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Do Climate Signals Matter? Evidence from
Agriculture

Abstract

The foreseeable impacts of climate change on humans depend critically on
the ability of societies to adapt to new climatic signals. Recent literature based
on the US experience suggest little to no adaptation to climate trends in crop
agriculture. We revisit this question with a novel panel econometrics framework
that allows yearly outcomes to jointly respond to contemporaneous weather and
climate signals, delivering estimates of both short-runand long-run climate change
impacts within a single regression framework. In our most conservative model,
which strictly relies on the existence of trends in climate to identify adaptation
potential, we find evidence of adaptation to beneficial temperatures (as captured
by growing degree days) and precipitation, for both corn and soybean yields.
Evidence of adaptation to extreme heat ismore nuanced, with suggestive evidence
of adaptation for corn and no evidence for soybeans. The presence of adaptation
matters for the calculation of warming impacts: the net counterfactual impacts of
warming are negative in the short run but become positive in the long run.

JEL codes: Q54, C23, Q16
Keywords: climate change, climate adaptation, panel data, crop yield

1 Introduction

The impacts of climate change on humans depend critically on the ability of societies
to adapt to new climatic signals. Agriculture is one of the economic sectors most
reliant on weather, and as such, perhaps the one most vulnerable to climate change
(Fisher et al., 2012). While some world regions may benefit from global warming,
global food production is expected to be hurt by climate change (Lobell et al., 2011;
Porter et al., 2014). The US is a major player in world markets for agricultural products
and most recent estimates of climate change impacts for US agriculture are negative,
sometimes alarmingly so (Schlenker and Roberts, 2009; Miao et al., 2015; Schauberger
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et al., 2017; Roberts et al., 2017). Of particular concern is the fact that in the US, large
negative warming impacts have been found in both cross-sectional and panel studies,
a pattern that has been interpreted as indicative of lack of farmer adaptation (Roberts
and Schlenker, 2011). This is concerning, as farmer adaptation has been shown to
effectively increase yields in other settings (Di Falco et al., 2011). A recent study by
Burke and Emerick (2016) adds to this argument by showing that US county corn
yields respond to heat exposure comparably in a panel estimation with county fixed
effects (argued to capture short-run effects) and in a long-differences (LD) estimation
that exploits variation in county climate trends (argued to capture long-run effects).

A central issue when comparing marginal responses obtained from panel and LD
models is that whenever the panel approach delivers a pure short-run response, it is
unlikely that the LD approach delivers a pure long-run response, and vice versa. For
either climate is stationary during the period of observation, in which case climate
variation as calculated in the LD model only reflects weather randomness around the
endpoints of the study period, or climate trends do exist, but in that case we would
expect the panel model to partially reflect long-run effects since the variation used in
estimation is partly driven by long-run climatic trends, not just weather fluctuations
(Carter et al., 2018).1 Because either the panel or the LD model (or both) deliver
estimates that reflect a combination of short-run and long-run outcomes, failure to
find a statistically significant difference between the two estimates need not imply that
the short- and long-run effects are indistinguishable. That is, the LD-panel comparison
may fail to detect adaptation even if it is present. Yet whether—and if so, howmuch—
the agricultural sector can adapt to changes in climate should be of primary interest
to policy makers. Ignoring the adaptation potential of agriculture might steer policy
makers into making suboptimal policy choices (Auffhammer, 2018) or misdirecting
public funding aimed at addressing the impacts of climate change.

In this paper, we propose a novel econometric framework that allows the identifica-
tion of both short-run and long-run responses and provides a simple and transparent
test of climatic adaptation. Our framework usefully extends the quadratic models
introduced by Schlenker (2017) and Mérel and Gammans (2019) to the case where cli-
mate is non-stationary during the period of observation. In these original frameworks,
as well as in an alternative approach discussed in Dell et al. (2014), identification of
adaptation is obtained in a panel regression by exploiting variation in the interaction
of weather and time-invariant climate. Such interaction allows climate to modulate

1Burke and Emerick (2016) actually exploit residual county-level trends around state trends, but the
argument carries over to that case as well.
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the marginal effect of weather, the idea being that locations with, say, hot climates,
should respond differently to hot weather than locations with cool climates.2 Given
that many regions have experienced trends in climate over the past decades, it is un-
clear that defining climate as a fixed average is appropriate. Like Cui (2019) who looks
at the effect of climatic trends on acreage allocation, we define climate as a rolling
average of past weather. This innovation allows us to exploit both cross-sectional and
temporal variation in climates to estimate the effect of climate on yields.

Using temporal variation in climate also affords us the opportunity to address
an often-neglected source of potential omitted variable bias of a kind reminiscent of,
thoughdistinct from, that inherent in cross-sectional approaches: interactions between
location-specific time-invariant factors and weather. Examples of such variables are
soil variables (e.g., soil water retention) or photoperiodicity (i.e., daytime length) that
may interact with weather. Land quality, and soils in particular, are likely to affect the
weather-yield response (Du et al., 2017). For brevity, we will refer to all time-invariant
location-specific variables that interact with weather as “soil-weather interactions,”
with the understanding that factors beyond soils may interact with weather. Mérel
and Gammans (2019) provide a thorough econometric treatment of the root causes of
this type of omitted variable bias in the context of quadratic models and recommend
testing the sensitivity of estimates to the inclusion of available soil-weather interactions
in the regression. This paper takes a different and perhaps more radical approach to
the problem by allowing the coefficient on weather variables to systematically vary
by location, thereby non-parametrically controlling for these omitted soil-weather in-
teractions. In addition, the regression includes smooth (polynomial) location-specific
time trends, meaning that identification of adaptation arises solely from the interaction
of climatic trends with weather, as climatic trends themselves would be subsumed in the
locational trends.

Our analysis using US county crop yield data reveals that relying on such inter-
actions, as opposed to simpler climate-weather interactions under the assumption of
climate stationarity, affects both the extent ofmeasured climatic adaptation and the cal-
culated long-run climatic impacts. For instance, our preferred identification strategy
delivers estimates of adaptation that are markedly larger for growing-degree days (a
standardmeasure of exposure to beneficial temperatures) and precipitation. Estimates
of adaptation to extreme heat aremore similar between the two approaches, and not al-
ways statistically significant. We further show that estimates that rely on climate-trend

2For a discussion regarding the difference between the approaches of Schlenker (2017) and Dell et al.
(2014), see Mérel and Gammans (2019).
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and weather interactions imply counterfactual impacts of warming that are negative
in the short run but become positive once long-run adaptation is accounted for. For
corn, long-run estimates of a 1°Cwarming lie between +4% and +7%; short-run impact
estimates lie between -5% and -6%. These impact estimates are statistically significant,
even when using an estimate of the covariance matrix that allows for within-state and
across-time correlations. In contrast, long-run impact estimates that rely on cross-
sectional climatic variation, either totally or partially, are consistently negative, and in
line with estimates obtained by previous studies.

Which of those long-run impact estimates should we trust? On the one hand,
estimates based on weather-climate interactions exploit an admittedly richer source of
climatic variation. To the extent that cross-sectional differences in climate are larger
than secular changes in climate at given locations, these estimates better capture adap-
tation that may happen in response to large climatic changes. As an illustration,
although our counterfactual exercise only involves a 1°C warming, the biggest loca-
tional trends in temperature we observe in our data are about plus or minus 0.2°C per
decade over about four decades, with many locations experiencing weaker trends. In
contrast, average climates in the cross-section range from about 13°C to 27°C.

On the other hand, exploiting large cross-sectional climatic differences in settings
where these differences may correlate with other determinants of yield is questionable
from an identification perspective. In fact, this very concern has led many in the
literature to criticize hedonic approaches and favor panel approaches with fixed effects
(Deschênes and Greenstone, 2007; Blanc and Schlenker, 2017).

Despite the discrepancies in counterfactual warming impacts across models iden-
tified from different sources of climatic variation, one general conclusion can be sup-
ported by our analysis: US yield patterns reveal significant and economically mean-
ingful adaptation to temperature. For instance, even in the approach that exploits
cross-sectional climatic differences, the negative impact estimates of warming on corn
yield are less negative in the long run than in the short run, by about a third.

2 Empirical strategy

We index locations by i � 1, . . . , I and time periods (years) by t � 1, . . . T. Specializing
to the case of uni-dimensional weather (which we relax in our empirical applications),
the most flexible model considered in this paper has the following structure:

yit � αi + βi1xit + β2x2
it + β3

(
xit − µit

)2
+ fi(t) + εit (1)
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where yit is the outcome variable (the logarithm of crop yield) in location i in year t, xit

denotes contemporaneousweather in location i and year t (e.g., average temperature or
growing degree days or cumulative precipitation), µit denotes the climate in location
i and year t, defined as a moving average computed over the preceding Y years (i.e.,
µit ≡ 1

Y
∑t−1

s�t−Y xis), and fi(t) is a smooth polynomial function of time capturing secular
changes in location i (including any secular changes in climatic conditions). We expect
the coefficient β3 to be nonpositive. That is, conditional onweather, locations forwhich
climate is close to that weather should fare better, other things equal, than locations
for which climate is far from it. The presence of the smooth time trend implies that
identification of the coefficient β3 does not arise from trends in climate themselves, as
in Burke and Emerick (2016), but rather from the interaction of weather with climate
trends, i.e., xit×(µit− µ̄i), where µ̄i denotes the average climate of location i during the
period of observation (the interaction xit × µ̄i itself being irrelevant for identification
due to the presence of the term βi1xit). In our view, this is an advantage as county-level
trends in relevant factors other than climatic trends could potentially be driving secular
changes in county outcomes, for instance geographically differentiated technological
progress unrelated to climatic trends. By controlling for county-level trends and
relying instead on the interaction of climatic trends with weather, our approach is less
susceptible to confounding factors than a strategy purely reliant on climatic trends.
Because we allow for location-specific slopes βi1, it is also immune to the presence of
soil-weather interactions, which is a potential issue in studies that assume a stationary
climate during the period of observation (Mérel and Gammans, 2019).

More formally, assume that µit � µ̄i + νi
(
t − t̄

)
, where νi is interpreted as the

climatic trend rate in location i, i.e., the rate of change of climate with respect to time
and t̄ ≡ 1

T
∑T

s�1 s so that µ̄i indeed represents the mean climate in location i across
the observation period. Assume further that fi(t) � γi1t + γi2t2 is used to control for
smooth locational trends. Then, denoting µi ≡ µ̄i − νi t̄, Equation (1) can be rewritten
as

yit � αi + β3µ
2
i︸     ︷︷     ︸

α′i

+
(
βi1 − 2β3µi

)︸          ︷︷          ︸
β′i1

xit +
(
β2 + β3

)︸    ︷︷    ︸
β′2

x2
it +

(
−2β3

)︸ ︷︷ ︸
β′3

νi txit

+
(
γi1 + 2β3µiνi

)︸             ︷︷             ︸
γ′i1

t +
(
γi2 + β3ν

2
i

)︸        ︷︷        ︸
γ′i2

t2
+ εit

making it explicit that β′3, and thus β3, are identified from residual variation in the
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product between climatic trends and weather.
A lessflexiblemodel,which relies on interactions betweenweather and both climatic

means and climatic trends, is obtainedby constraining βi1 to be identical across locations:

yit � αi + β3µ
2
i︸     ︷︷     ︸

α′i

+β1xit +
(
β2 + β3

)︸    ︷︷    ︸
β′2

x2
it +

(
−2β3

)︸ ︷︷ ︸
β′3

(
µi + νi t

)
xit

+
(
γi1 + 2β3µiνi

)︸             ︷︷             ︸
γ′i1

t +
(
γi2 + β3ν

2
i

)︸        ︷︷        ︸
γ′i2

t2
+ εit .

