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Abstract	

Does receiving information on potential adverse weather conditions induce adaptive responses 
by smallholders? Do market institutions ease constraints to adaptation of these practices? This 
report examines these questions using a unique panel dataset of Zambian smallholder 
households collected before and after 2015/16 El Niño Southern Oscillation event. The analysis 
finds that farmers receiving drought-related seasonal forecasts are more likely to integrate 
drought tolerant crops into their cropping systems and to acquire improved maize seed 
varieties. These farmers, on average, are found to apply double the quantity of improved maize 
seeds than farmers residing in the same zones but not receiving weather information. Larger 
and more competitive private output markets function as enablers of smallholder adaptive 
responses to seasonal forecast information, as farmers with improved market access are more 
likely to shift toward drought resilient technologies than farmers with low output market access. 
Three policy recommendations emerge from the findings. First, while seasonal forecast 
information can induce adaptive responses by farmers, there is the need of improving access 
to this information, particularly for households in remote areas or limited asset ownership. 
Second, targeting voucher-based farmer input support programs based on seasonal forecast 
information can enable the crowding in of private investments in these regions and increase 
the adaptive responses of farmers, particularly resource constrained farmers. Finally, this 
analysis suggests that policies that incentivize private investment in agricultural markets should 
be considered within the broader framework of smallholder climate adaptation and resilience 
in Zambia. This includes strategies to improve agricultural trade predictability and structured 
trading platforms.  

 

Keywords: adoption, agricultural practices, El Niño, weather forecasts, Zambia. 

JEL codes: Q02; Q17; Q18. 
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1 Introduction		

There is a high level of agreement within the scientific community that climate change is likely 
to slow down economic growth, make poverty reduction more difficult, and further erode food 
security (Intergovernmental Panel on Climate Change (IPCC, 2014). This is particularly the case 
in predominantly agrarian countries in sub-Saharan Africa (SSA), where a large share of the 
population is reliant on rain-fed production to meet its livelihood needs (IPCC, 2014). Building 
the resilience of rain-fed smallholder production systems to current and future climate conditions 
is, therefore, essential for countries in SSA to achieve their poverty reduction and economic 
growth objectives.  

While there remains uncertainty about the future changes in rainfall patterns and distributions 
in SSA, there is convergence in global climate models that large parts of southern Africa will 
experience increased incidences of drought (Li et al., 2009; IPCC, 2014). One area of particular 
concern in this regard is the potential increase in frequency of extreme El Niño Southern 
Oscillation (ENSO) events resulting from increased greenhouse gas concentrations in the 
atmosphere (Cai et al., 2014). The ENSO is a cyclical warm phase of sea surface temperatures 
in the Pacific Ocean that is often associated with a significant shortening of the rainy season in 
southern Africa (Nicholson and Kim, 1997), with strong potential impacts on smallholder 
agricultural systems (Naylor et al., 2001; Stige et al., 2006).  

Over the last two decades, the ability of seasonal forecast models to predict the potential rainfall 
impact of ENSO events has improved in SSA (Manatsa, Mushore and Lebouo, 2017; O’Brien 
et al., 2000). This creates new opportunities to support smallholder adaptive responses to 
probabilistic weather events due to ENSO. Receiving information on potential adverse weather 
conditions can enable farmers to adopt production practices that moderate the adverse impact 
of these weather conditions (Patt, Suarez and Gwata, 2005; Vogel and O’Brien, 2006). 
However, access to weather information is likely to be necessary, but insufficient to induce 
widespread changes in production practices in the context of probable adverse weather 
condition. Smallholder producers operate under a diverse range of resource, market access, 
and socio-cultural condition that shape their tolerance for risk and influence their willingness 
and capacity to change production practices (Barret, 2008; Komicha, 2007).  Understanding 
how access to information on probable adverse weather conditions associated with ENSO 
influences smallholder production practices and the factors that may facilitate these changes is 
important for developing appropriate policies to enhance adaptation to these events.  

Using Zambia as a case study, this article empirically examines if receiving seasonal forecast 
information on the potential occurrence of an ENSO-related drought influences smallholders’ 
adoption of drought resilient practices and technologies and tests the extent to which market 
institutions mediate adaptive behavior change. In particular, this study explores two interrelated 
questions. First, do households living in areas forecasted to experience an ENSO-related 
drought integrate more drought tolerant crops into their cropping systems or increase the 
adoption of improved seed varieties when they receive seasonal forecast information? Second, 
do market institutions help to ease constraints associated with the adoption of more drought 
tolerant cropping systems and improved seed varieties? Through its analysis, this study 
contributes to the empirical evidence base on smallholder adaptation to climate change in 
southern Africa.   

This study examines these questions using a unique panel household dataset that was collected 
from smallholder households before and after the 2015/16 ENSO event. The 2015/16 ENSO 
was the “most widely anticipated El Niño Southern Oscillation (ENSO) event ever” (L’Heureux 
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et al., 2017), with global operational forecast services around the globe predicting its effects to 
be comparable to the strongest ever recorded ENSO events in 1982/83 and 1997/98 
(L’Heureux, et al., 2017). As a consequence of this event, large parts of Southern Africa received 
only 50–70 percent of its regular quantity of rainfall during the first part of the agricultural season. 
This reduced crop yields and generated severe food deficit warnings (Mazvimavi, Murendo and 
Chivenge, 2017).  Availability of panel survey data that coincides with this event creates a 
unique opportunity to examine in detail changes in smallholder cropping systems and input use 
associated with receiving forecast information.  

The paper introduces its findings as follow. Section 2 outlines the conceptual framework where 
the literature evidence on information and farmers’ behavior is study in the light of how seasonal 
forecast service can shape farmers adoption in the presence of market institutions. Section 3 
introduces ENIAS and the other data sources under study. Section 4 proposes the research 
design. Section 5 show summary statistics and discuss the results. Finally, Section 6 concludes.  
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2 Conceptual	framework	

2.1 Climate	information,	barriers	to	adaptation	and		
market	institutions	

Farmers’ adaptation to climate change often occurs through two-step process (Deressa et al., 
2009). The first step involves a change in perception regarding climate change and an increased 
understanding of its potential impacts on their livelihoods and incomes. The second step 
involves active action to adopt practices that are more resilient to these changes. Seasonal 
forecast information can play an instrumental role in this process, by providing farmers with 
necessary information to understand potential weather threats and to optimize their production 
decisions accordingly (Bryan et al., 2009; Patt, Suarez and Gwata, 2005). However, despite this 
beneficial potential, climate forecast information is still underused by farmers in developing 
countries (Lemos, Kirchhoff and Ramprasad, 2012).  

The utilization or underutilization of climate forecast information by smallholders has been 
explained as a function of attitudes towards risk, as well as farmers’ trust in and understanding 
of the information provided to them (Arbuckle, Morton and Hobbs, 2015; Di Falco and Perrings 
2005; Gould, Saupe and Klemme, 1989; Grothmann and Patt, 2005; Tanaka et al., 2010; 
Wossen, Berger and Di Falco, 2015). While these are often difficult to empirically measure, 
levels of education and socio-economic status are often correlated with adaptive responses to 
information, including seasonal forecast information (Rahm and Huffman, 1984; Shortle and 
Miranowski, 1986; Warriner and Moul, 1992). The quality and source of information is also found 
to be important. For example, Deressa, Hassan and Ringler (2011) shows that in Ethiopia, 
farmers are more likely to adopt adaptive farm practices when farmers access information 
through public extension services. In Zambia, seasonal weather forecast information is compiled 
by the Zambian Meteorological Society and then disseminated to farmers via radio, mobile 
phone messaging, print media, and government extension services. In Section 5.1, the effects 
of receiving this information on cropping system choice and hybrid seed utilization is tested.  

However, survey results show that only 41 percent of smallholders in Zambia actually received 
seasonal forecast information that year.  This is likely due constraints within the government 
extension service, as well as low levels of radio ownership, cell phone coverage, and print media 
distribution.  

While access to reliable seasonal forecast information is a clear barrier in Zambia, responding 
to this information represents a second important challenge for farmers. Access to input and 
output markets are likely to be important determinants of smallholders’ adaptive responses to 
seasonal forecast information. Smallholder farmers are often financially constrained, sensitive 
to risk, and have few tools at their disposal to manage risk and adopt new and different farm 
practices (Deressa et al., 2009; Markelova et al., 2009). Markets may help to ease some of 
these constraints and thus support better adaptive responses to information by farmers (Barrett, 
2008). This can occur in a number of ways. First, access to input markets can improve the 
availability and transactions costs associated with acquiring a diverse range of farm 
technologies, including appropriate crop seeds and seed varieties for a particular region (Kassie 
et al., 2012, Pender and Gebremedhin, 2007). Second, there is emerging evidence that 
competitive output markets that are developing in Zambia, and elsewhere in southern and 
eastern Africa, are increasingly providing farmers with risk management tools such as formal 
and informal delivery contracts, as well as extension advice (Sitko et al., 2018). To ensure 
sufficient production volumes in regions forecasted to experience drought, private output market 
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actors may encourage diversification to more drought resilient crops, if downstream markets for 
these crops exit. The effects of market access on farmer’s cropping and input behavior in the 
context of seasonal forecast information is examined in Section 5.2. 

2.2 Identifying	drought-resilient	practices	
The baseline hypothesis of this study is that farmers receiving seasonal forecasts and residing 
in areas hit by ENSO-induced drought will be more likely to switch toward climate-resilient 
agricultural practices as an ex-ante coping strategy. To test this argument, we focus on two 
different set of practices: drought-tolerant cropping systems, and changes in the intensity of 
hybrid maize seed use and fertilizer application.  

Three drought-tolerant cropping systems are identified within Zambia’s predominantly maize-
based production systems. These drought tolerant cropping systems are based on 
combinations of seven different crops summarized in Table 1. The first system, MS1, includes 
alternative carbohydrate crops, namely cassava, millet, sorghum, and/or sweetpotato. These 
four crops are recognized for their level of resistance to high temperatures and to low 
precipitations when cultivated in rain-fed agriculture. For example, literature suggests that 
cassava is the most drought resistant perennial crop available to smallholder African farmers, 
as it survives to rainfall shortfalls that often distress maize production (El-Sharkawi, 1993; 
Schlenker and Lobell, 2010). Cropping system MS2 adds drought tolerant legumes, namely 
cowpeas and pigeon-peas, to the previous system. These legumes are unusually adaptable to 
drought and may be able to stabilize production under climate stress through nitrogen fixation 
and the improvements of soil quality (Sileshi et al., 2008, Snapp et al., 2003).  Crop system MS3 
adds cotton to the MS2 system, which historically benefitted from scientific genetic 
improvements in drought tolerance due to its commercial status (Rosenow et al., 1983; Parida 
et al., 2008). Some researchers predict an increase in future cotton production precisely 
because of its high drought resistance (Cline, 2007; Morton, 2007).   

