersion unique to each cri- plicitly considering confidence limits. The risk
terion. Specifically, variance of a density func- involved in a given action choice is repre-
tion is employed in EV, modified semivariance sented by k standard deviations, a, from the
in ET, and Gini mean difference in EG mean, t, with k indicating the degree of risk
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aversion chosen by the decision maker. ceived to be a priori inferior. Through succes-
Specifically, ^-ka may be considered the sive iterations of alternative convex combina-
lower confidence limit for the variation in tions and perceived inferior action choices, a
question. The more conservative the confi- risk efficient set of alternatives results.
dence limit criterion, increasing k, the greater Cochran et al. note that CSD lowers the
the degree of risk aversion. Baumol's effici- probability of Type II errors without chang-
ency criteria state that F dominates G if AF > ing the probability of Type I errors. The
AG and uF -koF > AG - kaG hold with at least criterion eliminates alternatives from the effi-
one strict inequality. Thus, in contrast to EV cient set which would not be preferred by any
analysis, a prospect with a relatively high individual in a specified preference interval,
variance will dominate if its expected value is but for which no agreement as to alternative
sufficiently high. The subsequent culling of superiority exists. CSD implicitly culls those
EV efficient alternatives based on Baumol's prospects with relatively low means and
criteria will further reduce the efficient set. variances, and, thus, employs the same under-

Second degree stochastic dominance (SSD) lying reasoning for establishment of efficient
does not impose the restriction of normality or sets as Baumol. A problem with CSD is deter-
a quadratic utility function and is consistent mining the choice alternatives that comprise
with Baumol's criteria. A decision with higher the convex combination and developing an ap-
variance and mean might be preferred which propriate weighting scheme. Fishburn (1974)
may further reduce the efficient set. As ex- suggests that a more significant aspect of
amples, SSD efficient sets for lognormal and CSD is its converse assertions. Instead of
uniform distribution are subsets of the EV ef- identifying an efficient set where at least one
ficient sets (Levy; Yitzhaki, 1982). An excep- of the prospects in the set dominates a pros-
tion is the case of normal distributions where pect not in the set, CSD could be employed to
SSD and EV efficient sets are identical (Levy conclude that a set of prospects are not pre-
and Hanoch). However, Porter states that re- ferred to an alternative set of prospects.
gardless of the density functional form, if two In an application Bawa et al. demonstrate
decisions have the same mean (variance) but how CSD has the potential to reduce first, sec-
different variance (mean) and one is inefficient ond, and third degree stochastic dominant
by SSD, then it also is inefficient by EV. (FSD, SSD, TSD) efficient sets. Cochran et al.

Cochran et al. note that SSD in some cases demonstrate a reduction in the efficient set by
still leads to a relatively high Type II error, CSD for SDWRF by applying a linear pro-
where the hypothesis of no dominance is not gramming algorithm with gridpoints marking
rejected when an alternative is in fact domi- off the cumulative probability functions. Such
nant. Type II errors generally correspond to a mathematical programming modeling effort
large efficient sets. As a method to reduce the could be cumbersome (Boisvert) and is ques-
efficient set, Meyer has suggested stochastic tionable with the lack of population counter-
dominance with respect to a function parts supporting stochastic dominant sample
(SDWRF). SDWRF assumes a decision maker's estimates. Pope and Ziemer note that failure
preference and degree of risk aversion lie to consider sampling error in stochastic domi-
within specific Pratt-Arrow bounds. Unfor- nance analysis has led some to argue that the
tunately, SDWRF reduces Type II errors by procedures are so unreliable as to warrant a
possibly increasing the probability of reject- moratorium. Alternatively, a search for more
ing the hypothesis of no dominance when such powerful and economical tests for risk effici-
a rejection is unwarranted, a Type I error. ency could yield a significantly reduced effi-

An alternative efficiency criterion is convex cient set and a simple method for determining
stochastic dominance (CSD) (Fishburn, 1974). such a set.
Unlike SDWRF, CSD does not require addi-
tional knowledge of risk preference intervals,
because CSD uses the preference interval of Mean-Risk (ET)
the associated efficiency criteria, SSD,
SDWRF, or other risk criteria. CSD is a two- Fishburn (1977) proposes ET analysis as a
step process where first an efficient set is class of models which are computationally effi-
identified for the relevant preference interval, cient and provide clear implications about risk
and then CSD is applied to further reduce the preference. ET may be generally preferred to
efficient set. A convex combination of several EV analysis when the distributions are asym-
action choices is compared to one choice per- metric (Selley). The general model for ET
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analysis is possibility of generating large efficient sets
resulting in negligible discriminating power