This latter model benefits from a broader source of variation than the full model for
identification of the coefficient β3. Indeed, variation in µi xit , in addition to variation
in νi txit , identifies β3. However, this model is subject to potential bias from omitted
variables of the form ζi xit , whereas model (1) is not. The case for the more flexible
model should thus be clear, just as a panel approachwithfixed effectsmaybepreferable
to a pooled panel approach due to the potential presence of time-invariant omitted
variables correlated with climate. Of course, the tradeoff here is that while it is not
uncommon to observe outcomes across locations with widely varying climates, at
least for geographically broad regions, it is less clear that climates may have changed
sufficiently over the observation period to generate useful residual variation in νi txit ,
raising concerns about whether climatic adaptation, even if present in the underlying
DGP, can be detected by exploiting climatic trends around mean climate—or more
precisely their interaction with weather.

In our empirical application, we estimate model (1) and its simpler variant on US
corn and soybean yields. In both instances, we find evidence of adaptation to various
climatic variables of relevance for crop production. However, the patterns of adapta-
tion differ across specifications, indicating that soil-weather interactions are plausibly
of concern and that the more flexible approach with location-specific weather slopes
may be warranted to identify adaptation, and thus long-run responses to climate.

Before moving on to estimation, it is useful to understand the structure of adapta-
tion implied by model (1) and its restriction to the case where βi1 � β1 ∀i. As pointed
out by Mérel and Gammans (2019), the structure with quadratic weather response
and quadratic climate penalty term in Equation (1) reflects the longstanding concept
in production economics that, to the extent that some actions can be varied in the
long run but not the short run and the outcome of interest is an optimized value, the
long-run response to climate should be the outer envelope of the collection of short-
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run responses—just like the firm’s long-run average cost curve, obtained by varying
capital in response to output, is the lower envelope of the firm’s short-run average cost
functions for given values of the capital input. The same idea of defining the long run
as an outer envelope of short-run possibilities is used by Mendelsohn et al. (1994) to
motivate the Ricardian approach to climate change impact assessment.

In model (1), the long-run response function would be

yLR
i (x) � αi + βi1x + β2x2

while the short-run response function at location i would be

ySR
i (x) � αi + βi1x + β2x2

+ β3
(
x − µ̄i

)2

clearly a function that is tangent to the long-run response at x � µ̄i . Of course, Equation
(1) is not the only parametric structure that yields a long-run response that is the outer
envelope of short-run responses. Nonetheless, it does so in a relatively parsimonious
fashionwhile allowing for non-monotonicity and non-linearity of both short- and long-
run response functions. More importantly, among the various quadratic specifications
used in the climatepanel literature, it is the onlyvariant that actually results in tangency
of short-run responses with a common long-run response function. The other paper
we are aware of that uses this framework, besides our own previous work, is Schlenker
(2017), of which Equation (1) is a special case. All other specifications that have been
used previously, e.g., those implied by Deschenes and Kolstad (2011), Dell et al. (2014),
or Moore and Lobell (2015) result in short-run response functions that intersect the
long-run response. Finally, commonly usedmodels that specify a quadratic inweather
without climatic information included in the regressiondeliver a single response curve,
the interpretation of which is far from being trivial (Mérel and Gammans, 2019).

[Figure 1 about here.]

One caveat is in order. The long-run response function is, strictly speaking, com-
mon to all locations (or “global”) only up to certain normalizations. First, the presence
of the fixed effect αi in Equation (1) implies that each location’s long-run response
function is allowed differ from others’ through vertical translation, i.e., a change in
the vertical intercept. This type of flexibility is typical of panel approaches with fixed
effects. Second, in the model with location-specific slope parameters βi1, it is also
the case that each location’s long-run response function is allowed differ from others’
through horizontal translation. Indeed, in that most flexible variant, only the long-run
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coefficient on the squared coefficient, capturing the curvature of the long-run response,
β2, is common to all locations. (The coefficient on the penalty term, β3, and therefore
the curvature of the short-run response, are also common to all locations.) Figure 1
depicts the adaptation process for a unidimensional weather variable x. For simplic-
ity, only four locations with disjoint weather supports at a given point in time (t) are
represented. The weather means (µit) are represented on the horizontal axis. The
short-run (thin line) and long-run (thick line) response functions are depicted for each
location’s climate support. Panel (a) focusses on the restricted model with common
slope coefficient. In that case, a quadratic long-run response function is recovered
by vertical translation of the location-specific long-run response functions. Panel (b)
depicts the adaptation process in a model with location-specific slope coefficients. A
quadratic long-run response function can be recovered by translating location-specific
long-run response functions both vertically and horizontally.

In addition to generating a long-run response function that is the outer envelope
of location-specific short-run responses, the specification in Equation (1) also has a
behavioral foundation, as shown in Schlenker (2017) and Mérel and Gammans (2019).
We refer the reader to these papers for a formal derivation. The idea is as follows:
if one assumes that conditional on contemporaneous weather, climate affects current
outcomes only through long-run behavioral choices (e.g., long-run investments made
by agents in response to climate signals), then Equation (1) can be obtained as the
result of a simple long-run expected-outcome optimization problem.

Of course, different specifications of adaptation could be conceived. Even within
the quadratic framework, alternative specifications of the climate penalty are possible.
In this paper, we explore two such additional variants. The first variant replaces the
calculated climate µit by its fitted value against a smooth (quadratic) trend. Specifically,
we first estimate the following location-level regression

µit � ai + bi t + ci t2
+ eit

and plug its predicted value µ̂it � âi+ b̂i t+ ĉi t2 into the penalty term instead of µit . The
idea behind this variant is to remove any temporal variation in locational climate that
is arising from exceptional weather events, the reason being that long-run investments
are more likely to be made in response to “actual,” smooth climatic changes than to
variations in climate that arise purely from the presence of extreme weather events in
the historical period used to calculate climate.

The second variant investigated in this paper replaces the penalty β3
(
xit − µit

)2
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by β3
∫
(xit − x)2 dFit(x), where Fit(x) denotes the c.d.f. of weather (i.e., climate) in

location i at time t. Here, the idea is that climate as captured by a simple average
taken over previous years may be a poor indicator of actual past exposure to given
environmental conditions. This is because a calculated average that happens to be close
to a given weather realization may in fact mask repeated exposure to extremes. In that
sense, this alternative specification is more “demanding” in terms of what conditions
are required for adaptation to take place: it has to be the case that all past weather
occurrences—not simply their average—are close to contemporaneous weather for the
penalty term to vanish.

Because these two variants lead to results very similar to those obtained from the
mainmodel, they are not reported in themain text. The results with smoothed climate
are reported in Appendix C, and those with alternative penalty term in Appendix D.

3 Data and trends in climate

We obtain US county-level data on corn and soybean yields over the period of 1950-
2017 from USDA QuickStats. Consistent with Schlenker et al. (2006) and Schlenker
and Roberts (2009), our analysis focuses on counties east of the 100th meridian. We
obtain historical weather information over 1950-2017 from the PRISM gridded dataset,
which is at a 4 km resolution (PRISM Climate Group, 2018). Following the approach
of Schlenker and Roberts (2009), we aggregate weather data to the county level using
farmland areas as weights. We focus on weather and climate during the growing
season defined as April to October. Like Schlenker (2017), we consider three weather
variables: growing degree days, heat degree days, and cumulative precipitation. For
corn, we define growing degree days from 10-29°C and define heat degree days above
29°C. For soybeans, we define growing degree days from 10-30°C and define heat
degree days above 30°C. Degree days are computed after interpolating the intra-day
distribution of temperatures using maximum and minimum temperature data.3

[Table 1 about here.]

[Table 2 about here.]

Tables 1 and 2 present summary statistics of yields, weather, and climate for corn
and soybeans, respectively. For each crop, we limit the sample of counties to those

3We used data and code made available by Wolfram Schlenker to generate these data. See http:
//www.columbia.edu/~ws2162/links.html.
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having planted the crop for more than 90% of the years included in the sample period.
Although corn- and soybean-producing regions overlap, the number of corn counties is
larger than that of soybean counties because some counties have only started planting
soybeans in more recent years. The means and standard deviations of GDD and
precipitation variables are generally comparable across corn and soybean samples.
HDD variables for corn have higher mean values and larger standard deviations than
for soybeans, as the HDD cutoff for corn is 1°C lower than that for soybeans. The
geographical distribution of climate variables is shown in Appendix A.4

To investigate whether climatic trends are present in corn- and soybean-producing
regions during the period of observation, we first calculate 30-year moving averages
of growing-season weather, and fit a linear trend for each county over the period from
1980 to 2017.5 Although we use growing degree days and heat degree days in our
empirical application, for illustrative purposes we focus on trends in average growing
season temperature. Specifically, we calculate a 30-year moving average of growing-
season mean temperature, denoted as µT

it , and then estimate the following regression:
µT

it � aT
i + bT

i × t + eT
it . The coefficient bT

i can be interpreted as the climatic trend in
temperature for county i. We estimate an analogous regression on the logarithm of
a 30-year moving average of growing-season precipitation. As a result, the county-
specific linear climate trends are characterized by bT

i and bP
i and are measured in

degrees (Celsius) and percentages, respectively.

[Figure 2 about here.]

Panel (a) of Figure 2 portrays the geographical distribution of county-level climate
trends in growing-season average temperature since 1980. Most counties on the East
Coast have experienced substantial warming, with average temperature going up by
more than 0.2°C per decade in some counties. Parts of the Upper Midwest and areas
along the Arkansas-Mississippi border have also experienced warming. However, a
large region including parts of Nebraska, South Dakota, Kansas, Missouri, and nearly
all of Iowa have experienced either relatively constant temperature or have cooled. The
cooling trends are particularly strong in some counties, beyond -0.15°C per decade.

Panel (b) of Figure 2 shows climate trends in growing-season cumulative precipi-
tation. Several spatial clusters in the northern regions feature clear increasing trends.

4The maps in Appendix A are based on the average of the climates (defined as 30-year averages from
past years) across the years 1980–2017. They correspond to the climate figures reported in the lower
panel of Table 1.

5We include only counties that have planted either corn or soybeans for more than 90% of years
between 1980-2017.
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The increasing rates of some counties in South Dakota, Michigan, and New York are
around or above 5% per decade. In the southern half of the sample, trends have gen-
erally been more modest with slightly increasing trends in Tennessee and northern
Mississippi and slight drying trends in Arkansas, the Carolinas, and Texas.

[Figure 3 about here.]

Figure 3 shows the statistical distribution of climate trends across counties. Dark
blue coloring indicates that the trend coefficients are statistically significant, while
pale blue coloring indicates that they are not. Most trends are statistically significant,
except for those close to zero. In Panel (a), we can see that, although the majority
of counties have experienced warming trends, roughly a third of counties have ex-
perienced cooling. Panel (b) shows that, on the whole, US production regions have
become wetter across our sample, with the distribution centered around an increase
in precipitation of 2% per decade. The presence of statistically significant trends in
temperatures and precipitation bodes well for our empirical strategy, as our preferred
specifications exploit interactions between such trends andweather to identify climatic
adaptation. However, we note that temperature trends across counties in our sample
generally have magnitudes (about ±0.1°C per decade) much smaller than the changes
predicted to occur over the century, raising questions about whether recent climatic
variation can reliably be utilized to extrapolate into future climate.