Table 1. Drought resistant crops included in the maize systems  

Cropping 
system 

Crops included Expected 
resilience 

Literature 

MS1 Cassava; millet; 
sorghum; sweet-potato 

High Bidinger, Mahalakshmi and Rao, 1987;  
Blum and Ebercon, 1976; El-Sharkawi, 1993; 
Schlenker and Lobell, 2010. 

MS2 MS1+ cowpeas; pigeon-
peas 

From high 
to medium 

Hall and Grantz, 1981; Sileshi et al., 2008; 
Snapp et al., 2003. 

MS3 MS2+ cotton From high 
to medium 

Rosenow et al., 1983; Parida et al., 2008; 
Cline, 2007; Morton, 2007. 

Source: Authors’ own elaboration. 

The adoption of hybrid maize seeds offers a second potential ex-ante strategy to cope with the 
ENSO-induced drought in Zambia. Most hybrid seeds available in Zambia are adapted to 
shorter growing season lengths than traditional, non-hybrid varieties (Kalinda et al., 2014). In 
the context of the 2015/16 ENSO event in Zambia, many areas of the country were forecasted 
to receive below normal rainfall, particularly in the first half of the rainy season (Zambia 
Meteorological Department, 2016). It is hypothesized, therefore, that residing in a region 
forecasted to be effected by the ENSO-drought and receiving seasonal forecast information will 
be associated with an increase in adoption of hybrid maize seeds and an increased use rate of 
these seeds, all else equal.  
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Finally, the set of practices includes also the adoption and the quantity of inorganic fertilizer. 
Evidence in the literature suggests returns to inorganic fertilizer use are strongly correlated with 
available soil moisture, which in rain-fed systems is driven primary by rainfall quantity and 
distribution (Piha, 1993; Shapiro and Sanders, 1998). Receiving information on a potential 
drought is, therefore, expected to have from a negative to a neutral effect on farmers’ adoption 
of inorganic fertilizers. 

Table 2. Expected impact of seasonal forecasts on adoption 

Practices Hypothesized Impact of seasonal forecasts on adoption 

Normal seasonal forecasts Drought-related seasonal forecasts 

MS1 Negative Positive 

MS2 Negative Positive 

MS3 Negative Positive 

Hybrid seeds Neutral to negative Positive 

Quantity of maize-hybrid 
seeds 

Neutral to negative Positive 

Inorganic fertilizer Positive Neutral to negative 

Quantity of inorganic 
fertilizer 

Positive Neutral to negative 

Source:  Authors’ own elaboration. 
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3 Data	

3.1 Data	description	
The household data used in this study comes from two sources: the El Niño Impact Assessment 
Survey (ENIAS) and the Rural Agricultural Livelihoods Survey (RALS) 2015.  ENIAS was 
developed by the Agricultural Economics Development Division of the Food and Agricultural 
Organization of the United Nations and is comprised of a sub-sample of households included in 
the RALS 2015. The RALS 2015 is a national representative survey of smallholder households, 
conducted jointly by the Zambian Central Statistical Office, Michigan State University (MSU), 
the Indaba Agricultural Policy Research Institute (IAPRI), and the Ministry of Agriculture and 
Livestock.   

ENIAS has been purposely conceived to study the impact and household responses to the 
2015/16 El Niño. It is comprised of two comparable set of households: a first set of households 
selected to be representative of households exposed to ENSO-induced drought in 2015/16,1 
and a second one of potentially non-exposed households, representing the control group of the 
analysis, for a total of 1 311 household observations.  This sample was derived using a 
propensity score matching (PSM) approach at the Standard Enumeration Area (SEA) level. This 
methodology identifies comparable households living in potentially severely affected areas with 
a control set of households in non-affected areas.  

As consequence of this sample design, a large number of RALS 2015 households from the 
north and central areas of the country were excluded from the ENIAS. Since these households 
showed significant differences in terms of their agro-ecological conditions and cropping systems 
than the households in the severely affected areas, the inclusion of these households would 
have unbalanced any estimates on ENSO impact. In addition, a large part of households 
residing in Luapula, Northern and North-Western and most of Copperbelt and Muchinga 
provinces were excluded as their expected rainfall was from normal to above normal during the 
2015/16 season.  The final design of the ENIAS included 22 districts out of the 35 covered in 
the RALS 2015 survey. In these districts, the sampling process identified 149 SEAs, among 
which 60 were expected to be severely affected (treatment) and 89 not severely affected 
(control). From each of these SEAs, a total of 9-10 households were randomly selected from 
the RALS 2015 roster. 

ENIAS and RALS 2015 capture detailed information on household demographics, agricultural 
production practices, income, marketing behaviour, and other socio-economic characteristics, 
and can be combined with to create a unique panel dataset.  While RALS 2015 represented the 
basis for the design and implementation of the ENIAS sample and questionnaire, the ENIAS 
included new questions capturing whether households received seasonal forecast information 
before the agricultural season. From this question derives the binary variable assuming value 
one when a household has received seasonal. Unfortunately, this information is only available 
for the ENIAS 2015/16 wave, thus only these cross-sectional data are used for the present 
analysis. However, the panel dimension of the surveys is used identify changes in household 
production behaviours, namely cropping system and input use changes.  

 

 
1 Their geographical identification is based on Zambia Vulnerability Assessment Committee (ZVAC) Situation Report 
(2016). This report was published in early 2016 and thus it contains non-conclusive prediction on the potential impact 
of El Niño. 
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To study the effect of receiving seasonal forecast when residing in the predicted severely 
affected area, we interact the indicator on receiving seasonal forecast with a second variable 
representing the natural logarithm of the months of drought predicted in the household’s area 
of residence.2 This indicator is constructed by overlaying the monthly maps on drought forecasts 
in Figure A1 in the Annex, extracted from the Seasonal Rainfall Forecast 2015/16 (Zambia 
Meteorological Department, 2016),3 to the geographical distribution of surveyed households. 

The first set of dependent variables consist in three dummies indicating the switching to cropping 
systems MS1, MS2, MS3. The panel dimension of the data allows to determine whether these 
systems were already adopted during the preceding agricultural seasons. Dummies on adoption 
take value 1 if a household was not adopting one of the three drought tolerant cropping systems 
during the RALS 2015 survey year but had switched to one of these systems in the ENIAS 
survey. In contrast, the variable will take value 0 if a household does not switch.4 The second 
set of dependent variables involves two dummies on switching to the adoption of hybrid seed 
and inorganic fertilizer, computed as above. In addition to these, two further dependent variables 
include change in the kilograms of maize seeds applied, and a second one quantifying changes 
in the hectares of land that the farmer applied inorganic fertilizer to.5 

The specification involves demographic controls such as household’s head years of education 
and age, gender of head of household, and number of household members (Dolisca et al., 2006; 
Hassan, Nhemachena, 2008; Nyangena, 2007). The set of controls also include variables on 
wealth, such as the agricultural wealth index constructed using a principal component analysis 
approach, the livestock owned in Total Livestock Units (TLU), and the size of land owned in 
hectares. The effect of these variables on adoption drought resilient practices is unclear a priori. 
On one hand, better socio-economic conditions may increase the likelihood of adoption as 
wealthier farmers may be less resource-constraints, while, on the other hand, adoption may be 
reduced among wealthier farmers because they are more able to insure their income through 
other means, such as off-farm activities (Deressa et al., 2009).  

Government credit or input subsidy programs may serve to relax the impact of resource 
constrains on adaptive responses (Hassan and Nhemachena, 2008). The specification, 
therefore, controls for two variables capturing the share of credit and input subsidy (FISP) 
recipients at enumeration area level to exclude any form of reverse causality in reception (Asfaw 
and Maggio, 2018). Two dummies on the access to extension services and on cell phone use 
for receiving agricultural information are used to control for the possibility that the seasonal 
forecast variable would capture an effect driven by other types/sources of agricultural 
information. Finally, both specifications control for the likelihood of receiving a drought shock, 
using a drought shock probability index. This indicator captures the share of agricultural seasons 
with a drought shock in a given area. An agricultural season is defined as drought-shocked if its 
6-months Standardized Precipitation Index (SPI) is equal or lower than  
-1.5 (Maggio, Sitko and Ignaciuk, 2018; Scognamillo, Asfaw and Ignaciuk, forthcoming). The 
SPI index is constructed using location specific rainfall data measured on 10 days interval and 
extracted from the Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS). 
CHIRPS delivers re-elaborated rainfall data with 0.5 degree of spatial resolution which have 

 
2 To include the zero observations, it is added one to this variable before of log-linearizing. 
3 This document has been edited before the start of the agricultural season and published on the 19/01/2016. 
4 This implies the exclusion from the estimation sample of households already adopting this system and explains the 
varying number of observations in the results tables.  
5 As before, continuous and counting variables are transformed taking the natural logarithm. To include zeros 
observations, we add one before taking the logarithm. Unfortunately, EINAS allow to measure the appliance of 
inorganic fertilizer only in hectares. 
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been matched to the household data using the centroid of households’ villages. To control 
whether input market mechanisms are influencing the selection of a given cropping system, the 
specification for the first set of dependent variables includes as controls the average seed prices 
for legumes, staples, and cash-crops. Finally, the distance from Food Reserve Agency depots, 
a parastatal marketing board that buys crops from farmers, and the total number of traders 
buying grain within the farmers’ village as indicators of public and private output market 
institutions.6 

  

 
6 Since these variables derive from household level questions, we use the median distance and number of traders to 
exclude that their computation is affected by outliers. 
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4 Research	design	

The adoption of climate-resilient cropping strategies and practices is modelled using a random 
utility framework, where farmers take the adoption’s decision while maximizing their utility 
function subject to input, ecological, demographic, and institutional constraints (Di Falco and 
Veronesi, 2013; Feder, 1982; Manda et al., 2016). The background of this framework can be 
adapted to a non-separable household model where adoption of MS1, MS2, MS3, and hybrid 
seeds can be simultaneously influenced by exogenous determinants (De Janvry, Fafchamps 
and Sadoulet, 1991; Wouterse and Taylor, 2008). Household’s indirect utility 𝑉subject to the 
adoption of a practice Y and a set of observable determinants 𝑋# can take the following form: 

𝑉#$ = 𝑓[P)(SF), K)); 	𝑋#]      (1) 

Where the adoption of practice P) is a function of receiving seasonal forecasts (SF)) a vector of 
natural, physical, human, financial, and social capital	X). The assumption is that household i will 
maximize the expected indirect utility 𝑉#$ by comparing the expected utility derived from the 
adoption of practice p against the one derived from any alternative of practice k, selecting 
practice p if and only if 𝑉#$> 𝑉#4.   

