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ABSTRACT

The problem of filtering and smoothing for a system described by approximately linear
dynamic and measurement relations has been studied for many decades. Yet the poten-
tial problem of misspecified dynamics, which makes the usual probabilistic assumptions
involving normality and independence questionable at best, has not received the atten-
tion it merits. This paper proposes a probability-free multicriteria "flexible least squares"
filter which meets this misspecification problem head on. A Fortran program implemen-
tation is provided for this filter, and references to simulation and empirical results are
given. Although there are close connections with the standard Kalman filter, there are
also important conceptual and computational distinctions. The Kalman filter, relying on
probability assumptions for model discrepancy terms, provides a unique estimate for the
state sequence. In contrast, the flexible least squares filter provides a family of state se-
quence estimates, each of which is vector-minimally incompatible with the prior dynamical
and measurement specifications.



I. INTRODUCTION

Following World War II, probabilistic methods attained a dominant position in fil-

tering and smoothing theory [1]. Early studies focused on linear system identification

problems arising in radar and communications for which the theoretical specifications were

essentially correct, and for which model discrepancy terms were reasonably modelled as

random quantitites with known distributions. For such problems, probabilistic methods

could credibly be used to construct scalar measures for theory and data incompatibility in

the form of likelihood or posterior distribution functions.

More recently, however, the social and biological sciences have presented filtering and

smoothing problems of critical importance for which the processes of interest are highly

nonlinear and poorly understood. In attempting to apply standard filtering and smooth-

ing techniques to such a problem, a data analyst typically has to replace the unknown

nonlinear process relations with an approximate system of linear relations. The resulting

model discrepancy terms then incorporate model specification errors from various concep-

tually distinct sources--e.g., imperfectly specified measurements versus imperfectly spec-

ified state dynamics; hence it is questionable whether these discrepancy terms are either

jointly or separately governed by meaningful probability relations. More generally, it is

difficult to provide any credible way to scale and weigh the discrepancy terms relative to

one another.

In decision theory, incommensurability of this type is typically handled by multicriteria

optimization techniques [2]. However, such techniques have not yet been exploited system-

atically in state estimation theory. Rather, curreptly available filtering and smoothing

techniques require the data analyst to provide probability assessments for all discrepancy

terms. In consequence, social and biological scientists attempting to apply these techniques

are often forced to resort to conventional probability specifications such as normality and

independence which may have little public credibility.

This paper proposes a probability-free multicriteria filter for the estimation of ap-
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proximately linear dynamical systems. Briefly stated, this "flexible least squares" (FLS)

filter solves the following multicriteria optimization problem: Characterize the set of all

state sequence estimates which achieve vector-minimal incompatibility between imperfectly

specified linear theoretical relations and process observations.

The FLS filtering and smoothing problem for approximately linear dynamical systems

is set out in Section II. The FLS recurrence relations for the solution of this problem are

derived in Section III. Section IV considers the relationship between FLS and Kalman

filtering. Concluding remarks are given in Section V. A Fortran program GFLS which

implements the FLS recurrence relations for this application is provided in an appendix.

II. THE BASIC PROBLEM

Consider a system whose state at time t, t = 1,2, ... , is an n-dimensional vector xt.

It is believed that the state transition equations for the system take the approximately

linear form

xt-3-1 F(t)x +a(t), • , (1)

where F(t) is a known n x n square matrix, and a(t) is a known n-dimensional column

vector. At each time t, an m-dimensional vector yt of observations is obtained. The

measurement relations are assumed to take the approximately linear form

yt H(t)x +b(t), t = 1,2,..., (2)

where H (t) is a known in x n rectangular matrix and b(t) is a known m-dimensional column

vector.

Each possible sequence of estimates !ci , ... for the state vectors entails two concep-

tually distinct types of model specification errors: namely, measurement errors consisting

of the discrepancies [y, — H(t) t — b(t)1 between the actual and the estimated observation

at each time t; and dynamic errors consisting of the discrepancies [ t _f 1 — F(t) t — 401

which arise due to misspecification of the state transition equations. The basic filtering
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and smoothing problem then involves multicriteria optimization. Given a sequence of ob--

servation vectors yi , Y2,.., YT up to time T with T > 1, determine the state sequence

estimates XT = 54;T) which in some sense make both types of specification error as

small as possible.

Suppose a dynamic cost CD (t. ,T) and a measurement cost cm (k‘7- , T) are separately

assessed for the two disparate types of model specification errors entailed by the choice

of a state sequence estimate XT. On the basis of both tractability and general intuitive

appeal, these costs are taken to be sums of squared discrepancy terms.