4 Estimation results

Inwhat followswe report results from estimating Equation (1) onUS corn and soybean
yields. We report results for the flexible specification with slope coefficients varying
by location (βi1 , β j1) as well as the restricted model with common slope (β1). We
also report results from a simpler model that assumes stationary climates during
the observation period and replaces the moving average µit by the overall sample
mean 1

T
∑

s xis . All models include quadratic locational trends. For models with
non-stationary climates, we compute the moving average capturing historical climate
using various period lengths: 20, 25, and 30 years. Because we only have access to
historical climate data for a fixed period of time, namely 1950–2017, these choices
imply different sample sizes, with the smallest sample corresponding to the 30-year
definition of climate and covering the period 1980–2017. For themodel with stationary
climate, we compute climate over the entire 1950–2017 period and use all years in the
sample. As a result, this specification is estimated using the largest sample of years.
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To facilitate comparisons across model specifications, we also estimate all models on a
common sample of years going from 1980 to 2017. Results for these models are shown
in Appendix B.

We report two sets of standard errors. The first set accounts for spatial correlation
using a variant of the method of Conley (1999) and assumes away time correlation.6
The second set allows for regional (state) clusters and allows for arbitrary correlation
between locations and across years within a cluster, as in Fisher et al. (2012).

4.1 Corn

Based on previous work by Schlenker and Roberts (2009), Burke and Emerick (2016),
and Schlenker (2017), we select the following as the relevant weather variables: grow-
ing degree-days (GDD), heat degree-days (HDD), and precipitation (prec), computed
over the growing season from April to October.

[Table 3 about here.]

Results are shown in Table 3 for various specifications. Column (1) suggests that
there has been clear adaptation to beneficial GDDandprecipitation. These conclusions
are not invalidated when using different definitions of climates (columns (2)–(3)).
Columns (1)–(3) also indicate adaptation to heat as measured by HDD, although the
estimate on the penalty term is not as precise, and its statistical significance depends
upon the choice of standard error and climate definition.

[Figure 4 about here.]

Figure 4 depicts the geographical distribution of the estimates of the county-specific
slope coefficients β1i , for each of the three dimensions of weather and using the model
with the 30-year definition of climate. We would expect these coefficients to vary
smoothly over space, because soils, and perhaps other factors relevant to yield, tend
to vary smoothly over space. The figure largely confirms this intuition, particularly
for GDD, where there is a clear north-south gradient. The spatial pattern of the
slope estimates is therefore consistent with the premise that soil-weather interactions
may be present (where “soil” should be understood as any time-invariant locational
factor). Whether such interactionswould bias estimates of adaptation that rely, entirely

6Weuse neighboring relationships across locations rather than geographical distance to construct our
weights. We apply Newey-West weights to these neighboring relationships. We allow for correlations
between neighbors up to the sixth degree. The average distance between a county centroid and the
centroid of its sixth-degree neighbors is 240 km in the sample.
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or partially, on interactions between fixed climate means and weather, depends on
whether this spatial pattern correlates with that of climate means. At least for the case
of GDD, wewould expect that it does, so we expect differences in adaptation estimates
between the flexible specification and its restriction to common slope coefficients.

Note that the coefficient on the long-run quadratic term (β2) is positive and sig-
nificant for GDD in columns (1)–(3), while it is negative (but not always statistically
significant, and definitely not if we hold the sample to the years 1980–2017, see Ap-
pendix B) for the less flexible specifications shown in columns (4)–(7). Based on prior
research by Schlenker et al. (2006), one might expect a peak in the GDD-yield rela-
tionship, reflecting optimal growing conditions. The fact that our estimate in columns
(1)–(3) is positive does not mean that extreme climates are necessarily more favorable
to yields however, because in the flexible model slope coefficients vary by locations.
As a result, to understand the actual distribution of marginal effects across climates,
one must look at β2 in conjunction with the set of location-specific slopes β1i .

[Figure 5 about here.]

Specifically, the estimated marginal effect of a weather characteristic, evaluated at

a location’s mean climate, is ̂∂ ln yi
∂xi
(µ̄i) � β̂1i + 2β̂2µ̄i . Figure 5 depicts the geographical

distribution of these long-run marginal effects for each weather variable, based on the
30-year definition of climate. The figure clearly shows that although the estimate of β2

forGDD is positive, the implied long-runmarginal effects aremore positive in northern
counties (which are cooler than southern counties). For a few southernmost counties,
the point estimates of the marginal effect are even negative. In contrast, for HDD the
distribution of long-run marginal effects shows that southern counties have small and
negative marginal effects, while northern counties have larger negative effects. This
pattern is consistent with the analysis of Schlenker et al. (2006) and Schlenker (2017),
who both model the effect of HDD using a square root function and find a negative
coefficient, indicating that heat exposure reduces yields at a declining rate.

Comparison of columns (1)–(3) with columns (4)–(7) of Table 3 reveals how using
different sources of identification changes the estimates of adaptation (as captured by
β3). In column (7), only cross-sectional differences in climates (computed as simple
averages throughout the sample period) are used for identification (more specifically,
the interaction of such climates with weather identify β3). In columns (4)–(6), both
cross-sectional and time-series variation in climates (computed as moving averages)
are used, while in columns (1)–(3) only time-series variation is used. Although esti-
mates become less precise as variation is eliminated, for both GDD and precipitation
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we observe a stark increase in the magnitude of the adaptation coefficient β3. This
appears to confirm that soil-weather interactions (i.e., variables of the form ζi xit) bias
the estimates reported in columns (4)–(7). Because columns (1)–(3) control for these
interactions through the terms β1i xit , the estimates of β3 in these models are purged of
such bias. The analysis of Mérel and Gammans (2019) further suggests that the biases
arising from these omitted variables should be of the samemagnitude, but of opposite
signs, on the estimates of β2 and β3. The pattern of changes between columns (4)–(6)
and (1)–(3) is consistent with this theory.

The same differences do not apply to the effect of HDD: coefficient estimates are
comparable across all columns, but become less precise as cross-sectional variation is
eliminated from identification. One plausible explanation is that the spatial pattern
of HDD slope coefficients does not correlate with that of climatic HDD: there does
not seem to be a clear north-south gradient, as is the case for GDD slope coefficients.
This hypothesis is confirmed by comparing maps of average climate over the period
1980–2017, shown in Appendix A, with Figure 4 showing the map of estimated slope
coefficients. Whereas there seems to be a clear cross-sectional correlation between
average climate and the slope coefficients for both GDD and precipitation, this is much
less the case for HDD. Simple correlation coefficients indicate a correlation of -0.99 for
GDD, -0.60 for precipitation, and 0.21 for HDD. The very large correlation coefficient
forGDDcouldplausibly be causedbyphotoperiodicity, which correlates perfectlywith
latitude. Indeed, it is natural to expect the beneficial effect of GDD to be modulated
by length of day. Here we find that northern counties have less negative values for
βGDD

1i , implying that holding everything else constant, counties with longer daylength
during summer would benefit more from GDD.

In Appendices B, C, and D, we show results of specifications that differ from Table
3 in three separate dimensions: the sample of years selected; the use of a “smoothed”
measure of climate; and the use of an alternative penalty specification. The results are
generally robust to these changes.

4.2 Soybeans

We conduct a parallel analysis for soybeans. The only difference is that we change the
threshold used to calculate GDD and HDD from 29 to 30°C.

[Table 4 about here.]

Detailed results are provided in Table 4. Based on the more conservative specifi-
cation (columns (1)–(3)), it appears that there has been clear adaptation to the amount
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of GDD and to precipitation, but no adaptation to heat as captured by HDD.

[Figure 6 about here.]

Figure 6 depicts the geographical distribution of the estimated slope coefficients,
based on the 30-year definition of climate. As for corn, there seems to be a clear
geographic pattern to the heterogeneity in slopes, consistent with the presence of
omitted variables that vary smoothly over space. For GDD and precipitation, these
variables appear to be correlated with climate, as suggested by the large changes in
estimated coefficients once we allow for slope heterogeneity. Again, changes are of
similar magnitudes, but opposite signs, for the estimates of β2 and β3, consistent with
the bias formulas provided in Mérel and Gammans (2019).

Figure 7 depicts the distribution of marginal weather effects. As was the case for
corn, the figure shows patterns consistent with expectations. Notably, the marginal
benefit from additional GDD is larger in northern areas, and the marginal damage
from HDD is lower in southern areas.

5 Does adaptation matter? Future climate scenarios

We exploit our estimates of the short- and long-run relationships between weather
variables and crop yield to investigate three stylized climatic scenarios: a uniform
warming by 1 °C and increases/decreases in precipitation by 20%. Although our
warming scenario is modest in magnitude relative to scenarios generally considered in
the literature, we are limited by the amount of climatic variation present in our model
with location-varying slopes, which is identified only from climatic trends.

[Table 5 about here.]

[Figure 7 about here.]

Table 5 shows predicted changes in production under the 1°C warming scenario.
Changes are calculated at the county level and then aggregated using average yield
and acreage over the reference period, chosen as 1987–2016.7 To calculate the relative
change in yield at the county level, we add 1°C to the daily temperature data for each
year in the reference period. We then recalculate growing and heat degree days in each
year. The change in climate is computed by taking the difference in 30-year weather

7We choose 1987–2016 as our reference period to compute current climate because this is the last
30-year period used to compute climate in the sample used for estimation.
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averages between the projection and reference periods. The relative change in yield is
calculated using our regression coefficients, multiplied by the change in the values of
the regressor between the two periods.8 Maps of county-level yield impacts in the long
run and the short run for our preferred specification (based on column (1) of Tables 3
and 4) are shown in Figure 8.

These results indicate that the effect of adaptation to temperature, as captured by
the penalty terms on growing and heat degree days, matter a lot for warming impacts.
For both corn and soybeans, calculated effects of the 1°C warming are negative in
the short run yet positive in the long run. For corn, short-run effects based on the
estimates in columns (1)–(3) of Table 3 are between -5% and -6%. This value is close
to that reported in Schlenker and Roberts (2009) for a comparable warming scenario.
Once adaptation is accounted for, the calculated effect ranges from +3.9% to +6.7%.
Impact estimates based on columns (4)–(6) of Table 3, which also exploit cross-sectional
climatic variation, also show significant effects of temperature adaptation. Short-run
impacts are about -8.5%, whereas long-run impacts are about -5.5%. That is, although
adaptation is not predicted to overturn negative short-run effects in this specification,
the negative short-run impacts are nonetheless reduced in magnitude, by around a
third.

Comparable patterns are found for soybeans, although the impact estimates tend
to be less negative (more positive) across all models. Long-run impacts calculated
from the flexible models, presented in columns (1)–(3) of Table 4, range from +6.5% to
+11.3%. Short-run impact estimates for these same models lie near zero, suggesting
that soy producers would be unable to take advantage of a warming climate without
engaging in adaptive behavior. Impact estimates based on columns (4)–(6) of Table
4 are more negative and imply smaller benefits of adaptation, with long-run impacts
ranging from -2.1% to -3.1% and short-run impacts ranging from -3.3% to -4.0%. These
results show that using a different source of identification for adaptation effects on
yield dramatically changes predicted warming impacts.

[Table 6 about here.]