4.1 Empirical	strategy	
Receiving climate seasonal forecasts and living in the predicted ENSOENSO drought area are 
two non-random events which are likely correlated with individual wealth, skills, education, 
access to information, and other socio-economic characteristics. For example, compared to an 
illiterate individual living in ENSOENSO drought area, a literate one may be able to read 
seasonal forecasts on the newspaper, and therefore decide to adopt the practices under study. 
The risk of not accounting for the non-random assignment, in this case, is over-estimating the 
impact of seasonal forecasts on the probability of adoption, as part of these households may 
have however adopted these technologies independently from the reception of the seasonal 
forecasts. While experimental works on the impact of policy actions frequently base their 
analysis on trials that assign randomly the treatment on a treated and control group, non-
experimental researches have often focused on methodologies to increase the comparability 
between the treated and the control groups. ENIAS has the advantage of being purposely 
conceived for studying the impact of El Niño shocks and therefore the sample is already 
balanced in terms of likelihood of receiving a shock, as the design approach has included the 
most comparable set of households across that dimension.7 However, the sample remains 
unbalanced on the reception of seasonal forecasts. For the purpose of our analysis, therefore, 
we apply a matching and reweighting strategy to increase the comparability between the two 
groups of households across the seasonal forecast dimension. The baseline method to match 
treated and non-treated households is the nearest neighbor (NN) matching, implemented 
through the estimated propensity scores (PSM) considering the three nearest observations and 
allowing for replacement after each match. This approach works on pairs of observations as it 
selects and match an individual in the treated group with one or more individuals from the control 
groups with the closest propensity score value (Caliendo and Kopeinig, 2008).8  The matching 
between individuals is based on a set of variables likely influencing the treatment status. The 
selection of the variables has several implications for the functioning of the approach, as the 

 
7 Using ENIAS data, Alfani et al. (2019) finds a strong and negative impact of ENSO on yield and income per capita 
in Zambia. 
8 As a robustness, we also match the households matching with the 2-, 5- and 1-k closest observations for the 
matching and the results remains consistent with the main findings of the paper.  
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exclusion of important covariates is likely to bias the estimated coefficients, while the inclusion 
of controls’ uncorrelated dimensions reduce the likelihood of finding a common support region 
between the treated and the control (Bryson, Dorsett and Purdon, 2002; Francesconi and 
Nicoletti, 2006; Heckman, Ichimura and Todd, 1997). As suggested by Caliendo and Kopeinig 
(2008), we use economic theory and previous related findings to identify four sets of 
determinants affecting the likelihood of accessing to seasonal forecast: information access, 
institutional and non-institutional networks, socio-demography characteristics, geographical and 
market access determinants. Descriptive results in Table 3 show that the two groups of 
households have several differences in access to information, institutional and non-institutional 
network, and geographical distribution. In contrast, pre-match samples are similar in terms of 
socio-demography as a consequence of the original PSM sample design. Covariates similarities 
between the two groups sharply increase as shown by the post-match summaries, where the 
test conducted does not report any statistically significant difference. Figure 1 confirms the 
existence of a common support region across the propensity score distribution, thus allowing to 
test the impact of the treatment with similar likelihood of being treated. 

Figure 1. Common support region by treatment status 

 
Notes: The figure displays the distribution of the propensity score for the common support region by treatment status. Red 
histograms and blue histograms are treated and untreated observations in the common support regions, respectively. 
Source:  Authors’ own elaboration. 
 

Unfortunately, given that the question on weather forecasts is only included in ENIAS sample, 
it is not possible to control for unobserved heterogeneity. We deal with this issue by adding the 
province dummies included in the geographical determinants, whose balancing ensure that 
households are exposed to a similar set of unobserved cultural, institutional, and geographical 
unobserved determinants. Finally, as further check we run the same linear probability model 
using weights computed by the propensity score values (Francesconi and Nicoletti, 2006). 
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Table 3. Test for balance before and after matching 

  
  

Pre-Matched   Matched   

Treated 
(seasonal 

forecast=1) 

Control 
(seasonal 

forecast=0) 

Pre-matched 
balance  
T-test 

Treated 
(seasonal 

forecast=1) 

Control 
(seasonal 

forecast=0) 

Matched 
balance  
T-test 

Distance from FRA (km) 6.51 6.51 
 

6.35 7.03 
 

Total number of traders 4.73 4.73 
 

4.76 4.69 
 

Radio (1=yes) 0.82 0.63 *** 0.82 0.80 
 

Tv (1=yes) 0.38 0.29 *** 0.38 0.40 
 

Cellphone (1=yes) 0.52 0.53 
 

0.52 0.52 
 

Extension service (1=yes) 0.49 0.44 * 0.50 0.48 
 

Fellow farmers network 
(1=yes) 

0.43 0.46 
 

0.43 0.47 
 

Share of FISP recipient 
(EA's level) 

0.51 0.47 *** 0.51 0.51 
 

Share of credit recipient 
(EA's level) 

0.28 0.21 *** 0.28 0.28 
 

Female-headed household 
(1=yes) 

0.17 0.22 ** 0.17 0.16 
 

Household's age 50.04 50.71 
 

50.10 50.72 
 

Head's education (years) 6.46 5.86 ** 6.40 6.48 
 

Household size 7.95 7.92 
 

7.92 8.04 
 

Agricultural Wealth Index 0.03 -0.04 
 

0.02 0.03 
 

Land owned (hectares) 7.94 6.14 
 

7.83 8.94 
 

Residence in El Niño area 
(1=yes) 

0.84 0.82 
 

0.84 0.84 
 

Population density 
(pop/km2) 

31.38 30.32 
 

31.28 31.24 
 

Copperbelt (1=yes) 0.05 0.10 *** 0.05 0.05 
 

Eastern (1=yes) 0.63 0.40 *** 0.62 0.61 
 

Lusaka (1=yes) 0.06 0.08 
 

0.06 0.07 
 

Muchinga (1=yes) 0.02 0.01 
 

0.02 0.01 
 

Southern (1=yes) 0.03 0.18 *** 0.03 0.02 
 

Western (1=yes) 0.03 0.05 * 0.03 0.02 
 

Notes: The table display the control variables for the propensity score match with 3-k neighbors and the results from the 
balance tests before and after the propensity score. Control variables are dummies on radio and tv ownership, use of 
cellphone for gathering information on agriculture, access to extension service, reception of advice from fellow farmers. 
Other controls include the share of FISP and credit recipients at village level, dummy for female-headed household, 
household size, years of education of the head, agricultural wealth index, land-owned in hectares, population density, 
dummy on residence in El Niño area and on provinces, distance from Food Reserve agency and total number of traders. 
Source:  Authors’ own elaboration. 
 

We adopt two empirical approaches using the resulting sample of the matching and weight 
strategy. The first approach relies on a simple OLS linear probability model for the common 
support region, taking the following form: 
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𝑃# = β7 + γ:𝑆𝐹#= + γ>𝐸𝑁= +	𝜗	𝑆𝐹#= ∗ 𝐸𝑁= + δ𝑋#= + 𝜀#   (2) 

𝑃# is a dummy taking value 1 if the household i =1,…N resident in EA c switch from a non-climate 
resilient in RALS 2014/15 to a climate-resilient cropping system (MS1, MS2, MS3) in ENIAS 
2015/16, or if the households adopt hybrid seeds or inorganic fertilizer. Otherwise,  𝑃#= is a 
continuous variable for the amount of hybrid maize-seeds planted or for the quantity of inorganic 
fertilizer applied to the fields. In addition, β7denotes the intercept, 𝑆𝐹#= is a dummy activating if 
the household has received seasonal forecasts, 𝐸𝑁= is the natural logarithm of the expected 
months of  drought shock in 2015/16 agricultural season, 𝑆𝐹#= ∗ 𝐸𝑁= denotes their interaction 
term and captures the reception of drought-related seasonal forecasts, and	γ:, γ> and 𝜗 are 
their associated coefficients. Finally, the model also includes a matrix of household and the 
matrix of EA-level controls	𝑋#=, their vector of coefficients δ,	 and the normally distributed error 
term 𝜀# clustered at village level. 

The second approach relies on a Seemingly Unrelated Regression (SUR) equation, which 
addresses the possibility of farmers implementing the combination of climate-resilient practices 
while accounting for interdependences in adoption (Zellner, 1962; Zellner, 1963). Since 
practices MS1, MS2 and MS3 are mutually exclusive, the simultaneity derives from the adoption 
of each of these practices and hybrid seeds. This model focus on adoption rather than shifting 
to new practices, this because it requires the employment of the full sample and the expansion 
of the first model across the climate resilient practices j, as follow:  

𝑃#E = β7F + γ:F𝑆𝐹#=E + γ>F𝐸𝑁=E +	𝜗	𝑆𝐹#=E ∗ 𝐸𝑁=E + δF𝑋#E + 𝜀#E   (3) 

Where, differently from (2), j denotes the practice adopted and 𝜀 is assumed to be correlated 
across the cropping and the hybrid seeds adoption equations, where errors 𝜀 are characterized 
the following overall variance-covariance matrix: 

Ω = (𝜀𝜀ʹ ) = ∑⊗ 𝐼N       (4)  
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5 Results	

5.1 Statistics	on	seasonal	forecast	receivers	
The first part of Table 3 presents the characteristics of the group of households receiving 
(treated) and not receiving (control) seasonal forecasts at national level. The percentage of 
households receiving seasonal forecasts is stable for the national sample (41 percent) and for 
the subsample residing in ENSO forecasted area (42 percent). Summaries in Table 3 suggest 
that households receiving seasonal forecast are more likely to have access to radio  
(+19 percent) and to television (+9 percent), which are likely to be important sources of seasonal 
forecast information. Households accessing seasonal forecasts are also more likely to be in 
contact with extension services (+5 percent) and reside in enumeration areas with lower access 
to social security support and higher development of credit institutions, as suggested by the 
differences in the shares of FISP recipients (-5 percent) and higher credit recipients (+4 
percent). This may indicate that the zones of residence of these households are characterized 
by higher economic development.  Households receiving seasonal forecast also more likely to 
be male-headed (+5 percent) and more educated, with a between groups difference of about 
0.6 years of completed education. Table A1 in the Annex reports similar differences between 
groups for the sub-sample residing in ENSO forecasted areas, thus insuring that balancing the 
sample at national level will also balance the differences for the households potentially hit by 
droughts. A preliminary unconditional analysis suggests that households receiving seasonal 
forecasts have a significantly higher maize yield, both in the overall sample and in the 
subsample located in the expected severely affected areas. The average maize yield is 
generally lower in the groups residing in the ENSO affected areas, indicating that these variables 
are likely capturing the shock that occurred during the 2015/16 season. Crop income follows a 
similar pattern, although in this case the difference between the two groups is not significant 
(Figures A2 and A3 in the Annex).  

Taken together, this descriptive evidence suggests that seasonal forecast information on the 
ENSOENSO induced drought did not reach the majority of smallholders in Zambia, even among 
those in areas predicted to be effected, and that those that received information were on 
average better-off farmers. Expanding the reach of seasonal forecast information to poorer 
households in more marginal areas is therefore an important priority to increase climate 
adaptation among smallholders.  

5.2 Average	impact	of	drought-related	forecasts		
Drought-related seasonal forecasts are an important determinant for farmers switching to 
climate resilient cropping systems. For all the three drought tolerant cropping systems, farmers 
residing in forecast region of the ENSO-related drought and receiving seasonal forecasts 
significantly increase their probability of adoption of MS1, MS2 and MS3 compared to 
households living in same areas but not receiving the information (Table 4). Receiving seasonal 
forecast information in affected regions have a comparable impact for the adoption of these 
three cropping systems. In particular, receiving information on the ENSOENSO-induced drought 
increases the probability of adopting the MS1 system by 6.6–7 percent, the MS2 system by  
7.3–8.2 percent, and the MS3 system by 5.5–7.7 percent,9 conditional on living in effected area.  