(1) F c (t) = I (t-x) dF(x), among choice alternatives. Yitzhaki (1982)
- .. suggests that Gini mean difference be con-

where F(x) is the probability of obtaining a re- sidered as an efficiency criterion, avoiding the
turn not exceeding x and t is a specified target inherent problems of other methodologies.
return. The efficiency criteria determining ET
for any two distributions F and G are that F
dominates G if $F > A and F oc (t) < Goc(t) Gini Mean (EG)
hold with at least one strict inequality. Varia-
tion in the value of the exponent, oc, in equa- Gini proposed a measure of variability for
tion (1) influences the emphasis on specific any statistical distribution based on the
portions of the distribution. When o = 2, average of the absolute differences between
equation (1) reduces to mean-semivariance pairs of observations. Gini's coefficient is
(ES) analysis (Porter). Except for decisions defined as the ratio of half of the average to
with identical means and semivariances, the mean of the distribution. Specifically, the
every decision that is efficient by ES is also ef- relative Gini coefficient (G) is
ficient by SSD analysis (Porter; Fishburn,
1977). Fishburn's Theorem 3 states that if de- (2) G= A/2= ,
cision F is FSD over decision G, then F domi-
nates G in terms of ET for all values of oo oo
oc 0 ; if F is SSD over G, then F dominates G where A = I I x - y dF(x)dF(y),
in ET analysis for all oc > 1; and if F is TSD, -oo -0o
then F dominates G in ET analysis for all oc >
2. As oc - 1, the ET efficient set approaches and is e is the distribution mean. The measure of
the risk neutral set associated with the ex- dispersion, A, is defined as Gini's mean
pected value criterion. As oc - oo the ET effi- difference.
cient set approaches the criterion of Rawls, The advantage of Gini mean difference over
which evaluates decisions based on the mini- variance has been demonstrated by Yitzhaki
mum outcome associated with each decision (1982). Variance penalizes all first moment
alternative-the maximum criterion. If oc < 1, deviations, generally relegating choice
risk prone preferences are assumed. alternatives with relatively large associated

Recognizing decision makers' desire to re- variances into a risk inefficient category. Dis-
duce the risk of failing to meet a certain target persion arising from a shift to the right of a
level may make ET analysis appealing. How- portion of the distribution may be deemed
ever, a problem with ET analysis is determin- desirable by a majority of decision makers.
ing the target value t. In applications, t may Gini's mean difference provides a method to
be a point of zero net returns, a return equiva- establish risk efficiency among choice alterna-
lent to the opportunity cost of the investment, tives by determining the increase in distribu-
or other a priori conditions that specify a tion mean required to offset increasing
target value. Alternatively, a researcher may variance.
vary t as a measure of different levels of risk The efficiency criteria determining EG for
preference. As t - a, the minimum decision any two distributions F and G is determined
variate, the ES efficient set approaches the by first defining F = A/2 as the absolute Gini.
risk neutral set associated with the expected Distribution F then dominates G if ~F - G
value criterion. As t increases, the degree of and AF - rF > AG - rG hold with at least one
risk aversion also increases. In the limit as t strict inequality (Lerman and Yitzhaki). EG
- b, the maximum variate, the efficient set can be directly related to Baumol's expected
approaches the Rawlsian criterion set. gains and confidence limits, where Baumol's

In many cases researchers have no a priori criteria k=l and a are replaced by F. This
information concerning a target level of a deci- criterion is a necessary condition for FSD and
sion variate. Resorting to SD analysis may SSD, corresponding to Baumol's criteria for
prove inadequate given its more involved na- EV analysis. EG allows a prospect with
ture in comparison with EV and ET. Specifi- higher variance and mean to be preferred.
cally, SD may require development of an opti- Only two summary statistics are required in
mization algorithm as in portfolio selection calculating EG, making it almost as easily cal-
(Cochran et al.; Bey; Yitzhaki, 1983), with the culated as EV analysis. Alternatively, F may
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replace variance as a measure of variability efficient B. Thus, a low (high) F implies small
resulting in the mean absolute Gini criteria (arge) changes in the decision variate x. This
(Er), where distribution F dominates G if AF interpretation gives F a more intuitive mean-
> AG and rF _ rG hold with at least one strict ing than other dispersion measures such as
inequality. In fact, EV analysis with the variance (Lerman and Yitzhaki).
assumption of a normal distribution is a Buccola and Subaei relate EG analysis to
special case of Er. Yitzhaki (1982) demon- weak risk aversion which may underestimate
strates that for normal distributions the rela- the risk aversion of decision makers. EG
tion among efficient sets is analysis is a powerful discriminator of risky

prospects and, similar to expected value
EV = EF = SSD D EG, analysis, may not fully consider a decision

maker's risk preferences. Yitzhaki (1983) illus-
where D specifically denotes EG is a subset of trates how an extended Gini mean difference
SSD. For lognormal and uniform distribu- criterion (EEG) considers various levels of
tions, the efficient set relation is risk aversion. Specifically,

