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Homogeneity of Degree 1 Production Functions

and the Development of Dual Equilibrium Displacement Models

Joseph A. Atwood and Gary W. Brester

Introduction

Equilibrium Displacement Models (EDMs) are frequently used by applied economists for
policy analyses because they allow for the quantification of changes in prices and
quantities among vertically- and/or horizontally-related markets. Such models are also
widely used to estimate both short-term and long-term impacts of exogenous economic
shocks and regulatory actions on multiple markets. Because complex interactions often
exist among markets, EDMs provide a comprehensive approach to modeling changes in
market equilibria.

The use of EDMs has a long, prominent role in applied economic analyses
because they provide both modeling flexibility and consistency with basic economic
concepts. For example, EDMs are derived from, and represent a set of, comparative
static results expressed in elasticity form. One major advantage of such models is that
they allow researchers to use elasticities and factor input shares to estimate the relative
importance of various supply/demand shifters on market equilibria (i.c., generally price
and quantity) outcomes. Moreover, researchers can use elasticity estimates from the
extant literature without the need to estimate (often) large systems of supply and demand
equations. This frees researchers from concerns related to functional forms, data

availability, and other estimation issues.




The flexibility of EDMs is evident in the broad array of issues to which they have
been applied. EDMs have been used to evaluate exogenous economic shocks and
regulatory actions on the demand for factor inputs (e.g., Allen, 1938; Buse, 1958; Hicks,
1957; Muth, 1964; Wohlgenant, 1989). The models have been widely used to quantify
changes in market outcomes that result from a host of market interventions such as trade,
policy, and tax legisiation {e.g., Alston and Scobie, 1983; Brester and Wohlgenant, 1997;
Freebairn, Davis, and Edwards, 1982; Holloway, 1989; Lemieux and Wohlgenant, 1989;
Mullen, Alston, and Wohlgenant, 1989; Pendell, et al., 2013; Perrin and Scobie, 1981).
The modeling approach has also been used to evaluate the impacts of technological
change and research and development investments on market equilibria as well as the
efficacy of commodity advertising programs (e.g., Kinnucan, 1999; Lusk and Anderson,
2004; Mullen and Alston, 1994; Perrin, 1980; Piggott, Piggott, and Wright, 1995;
Wohlgenant, 1993; Zhao, Anderson, and Wittwer, 2003).

Although hundreds of EDMs have been developed and used, many suffer from a
fundamental flaw. Specifically, economic theory suggests that EDMs be homogeneous
of degree zero in all input and output prices. That is, homogeneity of degree zero in all
prices implies that no output response would occur if all input prices were, say doubled,
along with all output prices. The condition is analogous to the concept of a lack of
“money illusion” in consumer theory. Homogeneity means that only changes in relative
prices (rather than price levels) influence economic choices. In the absence of this
requirement, accurate results from EDMs cannot be obtained. It is apparent that many
EDMs do not meet this criterion. In fact, the usual source for EDMs is Gardner {(1990).

However, personal communication with Bruce Gardner in the early 2000s resulted in his



concern over the fact that his EDM did not meet this criterion. He encouraged us to
remedy the problem through a publication so that researchers who refer to his model
could alter it so that homogeneity of degree zero in all prices would be maintained in the
system.

EDMs can be developed in a variety of ways. However, most approaches do not
result in models that are homogeneous of degree zero in all prices. Although Allen
(1932) presents a partial derivation, we have not found a published derivation of
internally consistent EDMs in which the primal problem of using underlying, but
unobservable, production functions are converted into a dual EDM. The dual version of
EDMs are preferred because they obviate the need for specifying production functions.

This paper presents the mathematical development of EDMs that are
homogeneous of degree zero in all prices. The approach uses the specification of
production technologies that are homogeneous of degree 1 in inputs. That is, a dual
EDM that is homogeneous of degree zero in all prices can be developed if production
technologies are assumed to homogeneous of degree 1 in inputs. This latter homogeneity
condition implies that long run production function technologies are constant-returns-to-
scale. The condition means that if one, say doubles the quantities of all inputs used in a
production process, output would likewise double. In a broad sense, the assumption of
long-run production function homogeneity is a logical issue. The general notion of
decreasing or increasing returns-to-scale can only happen if one or more fixed inputs
cannot be duplicated in the long-run. If such a situation arises, then increasing or
decreasing returns-to-scale do not result from the underlying production technology.

Rather, they are a function of a factor that is “fixed” in supply to the extent that an



increase in its use must increase (or decrease) the input’s price in the long-run. EDM
models can, however, consider such situations by including highly inelastic own-price
factor supply elasticities while still maintaining production technologies that are

homogeneous of degree 1 in inputs.