The results show that across the whole sample, including households in unaffected areas, the 
seasonal forecast dummy variable correlates negatively with adoption of these systems 

 
9 We are referring to the probability of adoption computed as exp(𝑃#E=𝐸[𝑆𝐹#=E=1/𝐸𝑁=E = 1]- 𝐸[𝑆𝐹#=E=0/𝐸𝑁=E = 1])-1. 
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because the variable is capturing the effect of seasonal forecasts in areas where Zambia’s 
Meteorological Department expected rainfall to be normal (see Figure 1). The estimated 
decrease in probability of adoption, therefore, confirms that farmers adopt these drought-
tolerant cropping systems as an ex-ante response to the expected drought shock. Households 
not receiving seasonal forecasts but residing in El Niño forecasted areas are not likely to change 
their adoption behavior.  

Among the others controls, few are found to have a significant impact on the dependent 
variables, as expected given the matching strategy adopted. The exception is a household’s 
agricultural wealth index, which is negatively associated with the switch toward a climate-
resilient cropping system. This is likely because wealthier households have alternative means 
of coping with drought, such as investing in off-farm activities. 

Estimates show that farmers receiving drought-related seasonal forecast are likely to apply 
double the quantity of hybrid seeds than farmers residing in the same zones but not receiving 
weather information, all else equal. In contrast, the seasonal weather forecasts has no effect on 
households residing in unaffected areas. Estimates exclude any correlational evidence between 
both the probability and amount of inorganic fertilizer applied, and the prediction of lower than 
normal rainfall. Since inorganic fertilizer delivers increasing returns with higher rainfall, the 
absence of an effect on adoption provides support to the main hypothesis of this study. In terms 
of controls, adoption of hybrid seeds is more likely to occur in younger and more educated 
households, characterized by more wealth and agricultural assets, such as land (see Table A3 
in the Annex). A similar result applies for adopters of inorganic fertilizers, whose adoption is 
negatively correlated with the number of livestock owned, as possibly these farmers substitute 
inorganic fertilizer with manure. Among the remaining controls, households residing in areas 
with more access to FISP significantly increases the amount of seeds and fertilizer applied. 
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Table 4. Seasonal forecasts and selection of climate resilient cropping systems 
under drought risk 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 
To MS1 To MS1 To MS1 To MS2 To MS2 To MS2 To MS3 To MS3 To MS3 

  OLS - 
CS 

sample 

OLS - CS 
sample 

with IPW 

SUR OLS - 
CS 

sample 

OLS - CS 
sample 

with IPW 

SUR OLS - 
CS 

sample 

OLS - CS 
sample 

with IPW 

SUR 

Months expected drought x 
seasonal forecasts 

0.070** 0.073** 0.066*** 0.080** 0.082** 0.073*** 0.072** 0.077** 0.055* 

 (0.034) (0.036) (0.023) (0.034) (0.036) (0.024) (0.035) (0.036) (0.030) 

Months expected drought 
(ln) 

-0.044 -0.039 -0.037 -0.042 -0.040 -0.033 -0.003 -0.007 0.031 
 

(0.039) (0.034) (0.024) (0.039) (0.034) (0.024) (0.049) (0.042) (0.031) 

Seasonal forecasts (1=yes) -0.118** -0.121** -
0.119*** 

-
0.127*** 

-0.131** -
0.126*** 

-
0.132*** 

-0.137*** -
0.130***  

(0.048) (0.052) (0.031) (0.048) (0.052) (0.032) (0.048) (0.052) (0.041) 

Agricultural Wealth Index -
0.023*** 

-0.026*** -
0.030*** 

-
0.022*** 

-0.024*** -
0.029*** 

-0.023** -0.024** -0.020 
 

(0.008) (0.008) (0.010) (0.008) (0.008) (0.010) (0.010) (0.011) (0.013) 

Livestock owned (TLU) -0.001* -0.001 -0.001 -0.001* -0.001* -0.001 -0.001** -0.001* -0.001  
(0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001) 

Land owned (ln) 0.013 0.022* 0.013* 0.011 0.020* 0.012 0.005 0.013 0.001  
(0.010) (0.011) (0.007) (0.010) (0.011) (0.007) (0.011) (0.013) (0.009) 

Share of credit access  
(EA's level) 

-0.012 -0.014 -0.054** -0.004 -0.009 -0.051* 0.055 0.052* 0.085** 
 

(0.017) (0.013) (0.027) (0.017) (0.013) (0.027) (0.033) (0.030) (0.035) 

Share of FISP recipients  
(EA's level) 

0.018 0.013 0.018 0.018 0.014 0.025 0.016 0.008 0.005 
 

(0.032) (0.030) (0.027) (0.031) (0.031) (0.028) (0.037) (0.037) (0.036) 
Agricultural advice from 
extension services (1=yes) 

-0.020 -0.035* -0.015 -0.015 -0.030 -0.007 -0.021 -0.034 -0.003 
 

(0.016) (0.019) (0.016) (0.016) (0.019) (0.017) (0.019) (0.023) (0.021) 

Drought shock probability  0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001  
(0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) 

Cell phone for gathering 
information (1=yes) 

0.006 -0.003 0.012 0.005 -0.002 0.009 -0.008 -0.014 -0.016 
 

(0.012) (0.013) (0.013) (0.012) (0.014) (0.014) (0.015) (0.018) (0.017) 

Distance from FRA (ln) -0.008 -0.010 0.014* -0.014 -0.014** 0.011 -0.012 -0.014 -0.004  
(0.010) (0.007) (0.008) (0.009) (0.007) (0.008) (0.012) (0.010) (0.010) 

Number of traders (ln) -
0.035*** 

-0.021* -
0.037*** 

-0.031** -0.018 -
0.036*** 

-0.032** -0.022 -
0.048***  

(0.013) (0.012) (0.010) (0.012) (0.012) (0.010) (0.014) (0.015) (0.013) 
information on crop and 
weather 

0.010 0.016* 0.014 0.005 0.013 0.011 0.021 0.024 0.019 
 

(0.012) (0.010) (0.015) (0.014) (0.011) (0.015) (0.019) (0.017) (0.020) 

Other demographic controls Yes Yes Yes Yes Yes Yes Yes Yes Yes 

Province dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-squared 0.14 0.18 0.21 0.15 0.19 0.21 0.11 0.13 0.28 

Chi-Squared - - 229.1 - - 237.39 - - 149.3 

Observations 967 967 967 961 961 961 924 924 924 

Notes: The table display estimates from a linear probability and a SUR model on the probability of switching from a non-
drought resilient cropping system to a drought resilient cropping system between the agricultural seasons 2014/2015 and 
2015/2016. The drought resilient systems include Maize and one or more of the following crops:  
MS1 = cassava, millet, sorghum, sweetpotato; MS2 = cassava, cotton, cowpeas, millet, sorghum, sweetpotato, cowpeas, 
pigeon-peas; MS3 = cassava, millet, pigeon-peas, sorghum, sweetpotato. The full list of controls is available in the Annex 
(Table A2). Errors are clustered at village level. Level of significances are *p<0.10; **p<0.05; ***p<0.01. 
Source:  Authors’ own elaboration. 
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Table 5. Seasonal forecasts and selection of other agricultural practices under 
drought risk  

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)  
Hybrid 
seed 

(1=yes) 

Hybrid 
seed 

(1=yes) 

Hybrid 
seed 

(1=yes) 

Kg of 
hybrid 
seed 
maize 

(ln) 

Kg of 
hybrid 
seed 
maize 

(ln) 

Kg of 
hybrid 
seed 
maize 

(ln) 

inorganic 
fertilizer 
applied 

at hh 

inorganic 
fertilizer 
applied 

at hh 

hectares 
of 

inorganic 
fertilizer 
use at hh 

hectares 
of 

inorganic 
fertilizer 
use at hh 

  OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

SUR OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

SUR OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

Months expected 
drought x seasonal 
forecasts 

0.316*** 0.322*** 0.068* 0.922*** 1.056*** 0.230 0.192 0.211 0.051 0.087 

 
(0.113) (0.111) (0.041) (0.315) (0.308) (0.156) (0.264) (0.216) (0.611) (0.532) 

Months expected 
drought (ln) 

-0.219* -0.172 -0.040 -0.560 -0.553 -0.202 -0.298* -0.150 -1.973*** -1.812*** 
 

(0.125) (0.126) (0.042) (0.344) (0.338) (0.160) (0.174) (0.194) (0.310) (0.293) 
Seasonal forecasts 
(1=yes) 

-0.292* -0.325** -0.015 -0.675 -0.944** 0.092 -0.343 -0.366 -0.039 -0.181 
 

(0.155) (0.158) (0.055) (0.426) (0.439) (0.209) (0.383) (0.316) (0.895) (0.764) 

Agricultural Wealth 
Index 

0.119** 0.140** 0.045** 0.556*** 0.556*** 0.391*** 0.221** 0.151 0.450* 0.358 
 

(0.054) (0.053) (0.018) (0.188) (0.186) (0.067) (0.101) (0.111) (0.243) (0.220) 
Livestock owned 
(TLU) 

0.003 0.001 0.000 0.030** 0.026* 0.015*** -0.018*** -0.024*** -0.014 -0.023 
 

(0.004) (0.004) (0.001) (0.014) (0.014) (0.005) (0.006) (0.007) (0.015) (0.015) 

Land owned (ln) 0.050* 0.064** 0.045*** 0.283*** 0.353*** 0.371*** -0.027 0.025 0.198 0.279**  
(0.026) (0.031) (0.013) (0.097) (0.104) (0.049) (0.051) (0.051) (0.122) (0.111) 

Share of credit access 
(EA's level) 

0.421*** 0.442*** 0.267*** -0.239 -0.100 -0.344* 0.280** 0.287 0.091 0.119 
 

(0.104) (0.115) (0.048) (0.365) (0.390) (0.182) (0.139) (0.172) (0.223) (0.254) 

Share of FISP 
recipients (EA's level) 

0.104 0.129 0.242*** 0.648 0.611 0.930*** 0.204 0.437 -0.197 -0.022 
 

(0.103) (0.124) (0.049) (0.459) (0.520) (0.184) (0.266) (0.283) (0.372) (0.341) 

Agricultural advice 
from extension 
services (1=yes) 

0.066 0.055 0.022 0.283 0.204 0.004 -0.008 -0.042 0.064 -0.016 

 
(0.082) (0.093) (0.029) (0.228) (0.266) (0.109) (0.096) (0.102) (0.109) (0.139) 

Drought shock 
probability  

0.009 0.009 0.003 0.003 0.005 -0.019* -0.003 -0.006 -0.008 -0.009 
 

(0.010) (0.009) (0.003) (0.023) (0.024) (0.011) (0.010) (0.009) (0.017) (0.014) 
Cell phone for 
gathering information 
(1=yes) 