Table 6 shows predicted changes in production under -20% and +20% changes in
precipitation. These impacts are calculated using the samemethodology as the warm-
ing estimates shown in Table 5. In general, we find small net effects of precipitation

8For a handful of counties in the flexible model, the 1°C warming brings the HDD count beyond the
minimum implied by the estimated quadratic response function. We tried to cap the effect of HDD at the
value achieved at this minimum since it is agronomically unlikely that further heat exposure could ever
become beneficial, conditional on GDD. Results were very similar to those reported here.
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changes, as in Schlenker and Roberts (2009). This is due in part to the considerable
heterogeneity in the effect of precipitation on yields across counties. Figures 9 and
10 show county-level impacts of each precipitation scenario for our preferred speci-
fication. Unsurprisingly, locations with lower baseline precipitation typically benefit
from an increase in precipitation, with the opposite being the case for wetter reference
climates. Although we find statistically significant adaptation to precipitation in most
models and scenarios, in most cases the differences are too small to be meaningful in
an economic sense. These results are supportive of the view that the largest impacts
of climate change on agriculture will be channeled through changes in temperature
exposure.

[Figure 8 about here.]

[Figure 9 about here.]

6 Discussion

This paper uses a novel identification strategy to decipher long-run adaptation to
climatic changes in US crop agriculture. We exploit county-level climatic trends over
the historical period within an econometric framework that allows for adaptation in a
parametric fashion. The framework relies upon the idea that locations that are used to
a given weather realization will perform better under such realization than locations
that are not. With the inclusion of flexible locational trends, our regression framework
identifies climatic adaptation strictly from variations in the interaction of weather with
climatic trends. This strategy differs from that of Burke and Emerick (2016), which
directly attributes trends in yield at the county level to trends in county climate, once
common state-level trends have been netted out.

We begin by showing that US rainfed counties have experienced climatic trends
over the period 1980–2017, with some experiencing warming, others cooling, and
many increases in growing-season precipitation. Here, climate is computed using
past weather averages over a large number of years. By exploiting these trends,
our analysis then shows the existence of statistically significant and economically
meaningful adaptation to temperature over the historical period. This finding implies
that crop yields are predicted to respond differently to changes in climate in the
short run and in the long run. Indeed, a uniform 1°C warming would imply a 5–
6% reduction in corn production in the short run yet a 4–7% increase in the long
run. Smaller discrepancies still arise between short-run and long-run effects when
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cross-sectional differences in climate, which are large across US counties, are used for
identification through climate-weather interactions.

One may be skeptical about the results obtained in our most flexible specifica-
tion that strictly relies on climate-trend and weather interactions insofar as it suggests
that long-run adaptation may completely overturn the negative short-run impacts of
warming. While such a large adaptation effect cannot be ruled out in theory, a clear
limitation of this approach is that it exploits temporal climatic signals conditional on
location that are admittedly weaker than the changes of interest for climate impact
analysis. A similar criticism would apply to the long-difference approach, however,
especially when it exploits county trends that are residual to state trends. The ap-
proach that assumes stationary climate and the hybrid approach with single slope
coefficients exploit larger cross-sectional differences through the interaction of climate
and weather. However, one may be worried that this large variation correlates with
unobservables that interact with weather, like soils or photoperiodicity. Controlling
for such unobservables is important as they may not change when locational climate
changes.

Although the different identification strategies explored in this paper lead to dif-
ferent counterfactual warming impacts, which some may find troubling, our analysis
consistently shows significant and economicallymeaningful adaptation to temperature
signals in US county yield data.
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A Average climates

[Figure 10 about here.]

B Results from the sample 1980-2017
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C Results with smoothed climatic trends

C.1 Corn
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C.2 Soybeans
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D Results with alternate specification of the climate penalty

D.1 Corn
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D.2 Soybeans
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Figure 1 Graphical representation of the adaptation process
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(a) Adaptation with common slope coefficients
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(b) Adaptation with location-specific slope coefficients

23



Figure 2 Maps of climate trends

(a) Temperature

(b) Precipitation
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Figure 3 Distributions of climate trends
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(b) Precipitation
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Figure 4 Geographical distribution of weather slope coefficients (US corn)
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(b) HDD

(c) Precipitation
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Figure 5 Geographical distribution of marginal climatic effects (US corn)
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Figure 6 Geographical distribution of weather slope coefficients (US soybeans)
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Figure 7 Geographical distribution of marginal climatic effects (US soybeans)
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Figure 8 Maps of 1°C warming impacts

(a) Corn, long run (b) Corn, short run

(c) Soybeans, long run (d) Soybeans, short run
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Figure 9 Maps of -20% precipitation impacts

(a) Corn, long run (b) Corn, short run

(c) Soybeans, long run (d) Soybeans, short run
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Figure 10 Maps of +20% precipitation impacts

(a) Corn, long run (b) Corn, short run

(c) Soybeans, long run (d) Soybeans, short run
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Figure 11 Maps of average climates (corn)
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Table 1 Summary statistics, US corn

mean std. dev. min. max.
1950–2017

lnyield 4.42 0.53 -1.20 5.51
GDD 10–29°C (100°C; weather) 19.09 4.09 8.67 30.99
HDD 29°C (weather) 43.30 38.10 0.00 333.93
Precip. (100mm; weather) 6.68 1.60 1.50 16.30
Observations 72,532
# counties 1,086

1980–2017
lnyield 4.70 0.37 1.95 5.51
GDD 10–29°C (100°C; weather) 19.46 4.63 8.59 35.45
GDD 10–29°C (100°C; climate) 19.28 4.44 10.53 34.31
HDD 29°C (weather) 49.00 51.49 0.00 492.30
HDD 29°C (climate) 48.54 42.69 1.03 348.77
Precip. (100mm; weather) 6.86 1.61 1.65 16.30
Precip. (100mm; climate) 6.66 0.88 3.69 10.69
Observations 47,509
# counties 1,274

Notes: The 1950-2017 sample includes counties that have planted corn for more than 90% of
years between 1950-2017, and the 1980–2017 sample includes counties that have planted corn
for more than 90% of years between 1980–2017. Rolling climate variables for the 1980–2017
sample are constructed by averaging weather over the previous 30 years.
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Table 2 Summary statistics, US soybeans

mean std. dev. min. max.
1950–2017

lnyield 3.36 0.40 -0.36 5.44
GDD 10–30°C (100°C; weather) 19.27 4.06 9.02 32.09
HDD 30°C (weather) 29.80 32.41 0.00 276.27
Precip. (100mm; weather) 6.71 1.56 1.58 16.30
Observations 56,892
# counties 849

1980–2017
lnyield 3.53 0.33 -0.36 4.29
GDD 10–30°C (100°C; weather) 20.07 4.41 8.24 34.08
GDD 10–30°C (100°C; climate) 19.90 4.17 10.55 32.62
HDD 30°C (weather) 33.19 33.86 0.00 305.86
HDD 30°C (climate) 32.93 25.69 1.41 136.91
Precip. (100mm; weather) 6.94 1.62 1.79 17.82
Precip. (100mm; climate) 6.73 0.87 3.76 10.69
Observations 43,161
# counties 1,154

Notes: The 1950-2017 sample includes counties that have planted soybeans for more than 90%
of years between 1950-2017, and the 1980–2017 sample includes counties that have planted
soybeans for more than 90% of years between 1980–2017. Rolling climate variables for the
1980–2017 sample are constructed by averaging weather over the previous 30 years.
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Table 3 Corn regression results

Flexible model Single slope Stationary
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs climate
(1) (2) (3) (4) (5) (6) (7)

βGDD
1 — — —

6.76e-02∗∗∗ 7.84e-02∗∗∗ 8.03e-02∗∗∗ 1.13e-01∗∗∗
(1.79e-02) (1.73e-02) (1.66e-02) (1.68e-02)
[2.51e-02] [2.19e-02] [2.11e-02] [1.98e-02]

βGDD
2

3.99e-02∗∗∗ 2.71e-02∗∗∗ 3.09e-02∗∗∗ -5.49e-04 -9.58e-04∗ -1.04e-03∗∗ -1.93e-03∗∗∗
(7.36e-03) (6.51e-03) (5.51e-03) (4.46e-04) (4.28e-04) (4.17e-04) (4.35e-04)
[9.39e-03] [7.49e-03] [6.63e-03] [5.94e-04] [5.21e-04] [5.18e-04] [4.91e-04]

βGDD
3

-4.34e-02∗∗∗ -3.00e-02∗∗∗ -3.43e-02∗∗∗ -8.39e-03∗∗∗ -7.51e-03∗∗∗ -8.43e-03∗∗∗ -4.37e-03
(7.62e-03) (6.55e-03) (5.73e-03) (2.50e-03) (2.23e-03) (2.28e-03) (2.03e-03)
[8.81e-03] [7.72e-03] [6.43e-03] [2.02e-03] [2.53e-03] [2.47e-03] [2.73e-03]

βHDD
1 — — —

-9.77e-03∗∗∗ -9.54e-03∗∗∗ -9.53e-03∗∗∗ -8.95e-03∗∗∗
(3.23e-04) (3.19e-04) (3.18e-04) (3.82e-04)
[6.71e-04] [7.23e-04] [7.30e-04] [7.39e-04]

βHDD
2

1.69e-05 3.55e-05∗∗ 9.03e-06 1.98e-05∗∗∗ 1.98e-05∗∗∗ 1.99e-05∗∗∗ 1.87e-05∗∗∗
(1.08e-05) (1.07e-05) (9.05e-06) (1.38e-06) (1.37e-06) (1.34e-06) (2.11e-06)
[1.57e-05] [1.59e-05] [1.36e-05] [4.25e-06] [3.75e-06] [3.72e-06] [4.42e-06]

βHDD
3

-2.75e-05∗ -4.40e-05∗∗∗ -1.69e-05 -3.15e-05∗∗∗ -2.84e-05∗∗∗ -2.64e-05∗∗∗ -3.28e-05∗∗∗
(1.08e-05) (1.01e-05) (8.70e-06) (3.34e-06) (3.22e-06) (3.29e-06) (5.71e-06)
[1.52e-05] [1.40e-05] [1.29e-05] [7.73e-06] [3.89e-06] [4.00e-06] [8.19e-06]

β
prec
1 — — —

3.11e-03 3.32e-02 3.98e-02 5.34e-02
(1.86e-02) (1.91e-02) (1.93e-02) (1.92e-02)
[3.42e-02] [3.53e-02] [3.47e-02] [3.37e-02]

β
prec
2

9.64e-03 2.85e-03 7.61e-03 -4.38e-04 -2.24e-03 -2.76e-03 -4.28e-03∗
(5.50e-03) (4.63e-03) (4.15e-03) (1.33e-03) (1.35e-03) (1.36e-03) (1.36e-03)
[6.32e-03] [5.87e-03] [7.86e-03] [2.50e-03] [2.56e-03] [2.47e-03] [2.46e-03]

β
prec
3

-1.51e-02∗∗∗ -1.02e-02∗∗ -1.48e-02∗∗ -5.24e-03 -5.24e-03 -5.25e-03∗∗ -2.06e-03
(5.33e-03) (4.30e-03) (3.86e-03) (1.93e-03) (1.79e-03) (1.70e-03) (2.06e-03)
[4.96e-03] [4.37e-03] [5.86e-03] [3.29e-03] [3.22e-03] [2.51e-03] [3.52e-03]

County FE X X X X X X X
County trends X X X X X X X
# counties 1,274 1,342 1,321 1,274 1,342 1,321 1,086
Years 1980–2017 1975–2017 1970–2017 1980–2017 1975–2017 1970–2017 1950–2017
Observations 47,509 56,506 62,210 47,509 56,506 62,210 72,532

Notes: The dependent variable is the logarithm of corn yield. Columns (1)–(3) estimate model (1)
allowing for county-specific slope coefficients, using varying lengths of time to calculate rolling climate.
Columns (4)–(6) estimate model (1) restricting slope coefficients to be identical across counties, using
varying lengths of time to calculate rolling climate. Column (7) estimates (1) restricting slope
coefficients to be identical across counties and assuming climate is constant across time in a given
county. Conley standard errors are in parentheses, state-clustered standard errors are in square
brackets. Stars reflect the state-cluster standard errors: (∗), (∗∗), (∗∗∗) indicate the estimate is significant at
the 90%, 95% and 99% confidence level respectively. Each sample covers US counties east of the 100th
meridian for which yield data is available for at least 90% of the sample years.