The Primal Model
If the long run production function g = f(x) is homogenous if degree 1 in prices, then

the following expressions hold:

(1) g=f(tx) =tf(x)

@ H=[2L]=[f]

ax,-axi

3) 2;.,13-(x)x,-=fx°x=q
“) ZJ fi,;(x)x; =2§ fij(X)x; =0=>Hx)ex=0;xeH(x)=0;|H| =0

A consequence of equations (1)-(4 ) is that the unconstrained competitive first
order conditions (FOC) given by:
®) phi-w=0
have an infinite number of solutions. While the FOCs do not have a unique solution, we
assume that they will be satisfied. In this case expressions (1)—(5) imply zero profits for
the competitive firm and industry such that
(6) Phhex=wex &S pg=wex.

Gardner (1990) suggested treating output (g) in equation (1) as exogenous and

output price (p) in equation (5) as endogenous as a means for arriving at a unique solution



(N a:q=f(x)
b: pf, —w=0.
The use of equation (7) can be intuitively justified by considering it as part of a

larger simultaneous system:

® a:qg=q"@)

c:pfy—w=0

d: x = x5(w)
where g is output, p is output price, x is a n-vector of inputs, w is a vector of input
prices, q? is a demand equation, and x¥ is a set of factor or input supply functions. This
system consists of 2n+2 equations and 2n+2 endogenous variables (g, p, x, and w). While
the FOCs of equations (8a-8c) do not have a unique solution when examined in isolation,
the implicit function theorem can be used to derive an implicit local solution. For

example, begin by taking the total differential of system equation (8)
dqP
©) adg= (3) dp
b: dq = f,dx
c: fodp +pfyprdx—1dw =0
ax’
d: dx = (E) dw .
After matrix row operations and some algebraic manipulation, this system can be shown

to be equivalent to the following EDM system
(10)  a: E(q) = npE(p)

b: E(p) = %:K,-E(wj)



c¢: E(x;) = E(q) + XKjo;;E(w;) fori=12,..,n
I
d: E(x) = YK;e; ;E(wj) fori=12,..,n
j

where E (*) represents percentage changes, 1, is consumers’ own-price elasticity of
demand, K; is the expenditure factor share of the /™ input, g;j is the Allen elasticity of
factor substitution between inputs 7 and /, and &; ; is the own- and cross-price elasticities
of supply for inputs i and ;.

Allen elasticities of factor substitution are the appropriate metric for such models
because (as shown below and by Christev and Featherstone (2007)) a set of Allen
elasticities contain the complete curvature information of the associated constrained
Hessian. Allen elasticities of substitution are inaccurate measures of the substitution
between two inputs when those two inputs are considered in isolation. However, when
more than one pair of prices change, Allen elasticities account for all simultaneous sets of
relative price changes. As demonstrated below, an EDM is obtained using row
operations of a differential system of equations which implies that all “signable” results
from a comparative statics outcome will be identical to that of an EDM.

Expressions (10a) and (10d) are derived by converting equations (9a) and (9d)
into elasticity form. Equation (10a) is obtained by first multiplying equation (9a) through
by 1/q, and then the right-hand side is multiplied by p/p. Equation (10d) is obtained by
multiplying equation (9d) through by 1/x, and then the right-hand side is multiplied by

w/w. The derivation of equations (10b) and (10c) are described below.



Developing an EDM for the Production Sector

Using Cramer’s rule, we expand (9b) and (9¢) to obtain

0 A fo v fqrde] 1 0 0 07[ 99 |
fi pfin Pfiz - Pfin||dx 0 1 0 0fldw,
fa pfar Pz - DPhanl|ldx: 0 01 0fldw,
(11) . . . ) . =1 ) . X
-fn pfnl anz pfnnJ -dxn~ ‘0 0 O U € -deﬂ

If the cost minimization problem (discussed below) has a solution, the bordered matrix in
(11) is nonsingular and, by the implicit function theorem, we can find implicit solutions
(12) p*=p*'(qw)

and

(13) x*=x*(q,w)

which implies the following dual differential system:
. o (% LAY
a9 dp* = (Z)dg+ ) (aw,-) dw,

*
axi

« (9] LAY,
15)  dxf= aq)dq+§(awj)dwj.

Because the dual system reduces mathematical complications, we use equation

(11) and Cramer’s rule to identify expressions for (%1::), (g":_), (1’; ;), and (%) The
] ]

results are used to construct equations (10b) and (10c) in the EDM model.

i . ap™\ (ap*\ (ox; ax; .
To identify expressions for ( 4 ), LN ) (i), and [ — ), we will use several
dq awj dq ow;

results from Allen (1938). Let



0 i f2 o S
f1 f11 f12 f1n
fz f21 f22 on [0 f;cl

(16) £ Hl

-fn fa1 fnz L A
In the following, we denote the borders as row or column 0 and refer to the remaining
rows and coiumns using the indexes I, ..., n which resulits in the following definitions
F,y = the cofactor of the 0 element in matrix F.
Fy,;; = the cofactor of the i,/°th element in F after the borders have first been
deleted.