0.089* 0.093 0.034 0.169 0.234 0.127 -0.029 -0.060 -0.061 -0.098 

 
(0.051) (0.065) (0.024) (0.198) (0.229) (0.090) (0.077) (0.082) (0.147) (0.172) 

Distance from FRA 
(ln) 

-0.054 -0.078* 0.003 -0.209 -0.299** -0.037 -0.044 -0.100 -0.066 -0.119 
 

(0.040) (0.046) (0.014) (0.127) (0.131) (0.053) (0.059) (0.063) (0.103) (0.096) 

Number of traders (ln) -0.090* -0.058 -0.028 -0.220 -0.090 0.067 -0.043 -0.079 0.122 0.063  
(0.047) (0.056) (0.017) (0.136) (0.168) (0.066) (0.062) (0.066) (0.103) (0.090) 

Information on crop 
and weather (1=yes) 

-0.035 -0.076 -0.004 0.006 -0.110 -0.026 0.217** 0.180 0.428 0.344 
 

(0.069) (0.078) (0.027) (0.217) (0.222) (0.102) (0.092) (0.112) (0.273) (0.277) 

Constant 1.043** 0.826* 0.900*** 1.685 1.189 2.418*** 0.663 0.487 2.966*** 3.352***  
(0.407) (0.465) (0.183) (1.180) (1.406) (0.694) (0.807) (0.860) (1.076) (1.073) 

Other demographic 
controls 

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 
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  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)  
Hybrid 
seed 

(1=yes) 

Hybrid 
seed 

(1=yes) 

Hybrid 
seed 

(1=yes) 

Kg of 
hybrid 
seed 
maize 

(ln) 

Kg of 
hybrid 
seed 
maize 

(ln) 

Kg of 
hybrid 
seed 
maize 

(ln) 

inorganic 
fertilizer 
applied 

at hh 

inorganic 
fertilizer 
applied 

at hh 

hectares 
of 

inorganic 
fertilizer 
use at hh 

hectares 
of 

inorganic 
fertilizer 
use at hh 

  OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

SUR OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

SUR OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

Province dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-Squared 0.28 0.31 0.38 0.36 0.41 0.34 0.27 0.33 0.26 0.26 

Observations 308 308 1,172 308 308 1,172 168 168 168 168 

Notes: The table display estimates from a linear probability and a SUR model on the adoption different practices during the 
agricultural season 2015/16. Dependent variables are a dummy on adoption of hybrid seed and inorganic fertilizer, the 
natural logarithm kg of maize hybrid seed planted and of the hectares of land under inorganic fertilizer. The full list of controls 
is available in the Annex (Table A3). Errors are clustered at village level, significance level are *p<0.10; **p<0.05; ***p<0.01. 
Source:  Authors’ own elaboration. 
 

5.3 Marginal	effects	at	different	level	of	output	market	access	

Access to competitive output markets has a positive and significant effect on the probability that 
a farmer will adopt adaptive farm practices in response to seasonal forecast information. Using 
the number of traders that come to the village to buy grains, the point estimates of Figure 2 
shows that receiving seasonal forecast in areas with a high probability of drought is more likely 
to influence adoption of MS1, MS2 and MS3, than hybrid seeds at different level of total traders’ 
distribution. Households receiving drought seasonal forecasts increase their likelihood of 
adopting drought tolerant systems from zero when there are no private traders to 7 percent 
when the number of agricultural traders in their village is five. The concavity of the curves 
suggests that a marginal increase in the number of traders has a strong and significant effect at 
the low tail of the distribution, when the number of trader is between 5 and 10.  
The estimated predicted probability of adoption is between 5–10 percent when the magnitude 
(i.e. the time spell) of the predicted drought increases by 1 percent. This effect is positive but 
marginally decreasing, indicating that at higher levels of trader density, further expansions of 
the market would not have any further significant impact on adoption. This also suggests that 
the underlying mechanism is related to access to reasonably competitive markets, rather than 
to an unconditional enlargement of the market itself.  

Figure 3 show a similar pattern for the adoption of hybrid seeds, which appear more linear, and 
for the amount of hybrid seeds adopted. In terms of magnitude, receiving seasonal forecast 
increase the likelihood of hybrid seeds adoption by about 5 percent. These results suggest the 
need to support private investment in output markets as a strategy to encourage adaptive 
responses by smallholders to seasonal forecast information.   
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Figure 2. Seasonal forecasts, output market and selection of drought-resilient 
cropping systems 

a. MS1 

 

b. MS2 

 
c. MS3 

 
Notes: The figure displays the marginal effect of receiving weather forecast on the probability of switching to resilient 
cropping systems at different level of output market access. 
Source:  Authors’ own elaboration. 
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Figure 3. Seasonal forecasts, output market and selection of hybrid seeds 

a. Hybrid seeds 

 

b. Amount of maize hybrid seeds 

 
Notes: The figure displays the marginal effect of receiving weather forecast on the probability of adopting hybrid seeds and 
on the quantity of maize hybrid adopted at different level of output market access. 
Source:  Authors’ own elaboration. 

 

The Annex reports the results of four types of robustness tests run to check the consistency of 
the main findings. First, we estimate the specifications reported in Table 5 using only the closest 
neighbor observation for the matching strategy. As reported in Table A4, the result is stable and 
consistent with the main findings. Secondly, in Table A5 we report the impact of seasonal 
forecast on the probability of shifting to MS1 using the following set of matching strategies: two 
and five closest matches, radius with caliber equal to 0.03 and kernel match. All these 
specifications confirm the positive impact of drought-related seasonal forecasts on the 
propensity of adoption of drought-resilient technologies and practices. Thirdly, we exclude that 
the model is capturing a wealth effect rather than a coping strategy by testing whether 
households receiving seasonal forecasts in El Niño areas are also more likely to own drought-
unrelated technologies. The four specifications reported in Table A6 test for ownership of 
plough, harrow, sprayer and tractor. The dependent variables are four dummies activating in 
case of ownership of the above tools. Since coefficient of the interaction terms is not significant 
in any specification, we exclude that farmers receiving drought-related forecasts are more likely 
to be own those tools (see Table A6 in the Annex).10 Finally, since linear probability models are 
likely to report estimated coefficients out of the 0-1 bound, we test the consistency of the results 
when correcting for the heteroscedasticity of the observations 	ℎ# = K𝑥#M𝛽(1 − 𝑥#M𝛽)P. This 
involves a two-step procedure, where the weight	ℎQR: >⁄ , computed using the first step 
coefficients, is multiplied to the dependent variable and regressors included in the second step. 
The second step coefficient reported in Table A7 confirms the consistency of the estimated 
coefficients for the drought-related forecasts. 

  

 
10 As alternative model, we also test a probit specification on the adoption of MS1, MS2 and MS3 (results available upon request). 
The results are positive and significant for MS2 and MS3 and consistent with the findings of the papers, whereas MS1 report a 
positive but slightly insignificant coefficient (P>|z|=0.13). 
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6 Conclusions	

Three key findings emerge from this study. First, access to information on probable adverse 
weather conditions positively influences the adoption of adaptive farm practices. Farmers 
residing in areas forecasted to experience drought conditions as a result of the 2015/16 ENSO 
event, and who received seasonal forecast information, were likely to adopt drought tolerant 
cropping systems and/or apply improved maize seed varieties, while farmers in the same areas 
that did not receive seasonal forecast information did not significantly alter their farming 
practices. Moreover, the predicted severity of the drought in a given region influences the 
probability of adopting more drought-tolerant practices.  

Second, access to seasonal forecast information in Zambia remains relatively low. Only  
41 percent of households in the ENIAS received information regarding the probability of an 
ENSO related drought prior to the farming season. Households receiving that information are 
more likely to be male-headed and better educated. Also, these households are more likely to 
access to sources of information for seasonal forecasts, such as radio and television, and reside 
in areas where credit market are more developed and where the community members are less 
in need of social assistance.   

Finally, access to competitive input and output markets have positive effects on the probability 
of adopting drought-tolerant farming practices. This is likely because private markets may relax 
diverse constraints to farmers’ adoption of the practices by increasing the availability of diverse 
farm inputs, increasing access to information on potential responses to impeding droughts, and 
lowering the costs and risks associated with changes in farm practices. 

Three key policy recommendations come out of this analysis. First, while seasonal forecast 
information can induce adaptive responses by farmers, access to this information remains very 
limited. Investments in improving access to this information, particularly for households in 
remote areas or households with limited education or asset ownership (such as phones or 
radios) is critical. Second, utilizing input subsidy programs to increase private investment, 
particularly in drought prone regions, may offer win-win opportunities to improve farmers’ 
adaptive capacity. Descriptive evidence presented in this study shows clear differences in terms 
of the socio-economic status of households that adopted drought-tolerant practices versus 
those that did not. Targeting poorer households in regions forecasted to receive below normal 
rainfall with input vouchers for drought tolerant crops that are redeemable at private sector 
outlets can increase the share of households that adopt these systems directly through the 
provision of vouchers and indirectly through improved inputs market conditions for farmers that 
do not receive vouchers. Finally, policies to support private investment in agricultural markets 
needs to be considered as part of a broader climate change adaptation plan. Several areas to 
consider in this regard, include: i) improved predictability in agricultural trade policy, such as the 
use of transparent price triggers for export restrictions or waivers on import tariffs (Jayne, 2012; 
Chapoto and Jayne, 2009); ii) promote the diversification of commodities purchased by the Food 
Reserve Agency in Zambia and the use of local private buyers to purchase crops from farmers, 
including in remote regions, in order to foster private investment in output markets in these 
regions and for alternative crops; iii) support the development of structured trading systems, 
including the Zambian Agricultural Commodity Exchange, by utilizing the platform to acquire 
and manage Zambia’s grain reserve (Sitko and Jayne, 2014).  
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Annex	

Table A1. Summaries of seasonal forecast determinants in El Niño area 

  Seasonal forecasts=0 
(N=565) 

Seasonal forecasts=1 
(N=403) 

  

 
Mean Mean T-test 

Radio  (1=yes) 0.62 0.79 *** 

Tv (1=yes) 0.26 0.36 *** 

Cellphone (1=yes) 0.48 0.48 
 

Extension service (1=yes) 0.46 0.50 
 

Fellow farmers network (1=yes) 0.45 0.45 
 

Share of FISP recipient 
(EA's level) 

0.44 0.50 *** 

Share of credit recipient  
(EA's level) 

0.24 0.31 *** 

Female-headed household (1=yes) 0.21 0.17 * 

Household’s age 50.06 50.05 
 

Head's education (years) 5.72 6.25 ** 

Household size 7.95 7.84 
 

Agricultural Wealth Index 0.00 0.04 
 

Land owned (hectares) 4.91 5.38 
 

Population density (pop/km2) 30.74 34.73 ** 

Distance from FRA (km) 6.74 6.50 
 

Total number of traders 4.06 4.33   

Source: Authors’ own elaboration. 
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Table A2. Impact of seasonal forecasts on adoption of climate-resilient systems,  
full specification 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