37



Table 4 Soybeans regression results

Flexible model Single slope Stationary
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs climate
(1) (2) (3) (4) (5) (6) (7)

βGDD
1 — — —

1.25e-01∗∗∗ 1.04e-01∗∗∗ 9.95e-02∗∗∗ 9.83e-02∗∗∗
(1.55e-02) (1.48e-02) (1.43e-02) (1.46e-02)
[1.78e-02] [1.69e-02] [1.71e-02] [2.10e-02]

βGDD
2

4.10e-02∗∗∗ 3.43e-02∗∗∗ 2.58e-02∗∗∗ -2.29e-03∗∗∗ -1.62e-03∗∗∗ -1.46e-03∗∗∗ -1.49e-03∗∗∗
(7.26e-03) (5.28e-03) (4.74e-03) (3.96e-04) (3.69e-04) (3.55e-04) (3.80e-04)
[7.60e-03] [7.99e-03] [4.59e-03] [4.55e-04] [4.65e-04] [4.59e-04] [5.10e-04]

βGDD
3

-4.01e-02∗∗∗ -3.48e-02∗∗∗ -2.70e-02∗∗∗ -1.44e-03 -3.15e-03∗ -3.66e-03∗∗ -2.84e-03∗∗
(7.50e-03) (5.28e-03) (4.87e-03) (2.01e-03) (1.74e-03) (1.75e-03) (1.68e-03)
[7.40e-03] [7.89e-03] [4.98e-03] [1.91e-03] [1.61e-03] [1.77e-03] [1.16e-03]

βHDD
1 — — —

-7.93e-03∗∗∗ -8.00e-03∗∗∗ -7.83e-03∗∗∗ -6.78e-03∗∗∗
(3.80e-04) (3.91e-04) (3.75e-04) (3.88e-04)
[5.88e-04] [5.98e-04] [5.49e-04] [6.25e-04]

βHDD
2

2.26e-05 4.09e-05∗∗∗ -7.62e-06 1.96e-05∗∗∗ 1.95e-05∗∗∗ 1.78e-05∗∗∗ 8.32e-06
(1.51e-05) (1.46e-05) (1.30e-05) (2.55e-06) (2.50e-06) (2.44e-06) (2.89e-06)
[1.60e-05] [1.30e-05] [9.42e-06] [5.58e-06] [4.95e-06] [4.77e-06] [7.30e-06]

βHDD
3

-1.54e-05 -2.88e-05∗∗ 1.81e-05 -1.49e-05 -1.23e-05 -8.48e-06 -3.99e-06
(1.54e-05) (1.33e-05) (1.21e-05) (4.86e-06) (4.38e-06) (4.19e-06) (5.04e-06)
[2.05e-05] [1.41e-05] [1.27e-05] [9.16e-06] [8.46e-06] [8.20e-06] [1.02e-05]

β
prec
1 — — —

3.14e-02 6.64e-02∗∗ 6.83e-02∗∗ 8.99e-02∗∗∗
(1.73e-02) (1.81e-02) (1.70e-02) (2.24e-02)
[3.19e-02] [2.85e-02] [2.70e-02] [2.19e-02]

β
prec
2

1.55e-02∗∗∗ 1.74e-03 1.49e-03 -1.32e-03 -3.46e-03∗ -3.69e-03∗ -5.49e-03∗∗∗
(4.51e-03) (3.68e-03) (2.89e-03) (1.23e-03) (1.26e-03) (1.18e-03) (1.60e-03)
[5.30e-03] [4.33e-03] [4.37e-03] [2.33e-03] [2.04e-03] [1.90e-03] [1.54e-03]

β
prec
3

-2.30e-02∗∗∗ -1.05e-02∗∗∗ -9.82e-03∗∗∗ -6.58e-03∗∗ -5.42e-03∗∗ -5.05e-03∗∗ -1.97e-03
(4.58e-03) (3.58e-03) (2.83e-03) (1.64e-03) (1.54e-03) (1.45e-03) (1.91e-03)
[5.69e-03] [4.00e-03] [3.78e-03] [3.12e-03] [2.73e-03] [2.46e-03] [2.06e-03]

County FE X X X X X X X
County trends X X X X X X X
# counties 1,154 1,180 1,136 1,154 1,180 1,136 849
Years 1980–2017 1975–2017 1970–2017 1980–2017 1975–2017 1970–2017 1950–2017
Observations 43,161 49,849 53,461 43,161 49,849 53,461 56,892

Notes: The dependent variable is the logarithm of soybean yield. Columns (1)–(3) estimate model (1)
allowing for county-specific slope coefficients, using varying lengths of time to calculate rolling climate.
Columns (4)–(6) estimate model (1) restricting slope coefficients to be identical across counties, using
varying lengths of time to calculate rolling climate. Column (7) estimates (1) restricting slope
coefficients to be identical across counties and assuming climate is constant across time in a given
county. Conley standard errors are in parentheses, state-clustered standard errors are in square
brackets. Stars reflect the state-cluster standard errors: (∗), (∗∗), (∗∗∗) indicate the estimate is significant at
the 90%, 95% and 99% confidence level respectively. Each sample covers US counties east of the 100th
meridian for which yield data is available for at least 90% of the sample years.
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Table 5 Climate impacts of a 1°C uniform warming (relative to 1987-2016)

Flexible model Single slope Stationary
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs climate
(1) (2) (3) (4) (5) (6) (7)

Corn long-run (%) 6.68 3.60 3.94 -5.17 -5.48 -5.67 -5.04
[2.52] [1.91] [1.70] [0.74] [0.68] [0.66] [0.75]

Corn short-run (%) -5.33 -5.67 -5.38 -8.40 -8.39 -8.75 -7.67
[0.86] [0.69] [0.67] [0.85] [0.89] [0.85] [0.83]

Soybeans long-run (%) 11.32 10.35 6.49 -3.14 -2.28 -2.07 -2.39
[2.10] [2.38] [1.36] [0.56] [0.54] [0.54] [0.77]

Soybeans short-run (%) -0.13 -0.07 -0.34 -3.99 -3.52 -3.34 -3.30
[0.84] [0.67] [0.53] [0.69] [0.74] [0.71] [0.60]

Notes: Impacts are relative to the average climate, acreage, and yield of the reference period 1987-2016 .
Standard errors are based on the state-cluster approach.
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Table 6 Climate impacts of -20% and +20% changes in precipitation (relative to 1987-2016)

Flexible model Single slope Stationary
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs climate
(1) (2) (3) (4) (5) (6) (7)

-20% Precipitation

Corn long-run (%) 2.72 1.06 1.41 0.29 -0.83 -0.87 -0.37
[0.96] [0.86] [1.07] [0.69] [0.73] [0.80] [0.75]

Corn short-run (%) 0.06 -0.73 -1.19 -0.64 -1.76 -1.79 -0.71
[0.60] [0.48] [0.28] [0.59] [0.59] [0.65] [0.76]

Soybeans long-run (%) 1.02 -1.29 -1.23 -2.05 -3.22 -3.09 -3.04
[0.64] [0.65] [0.67] [0.68] [0.73] [0.75] [0.65]

Soybeans short-run (%) -3.19 -3.21 -3.04 -3.25 -4.21 -4.02 -3.40
[0.70] [0.55] [0.46] [0.69] [0.76] [0.78] [0.68]

+20% Precipitation

Corn long-run (%) 0.68 -0.06 1.27 -0.44 0.05 -0.11 -1.05
[1.33] [1.24] [1.71] [0.59] [0.57] [0.55] [0.57]

Corn short-run (%) -1.98 -1.85 -1.33 -1.36 -0.88 -1.03 -1.39
[0.50] [0.52] [0.69] [0.63] [0.60] [0.56] [0.56]

Soybeans long-run (%) 4.63 1.93 1.78 1.57 1.95 1.73 1.03
[1.3] [1.02] [1.00] [0.69] [0.68] [0.66] [0.58]

Soybeans short-run (%) 0.42 0.01 -0.03 0.37 0.95 0.80 0.68
[0.37] [0.32] [0.34] [0.49] [0.53] [0.52] [0.56]

Notes: Impacts are relative to the average climate, acreage, and yield of the reference period 1987–2016.
Standard errors are based on the state-cluster approach.
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Table 7 Corn regression results (1980-2017 sample)

Flexible model Single slope Stationary
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs climate
(1) (2) (3) (4) (5) (6) (7)

βGDD
1 — — —

6.76e-02∗∗∗ 6.60e-02∗∗∗ 6.59e-02∗∗∗ 7.75e-02∗∗∗
(1.79e-02) (1.76e-02) (1.73e-02) (1.86e-02)
[2.51e-02] [2.46e-02] [2.39e-02] [2.57e-02]

βGDD
2

3.99e-02∗∗∗ 3.88e-02∗∗∗ 2.82e-02∗∗∗ -5.49e-04 -5.15e-04 -5.29e-04 -8.81e-04
(7.36e-03) (6.88e-03) (6.05e-03) (4.46e-04) (4.40e-04) (4.33e-04) (4.61e-04)
[9.39e-03] [7.15e-03] [6.56e-03] [5.94e-04] [5.83e-04] [5.69e-04] [6.06e-04]

βGDD
3

-4.34e-02∗∗∗ -4.30e-02∗∗∗ -3.16e-02∗∗∗ -8.39e-03∗∗∗ -9.03e-03∗∗∗ -9.08e-03∗∗∗ -5.55e-03∗∗∗
(7.62e-03) (7.31e-03) (6.53e-03) (2.50e-03) (2.56e-03) (2.58e-03) (2.41e-03)
[8.81e-03] [6.89e-03] [6.42e-03] [2.02e-03] [2.03e-03] [2.19e-03] [2.16e-03]

βHDD
1 — — —

-9.77e-03∗∗∗ -9.63e-03∗∗∗ -9.52e-03∗∗∗ -9.55e-03∗∗∗
(3.23e-04) (3.16e-04) (3.13e-04) (3.23e-04)
[6.71e-04] [6.58e-04] [6.50e-04] [6.65e-04]

βHDD
2

1.69e-05 4.41e-05∗∗∗ 2.58e-05∗∗ 1.98e-05∗∗∗ 1.96e-05∗∗∗ 1.88e-05∗∗∗ 1.78e-05∗∗∗
(1.08e-05) (1.08e-05) (8.84e-06) (1.38e-06) (1.36e-06) (1.32e-06) (1.28e-06)
[1.57e-05] [1.46e-05] [1.29e-05] [4.25e-06] [4.18e-06] [3.95e-06] [3.97e-06]

βHDD
3

-2.75e-05∗ -5.31e-05∗∗∗ -3.39e-05∗∗∗ -3.15e-05∗∗∗ -3.00e-05∗∗∗ -2.80e-05∗∗∗ -2.78e-05∗∗∗
(1.08e-05) (1.03e-05) (8.41e-06) (3.34e-06) (3.16e-06) (3.13e-06) (3.26e-06)
[1.52e-05] [1.27e-05] [1.04e-05] [7.73e-06] [6.57e-06] [5.69e-06] [6.94e-06]

β
prec
1 — — —

3.11e-03 1.84e-03 -3.78e-03 -3.89e-03
(1.86e-02) (1.85e-02) (1.88e-02) (1.95e-02)
[3.42e-02] [3.36e-02] [3.23e-02] [3.65e-02]