F;; = the matrix remaining after the i’th row and j’th column in F have been

deleted.

Given these definitions, the following results are obtained

17) F,=0
i+j+1 XixjIF|
(18) Foj = (~1)H/+ 20
Vil e qyidj QuXeX) _ o avitj Kigu%i
(19) = D p (-1) 7

Recall that YX; = 1 and }K;o;; = 0.
J J

Proofs of (17), (18) and (19)

Proof of (17):
Fo=|H|=0from4).Q0ED.



Proof of (18):

0 fi f2 = fa

f1 f11 f12 f1n
fixi faxi foxi v finXi

(20) |F| = . i . : :

xi

- fn f ni Jn2 f;m J
Multiplying all rows 7 >0 and h+iby x, and adding the results to row i and using

equations (3) and (4)

0 A £ - f i o o h
f1 f11 f12 f1n f11 f12 f1n
q 0 0 - 0 ~ o~ e~y
(21) |F|=i. N E 1S Vi I
fn fnl fnz ﬁn.n fnl f‘nz frm
f1 fZ fn
fir fiz A
i_q_ ~i ~i ~i
D'
fnl fnz fnn

where the notation ~, or ~ denotes that row i (or column j) has been deleted.

Multiplying columnj by x; gives:

f1 f}'xj fn
fi1 fljxj “ fin
@ IF=CDie ’
fa fnjxj “ fan




Multiplying all columns %> 0 and h+ jby x, and adding the results to column j using

equations (3) and (4)
] - f)
i q /i
f11 0 f1
, A ~i ) , z

@) |Fl = (D' = (=1D)i(~1)i* (q_) Foij M

fnl 0 fnn
giving
@4 Foy = (=D (22) || QED.

Proof of (19):

To prove (19) we use the following cost minimization Lagrangian:
(25) L=wex+1[q—f(x)]
with first order conditions:

26) a:q—f(x)=0
b:w—24.f=0.

Totally differentiating and rearranging gives

0 fi fa fanl[dA1 1 0 0 01 4q 1

i A Afiz Afin||dx] 0 1 0 0]|dw;

f2 Afa21 Afa Afon || dx5 0 0 1 0]{dws
27 . . . . = . i

£, Afy Afas At dlaxel Lo o o " ldw,

In the following, we denote the bordered Hessian in (27) as L° and the matrix after

deleting the i row and j® column of I as L; . Using Cramer’s rule we obtain

10



(28) a_xf _ (_1)t+]+1 IL'E'].I _ (_1)i+j}_g—2 |Fij| _ (—1)i+j-IFU|
ow; |Lcl gt |F| Ac|F|

Allen (1938, p. 504) defines the Allen elasticity of substitution, which in our
example, as

29) . 3xf Wi wex _ O Py Acfrex — (_1)i+j Iif'_xﬂ
U™ aw; x wix; Ac|F| xyxj xixj |F| ~

If the production function is homogenous of degree 1 in prices (i.e., f5 ® x = g), then (29)

reduces to

1yt _a_IFyl
R

or

[Fil _ _ i+j OUjXiXj
G S =y= D ==

Note that:

o 0w iy JFyldefi o anieg £ Ryl
() Koy =22 = (1) = (- 2L

aWj X lchl Xi
giving
(33) % = (=1)i¥ —"";j{"‘i Q.ED.

Deriving Optimal Sclutions for the Endogenous Variables

Given equations (17), (18), and (19), we can now derive expressions for (:_z;‘), (%),
j

0x; , and Sxp . To facilitate the discussion, we restate system (11) as
aq aw; y

11



0 fi f v fardp 10 0 071 dq
fL pfin pPfiz - Pfinlldxy 01 0 0f|dw,
f2 Pl pfaz - pfanlldx: 0 01 0f|dw,
(34) ) : } . } ol =1. i ) .
-fn pfnl pfnz pfnnJ -dxn— 0 0 O 1J -de-

Denoting the bordered matrix in (34) as H,, and using Cramer’s rule we obtain

1 0 2 = JIa 1 a1 2 = I
0 pfia Pfiz = Dhin 0 fix fiz  fin
0 pfa1 Pfaz = Phan . 0 fa1 faz  fan
(35) (a_p*) —10 Pfn1 Pfr2 - Pfnn = C fn1 Jfn2z - fan — Fo —
2q |Hop| PM1|F| IF|

or

(36) (‘;iq) =0.