To MS1 To MS1 To MS1 To MS2 To MS2 To MS2 To MS3 To MS3 To MS3 

  OLS - 
CS 

sample 

OLS - 
CS 

sample 
with 
IPW 

SUR OLS - 
CS 

sample 

OLS - 
CS 

sample 
with 
IPW 

SUR OLS - 
CS 

sample 

OLS - 
CS 

sample 
with IPW 

SUR 

Months expected drought x  
seasonal forecasts 

0.070** 0.073** 0.066*** 0.080** 0.082** 0.073*** 0.072** 0.077** 0.055* 

 
(0.034) (0.036) (0.023) (0.034) (0.036) (0.024) (0.035) (0.036) (0.030) 

Months expected drought (ln) -0.044 -0.039 -0.037 -0.042 -0.040 -0.033 -0.003 -0.007 0.031 
 

(0.039) (0.034) (0.024) (0.039) (0.034) (0.024) (0.049) (0.042) (0.031) 

Seasonal Forecasts (1=yes) -0.118** -0.121** -0.119*** -0.127*** -0.131** -0.126*** -0.132*** -0.137*** -0.130*** 
 

(0.048) (0.052) (0.031) (0.048) (0.052) (0.032) (0.048) (0.052) (0.041) 

HH size (ln) -0.009 -0.017 0.016 -0.010 -0.017 0.017 0.006 0.005 0.013 
 

(0.016) (0.015) (0.015) (0.015) (0.015) (0.016) (0.019) (0.020) (0.020) 

Age of household head (ln) 0.035 0.042 0.040* 0.039 0.046* 0.042* 0.017 0.024 -0.031 
 

(0.026) (0.027) (0.023) (0.026) (0.027) (0.023) (0.030) (0.031) (0.030) 

Head is female (1=yes) -0.018 -0.026 -0.010 -0.023 -0.027** -0.004 -0.017 -0.012 0.000 
 

(0.019) (0.016) (0.016) (0.015) (0.014) (0.017) (0.020) (0.021) (0.021) 

HH's head year of education (ln) -0.005 -0.011 0.001 -0.007 -0.011 0.001 -0.002 -0.006 -0.006 
 

(0.007) (0.009) (0.008) (0.008) (0.009) (0.008) (0.009) (0.011) (0.011) 

Agricultural Wealth Index -0.023*** -0.026*** -0.030*** -0.022*** -0.024*** -0.029*** -0.023** -0.024** -0.020 
 

(0.008) (0.008) (0.010) (0.008) (0.008) (0.010) (0.010) (0.011) (0.013) 

Livestock owned (TLU) -0.001* -0.001 -0.001 -0.001* -0.001* -0.001 -0.001** -0.001* -0.001 
 

(0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001) 

Land owned (ln) 0.013 0.022* 0.013* 0.011 0.020* 0.012 0.005 0.013 0.001 
 

(0.010) (0.011) (0.007) (0.010) (0.011) (0.007) (0.011) (0.013) (0.009) 

Share of Credit access  
(EA's level) 

-0.012 -0.014 -0.054** -0.004 -0.009 -0.051* 0.055 0.052* 0.085** 

 
(0.017) (0.013) (0.027) (0.017) (0.013) (0.027) (0.033) (0.030) (0.035) 

Share of FISP recipients  
(EA's level) 

0.018 0.013 0.018 0.018 0.014 0.025 0.016 0.008 0.005 

 
(0.032) (0.030) (0.027) (0.031) (0.031) (0.028) (0.037) (0.037) (0.036) 

Agricultural advice from  
extension services (1=yes) 

-0.020 -0.035* -0.015 -0.015 -0.030 -0.007 -0.021 -0.034 -0.003 

 
(0.016) (0.019) (0.016) (0.016) (0.019) (0.017) (0.019) (0.023) (0.021) 

Drought shock probability  0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 
 

(0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) 

Cell phone for gathering  
information (1=yes) 

0.006 -0.003 0.012 0.005 -0.002 0.009 -0.008 -0.014 -0.016 

 
(0.012) (0.013) (0.013) (0.012) (0.014) (0.014) (0.015) (0.018) (0.017) 

Distance from FRA (ln) -0.008 -0.010 0.014* -0.014 -0.014** 0.011 -0.012 -0.014 -0.004 
 

(0.010) (0.007) (0.008) (0.009) (0.007) (0.008) (0.012) (0.010) (0.010) 
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  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

To MS1 To MS1 To MS1 To MS2 To MS2 To MS2 To MS3 To MS3 To MS3 

  OLS - 
CS 

sample 

OLS - 
CS 

sample 
with 
IPW 

SUR OLS - 
CS 

sample 

OLS - 
CS 

sample 
with 
IPW 

SUR OLS - 
CS 

sample 

OLS - 
CS 

sample 
with IPW 

SUR 

Number of traders (ln) -0.035*** -0.021* -0.037*** -0.031** -0.018 -0.036*** -0.032** -0.022 -0.048*** 
 

(0.013) (0.012) (0.010) (0.012) (0.012) (0.010) (0.014) (0.015) (0.013) 

information on crop and  
weather 

0.010 0.016* 0.014 0.005 0.013 0.011 0.021 0.024 0.019 

 
(0.012) (0.010) (0.015) (0.014) (0.011) (0.015) (0.019) (0.017) (0.020) 

Constant 0.083 0.059 -0.024 0.085 0.050 -0.036 0.141 0.105 0.348*** 

  (0.109) (0.110) (0.102) (0.103) (0.106) (0.105) (0.123) (0.128) (0.134) 

Province dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-squared 0.14 0.18 0.21 0.15 0.19 0.21 0.11 0.13 0.28 

Chi-Squared - - 229.1 - - 237.39 - - 149.3 

Observations 967 967 967 961 961 961 924 924 924 

Notes: The table display estimates from a linear probability model on the probability of switching from a non-drought resilient 
cropping system to a drought resilient cropping system between the agricultural seasons 2014/15 and 2015/16. The drought 
resilient systems include Maize and one or more of the following crops: MS1 = sorghum, millet, cassava, sweetpotato, rice; MS2 
= sorghum, millet, cassava, sweetpotato; MS3 = sorghum millet, cassava, sweetpotato, and cotton. Errors are clustered at 
village level. Level of significances are *p<0.10; **p<0.05; ***p<0.01. 
Source: Authors’ own elaboration. 
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Table A3. Impact of seasonal forecasts on adoption of drought-resilient and  
non- drought resilient technology, full specification 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)  
Hybrid 
seed 

(1=yes) 

Hybrid 
seed 

(1=yes) 

Hybrid 
seed 

(1=yes) 

Kg of 
hybrid 
seed 
maize 

(ln) 

Kg of 
hybrid 
seed 
maize 

(ln) 

Kg of 
hybrid 
seed 
maize 

(ln) 

inorganic 
fertilizer 
applied 

at hh 

inorganic 
fertilizer 
applied 

at hh 

hectares 
of 

inorganic 
fertilizer 
use at hh 

hectares 
of 

inorganic 
fertilizer 
use at hh 

  OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

SUR OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

SUR OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

Months expected 
drought x seasonal 
forecasts 

0.316*** 0.322*** 0.068* 0.922*** 1.056*** 0.230 0.192 0.211 0.051 0.087 

 (0.113) (0.111) (0.041) (0.315) (0.308) (0.156) (0.264) (0.216) (0.611) (0.532) 

Months expected 
drought (ln) 

-0.219* -0.172 -0.040 -0.560 -0.553 -0.202 -0.298* -0.150 -1.973*** -1.812*** 

 (0.125) (0.126) (0.042) (0.344) (0.338) (0.160) (0.174) (0.194) (0.310) (0.293) 

Seasonal forecasts 
(1=yes) 

-0.292* -0.325** -0.015 -0.675 -0.944** 0.092 -0.343 -0.366 -0.039 -0.181 

 (0.155) (0.158) (0.055) (0.426) (0.439) (0.209) (0.383) (0.316) (0.895) (0.764) 

Household size (ln) 0.024 0.007 0.041 0.188 0.125 0.177* 0.207** 0.255** 0.215 0.164 

 (0.062) (0.064) (0.027) (0.158) (0.176) (0.104) (0.084) (0.101) (0.143) (0.169) 

Age of household 
head (ln) 

-0.078 -0.021 -0.096** 0.019 0.167 -0.334** 0.017 0.002 -0.084 -0.167 

 (0.090) (0.100) (0.041) (0.247) (0.287) (0.153) (0.138) (0.154) (0.177) (0.199) 

Head is female 
(1=yes) 

-0.031 -0.022 -0.022 -0.165 -0.188 -0.057 -0.169* -0.197* -0.236* -0.241* 

 (0.062) (0.072) (0.029) (0.185) (0.197) (0.111) (0.099) (0.117) (0.142) (0.141) 

Household 's head 
year of education (ln) 

0.040 0.055 0.041*** 0.140* 0.203** 0.176*** 0.037 0.030 -0.004 -0.035 

 (0.034) (0.037) (0.015) (0.078) (0.084) (0.056) (0.062) (0.068) (0.121) (0.110) 

Agricultural Wealth 
Index 

0.119** 0.140** 0.045** 0.556*** 0.556*** 0.391*** 0.221** 0.151 0.450* 0.358 

 (0.054) (0.053) (0.018) (0.188) (0.186) (0.067) (0.101) (0.111) (0.243) (0.220) 

Livestock owned 
(TLU) 

0.003 0.001 0.000 0.030** 0.026* 0.015*** -0.018*** -0.024*** -0.014 -0.023 

 (0.004) (0.004) (0.001) (0.014) (0.014) (0.005) (0.006) (0.007) (0.015) (0.015) 

Land owned (ln) 0.050* 0.064** 0.045*** 0.283*** 0.353*** 0.371*** -0.027 0.025 0.198 0.279** 

 (0.026) (0.031) (0.013) (0.097) (0.104) (0.049) (0.051) (0.051) (0.122) (0.111) 

Share of credit access 
(EA's level) 

0.421*** 0.442*** 0.267*** -0.239 -0.100 -0.344* 0.280** 0.287 0.091 0.119 

 (0.104) (0.115) (0.048) (0.365) (0.390) (0.182) (0.139) (0.172) (0.223) (0.254) 

Share of FISP 
recipients (EA's level) 

0.104 0.129 0.242*** 0.648 0.611 0.930*** 0.204 0.437 -0.197 -0.022 

 (0.103) (0.124) (0.049) (0.459) (0.520) (0.184) (0.266) (0.283) (0.372) (0.341) 

Agricultural advice 
from extension 
services (1=yes) 

0.066 0.055 0.022 0.283 0.204 0.004 -0.008 -0.042 0.064 -0.016 

 (0.082) (0.093) (0.029) (0.228) (0.266) (0.109) (0.096) (0.102) (0.109) (0.139) 

Drought shock 
probability  

0.009 0.009 0.003 0.003 0.005 -0.019* -0.003 -0.006 -0.008 -0.009 
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  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)  
Hybrid 
seed 