β
prec
2

9.64e-03 9.08e-03 8.90e-03 -4.38e-04 -3.20e-04 5.64e-05 1.36e-04
(5.50e-03) (5.01e-03) (4.69e-03) (1.33e-03) (1.31e-03) (1.33e-03) (1.39e-03)
[6.32e-03] [5.90e-03] [6.24e-03] [2.50e-03] [2.46e-03] [2.35e-03] [2.68e-03]

β
prec
3

-1.51e-02∗∗∗ -1.44e-02∗∗∗ -1.41e-02∗∗∗ -5.24e-03 -5.54e-03∗ -5.99e-03∗∗ -6.48e-03∗
(5.33e-03) (4.79e-03) (4.45e-03) (1.93e-03) (1.86e-03) (1.84e-03) (2.11e-03)
[4.96e-03] [4.41e-03] [4.53e-03] [3.29e-03] [3.22e-03] [2.95e-03] [3.81e-03]

County FE X X X X X X X
County trends X X X X X X X
# counties 1,274 1,274 1,274 1,274 1,274 1,274 1,274
Years 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017
Observations 47,509 47,509 47,509 47,509 47,509 47,509 47,509

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01

41



Table 8 Soybeans regression results (1980-2017 sample)

Flexible model Single slope Stationary
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs climate
(1) (2) (3) (4) (5) (6) (7)

βGDD
1 — — —

1.25e-01∗∗∗ 1.27e-01∗∗∗ 1.26e-01∗∗∗ 1.35e-01∗∗∗
(1.55e-02) (1.55e-02) (1.53e-02) (1.58e-02)
[1.78e-02] [1.75e-02] [1.73e-02] [1.78e-02]

βGDD
2

4.10e-02∗∗∗ 2.83e-02∗∗∗ 2.49e-02∗∗∗ -2.29e-03∗∗∗ -2.34e-03∗∗∗ -2.33e-03∗∗∗ -2.56e-03∗∗∗
(7.26e-03) (6.12e-03) (5.15e-03) (3.96e-04) (3.96e-04) (3.89e-04) (3.95e-04)
[7.60e-03] [7.68e-03] [5.90e-03] [4.55e-04] [4.49e-04] [4.46e-04] [4.59e-04]

βGDD
3

-4.01e-02∗∗∗ -2.72e-02∗∗∗ -2.35e-02∗∗∗ -1.44e-03 -1.12e-03 -1.24e-03 1.60e-03
(7.50e-03) (6.28e-03) (5.30e-03) (2.01e-03) (2.02e-03) (2.00e-03) (2.48e-06)
[7.40e-03] [7.61e-03] [5.96e-03] [1.91e-03] [2.01e-03] [2.08e-03] [4.98e-06]

βHDD
1 — — —

-7.93e-03∗∗∗ -7.91e-03∗∗∗ -7.85e-03∗∗∗ -7.87e-03∗∗∗
(3.80e-04) (3.78e-04) (3.75e-04) (3.84e-04)
[5.88e-04] [5.79e-04] [5.76e-04] [5.83e-04]

βHDD
2

2.26e-05 2.96e-05∗∗ 4.12e-06 1.96e-05∗∗∗ 1.97e-05∗∗∗ 1.88e-05∗∗∗ 1.85e-05∗∗∗
(1.51e-05) (1.61e-05) (1.40e-05) (2.55e-06) (2.56e-06) (2.52e-06) (2.48e-06)
[1.60e-05] [1.49e-05] [1.06e-05] [5.58e-06] [5.44e-06] [5.26e-06] [4.98e-06]

βHDD
3

-1.54e-05 -2.07e-05 4.44e-06 -1.49e-05 -1.40e-05∗ -1.21e-05 -1.30e-05
(1.54e-05) (1.50e-05) (1.32e-05) (4.86e-06) (4.48e-06) (4.38e-06) (4.65e-06)
[2.05e-05] [1.74e-05] [1.39e-05] [9.16e-06] [8.15e-06] [7.78e-06] [7.95e-06]

β
prec
1 — — —

3.14e-02 3.35e-02 3.72e-02 3.93e-02
(1.73e-02) (1.70e-02) (1.70e-02) (1.81e-02)
[3.19e-02] [3.04e-02] [2.91e-02] [3.24e-02]

β
prec
2

1.55e-02*** 1.22e-02*** 4.48e-03 -1.32e-03 -1.48e-03 -1.79e-03 -1.89e-03
(4.51e-03) (4.00e-03) (3.42e-03) (1.23e-03) (1.20e-03) (1.18e-03) (1.28e-03)
[5.30e-03] [4.55e-03] [5.39e-03] [2.33e-03] [2.20e-03] [2.10e-03] [2.35e-03]

β
prec
3

-2.30e-02*** -1.98e-02*** -1.21e-02** -6.58e-03** -6.43e-03** -5.91e-03** -6.07e-03∗
(4.58e-03) (3.99e-03) (3.36e-03) (1.64e-03) (1.57e-03) (1.54e-03) (1.72e-03)
[5.69e-03] [4.58e-03] [5.19e-03] [3.12e-03] [2.91e-03] [2.76e-03] [3.24e-03]

County FE X X X X X X X
County trends X X X X X X X
# counties 1,154 1,154 1,154 1,154 1,154 1,154 1,154
Years 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017
Observations 43,161 43,161 43,161 43,161 43,161 43,161 43,161

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 9 Corn regression results, smoothed climate

Flexible model Single slope
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs
(1) (2) (3) (4) (5) (6)

βGDD
1 — — —

6.91e-02∗∗∗ 7.95e-02∗∗∗ 8.63e-02∗∗∗
(1.79e-02) (1.74e-02) (1.70e-02)
[2.50e-02] [2.20e-02] [2.11e-02]

βGDD
2

4.21e-02∗∗∗ 2.96e-02∗∗∗ 2.87e-02∗∗∗ -5.92e-04 -9.79e-04∗ -1.20e-03∗∗
(7.44e-03) (6.54e-03) (5.97e-03) (4.46e-04) (4.28e-04) (4.27e-04)
[9.88e-03] [8.16e-03] [7.89e-03] [5.90e-04] [5.22e-04] [5.12e-04]

βGDD
3

-4.72e-02∗∗∗ -3.39e-02∗∗∗ -3.36e-02∗∗∗ -8.32e-03∗∗∗ -7.66e-03∗∗∗ -7.71e-03∗∗∗
(8.06e-03) (6.93e-03) (6.50e-03) (2.59e-03) (2.31e-03) (2.41e-03)
[9.75e-03] [9.02e-03] [8.34e-03] [2.19e-03] [2.67e-03] [2.63e-03]

βHDD
1 — — —

-9.75e-03∗∗∗ -9.57e-03∗∗∗ -9.58e-03∗∗∗
(3.20e-04) (3.18e-04) (3.16e-04)
[6.68e-04] [7.23e-04] [7.28e-04]

βHDD
2

2.75e-05 4.22e-05∗∗∗ 2.80e-05∗∗ 2.01e-05∗∗∗ 2.01e-05∗∗∗ 2.02e-05∗∗∗
(1.24e-05) (1.15e-05) (1.07e-05) (1.39e-06) (1.38e-06) (1.33e-06)
[2.16e-05] [1.50e-05] [1.24e-05] [4.34e-06] [3.85e-06] [3.76e-06]

βHDD
3

-4.02e-05∗ -5.43e-05∗∗∗ -3.89e-05∗∗∗ -3.36e-05∗∗∗ -3.13e-05∗∗∗ -3.02e-05∗∗∗
(1.30e-05) (1.19e-05) (1.11e-05) (3.45e-06) (3.52e-06) (3.57e-06)
[2.39e-05] [1.32e-05] [1.16e-05] [8.32e-06] [4.76e-06] [4.41e-06]

β
prec
1 — — —

5.37e-04 3.24e-02 4.68e-02
(1.88e-02) (1.94e-02) (1.95e-02)
[3.42e-02] [3.58e-02] [3.65e-02]

β
prec
2

1.60e-02** 3.97e-03 6.24e-03 -2.14e-04 -2.19e-03 -3.29e-03
(6.31e-03) (5.11e-03) (4.63e-03) (1.34e-03) (1.36e-03) (1.37e-03)
[8.08e-03] [7.61e-03] [8.76e-03] [2.51e-03] [2.59e-03] [2.61e-03]

β
prec
3

-2.24e-02*** -1.17e-02* -1.42e-02* -5.93e-03* -5.49e-03 -4.64e-03
(6.39e-03) (5.01e-03) (4.56e-03) (2.04e-03) (1.94e-03) (1.87e-03)
[7.17e-03] [6.29e-03] [7.32e-03] [3.50e-03] [3.40e-03] [3.05e-03]

County FE X X X X X X
County trends X X X X X X
# counties 1,274 1,342 1,321 1,274 1,342 1,321
Years 1980–2017 1975–2017 1970–2017 1980–2017 1975–2017 1970–2017
Observations 47,509 56,506 62,210 47,509 56,506 62,210

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 10 Corn regression results, smoothed climate (1980-2017 sample)

Flexible model Single slope
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs
(1) (2) (3) (4) (5) (6)

βGDD
1 — — —

6.91e-02∗∗∗ 6.80e-02∗∗∗ 6.71e-02∗∗∗
(1.79e-02) (1.77e-02) (1.77e-02)
[2.50e-02] [2.46e-02] [2.45e-02]

βGDD
2

4.21e-02∗∗∗ 4.41e-02∗∗∗ 3.72e-02∗∗∗ -5.92e-04 -5.67e-04 -5.46e-04
(7.44e-03) (7.09e-03) (6.33e-03) (4.46e-04) (4.42e-04) (4.41e-04)
[9.88e-03] [7.85e-03] [7.11e-03] [5.90e-04] [5.80e-04] [5.80e-04]

βGDD
3

-4.72e-02∗∗∗ -4.99e-02∗∗∗ -4.34e-02∗∗∗ -8.32e-03∗∗∗ -8.90e-03∗∗∗ -9.23e-03∗∗∗
(8.06e-03) (7.91e-03) (7.24e-03) (2.59e-03) (2.66e-03) (2.72e-03)
[9.75e-03] [8.29e-03] [7.69e-03] [2.19e-03] [2.28e-03] [2.33e-03]

βHDD
1 — — —

-9.75e-03∗∗∗ -9.66e-03∗∗∗ -9.57e-03∗∗∗
(3.20e-04) (3.17e-04) (3.14e-04)
[6.68e-04] [6.66e-04] [6.64e-04]

βHDD
2

2.75e-05 3.93e-05∗∗ 3.48e-05∗∗ 2.01e-05∗∗∗ 1.97e-05∗∗∗ 1.93e-05∗∗∗
(1.24e-05) (1.13e-05) (9.90e-06) (1.39e-06) (1.38e-06) (1.36e-06)
[2.16e-05] [1.77e-05] [1.45e-05] [4.34e-06] [4.27e-06] [4.18e-06]

βHDD
3

-4.02e-05∗ -5.20e-05∗∗∗ -4.78e-05∗∗∗ -3.36e-05∗∗∗ -3.25e-05∗∗∗ -3.20e-05∗∗∗
(1.30e-05) (1.17e-05) (1.03e-05) (3.45e-06) (3.48e-06) (3.53e-06)
[2.39e-05] [1.89e-05] [1.56e-05] [8.32e-06] [7.63e-06] [7.28e-06]

β
prec
1 — — —

5.37e-04 -7.68e-04 -4.23e-03
(1.88e-02) (1.89e-02) (1.90e-02)
[3.42e-02] [3.44e-02] [3.44e-02]