The symmetry and non-singularity of H,, imply that (‘%_) = (Z—?). From (34), we
j
obtain
1 f 2 v fa
0 pfir pPhHz  Dfin i fa ~j v S
0 pfoaa Pfez  Dfan B Fixj fjxj ~j o [jin¥j
.o S (e 27 . . .
*y
ax‘ . . . . . . - ~‘ ..'- -
1) 10 pii Phnz - pranl _ Jni  fra § Jan
37 (aq) |Hy| p"L|F|

Adding x; time rows i to row j for i # j and using results (3) and (4) gives

fi o o~ o fin

. n-i| . . .
(-0 B
ox] fus fws = un - e @Fo.j
—1) = ni ] = (—1)j+2 (—_1)J+1 Ji
3%) (aq) P lF| D ED x;IF|

. Fp it
—1)2j+1 204i
D x;|F|

Upon substituting for Fy ;;, we obtain

12



%7\ _ (_1)2i+1 (_qy2i+1 X IF _ %
(39) (aq) DD xj q* IFl  q

which results in

q
and, by symmetry
‘41) { ap*\ _ X
W) T

From expression (34)

0 f fza 0 Ia 0 A 2~ fn

fi pfir Pfiz O  Dfin fi P11 Pfiz ~i v Phn

fj ofjx vlz 1 - Pfon (—)iivz |7 i ~j ~ji " Pln

fz Pfar pfz2 0 Pfan fa Pfax Pfsz ~¢ Pfan

(42) _‘ﬁ — fn Dini Pfaz 0 - Pfan = fn Plni_ Plnz  ~i Plnn
aw; p(—1) |F| p"1|F|

n—2
_qyitj PR IRy
(=1) p™ 1| F|

Substituting using (33) and (5) gives

(43) (i’ff.) = (=) (=1)i*+ Kjoijx;

ow; 3
or
@44y (2 = Ko

ow; wj )

Substituting (36), (40), (41), and (44) into (14) and (15) gives
45)  dp=YZdw
j q
and
_ X Kjﬂ',:jx,: )
(46) dx; = . dq + %}—Wj dw; .

Expressions (45) and (46) can be converted to an EDM as

13



or

(48)
and
(49)

or

(50

E(x;) = E(q) + ;K,-ai.,-E(w,-) :

The result of this exercise is that the EDM approximation of a “jointly enforced”

system (7) can be written as

G

q=fx) =~E(@p)= §K,-E(w,-)

pli—w=0= E(x;) = E(q)+2Kjai,jE(Wj) fori=1,...,n
J

Consequently, the comparative statics and effects of policy changes on a market that

includes consumers, producers, and factor suppliers can be approximated using an EDM

of the form

(52)

a: q=q°(P)~= E(q) =npE(p)

b:p=f(x) = E(p)= ?K,-E(Wj)
c: pfy —w =0 = E(x) = E(q) + XK;0;;E(w;) fori=12,..,n
j

d: x =x°(w) = E(x;) = YK;e;;E(w;) fori=12,..,n.
j

14



Comparing Models with Respect to Homogeneity of Degree Zero in All Prices

Many authors have developed EDM models of market relationships by directly
considering the demand and supply for a good or service at one market level, and the
demand and supply of a major input that is produced at another market level (Brester,
Marsh, and Atwood; Pendell, et al., 2010; Pendell, et al., 2013). However, most of these
models do meet the requirement that the resulting system of equations is homogeneous of
degree zero in all input and output prices. To illustrate the errors caused by ignoring this
condition, we construct a “traditional” EDM model and estimate impacts from an
exogenous shock. Then, we develop an EDM based on the above derivation that is
homogeneous of degree zero in all prices. The exercise clearly indicates the importance

of maintaining this theoretically consistent condition.

A Traditional Supply/Demand Function Approach
Although EDMs have been developed using various approaches, a common method is to
specify general demand and supply functions, which are then totally differentiated and
converted to an EDM form. For example, consider the demand and supply of finished
retail beef products. The consumer demand for the product could be represented by
(53) qa=fi(@D + ¢4
where g is the quantity of retail beef consumed, and p¢ is the consumer price of retail
beef. Thus, equation (53) represents the primary demand level.

Food processors slaughter and convert live cattle into finished beef products. The

supply of which could be presented by:

(54 qs =20, x3) + @

15



where g, is the quantity of retail beef produced, and p* is the producer price of retail
beef. Thus, equation (53) represents the derived supply level (Tomek and Robinson,
1990).

These same processors demand live cattle (the major factor input into producing
retail beef) that are produced by feedlot enterprises

£ f...d

(55)  xg=fa(w

( ,qa) T @3

where x is the quantity of live cattle demanded by processors, and w is the factor

demand price of live cattle. Equation (55) is referred to as the derived demand for beef.
Finally, feedlot enterprises supply live cattle to the processing sector as indicated

by

(56) % = fo(W®) + @,

where x; is the quantity of live cattle supplied by feedlots, and w* is the factor supply

price of live cattle. This supply function is often termed the primary supply function. In

addition, the following equilibrium conditions are assumed

G7) qa=4qs=4

(58) p?=p°=p

59 xg=x=x

60) wi=wS=w

so that equations (53)-(56) can be written as

61) q=fi(p)+e¢

62) q=/fap.x)+ @,

63) x=fs(w,q) + o3

64 x=f(w)+o,.