(1=yes) 

Hybrid 
seed 

(1=yes) 

Hybrid 
seed 

(1=yes) 

Kg of 
hybrid 
seed 
maize 

(ln) 

Kg of 
hybrid 
seed 
maize 

(ln) 

Kg of 
hybrid 
seed 
maize 

(ln) 

inorganic 
fertilizer 
applied 

at hh 

inorganic 
fertilizer 
applied 

at hh 

hectares 
of 

inorganic 
fertilizer 
use at hh 

hectares 
of 

inorganic 
fertilizer 
use at hh 

  OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

SUR OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

SUR OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

OLS - CS 
sample 

OLS - CS 
sample 

with IPW 

 (0.010) (0.009) (0.003) (0.023) (0.024) (0.011) (0.010) (0.009) (0.017) (0.014) 

Cell phone for 
gathering information 
(1=yes) 

0.089* 0.093 0.034 0.169 0.234 0.127 -0.029 -0.060 -0.061 -0.098 

 (0.051) (0.065) (0.024) (0.198) (0.229) (0.090) (0.077) (0.082) (0.147) (0.172) 

Distance from FRA 
(ln) 

-0.054 -0.078* 0.003 -0.209 -0.299** -0.037 -0.044 -0.100 -0.066 -0.119 

 (0.040) (0.046) (0.014) (0.127) (0.131) (0.053) (0.059) (0.063) (0.103) (0.096) 

Number of traders (ln) -0.090* -0.058 -0.028 -0.220 -0.090 0.067 -0.043 -0.079 0.122 0.063 

 (0.047) (0.056) (0.017) (0.136) (0.168) (0.066) (0.062) (0.066) (0.103) (0.090) 

information on crop 
and weather (1=yes) 

-0.035 -0.076 -0.004 0.006 -0.110 -0.026 0.217** 0.180 0.428 0.344 

 (0.069) (0.078) (0.027) (0.217) (0.222) (0.102) (0.092) (0.112) (0.273) (0.277) 

Constant 1.043** 0.826* 0.900*** 1.685 1.189 2.418*** 0.663 0.487 2.966*** 3.352*** 

 (0.407) (0.465) (0.183) (1.180) (1.406) (0.694) (0.807) (0.860) (1.076) (1.073) 

Province dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-Squared 0.28 0.31 0.38 0.36 0.41 0.34 0.27 0.33 0.26 0.26 

Observations 308 308 1,172 308 308 1,172 168 168 168 168 

Notes: The table display estimates from a linear probability model (column 1–4) on the adoption different practices during 
the agricultural season 2015/2016. Dependent variables are a dummy on adoption of hybrid seed and inorganic fertilizer 
(column 1 and 3), the natural logarithm kg of maize hybrid seed planted (column 2), the hectars of land under inorganic 
fertilizer (column 4). Errors are clustered at village level, significance level are *p<0.10;  
**p<0.05; ***p<0.01. 
Source: Authors’ own elaboration. 
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Table A4. Impact of seasonal forecasts on probability of shifting to climate-resilient 
systems using the closest neighbor 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

To MS1 To MS1 To MS1 To MS2 To MS2 To MS2 To MS3 To MS3 To MS3 

  OLS - 
CS 

sample 

OLS - 
CS 

sample 
with 
IPW 

SUR OLS - 
CS 

sample 

OLS - 
CS 

sample 
with 
IPW 

SUR OLS - 
CS 

sample 

OLS - 
CS 

sample 
with IPW 

SUR 

Months expected drought x  
seasonal forecasts 

0.070** 0.073** 0.066*** 0.080** 0.082** 0.073*** 0.072** 0.077** 0.055* 

 
(0.034) (0.036) (0.023) (0.034) (0.036) (0.024) (0.035) (0.036) (0.030) 

Months expected drought (ln) -0.044 -0.039 -0.037 -0.042 -0.040 -0.033 -0.003 -0.007 0.031 
 

(0.039) (0.034) (0.024) (0.039) (0.034) (0.024) (0.049) (0.042) (0.031) 

Seasonal Forecasts (1=yes) -0.118** -0.121** -0.119*** -0.127*** -0.131** -0.126*** -0.132*** -0.137*** -0.130*** 
 

(0.048) (0.052) (0.031) (0.048) (0.052) (0.032) (0.048) (0.052) (0.041) 

HH size (ln) -0.009 -0.017 0.016 -0.010 -0.017 0.017 0.006 0.005 0.013 
 

(0.016) (0.015) (0.015) (0.015) (0.015) (0.016) (0.019) (0.020) (0.020) 

Age of household head (ln) 0.035 0.042 0.040* 0.039 0.046* 0.042* 0.017 0.024 -0.031 
 

(0.026) (0.027) (0.023) (0.026) (0.027) (0.023) (0.030) (0.031) (0.030) 

Head is female (1=yes) -0.018 -0.026 -0.010 -0.023 -0.027** -0.004 -0.017 -0.012 0.000 
 

(0.019) (0.016) (0.016) (0.015) (0.014) (0.017) (0.020) (0.021) (0.021) 

HH's head year of education (ln) -0.005 -0.011 0.001 -0.007 -0.011 0.001 -0.002 -0.006 -0.006 
 

(0.007) (0.009) (0.008) (0.008) (0.009) (0.008) (0.009) (0.011) (0.011) 

Agricultural Wealth Index -0.023*** -0.026*** -0.030*** -0.022*** -0.024*** -0.029*** -0.023** -0.024** -0.020 
 

(0.008) (0.008) (0.010) (0.008) (0.008) (0.010) (0.010) (0.011) (0.013) 

Livestock owned (TLU) -0.001* -0.001 -0.001 -0.001* -0.001* -0.001 -0.001** -0.001* -0.001 
 

(0.000) (0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.001) (0.001) 

Land owned (ln) 0.013 0.022* 0.013* 0.011 0.020* 0.012 0.005 0.013 0.001 
 

(0.010) (0.011) (0.007) (0.010) (0.011) (0.007) (0.011) (0.013) (0.009) 

Share of Credit access  
(EA's level) 

-0.012 -0.014 -0.054** -0.004 -0.009 -0.051* 0.055 0.052* 0.085** 

 
(0.017) (0.013) (0.027) (0.017) (0.013) (0.027) (0.033) (0.030) (0.035) 

Share of FISP recipients  
(EA's level) 

0.018 0.013 0.018 0.018 0.014 0.025 0.016 0.008 0.005 

 
(0.032) (0.030) (0.027) (0.031) (0.031) (0.028) (0.037) (0.037) (0.036) 

Agricultural advice from  
extension services (1=yes) 

-0.020 -0.035* -0.015 -0.015 -0.030 -0.007 -0.021 -0.034 -0.003 

 
(0.016) (0.019) (0.016) (0.016) (0.019) (0.017) (0.019) (0.023) (0.021) 

Drought shock probability  0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.001 
 

(0.001) (0.001) (0.002) (0.001) (0.001) (0.002) (0.002) (0.002) (0.002) 

Cell phone for gathering  
information (1=yes) 

0.006 -0.003 0.012 0.005 -0.002 0.009 -0.008 -0.014 -0.016 

 
(0.012) (0.013) (0.013) (0.012) (0.014) (0.014) (0.015) (0.018) (0.017) 

Distance from FRA (ln) -0.008 -0.010 0.014* -0.014 -0.014** 0.011 -0.012 -0.014 -0.004 
 

(0.010) (0.007) (0.008) (0.009) (0.007) (0.008) (0.012) (0.010) (0.010) 
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  (1) (2) (3) (4) (5) (6) (7) (8) (9) 

To MS1 To MS1 To MS1 To MS2 To MS2 To MS2 To MS3 To MS3 To MS3 

  OLS - 
CS 

sample 

OLS - 
CS 

sample 
with 
IPW 

SUR OLS - 
CS 

sample 

OLS - 
CS 

sample 
with 
IPW 

SUR OLS - 
CS 

sample 

OLS - 
CS 

sample 
with IPW 

SUR 

Number of traders (ln) -0.035*** -0.021* -0.037*** -0.031** -0.018 -0.036*** -0.032** -0.022 -0.048*** 
 

(0.013) (0.012) (0.010) (0.012) (0.012) (0.010) (0.014) (0.015) (0.013) 

information on crop and  
weather 

0.010 0.016* 0.014 0.005 0.013 0.011 0.021 0.024 0.019 

 
(0.012) (0.010) (0.015) (0.014) (0.011) (0.015) (0.019) (0.017) (0.020) 

Constant 0.083 0.059 -0.024 0.085 0.050 -0.036 0.141 0.105 0.348*** 

  (0.109) (0.110) (0.102) (0.103) (0.106) (0.105) (0.123) (0.128) (0.134) 

Province dummies Yes Yes Yes Yes Yes Yes Yes Yes Yes 

R-squared 0.14 0.18 0.21 0.15 0.19 0.21 0.11 0.13 0.28 

Chi-Squared - - 229.1 - - 237.39 - - 149.3 

Observations 967 967 967 961 961 961 924 924 924 

Notes: The table display estimates from a linear probability model on the probability of switching from a non-drought resilient 
cropping system to a drought resilient cropping system between the agricultural seasons 2014/15 and 2015/16. The 
propensity score matching is done using the closest neighbor method. The drought resilient systems include Maize and one 
or more of the following crops: MS1 = sorghum, millet, cassava, sweetpotato, rice; MS2 = sorghum, millet, cassava, 
sweetpotato; MS3 = sorghum millet, cassava, sweetpotato, and cotton. Errors are clustered at village level. Level of 
significances are *p<0.10; **p<0.05; ***p<0.01. 
Source: Authors’ own elaboration. 
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Table A5. Impact of seasonal forecasts on probability of shifting to MS1 using 
alternative weighting strategies 

 (1) 
To MS1 

(2) 
To MS1 

(3) 
To MS1 

(4) 
To MS1 

PSM type 2 closest 
neighbors 

5 closest 
neighbors 

Radius 
(caliper=0.03) 

Kernel 

 OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

Months expected drought x seasonal 
forecasts 

0.073** 0.073** 0.073** 0.073** 

 (0.036) (0.036) (0.036) (0.036) 

Months expected drought (ln) -0.039 -0.039 -0.039 -0.039 

 (0.034) (0.034) (0.034) (0.034) 

Seasonal forecasts (1=yes) -0.121** -0.121** -0.121** -0.121** 

 (0.052) (0.052) (0.052) (0.052) 

Household size (ln) -0.017 -0.017 -0.017 -0.017 

 (0.015) (0.015) (0.015) (0.015) 

Age of household head (ln) 0.042 0.042 0.042 0.042 

 (0.027) (0.027) (0.027) (0.027) 

Head is female (1=yes) -0.026 -0.026 -0.026 -0.026 

 (0.016) (0.016) (0.016) (0.016) 

Household's head year of education 
(ln) 

-0.011 -0.011 -0.011 -0.011 

 (0.009) (0.009) (0.009) (0.009) 

Agricultural Wealth Index -0.026*** -0.026*** -0.025*** -0.025*** 

 (0.008) (0.008) (0.008) (0.008) 