β
prec
2

1.60e-02∗∗ 1.64e-02∗∗ 1.80e-02∗∗ -2.14e-04 -1.36e-04 9.83e-05
(6.31e-03) (6.06e-03) (5.86e-03) (1.34e-03) (1.34e-03) (1.34e-03)
[8.08e-03] [7.97e-03] [8.19e-03] [2.51e-03] [2.51e-03] [2.50e-03]

β
prec
3

-2.24e-02∗∗∗ -2.27e-02∗∗∗ -2.44e-02∗∗∗ -5.93e-03∗ -6.05e-03∗ -6.46e-03∗
(6.39e-03) (6.14e-03) (5.95e-03) (2.04e-03) (2.03e-03) (2.03e-03)
[7.17e-03] [6.96e-03] [7.16e-03] [3.50e-03] [3.48e-03] [3.46e-03]

County FE X X X X X X
County trends X X X X X X
# counties 1,274 1,274 1,274 1,274 1,274 1,274
Years 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017
Observations 47,509 47,509 47,509 47,509 47,509 47,509

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 11 Soybeans regression results, smoothed climate

Flexible model Single slope
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs
(1) (2) (3) (4) (5) (6)

βGDD
1 — — —

1.26e-01∗∗∗ 1.04e-01∗∗∗ 1.02e-01∗∗∗
(1.55e-02) (1.47e-02) (1.45e-02)
[1.76e-02] [1.69e-02] [1.75e-02]

βGDD
2

4.93e-02∗∗∗ 4.36e-02∗∗∗ 3.04e-02∗∗∗ -2.32e-03∗∗∗ -1.61e-03∗∗∗ -1.54e-03∗∗∗
(7.64e-03) (5.61e-03) (4.91e-03) (3.96e-04) (3.68e-04) (3.58e-04)
[8.37e-03] [8.19e-03] [6.11e-03] [4.52e-04] [4.64e-04] [4.70e-04]

βGDD
3

-5.04e-02∗∗∗ -4.58e-02∗∗∗ -3.38e-02∗∗∗ -1.40e-03 -3.22e-03∗ -3.60e-03∗∗
(8.19e-03) (5.85e-03) (5.31e-03) (2.08e-03) (1.81e-03) (1.85e-03)
[8.63e-03] [8.60e-03] [6.56e-03] [2.00e-03] [1.73e-03] [1.77e-03]

βHDD
1 — — —

-7.94e-03∗∗∗ -7.98e-03∗∗∗ -7.92e-03∗∗∗
(3.79e-04) (3.92e-04) (3.78e-04)
[5.88e-04] [5.99e-04] [5.62e-04]

βHDD
2

4.64e-05∗∗ 3.04e-05∗∗ 3.78e-05∗∗ 2.00e-05∗∗∗ 1.93e-05∗∗∗ 1.91e-05∗∗∗
(1.68e-05) (1.59e-05) (1.52e-05) (2.57e-06) (2.53e-06) (2.47e-06)
[2.23e-05] [1.49e-05] [1.53e-05] [5.62e-06] [5.01e-06] [4.95e-06]

βHDD
3

-4.24e-05 -2.06e-05 -2.75e-05 -1.67e-05∗ -1.30e-05 -1.25e-05
(1.78e-05) (1.58e-05) (1.50e-05) (5.07e-06) (4.82e-06) (4.70e-06)
[2.79e-05] [1.83e-05] [1.89e-05] [9.56e-06] [9.37e-06] [9.45e-06]

β
prec
1 — — —

3.14e-02 6.39e-02** 6.18e-02**
(1.74e-02) (1.85e-02) (1.75e-02)
[3.26e-02] [3.05e-02] [2.93e-02]

β
prec
2

1.94e-02*** 6.22e-03 8.69e-03 -1.31e-03 -3.28e-03 -3.22e-03
(4.95e-03) (4.19e-03) (3.51e-03) (1.24e-03) (1.29e-03) (1.22e-03)
[6.01e-03] [6.22e-03] [5.62e-03] [2.38e-03] [2.19e-03] [2.07e-03]

β
prec
3

-2.79e-02*** -1.55e-02** -1.77e-02*** -6.87e-03** -5.96e-03* -5.96e-03**
(5.19e-03) (4.26e-03) (3.65e-03) (1.72e-03) (1.66e-03) (1.60e-03)
[6.65e-03] [6.13e-03] [5.34e-03] [3.32e-03] [3.09e-03] [2.87e-03]

County FE X X X X X X
County trends X X X X X X
# counties 1,154 1,180 1,136 1,154 1,180 1,136
Years 1980–2017 1975–2017 1970–2017 1980–2017 1975–2017 1970–2017
Observations 43,161 49,849 53,461 43,161 49,849 53,461

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 12 Soybeans regression results, smoothed climate (1980-2017 sample)

Flexible model Single slope
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs
(1) (2) (3) (4) (5) (6)

βGDD
1 — — —

1.26e-01∗∗∗ 1.27e-01∗∗∗ 1.28e-01∗∗∗
(1.55e-02) (1.54e-02) (1.54e-02)
[1.76e-02] [1.75e-02] [1.74e-02]

βGDD
2

4.93e-02∗∗∗ 3.82e-02∗∗∗ 2.94e-02∗∗∗ -2.32e-03∗∗∗ -2.35e-03∗∗∗ -2.38e-03∗∗∗
(7.64e-03) (6.83e-03) (5.74e-03) (3.96e-04) (3.94e-04) (3.93e-04)
[8.37e-03] [8.57e-03] [7.32e-03] [4.52e-04] [4.48e-04] [4.47e-04]

βGDD
3

-5.04e-02∗∗∗ -3.89e-02∗∗∗ -3.01e-02∗∗∗ -1.40e-03 -1.09e-03 -9.17e-04
(8.19e-03) (7.40e-03) (6.35e-03) (2.08e-03) (2.10e-03) (2.14e-03)
[8.63e-03] [9.31e-03] [8.04e-03] [2.00e-03] [2.14e-03] [2.27e-03]

βHDD
1 — — —

-7.94e-03∗∗∗ -7.92e-03∗∗∗ -7.92e-03∗∗∗
(3.79e-04) (3.79e-04) (3.78e-04)
[5.88e-04] [5.85e-04] [5.84e-04]

βHDD
2

4.64e-05∗∗ 3.75e-05 4.30e-05∗∗ 2.00e-05∗∗∗ 1.99e-05∗∗∗ 2.01e-05∗∗∗
(1.68e-05) (1.72e-05) (1.58e-05) (2.57e-06) (2.58e-06) (2.58e-06)
[2.23e-05] [2.34e-05] [1.95e-05] [5.62e-06] [5.57e-06] [5.52e-06]

βHDD
3

-4.24e-05 -3.07e-05 -3.61e-05 -1.67e-05∗ -1.57e-05∗ -1.63e-05∗
(1.78e-05) (1.76e-05) (1.61e-05) (5.07e-06) (4.94e-06) (4.94e-06)
[2.79e-05] [2.85e-05] [2.44e-05] [9.56e-06] [9.18e-06] [9.15e-06]

β
prec
1 — — —

3.14e-02 3.15e-02 2.89e-02
(1.74e-02) (1.74e-02) (1.74e-02)
[3.26e-02] [3.23e-02] [3.19e-02]

β
prec
2

1.94e-02∗∗∗ 1.86e-02∗∗∗ 1.82e-02∗∗∗ -1.31e-03 -1.34e-03 -1.17e-03
(4.95e-03) (4.72e-03) (4.38e-03) (1.24e-03) (1.23e-03) (1.22e-03)
[6.01e-03] [5.92e-03] [5.86e-03] [2.38e-03] [2.35e-03] [2.31e-03]

β
prec
3

-2.79e-02∗∗∗ -2.72e-02∗∗∗ -2.69e-02∗∗∗ -6.87e-03∗∗ -6.90e-03∗∗ -7.16e-03∗∗
(5.19e-03) (4.96e-03) (4.63e-03) (1.72e-03) (1.71e-03) (1.69e-03)
[6.65e-03] [6.41e-03] [6.32e-03] [3.32e-03] [3.29e-03] [3.24e-03]

County FE X X X X X X
County trends X X X X X X
# counties 1,154 1,154 1,154 1,154 1,154 1,154
Years 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017
Observations 43,161 43,161 43,161 43,161 43,161 43,161

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 13 Corn regression results, alternative penalty structure

Flexible model Single slope
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs
(1) (2) (3) (4) (5) (6)

βGDD
1 — — —

6.61e-02 7.87e-02 8.09e-02
(1.77e-02) (1.73e-02) (1.64e-02)
[2.47e-02] [2.18e-02] [2.07e-02]

βGDD
2

5.09e-02∗∗∗ 2.54e-02∗∗∗ 2.51e-02∗∗∗ -5.21e-04 -9.69e-04∗ -1.06e-03∗∗
(7.35e-03) (6.26e-03) (5.09e-03) (4.42e-04) (4.27e-04) (4.13e-04)
[8.18e-03] [7.21e-03] [6.36e-03] [5.85e-04] [5.17e-04] [5.08e-04]

βGDD
3

-5.58e-02∗∗∗ -2.84e-02∗∗∗ -2.92e-02∗∗∗ -9.07e-03∗∗∗ -7.38e-03∗∗∗ -8.64e-03∗∗∗
(7.88e-03) (6.41e-03) (5.31e-03) (2.58e-03) (2.25e-03) (2.27e-03)
[8.52e-03] [8.21e-03] [6.70e-03] [2.14e-03] [2.69e-03] [2.61e-03]

βHDD
1 — — —

-9.74e-03∗∗∗ -9.55e-03∗∗∗ -9.54e-03∗∗∗
(3.20e-04) (3.17e-04) (3.16e-04)
[6.69e-04] [7.27e-04] [7.32e-04]

βHDD
2

1.29e-05 3.92e-05∗∗∗ 1.45e-05 1.98e-05∗∗∗ 2.00e-05∗∗∗ 2.01e-05∗∗∗
(9.71e-06) (9.32e-06) (7.03e-06) (1.37e-06) (1.37e-06) (1.34e-06)
[1.45e-05] [1.37e-05] [1.26e-05] [4.24e-06] [3.88e-06] [3.85e-06]

βHDD
3

-2.36e-05 -4.95e-05∗∗∗ -2.31e-05∗ -3.17e-05∗∗∗ -2.99e-05∗∗∗ -2.80e-05∗∗∗
(9.85e-06) (9.07e-06) (6.75e-06) (3.36e-06) (3.30e-06) (3.28e-06)
[1.46e-05] [1.13e-05] [1.28e-05] [7.76e-06] [4.55e-06] [4.80e-06]

β
prec
1 — — —

-9.14e-04 2.60e-02 3.87e-02
(1.86e-02) (1.91e-02) (1.92e-02)
[3.42e-02] [3.60e-02] [3.50e-02]

β
prec
2

1.25e-02∗∗ 7.35e-03 6.76e-03 -1.11e-04 -1.70e-03 -2.67e-03
(5.21e-03) (4.59e-03) (3.89e-03) (1.32e-03) (1.34e-03) (1.35e-03)
[5.96e-03] [5.01e-03] [7.17e-03] [2.50e-03] [2.60e-03] [2.49e-03]

β
prec
3

-1.83e-02∗∗∗ -1.50e-02∗∗∗ -1.44e-02∗∗∗ -5.87e-03∗ -6.20e-03∗ -5.58e-03∗∗
(5.17e-03) (4.39e-03) (3.68e-03) (1.96e-03) (1.83e-03) (1.72e-03)
[5.31e-03] [4.09e-03] [5.36e-03] [3.42e-03] [3.37e-03] [2.57e-03]