16



Totally differentiating equations (61)-(64) yields
d
(65 dg=_"dp+dg,

d d
(66) dgq =ﬁdp +-Ldx + do,

dx

P dq + do;

_ ax
67 dx= v dw +
£ r b ] — E X - b}
(68) dx= o GW T A, .
Dividing equations (65) and (68) by g, and equations (66) and (67) by x yields

©) L=(2)Ldp+(3)de,

s~ \Qap :
70) L= (3)Zdp+(3)FEdx+(3)do,
= C)ardw+ () arda+ () dos
™ = Q) E e Qe

Multiplying the first term on the right-hand side of equation (69) by % results in

@ =Q0)5w+ Qe

Rearranging yields

(74) G () (&), 20

q dpq/ \p q

or
(75) E(@@)=n"E(p)+E(p1)

where 14 is the own-price elasticity of demand for the retail product.

Next, multiply the first term on the right-hand side of equation (70) by % and the

second term by f to yield

17



06 T=Q 0 e+ () E)mda+()de.
Rearranging yields

IR ERCRER

or
(78) E(@Q=¢"E@)+71EMX)+E(ps) .

where €1 is the own-price derived supply elasticity of retail beef products, and t
represents a elasticity of quantity transmission between the live cattle sector and the

finished beef product sector.

The first term on the right-hand side of equation (71) is then multiplied by vﬂv and

the second term by %

09 =) @) maw+C)Q)irda+()des.

Rearranging yields

(80) dx _ d_xﬂ)d_w (d"ﬂ)d_q+d"’3
dw x/ w dq xJ q x

or
@1 E(x) =n*"EW)+vE(q) + E(ps)

where 1*1is the own-price derived demand elasticity for live cattle and y represents a
elasticity of quantity transmission between the retail finished beef product sector and the
live cattle sector.

Finally, multiply the first term on the right-hand side of equation (72) by % yields

2 == Q)@+

x dw

Rearranging yields

18



@ -G v

aw x

Or
(84 E(x)=¢e"EW)+ E(ps)
where £*1 is the own-price primary supply elasticity of live cattle.

Collecting equations (75), (78), (81), and (84) results in an EDM model of the
form

®5) E(@)=n"E()+E(p,) Primary Retail Demand
86) E(@=¢TE@)+1EX)+E(py) Derived Retail Supply
87) E(x)=n*EW)+vE(Q) + E(ps3) Derived Feedlot Demand
(88) E(x)=¢e**EW)+ E(p,) Primary Feedlot Supply

Moving the endogenous variables to the left-hand side yields
(89) E(q)—-n"E(p)=E(p,)

(90) E(q)—£7E(p) —TE(x) = E(p,)

O  E@)—n* Ew)—vE(q) = E(gs)

(92) E(x)—e* E(w) = E(¢,) .

In matrix notation, equations (89)-(92) are written as:

1 -7 0 0 1[E@] T[E(e1)
1 =7 —1 0 ||E@|_|E(e2)
-y 0 1 -nR|Ex)]| |E(@3)]|
0 0 1 —e*1LE(w) E(p,)

93)

The parametrization of equation (93) requires estimates of 9, £9, n*1, £*1, 7, and
y. However, to illustrate some of the shortcomings of this approach, assume that the

values are n? = p*1 = —1.0, and €9 = £** = 7 = y = 1.0 such that

19



1 1 0 01 TE(@1 [E(p)

04) 1 -1 -1 0| [E@]|_|E(p)
-1 0 1 1| |E(x) E(ps) |

0 0 1 -1 IEW)M LE(p,)

Note that there are no behavioral equations in the EDM that specify input price
(w) or output price (p). Hence, a direct test of the homogeneity of degree 0 in all prices
cannot be conducted. While it is possible to add additional equations to the EDM to
conduct such a test, it is sufficient to simply show the shortcomings of the model caused
by the lack of homogeneity of degree zero in all prices.

Assume that an exogenous shock in feed markets increases the costs of feeding
cattle by 10%. This would be represented by E(¢p,) = -0.10. Solving equation (94) for
the endogenous variables results in

E()1 [0.667 0667 0333  0.333

0
E(p)|_|0333 —0.667 —0333 —0333|] 0
E(x)| |0333 0333 0667 0667|| O

0

(95)

E(w) 0333 0.333 0667 —0.33311-0.10
or

E(q) —0.033

E(|_| 0.033
°6) E(x)| |-0.067]

E(w) 0.033

The results indicate that retail quantity has declined by 3.3%, while retail prices
have increased by 3.3%. This is a consistent result given the assumed demand and supply
elasticities being -1.0 and 1.0, respectively. The model also indicates that the price of
live cattle inputs has increased by 3.3%, but that the quantity of live cattle being
produced declines by 6.7%. However, the assumed price and quantity transmission
elasticities of 1.0 should cause the system to add up. That is, the quantity changes at the

feedlot level should be equivalent to the quantity changes occurring at the consumer level

20



given that the model does not allow for variable input proportions between live cattle and
other inputs (which do not appear in the model) in the production of retail beef. Clearly,
the result cannot be correct given that amount of live cattle being produced has declined
by 6.7%, while the quantity of retail beef has declined by only 3.3%.