Livestock owned (TLU) -0.001 -0.001 -0.001* -0.001* 

 (0.000) (0.000) (0.000) (0.000) 

Land owned (ln) 0.022* 0.022* 0.022* 0.022* 

 (0.011) (0.011) (0.011) (0.011) 

Share of credit access (EA's level) -0.014 -0.014 -0.014 -0.014 

 (0.013) (0.013) (0.013) (0.013) 

Share of FISP recipients (EA's level) 0.013 0.013 0.013 0.013 

 (0.030) (0.030) (0.030) (0.030) 

Agricultural advice from extension 
services (1=yes) 

-0.035* -0.035* -0.035* -0.035* 

 (0.019) (0.019) (0.019) (0.019) 

Drought shock probability 0.001 0.001 0.001 0.001 

 (0.001) (0.001) (0.001) (0.001) 

Cell phone for gathering information 
(1=yes) 

-0.003 -0.003 -0.003 -0.003 

 (0.013) (0.013) (0.013) (0.013) 

Distance from FRA (ln) -0.010 -0.010 -0.011 -0.011 

 (0.007) (0.007) (0.007) (0.007) 

Number of traders (ln) -0.021* -0.021* -0.021* -0.021* 

 (0.012) (0.012) (0.012) (0.012) 
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 (1) 
To MS1 

(2) 
To MS1 

(3) 
To MS1 

(4) 
To MS1 

PSM type 2 closest 
neighbors 

5 closest 
neighbors 

Radius 
(caliper=0.03) 

Kernel 

 OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

information on crop and weather 0.016* 0.016* 0.016 0.016 

 (0.010) (0.010) (0.010) (0.010) 

Constant 0.059 0.059 0.059 0.059 

 (0.110) (0.110) (0.110) (0.110) 

Province dummies Yes Yes Yes Yes 

R-squared 0.18 0.18 0.18 0.18 

Observations 967 967 968 968 

Notes: The table display estimates from a linear probability model on the probability of switching from a non-drought resilient 
cropping system to a drought resilient cropping system between the agricultural seasons 2014/15 and 2015/16. The drought 
resilient systems include Maize and one or more of the following crops: MS1 = sorghum, millet, cassava, sweetpotato, rice. 
Level of significances are *p<0.10; **p<0.05; ***p<0.01. 
Source: Authors’ own elaboration. 
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Table A6. Impact of seasonal forecasts on probability of ownership of climate 
unrelated assets 

 (1) 
Plough 

(2) 
Harrow 

(3) 
Sprayer 

(4) 
Tractor 

 OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

Months expected drought x seasonal 
forecasts 

-0.010 -0.016 -0.065 0.004 

 (0.045) (0.018) (0.053) (0.015) 

Months expected drought (ln) 0.075 0.043 0.143** -0.038 

 (0.055) (0.031) (0.059) (0.025) 

Seasonal forecasts (1=yes) -0.015 0.005 0.144** -0.002 

 (0.058) (0.021) (0.061) (0.021) 

Household size (ln) 0.060** -0.018 0.121*** -0.022* 

 (0.027) (0.012) (0.033) (0.011) 

Age of household head (ln) -0.018 -0.025 -0.019 0.012 

 (0.042) (0.018) (0.046) (0.011) 

Head is female (1=yes) -0.060** 0.037*** -0.092*** 0.010 

 (0.030) (0.012) (0.030) (0.007) 

Household 's head year of education 
(ln) 

-0.043** 0.001 0.001 0.006* 

 (0.017) (0.006) (0.019) (0.003) 

Agricultural Wealth Index 0.342*** 0.233*** 0.195*** 0.064*** 

 (0.024) (0.017) (0.027) (0.020) 

Livestock owned (TLU) 0.001 -0.000 -0.001 -0.001 

 (0.002) (0.001) (0.002) (0.001) 

Land owned (ln) 0.041*** -0.009 0.041** -0.003 

 (0.015) (0.007) (0.019) (0.003) 

Share of credit access (EA's level) -0.089 0.050** 0.294*** -0.003 

 (0.064) (0.021) (0.061) (0.010) 

Share of FISP recipients (EA's level) 0.116* -0.035 0.092 -0.016 

 (0.070) (0.027) (0.064) (0.015) 

Agricultural advice from extension 
services (1=yes) 

0.041 0.017 0.009 -0.012 

 (0.036) (0.015) (0.041) (0.010) 

Drought shock probability  -0.009** 0.001 0.006** 0.000 

 (0.004) (0.001) (0.003) (0.000) 

Cell phone for gathering information 
(1=yes) 

0.020 -0.033*** -0.022 0.008 

 (0.024) (0.012) (0.030) (0.005) 

Distance from FRA (ln) 0.001 -0.013* 0.015 0.001 

 (0.018) (0.007) (0.019) (0.005) 

Number of traders (ln) 0.052** -0.007 -0.031 -0.003 

 (0.021) (0.011) (0.021) (0.006) 



 

 35 

 (1) 
Plough 

(2) 
Harrow 

(3) 
Sprayer 

(4) 
Tractor 

 OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

OLS - CS sample 
with IPW 

information on crop and weather -0.032 -0.002 -0.039 0.005 

 (0.028) (0.016) (0.039) (0.008) 

Constant 0.114 0.344*** -0.116 0.052 

  (0.191) (0.085) (0.221) (0.055) 

Province dummies Yes Yes Yes Yes 

R-squared 0.52 0.57 0.25 0.19 

Observations 1.167 1.167 1.167 1.167 

Notes: The table display estimates from a linear probability model on the probability of switching from a non-drought resilient 
cropping system to a drought resilient cropping system between the agricultural seasons 2014/15 and 2015/16. The 
weighting strategy is based on a 2-k nearest neighbor matching. Errors are clustered at village level. Level of significances 
are *p<0.10; **p<0.05; ***p<0.01. 
Source: Authors’ own elaboration. 
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Table A7. Impact of seasonal forecasts on probability of ownership of climate 
unrelated assets 

  (1) (2) (3) (4) (5) 
To MS1 To MS3 To MS2 Inorganic 

fertilizer 
To MS3 

  Corrected 
OLS - CS 
sample 

Corrected 
OLS - CS 
sample 

Corrected 
OLS - CS 
sample 

Corrected 
OLS - CS 
sample 

Corrected 
OLS - CS 
sample 

Months expected drought x seasonal forecasts 0.082*** 0.111*** 0.072** 0.210*** 0.055 
 

(0.026) (0.033) (0.030) (0.049) (0.246) 

Months expected drought (ln) -0.030 -0.038 0.029 -0.160* -0.221 
 

(0.019) (0.026) (0.033) (0.092) (0.625) 

Seasonal forecasts (1=yes) -0.149*** -0.189*** -0.150*** -0.424** -0.161 
 

(0.041) (0.051) (0.051) (0.211) (0.360) 

Household size (ln) -0.011* -0.003 0.025** 0.028 0.286*** 
 

(0.006) (0.007) (0.012) (0.068) (0.092) 

Age of household head (ln) 0.078*** 0.092*** 0.051*** 0.148*** 0.121 
 

(0.019) (0.023) (0.017) (0.053) (0.159) 

Head is female (1=yes) -0.034*** -0.041*** -0.020 -0.022 -0.145 
 

(0.008) (0.011) (0.012) (0.063) (0.096) 

Household's head year of education (ln) -0.006*** -0.014*** 0.002 0.067*** 0.029 
 

(0.002) (0.004) (0.003) (0.022) (0.064) 

Agricultural Wealth Index -0.044*** -0.047*** -0.035** 0.141*** 0.296** 
 

(0.010) (0.012) (0.014) (0.048) (0.115) 

Livestock owned (TLU) -0.001* -0.002** -0.001 0.006 -0.026*** 
 

(0.001) (0.001) (0.001) (0.004) (0.008) 

Land owned (ln) 0.021*** 0.019*** 0.001 0.021 -0.071 
 

(0.006) (0.006) (0.005) (0.026) (0.057) 

Share of credit access (EA's level) -0.021*** -0.020** 0.098*** 0.360*** 0.165 
 

(0.006) (0.009) (0.032) (0.096) (0.135) 

Share of FISP recipients (EA's level) 0.040*** 0.042** 0.027 0.113 0.436 
 

(0.012) (0.017) (0.017) (0.081) (0.263) 

Agricultural advice from extension services (1=yes) -0.034*** -0.027*** -0.025* 0.052 0.064 
 

(0.008) (0.010) (0.013) (0.099) (0.108) 

Drought shock probability  0.002*** 0.002*** 0.004** 0.009* -0.004 
 

(0.001) (0.001) (0.002) (0.005) (0.010) 

Cell phone for gathering information (1=yes) 0.013** 0.012 -0.009 0.106** -0.012 
 

(0.005) (0.008) (0.007) (0.043) (0.076) 

Distance from FRA (ln) -0.012*** -0.027*** -0.020** -0.066* 0.004 
 

(0.004) (0.007) (0.008) (0.039) (0.072) 

Number of traders (ln) -0.062*** -0.057*** -0.040*** -0.071 -0.032 
 

(0.016) (0.016) (0.014) (0.052) (0.067) 

information on crop and weather 0.018*** 0.015*** 0.029** -0.060 0.208** 
 

(0.006) (0.006) (0.013) (0.054) (0.088) 
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  (1) (2) (3) (4) (5) 
To MS1 To MS3 To MS2 Inorganic 

fertilizer 
To MS3 

  Corrected 
OLS - CS 
sample 

Corrected 
OLS - CS 
sample 

Corrected 
OLS - CS 
sample 

Corrected 
OLS - CS 
sample 

Corrected 
OLS - CS 
sample 

Constant 0.083 0.059 -0.024 0.085 0.05 

  -0.109 -0.11 -0.102 -0.103 -0.106 

Province dummies Yes Yes Yes Yes Yes 

R-squared 0.07 0.08 0.04 0.88 0.40 

Notes: The table display estimates from the two step linear probability model corrected by multiplying the dependent and 
explanatory variables by the heteroskedasticity weights. Errors are clustered at village level. Level of significances are 
*p<0.10; **p<0.05; ***p<0.01. 
Source: Authors’ own elaboration. 
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Figure A1. Areas with normal to below normal rainfall in seasonal forecast 

 
Notes: 2015/16 rainfall seasonal forecast in Zambia. 
Source: Zambia Meteorological Department, 2016. 
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Figure A2. Seasonal forecast and maize yield in full sample and El Niño area 

a. Full sample 

 

b. El Niño area  

 
Notes: Figure A2a displays maize yield by seasonal forecast status in Zambia Sample during 2015/16, Figure A2b focus on 
El Niño area subsample  
Source: Authors’ own elaboration. 
 

Figure A3. Seasonal forecast and crop gross income in the full sample and El Niño area 

a. Full sample 

 

b. El Niño area  

 
Notes: Figure A3a shows the crop gross income by seasonal forecast status in Zambia Sample during 2015/16, Figure A3b 
focus on the El Niño area subsample. 
Source: Authors’ own elaboration. 
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