EV = Er D SSD D EG. (5)() - a b [l-F(x)dx,
a

In spite of the above advantages of Gini
mean difference, the inconvenience in calcula- (Shalit and Yitzhaki). F(2) corresponds to the
tion along with the ease in computing variance absolute Gini employed in EG analysis.
have probably contributed to the frequent Extending EG analysis by EEG explicitly
substitution of other efficiency criteria for the introduces the degree of risk preference as a
EG method. However, Lerman and Yitzhaki parameter. The aversion to risk rises as oc in-
recently developed a simple formula, based on creases from zero to infinity. From 0 to 1, r
Stuart's work, for calculating and interpreting represents a preference for risk. Risk neutral-
Gini mean difference. They demonstrate that ity i assumed at oc = 1 which corresponds to
the only information required is the mean, expected value analysis. As oc oo, EEG ap-
sample size, and covariance between the vari- praches Rawl's maximum criterion. EEG
able and the cumulative distribution. Specifi- and extended mean-absolute Gini (EEr) effi-
cally, absolute Gini, F, may be defined as ciency criteria are similar to EG and Er,

respectively, with F(2) replaced by F(oc).
b Thus, EEG and EEF analyses correspond

(3) F = I F(x)[1-F(x)]dx, very closely to ET with the exception that an
a a priori target value for the variate is not re-

where a and b are the lowest and highest quired in EEG and EEF. Finally, Lerman and
values of x. Integration by parts, transforma- Yitzhaki also demonstrate the following sim-
tion of variables, and noting that F is uni- ple method for calculating F(oc),
formly distributed between [0,1] with mean of
one half, allows equation (3) to be written as c , ( - F - > 1.

(6) r(oc)= - Oc cov[x, (1 - F(x)) , Oc > 1.
(4) F = 2 cov[x,F(x)],(4) F -= 2 cov[x,F(x)], As indicated by Yitzhaki (1982) and further

where cov denotes the covariance operator. developed by Buccola and Subaei, th weaker
Thus, F becomes simple to calculate by deter- dominance criterion leads generally to a

mining the covariance between x and the cor smaller efficient set. Within the range of riskmining the covariance between x and the cor- a r 
responding cumulative distribution function, aversion, the following relations among the ef-responding cumulative distribution function,

F(x, and ultiplying by two. ficiency criteria generally hold,F(x), and multiplying by two.
Lerman and Yitzhaki further illustrate the Expected Value Criterion C EG C EEG

convenient relation between F and slope co- C SSD,
efficient, B, from a regression of x on F(x), Expected Value Criterion ES SSD,Expected Value Criterion C_ ES C SSD,

(4) r = 2Bvar[F(x)], EG C Er, and
EEG C EEF.

where var[F(x)] is the variance of F(x). In 
large samples var[F(x)] converges to a con-
stant so F is proportional to the slope co- The implication of this conceptual link among
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the efficiency criteria is that an investigator is the targeted acreages each year unless plant-
able to reduce a SSD or EV efficient set by ing and harvesting delays preclude the ability
simply relaxing the dominance criteria. EEG to achieve the targeted acreages. If initial
and ET analyses provide efficiency criteria targeted acreages of fall wheat plantings are
that are simple to measure empirically, and, not reached, only the actual acreage of wheat
thus, admit a search algorithm to derive effi- planted will be available for harvest the
cient sets which are subsets of a SSD set. following spring.
Dybvig and Ross show that SSD efficient sets The model was calibrated for a soybean and
are not necessarily convex; therefore, a search wheat double-cropping production system in
algorithm to derive stochastic dominant effi- the Georgia Coastal Plain. A representative
cient sets would be difficult to construct. soybean and wheat double-crop operation was
However, this has not precluded atimmpts at assumed to include 600 acres with 67 percent
deriving such an algorithm (Cochran). EV is of the acreage double-cropped. The weather
just a special case of EEG when the normality data comprised 58 years of daily precipitation
assumption is imposed. records from the Coastal Plain Experiment