An EDM that is Homogeneous of Degree Zero in All Prices

The EDM developed in equation (52) for a single output (retail beef) and two inputs (live

cattle, x,, and all other processing inputs, x,, can be written as:

97) E(q) =n%E(p) + E(6,)

(98) E(p) = KLE(wy) + K,E(wy) + E(6,)

(99) E(xy) = E(q) + K101, E(W,) + K,01,E(W,) + E(65)
(100) E(x;) = E(q) + K102, E(W,) + K505,E(w;) + E(6,)
(101) E(x;) = &%t E(w,) + E(65)

(102) E(xy) = &*2 E(w,) + E(6g)

where q is the quantity demanded of retail beef, p is the retail price of beef, w,is the
input factor price of live cattle, w, is the input factor price of all other processing inputs
cattle, n? is the own-price elasticity of demand for retail beef, £** is the own-price

elasticity of supply of factor 1, £*2 is the own-price elasticity of supply of factor 2, K;
represent factor cost shares (K; = (%)) such that }; K; = 1, and g;; is the Allen

elasticity of substitution between factors i andj. Silberberg (1990) notes that Y, iKioij =
0 is necessary to ensure that the system of equations is homogeneous of degree 0 in input

and output prices.
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For the following, we use the simplifying assumptions that factor input supply
quantities are functions of only their own-factor prices rather than influenced by the price
of the other factor in the system. It seems reasonable to assume that the impact of the
price of all processing inputs (w,) would have a de minimis influence on the supply of
live cattle (x,) and vice versa.

Equation (§7) represenis reiail demand, while equations (101) and (i02) represent
input supply functions. Equations (98)-(100) represent the production technologies
derived from the first order conditions of profit maximization.

To test if the model presented in equations (97)-(102) is homogeneous of degree
zero in input and output prices, we must first alter the model to allow for price wedges to

exist between demand and supply output and input prices. Hence the model is rewritten

as
(103) E(q) = n9E(p%) + E(6,)

(104) E@®*) = K,E(wl) + K,E(Wg) + E(65)

(105) E(x;) = E(q) + K101, E(Wf) + Ky01,E(Wg) + E(65)
(106) E(x;) = E(@) + K105 E(W{) + Ko05,E(WE) + E(8,)
(107) E(xy) = £* E(w§) + E(65)

(108) E(x;) = £*2 E(w$) + E(66)

(109) E(p?) = E(p®) + E(6,)

(110) E(wf') = EW) + E(6s)

(111) E(ws) = Ews) + E(65)

where the superscript d represents the demand price for retail beef or the factor inputs,

and the superscript s represents the supply price for retail beef or the factor inputs.
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Equation (109) allows for a price wedge to exist between the demand and supply
price of retail beef, while equations (110) and (111) allows for a price wedge between the
demand and supply prices of the two factor inputs. In equilibrium and assuming the
absence of taxes or subsidies, there would be no difference between demand and supply
prices which would make these equations superfluous. However, equations (109)-(111)
allow for the testing of homogencity of degree zero across input and output prices.

The model is operationalized by moving the endogenous variables of equations

(103)-(111) to the left-hand side

(112) E(q) — n'E(p*) = E(6,)

(113) E(®®) — KLE(wi) — K,E(wg) = E(6)

(114) E(x,) — E(q) — Ky01:E(Wf) — Kya1,E(wg) = E(63)
(115) E(xy) — E(q) — K102 E(W) — K,02,E(WE) = E(6,)
(116) E(xy) — 1 E(ws) = E(65)

(117) E(x;) — £%2 E(ws) = E(Bg)

(118) E(p®) —E(p*) = E(6,)

(119) E(wf) — E(wi) = E(6;)

(120) E(wf) — E(ws) = E(s) .

Putting equations (112)-(120) into matrix notation yields
(121) Ay=x
where A is a 9x9 matrix of parameters, y is a 9x1 vector of endogenous variables, and x is

a 9x1 vector of exogenous shocks such that
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[E(g)]

1 -2 0 0 0 0 0 0 0
6o 0 1 0 0 -k, -K, 0 0 E(pls))
-1 0 0 1 0 —Ky, -Ky, 0 0 ||E®@)
-1 0 0 0 1 —K0y —Kyo5 O 0 |f ECx)
(122) | 0o 0 0 1 0 0 0 —& 0 || ECx2)
0 0 0 0 1 0 0 0 —g||EWP)
0 1 -1 0 0 0 0 0 0 ||EwP)
0 0 0 0 0 1 0 -1 0 |EwS)
Lo o0 0 0 0 0 1 0 —1|paes]

"E(6,)

E(6,)

E(65)

E(8,)

E(86)

E(67)

E(6s)

[E(8)]

After parameterizing the A matrix, the system’s endogenous variables can be
solved for any exogenous shock (x) as
(123) y=A1x.