County FE X X X X X X
County trends X X X X X X
# counties 1,274 1,342 1,321 1,274 1,342 1,321
Years 1980–2017 1975–2017 1970–2017 1980–2017 1975–2017 1970–2017
Observations 47,509 56,506 62,210 47,509 56,506 62,210

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 14 Corn regression results, alternative penalty structure (1980-2017 sample)

Flexible model Single slope
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs
(1) (2) (3) (4) (5) (6)

βGDD
1 — — —

6.61e-02∗∗∗ 6.58e-02∗∗∗ 6.70e-02∗∗∗
(1.77e-02) (1.76e-02) (1.72e-02)
[2.47e-02] [2.46e-02] [2.35e-02]

βGDD
2

5.09e-02∗∗∗ 3.32e-02∗∗∗ 2.09e-02∗∗∗ -5.21e-04 -5.14e-04 -5.71e-04
(7.35e-03) (6.57e-03) (5.53e-03) (4.42e-04) (4.40e-04) (4.31e-04)
[8.18e-03] [7.28e-03] [6.76e-03] [5.85e-04] [5.83e-04] [5.58e-04]

βGDD
3

-5.58e-02∗∗∗ -3.80e-02∗∗∗ -2.47e-02∗∗∗ -9.07e-03∗∗∗ -9.06e-03∗∗∗ -8.97e-03∗∗∗
(7.88e-03) (7.03e-03) (6.05e-03) (2.58e-03) (2.57e-03) (2.60e-03)
[8.52e-03] [7.41e-03] [6.99e-03] [2.14e-03] [2.07e-03] [2.31e-03]

βHDD
1 — — —

-9.74e-03∗∗∗ -9.62e-03∗∗∗ -9.50e-03∗∗∗
(3.20e-04) (3.15e-04) (3.13e-04)
[6.69e-04] [6.67e-04] [6.56e-04]

βHDD
2

1.29e-05 3.81e-05∗∗∗ 2.62e-05∗∗∗ 1.98e-05∗∗∗ 1.96e-05∗∗∗ 1.89e-05∗∗∗
(9.71e-06) (1.02e-05) (7.73e-06) (1.37e-06) (1.35e-06) (1.33e-06)
[1.45e-05] [1.48e-05] [8.70e-06] [4.24e-06] [4.25e-06] [4.05e-06]

βHDD
3

-2.36e-05 -4.84e-05∗∗∗ -3.54e-05∗∗∗ -3.17e-05∗∗∗ -3.06e-05∗∗∗ -2.90e-05∗∗∗
(9.85e-06) (9.91e-06) (7.55e-06) (3.36e-06) (3.21e-06) (3.20e-06)
[1.46e-05] [1.48e-05] [8.84e-06] [7.76e-06] [7.09e-06] [6.40e-06]

β
prec
1 — — —

-9.14e-04 -2.60e-03 -7.19e-03
(1.86e-02) (1.85e-02) (1.88e-02)
[3.42e-02] [3.39e-02] [3.23e-02]

β
prec
2

1.25e-02∗∗ 1.16e-02∗∗ 9.63e-03∗ -1.11e-04 2.03e-05 3.29e-04
(5.21e-03) (4.96e-03) (4.40e-03) (1.32e-03) (1.31e-03) (1.33e-03)
[5.96e-03] [5.44e-03] [5.79e-03] [2.50e-03] [2.47e-03] [2.34e-03]

β
prec
3

-1.83e-02∗∗∗ -1.76e-02∗∗∗ -1.54e-02∗∗∗ -5.87e-03∗ -6.30e-03∗ -6.67e-03∗∗
(5.17e-03) (4.87e-03) (4.26e-03) (1.96e-03) (1.91e-03) (1.88e-03)
[5.31e-03] [4.53e-03] [4.36e-03] [3.42e-03] [3.34e-03] [3.02e-03]

County FE X X X X X X
County trends X X X X X X
# counties 1,274 1,274 1,274 1,274 1,274 1,274
Years 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017
Observations 47,509 47,509 47,509 47,509 47,509 47,509

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 15 Soybeans, alternative penalty structure

Flexible model Single slope
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs
(1) (2) (3) (4) (5) (6)

βGDD
1 — — —

1.27e-01 1.06e-01 1.01e-01
(1.55e-02) (1.48e-02) (1.42e-02)
[1.75e-02] [1.64e-02] [1.67e-02]

βGDD
2

3.27e-02∗∗∗ 2.81e-02∗∗∗ 1.79e-02∗∗∗ -2.35e-03∗∗∗ -1.65e-03∗∗∗ -1.51e-03∗∗∗
(7.05e-03) (5.26e-03) (4.31e-03) (3.95e-04) (3.69e-04) (3.52e-04)
[8.05e-03] [6.98e-03] [4.23e-03] [4.51e-04] [4.51e-04] [4.49e-04]

βGDD
3

-3.22e-02∗∗∗ -2.89e-02∗∗∗ -1.98e-02∗∗∗ -1.32e-03 -2.99e-03∗ -3.65e-03∗
(7.43e-03) (5.35e-03) (4.45e-03) (2.06e-03) (1.77e-03) (1.76e-03)
[8.34e-03] [7.48e-03] [4.84e-03] [1.99e-03] [1.72e-03] [1.89e-03]

βHDD
1 — — —

-8.00e-03∗∗∗ -8.03e-03∗∗∗ -7.90e-03∗∗∗
(3.81e-04) (3.92e-04) (3.73e-04)
[5.92e-04] [6.08e-04] [5.44e-04]

βHDD
2

5.91e-05∗∗∗ 5.08e-05∗∗∗ 2.40e-05∗∗ 2.05e-05∗∗∗ 1.98e-05∗∗∗ 1.90e-05∗∗∗
(1.42e-05) (1.33e-05) (9.92e-06) (2.51e-06) (2.47e-06) (2.38e-06)
[1.35e-05] [1.34e-05] [1.06e-05] [5.42e-06] [4.75e-06] [4.72e-06]

βHDD
3

-5.32e-05∗∗∗ -3.98e-05∗∗∗ -1.17e-05 -1.74e-05∗∗ -1.36e-05∗ -1.14e-05
(1.41e-05) (1.22e-05) (9.33e-06) (4.72e-06) (4.41e-06) (4.25e-06)
[1.56e-05] [9.91e-06] [1.46e-05] [8.72e-06] [7.98e-06] [8.52e-06]

β
prec
1 — — —

3.50e-02 6.98e-02∗∗ 6.74e-02∗∗
(1.73e-02) (1.80e-02) (1.70e-02)
[3.11e-02] [2.81e-02] [2.73e-02]

β
prec
2

4.78e-03 -4.71e-03 2.84e-05 -1.59e-03 -3.73e-03∗ -3.63e-03∗
(4.44e-03) (3.45e-03) (2.82e-03) (1.23e-03) (1.25e-03) (1.18e-03)
[5.58e-03] [4.83e-03] [4.51e-03] [2.26e-03] [2.02e-03] [1.92e-03]

β
prec
3

-1.26e-02∗∗ -4.28e-03 -8.73e-03∗∗ -6.19e-03∗∗ -5.09e-03∗ -5.23e-03∗∗
(4.62e-03) (3.48e-03) (2.85e-03) (1.68e-03) (1.58e-03) (1.50e-03)
[6.07e-03] [4.73e-03] [4.04e-03] [3.09e-03] [2.77e-03] [2.52e-03]

County FE X X X X X X
County trends X X X X X X
# counties 1,154 1,180 1,136 1,154 1,180 1,136
Years 1980–2017 1975–2017 1970–2017 1980–2017 1975–2017 1970–2017
Observations 43,161 49,849 53,461 43,161 49,849 53,461

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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Table 16 Soybeans, alternative penalty structure (1980-2017 sample)

Flexible model Single slope
30 yrs 25 yrs 20 yrs 30 yrs 25 yrs 20 yrs
(1) (2) (3) (4) (5) (6)

βGDD
1 — — —

1.27e-01∗∗∗ 1.28e-01∗∗∗ 1.28e-01∗∗∗
(1.55e-02) (1.55e-02) (1.53e-02)
[1.75e-02] [1.71e-02] [1.72e-02]

βGDD
2

3.27e-02∗∗∗ 1.87e-02∗∗∗ 1.15e-02∗∗ -2.35e-03∗∗∗ -2.39e-03∗∗∗ -2.40e-03∗∗∗
(7.05e-03) (6.27e-03) (4.76e-03) (3.95e-04) (3.96e-04) (3.90e-04)
[8.05e-03] [6.92e-03] [5.14e-03] [4.51e-04] [4.39e-04] [4.45e-04]

βGDD
3

-3.22e-02∗∗∗ -1.79e-02∗∗ -9.98e-03∗ -1.32e-03 -8.43e-04 -5.62e-04
(7.43e-03) (6.52e-03) (4.92e-03) (2.06e-03) (2.05e-03) (2.02e-03)
[8.34e-03] [7.50e-03] [5.57e-03] [1.99e-03] [2.12e-03] [2.16e-03]

βHDD
1 — — —

-8.00e-03∗∗∗ -7.93e-03∗∗∗ -7.84e-03∗∗∗
(3.81e-04) (3.80e-04) (3.75e-04)
[5.92e-04] [5.88e-04] [5.77e-04]

βHDD
2

5.91e-05∗∗∗ 5.01e-05∗∗∗ 1.83e-05∗∗ 2.05e-05∗∗∗ 1.99e-05∗∗∗ 1.88e-05∗∗∗
(1.42e-05) (1.60e-05) (1.25e-05) (2.51e-06) (2.54e-06) (2.51e-06)
[1.35e-05] [1.32e-05] [8.92e-06] [5.42e-06] [5.32e-06] [5.25e-06]

βHDD
3

-5.32e-05∗∗∗ -4.10e-05∗∗∗ -9.06e-06 -1.74e-05∗∗ -1.50e-05∗ -1.26e-05
(1.41e-05) (1.49e-05) (1.19e-05) (4.72e-06) (4.52e-06) (4.52e-06)
[1.56e-05] [1.25e-05] [1.17e-05] [8.72e-06] [7.88e-06] [7.91e-06]

β
prec
1 — — —

3.50e-02 3.97e-02 4.03e-02
(1.73e-02) (1.70e-02) (1.70e-02)
[3.11e-02] [2.95e-02] [2.90e-02]

β
prec
2

4.78e-03 3.85e-04 1.02e-03 -1.59e-03 -1.95e-03 -2.01e-03
(4.44e-03) (3.89e-03) (3.32e-03) (1.23e-03) (1.20e-03) (1.19e-03)
[5.58e-03] [5.68e-03] [5.33e-03] [2.26e-03] [2.14e-03] [2.08e-03]

β
prec
3

-1.26e-02∗∗ -8.60e-03 -9.20e-03∗ -6.19e-03∗∗ -5.86e-03∗∗ -5.83e-03∗∗
(4.62e-03) (3.97e-03) (3.37e-03) (1.68e-03) (1.61e-03) (1.60e-03)
[6.07e-03] [5.82e-03] [5.30e-03] [3.09e-03] [2.89e-03] [2.80e-03]

County FE X X X X X X
County trends X X X X X X
# counties 1,154 1,154 1,154 1,154 1,154 1,154
Years 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017 1980–2017
Observations 43,161 43,161 43,161 43,161 43,161 43,161

Conley standard errors are shown in ()
State-clustered standard errors are shown in []
Significance levels based on standard errors in []: * p < 0.10, ** p < 0.05, *** p < 0.01
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