The ease of empirically calculating EEG and Station, Tifton, Georgia. Alternative
the fact that EEG analysis requires no assump- machinery complements for eight-row equip-
tions on the characteristics of the density func- ment were modeled solely for empirical ap-
tion makes it a very attractive alternative to plication of the various efficiency criteria and
EV analysis. Alternatively, if a priori target should not be considered definitive in evalua-
levels of a decision variate are known, ET tion of machinery complements. Table 1 lists
analysis should be considered as an efficiency the six machinery complement levels con-
criterion. The cost of employing EEG or ET sidered. Other parameters for the model, in-
analysis in attempting to reduce an efficient set eluding expected value of prices and costs of
is the possible increase in Type I error. How- materials, were estimated with standard
ever, as in SDWRF the probability of a Type I budgeting practices.
or II error in EEG and ET analyses depends
on the size of the preference interval employed. TABLE 1. ALTERNATIVE MACHINERY COMPLEMENTS FOR
Cochran provides a detailed discussion o f ffi- PLANTING AND HARVESTING ON 600 ACRES, 67 PER-Cochran provides a detailed discussion of effi- CENT DOUBLE-CROP AREA, EIGHT-ROW EQUIPMENT
ciency criteria in terms of Type I and Type II
errors. The above implications are empirically
tested in the following sections. Machinery Tractors Harvestingtested in the following sections. Complement (135 hp) Systemsa Row Planters Graindrills

APPLICATION ------ Numbers------------------------
APPLICATION 1 1 1 1 1

2 1 1 1 1Problem Definition and Data Sources 2 1 2 1 1

Probability distributions of the decision 4 2 2 2 25 3 1 3 3
variate, net returns, were developed with a 6 3 2 3 3
microanalytic simulation model for soybean
and wheat double-crop production in the aOne Harvesting System is composed of a combine, aand wheat double-crop production in the traand a 9- tractor.trailer, and a 95-hp tractor.
southeastern United States (Wetzstein et al.).
An intertemporal dynamic production system Stochatic prices for soybean and what
was simulated based on daily precipitation were estimated wth an ap ation of theJ £ o were estimated with an application of thedata for 58 weather years. Target levels for Gaussian eliminatio method (lements et al.).
crop acreages and a machinery complement For this procedure a variance-covarianceFor this procedure a variance-covarianceare initially specified. The model simulates the tri o so and rices of soyanmatrix of soybean yield and prices of soybeansproduction process by generating planted and wheat was estimated from Georgia stateacreage, based on the interaction of average price data and southern Georgia
machinery set capacity and available work county yield data for 1973 through 1981
days, and harvest summary information for (Georgia Crop Reporting Service).
each year. Soybeans are planted in the spring
and harvested in the fall, followed by planting
wheat in the fall which is harvested the follow-
ing spring. Thus, years are linked by fall Results
wheat plantings in the previous year corre- Results are reported in terms of efficient set
sponding to the spring wheat harvest acreage consistency among the various efficiency
in the subsequent year. The model will plant criteria. Pattern of membership is the pri-
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TABLE 2. SUMMARY STATISTICS ASSOCIATED WITH THE EFFICIENCY CRITERIA FOR THE SIX MACHINERY DECISIONS

Machinery Complement
Statistic 1 2 3 4 5 6

Mean (l) $66.74 $48.02 $65.14 $45.09 $59.60 $39.56
(Net returns per area)

Variance (o2) 1212.72 1052.56 763.03 779.21 702.57 726.64
Mean-Risk [Fo,(t)]a

1 24.26 29.93 19.66 26.96 20.16 27.54
1.5 173.77 202.09 99.65 163.85 101.90 168.74
2(semivariance) 1383.61 1518.96 552.67 1054.64 549.50 1092.79
5 668.00b 918.00b 39.00b 158.00b 31.00b 150.00b

Gini (r)a

1.5 9.40 8.84 7.89 7.91 7.67 7.73
2 18.47 17.33 15.32 15.48 14.83 15.04
5 40.30 36.89 30.25 30.55 28.59 28.98

( -r)a

1.5 57.35 39.18 57.25 37.19 51.93 31.83
2 48.27 30.69 49.82 29.61 44.77 24.52
5 26.45 11.13 34.89 14.55 31.01 10.59