For purposes of comparison, we parameterize the model by setting the retail
demand elasticity equal to -1.0, and the factor supply elasticities equal to 1.0. In addition,
we set the elasticities of substitution equal to zero (o7, = g5, = 0.0), and assume that the
factor share of live cattle (X7) equals 0.90 and the factor share of all other processing
inputs (K2) equals 0.10. Although the terms a4 and ¢,; have no economic meaning as

elasticities of substitution, they must be inciuded in the model if the system of equations
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is to be homogenous of degree zero in all prices (Silberberg). Hence, these values are

K2*0'12 0.30%0.0 _

calculated as gy, = — = o 0.0, and 65, = —
1 .

K1*0'21 — _ 0.90%0.0 — O 0
K, 0.10 )

Thus, the A matrix in equation (122) is parameterized as

1 1.0 0 0 0 0 0 0 0 7

0 0 1 0 0 -0.90 -0.10 0 0

-1 0 0 1 0 0.0 0.0 0 0

-1 0 0 o 1 0.0 0.0 0 0

(124) 0 o0 0 1 0 0 0 -1.0 0
0 0 0 0 1 0 0 0 -1.0

0 1 -1 0 0 0 0 0 0

0 0 0 0. 0 1 0 -1 0
-0 0 0 0 0 0 1 0 -1

Within any economic system, the scalar multiplication of all input and output
prices should have no effect upon the quantities of inputs used or output produced within

the system such that:

1 1

(125) Ph-w=0=f=(3)w=( tw=1t°(3)w
for any scalar . This implies that equal percentage increases in factor prices coupled
with an identical percentage increase in producer output price should have no impact on
equilibrium quantities.

To test this for a doubling of factor prices (i.e., a 100% increase), allow E(6g) =
1.00 and E(6y) = 1.00. The represents a tax on each factor so that the demand price of
each factor will be greater than its supply price. Hence, the input price wedges are
entered as positive numbers. Furthermore, to test for homogeneity of degree zero in all
prices, a consumer output price subsidy of 100% is simultaneously modeled by allowing

E(67) = —1.00. That is, the output supply price that producers receive will be 100%
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larger than the output demand price that consumers must pay as a result of the subsidy.

Thus, the x vector becomes

-

(126) x

OO OO CC

—-1.06
1.00
- 1.00-

Using the matrices indicated in equations (124) and (126), the solution to equation (123)

is

E(q)] [ 0]
E@®") 0
E@S) | [1.00
E(xy) 0
(127) y=|EM)|=| 0 |.
E(wf 1.00
EWwD)| [1.00
E(w?) 0
Ew)l | o |

The results show that a doubling of factor input prices and output price causes a
100% increase in input factor demand prices (a doubling) and a 100% increase in the
output producer price. However, no changes in factor use or output production occurs.

The illustration of this effect is presented in figures 1-3. Figure 1 illustrates the initial

demand (D"‘l’ ) and supply (S X1 ) of factor 1 and initial equilibrium point of Wf ° and x?.
At this point, there is no difference between the demand and supply prices of factor 1.

d S . . . .
Hence, w; ° = w;° prior to the implementation of a tax on factor 1. However, if a tax

were used to double the factor price of input 1 (w;), the effect can be visualized as an
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upward shift in the supply of factor 1 from S X1 to §*1, This increases the factor demand
price for input 1 and reduces the factor supply price.

Figure 2 shows the effect of a simultaneous subsidy on the price of the output as a
shift of the demand curve upward and to the right from D° to D’. Figure 3 illustrates that
a 100% tax on factor input 2 (doubling its price) would reduce the amount of the factor
used. But, the increase in “demand” caused by the subsidy increases the demand for
factor 1 (from DXito DX ) and factor 2 (from DXzt D*2 ). Consequently, the amount of
each factor used does not change so that x{ = x} and x{ = x%. However, because the
demand prices for both factors are now higher, the output supply function declines from
5% to §'. The ultimate effect in the output market is that the price producers receive for
their production is P§ while the price that consumers pay for that production is P3.

However, no change in output occurs.