Minimum Variate - 38.90 - 59.24 3.68 - 16.66 4.54 - 16.39

aValues 1 to 5 are the levels for the exponent associated with the particular summary statistic.

bin units of one million.

mary feature of the efficient set examined. TABLE 3. EFFICIENT MACHINERY SET ASSOCIATED WITH
Summary statistics associated with various ef- SELECTED EFFICIENCY CRITERIA

ficiency criteria are reported in Table 2. The
exponents for ET, EEr, and EEG range from Efficiency Criterion Efficiency Set
1 to 5, and the a priori target value for ET First Degree Stochastic Dominance, FSD 1, 3, 5
was set at the overall mean of the expected Second Degree Stochastic Dominance, SSD 1, 3, 5
value levels for the six machinery decisions. Stochastic Dominance ith Respect to a
The summary statistics generally vary widely Function, SDWRFa

within the six machinery decisions. For exam- 0.025 to oc 5
ple, the minimum variate ranges from -59.24 . 0.019 to a 3, 5
to 4.54. Expected Value 1

Table 3 reports the efficient sets associated Mean-Variance, EV 1, 3, 5
with the various efficiency criteria. The re- Extended Mean Absolute Gini, EErb
suits are consistent with theoretical expecta- 1.5 1,3,5

tions. FSD and SSD generally have the 2 (Mean Absolute, Er) 1, 3, 5
strongest dominance criteria and result in 1,3,5

culling 50 percent of the machinery decisions, Extended Gini Mean Difference, EEGb

with decisions 1, 3, and 5 remaining in the effi- 1.5 1
cient set. EV and EEr results correspond to 2 (Gini Mean Difference, EG) 1, 3
FSD and SSD results, indicating in this 1,

Mean-Risk, ETbanalysis an associated level of discriminating 1 1, 3
power. Expected value, the weakest domi- 1.5 1,3

nance criterion, reduced the efficient set down 2 (Mean-Semivariance, ES) 1, 3 5
to one member, decision 1. However, the 1
mean values for decisions 1 and 3 differ by less san
than three percent. Furthermore, the aRanges listed are absolute risk aversion intervals.

variance associated with decision 3 is 37 per- bValues 1 to 5 are the levels for the exponent associated with
cent less than the variance for decision 1, and the particular summary statistic.
F is lower for decision 3 compared with de-
cision 1. This indicates a possible risk pref- further reduces the efficient set and discrimi-
erence between these two decisions. In con- nates between decisions 1 and 3. For values of
trast to FSD, SSD, EV and EEF, EEG the exponent less than or equal to 5,
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machinery decision 5 never enters the effi- EEG, and ET analysis is the simplicity of com-
cient set; and for a 1.5 exponent level, decision putation required in optimization procedures
3 drops out of the efficient set with decision 1 and the allowance for varying levels of risk
the sole remaining member. preference. However, possible disadvantages

Results for ET analysis indicate that as the include the requirement of prior target levels
value of the exponent increases, decision 5 for ET analysis and the underestimation of
enters the efficient set. This corresponds to risk in EG analysis.
greater risk aversion and is associated with Selley states that future developments in
SDWRF, where decisions 3 and 5 remain in theory and methods of analysis should con-
the efficient set at a level of absolute risk tinue to generate decision rules with greater
aversion of 0.019. Decision 5 constitutes the generality and wider applicability. This study
Rawlsian efficient set, which is associated indicates that in evaluating the various effi-
with a value for absolute risk aversion greater ciency criteria attention should focus on EEF,
than 0.025 under the SDWRF criterion. EEG, and ET as possible directions towards

Bey and Howe note that a shortcoming of greater generality. If a target value is known,
EG is its close correspondence to expected then ET may be appropriate. Otherwise, EEF
value criterion. However, in some cases this and EEG should be considered. Theoretically,
may be an advantage of EG over other criteria EV is a special case of EEF which is demon-
including SSD and EV, given the ability of EG strated empirically in this paper. Further-
to further reduce the efficient set. In applica- more, EV suffers from the inability to incorpo-
tion, EEG avoids this possible problem of cor- rate varying levels of risk preference. The
respondence between expected value and EG empirical support of the theoretical relation
by providing a wide range of risk preference between EEF and SD suggests that an EEr
for the given range of the exponent. optimal search algorithm may provide a desir-

able starting point for developing a SD op-
timal search algorithm similar to Target

SUMMARY AND IMPLICATIONS MOTAD or lower partial moments (Atwood,
The prime motivation in selecting EEr, Tauer).
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