Factor Price 1
{wr)
e o s
N
~ 100%
S
o e
wis e %2
1 ~ 5
~
“~
4
~
~
w1d° =w"® ~o .
Y o=
=wy
b
x%=x} Factor Input Quantity [x,}

Figure 1. Factor 1 Homogeneity of Degree Zero in Prices
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50

B=x

=%

Q3 =08 Quantity

Figure 2. Output Market and Homogeneity of Degree Zero in Prices

Factor Price
(w2)
.l"f‘. -
\\ 4.-"'.‘. '\‘s'%s
~
S o 100%
~.
K o 02 e s m
il \f\ ~ it
= ~
~
P".
~
.,.'"F ~ ~
womup | / ~ e
WL
=Y 2
p=
x =x} Factor Input Quantity (x,)

Figure 3. Factor 2 Homogeneity of Degree Zero in Prices

A 10% Shock to Factor 1
Given that the model in equations (103)-(111) is homogeneous of degree zero in all
prices, we now compare the results for a 10% increase in the cost of producing live cattle

to the result produced from the above ad hoc EDM. Recall that equilibrium equations
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(109)-(111) were added to the original EDM for the purpose of testing for homogeneity
of degree 0 in all prices. Those equations could be used to estimate the effects of various
legislative policies such as taxes on inputs or an intervention in the output market.
However, the equations are not needed to estimate the effects of a 10% increase in the
cost of factor 1. For ease of illustration, we consider the cost increase using only
equations {103)~(108). After removing the superscripts and applying the saine

parameters as those in equation (124), the matrix form of the EDM is given by

1 1.0 0 0 0 0 1[E(@)] [E(61)
0 1 0 0 -090 -o0.10(|E® E(6;)
(128) -1 0 1 0 00 0.0 ||E(x) [_|E(8s) _
-1 0 0 1 0 0 ||E(x) | |E6Y
0 0 1 0 -1 0 ||Ew)| |E(8s)
L0 0 0 1 0 -1 1Ew,)] LE(8)]

A 10% increase in the cost of factor 1 (live cattle) is modeled as E(6s) = —0.10 in

equation (107). Thus, the x vector becomes

(129) x

Using the parameterization in equation (124) and the shock presented in equation (129),

equation (123) results in

'E(q ) 7 (—0.0457
E(p) 0.045
E(x)| |-0.045

130 = = ,
(130) * E(x;) —0.045
E(wy) 0.055
-E(Wz)J L 0.045
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The equilibrium quantity of output at the retail level (E(g)) decreases 4.5%, and
retail prices (E (p)) increase by 4.5%. The two values are identical in absolute value
because of the assumed supply and demand elasticities of 1.0 and -1.0, respectively. The
earlier model which was not homogeneous of degree zero in all prices estimated that the
retail level quantity would decline by 3.3% and that the price would increase by 3.3%.

In addition, it might seem that a 10% reduciion in the supply of a facior shouid
cause a 5% increase in output price and a 5% decrease in output quantity given the
assumed unitary elasticities. However, equation (104) illustrates that the change in price
will be less than the expected 5% value as long as both inputs are used in some amount.
This occurs even if input substitution (as in our case) is not allowed. Parenthetically, the
“expected” 5% increase in price and decrease in quantity would occur if the supply of
both factors is reduced by 10%.

Equation (130) also indicates that the decrease in the supply of factor 1 would
decrease the quantity demanded of factor 1 by 4.5%. The earlier model predicted a
decline of 6.7%. The price of factor 1 is estimated to increase by 5.5%, while the earlier
model predicted a 3.3% increase. Once again, it may appear that the price of factor 1
should increase by the same percentage (4.5%) as the reduction in the quantity demanded
of the factor given the assumed unitary elasticities. However, equation (108) indicates
that the difference between E (x;) and 1.0 * E (w;) must equal —10%. Given that E(x;)
equals -4.5%, the value of E (w;) must equal 5.5%.

The results also indicate that the demand for factor 2 decreases by 4.5%. This is
identical to the reduction in the quantity demanded for factor 1 because of the assumption

of no input substitution between the factors and the reduction in output of 4.5%. In
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addition, the price of factor 2 decreases by 4.5% because of the decreased demand for the
factor. Again, the change in factor demand is identical to the reduction in factor price

because of the assumed unitary elasticities.

Summary

Equilibrium Displacement Models (EDMs) are used by applied economisis for policy
analyses in both vertically- and horizontally-related markets. Because complex
interactions exist among many markets, EDMs provide a comprehensive approach to
modeling changes in market equilibria. They are also often used to quantify impacts of a
variety of economic and regulatory exogenous shocks and resulting changes in producer
and consumer surplus.

Various approaches have been used to change a primal system of equations into a
dual model that consists of linear approximations to unknown demand and supply
functional forms. However, many EDMs do not meet the primary economic principle of
homogeneity of degree zero in input and output prices. Hence, results from such models
cannot be accurate.

We present a mathematical derivation of EDMs based on the assumption that
production technologies are homogeneous of degree 1 in input quantities. The approach
converts primal economic functions into their dual counterparts and results in empirical

EDMs that are homogeneous of degree zero in all input and output prices.
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