More precisely, for any given state sequence estimate ±4-7. the dynamic cost associated

with .fCT is taken to be

T - 1 [
CD (kT ,T) = E - (F(t)±, a(t))] D(t) [±'t+1 — (F(t) a(t))] (3)

t=

and the measurement cost associated with kT is taken to be

CA.f (.kT ,T) = [yt — (Ii(t)it b(t))] M(t) [yt — (H(t) Pit + b(t))] . (4)
t.

Here D(t) and M(t) are square, symmetric, positive definite scaling matrices of orders n

and m, respectively. Having non-zero off-diagonal terms in these matrices would presume

knowlege about the relative signs of the discrepancy terms, a presumption which is not

very reasonable when discrepancy terms result from model misspecification. Nevertheless,

these matrices are left in general form because it does not impede the analytical treatment

presented below.

If the prior beliefs (1) and (2) concerning the dynamic and measurement relations are

absolutely true, then the actual state sequence XT = (x1,. XT) would result in zero

values for both CD and CM. In any real-world application, we would of course expect to

see positive dynamic and measurement costs associated with each potential state sequence

estimate XT. Nevertheless, not all of these state sequence estimates are equally interesting.

Specifically, we would not be interested in a state sequence estimate XT if it were cost-
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subordinated by another estimate X in the sense that k; yielded a lower value for one

type of cost without increasing the value of the other.

We therefore focus attention on the set of state sequence estimates Which are not

cost-subordinated by any other state sequence estimate. Such estimates are referred to as

flexible least squares (FLS) estimates. Each FLS estimate shows how the state vector could

have evolved over time in a manner minimally incompatible with the prior dynamic and

measurement specifications (1) and (2). Without additional model criteria to augment (1)

and (2), restricting attention to any proper subset of the FLS estimates is a purely arbitrary

decision. Consequently, the FLS approach envisions the generation and consideration of

all of the FLS estimates in order to determine commonalities and divergencies displayed

by these potential state trajectories.

The collection CF (T) of cost vectors (CD , CM) associated with the FLS estimates is

referred to as the cost-efficient frontier. Given the cost specifications (3) and (4), the

frontier is a downward sloping strictly convex curve in the CD -cm plane. (See Figure 1.)

— Insert Figure 1 About Here —

Once the FLS estimates and the cost-efficient frontier are determined, three different

levels of analysis can be used to investigate the incompatibility of the theoretical relations

(1) and (2) with the observation vectors yi , , YT. First, the frontier can be examined to

determine the efficient trade-offs between the dynamic and measurement costs CD and CM.

For example, one can determine the minimum measurement cost which would have to be

paid in order to achieve zero dynamic cost, i.e., an exact fit of the state transition equations

(1). Second, descriptive summary statistics (e.g., average values and standard deviations)

can be constructed for the trajectories traced out by the FLS estimates along the frontier.

Finally, the trajectories traced out by the FLS estimates can be directly examined from left

to right along the frontier to assess the effects of decreasing the implicit penalty imposed

for dynamic versus measurement cost.

Ref. [3] applies this three-stage FLS analysis to a time-varying linear regression prob-
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lem, a special case of (1) and (2) with scalar observations (m = 1), no forcing terms, and

state transition matrices F(t) set identically equal to the identity matrix. For this appli-

cation the components of the 1 x n vectors H(t) are interpreted as explanatory variables

for the scalar observations yt , the state vectors xt are interpreted as coefficient vectors for

the "linear regression" relations (2), and the state transition equations (1) with F(t) I

are interpreted as smoothness relations governing the evolution of the coefficient vectors

over time.

Ref. [4] undertakes an empirical FLS study of coefficient stability for a well-known

log-linear regression model of U.S. money demand over the volatile period 1959-1985.

Interesting insights are obtained concerning shifts in the coefficients at economically rea-

sonable points in time. In Ref. [5], the FLS approach is used.to develop a new measure

of productivity change; the coefficients characterizing the production process are allowed

to evolve slowly over time. The new measure compared favorably with more traditional

measures when tested for U.S. agricultural data.

How are the cost-efficient frontier and the FLS estimates actually generated? The

next section suggests what might be done.

III. THE FLEXIBLE LEAST SQUARES FILTER

In view of the strict convexity of the cost-efficient frontier, each point on this frontier

solves a problem of the form "minimize cm subject to CD = constant." Consequently,

each FLS state sequence estimate 5G. = (±1, i'T) can be generated as the solution to

a problem of the form

[min pci, (XT , T) + cm (XT , T) ,
x7. (5)

where p, is a suitably chosen Lagrange multiplier lying between 0 and -Foo. Hereafter

the bracketed expression in (5) will be referred to as the incompatibility cost associated

with XT, conditional on i and T. The multiplier p,, multiplied by —1, gives the slope of

the cost-efficient frontier at the solution point for (5); thus parameterizes the trade-offs
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attainable between dynamic and measurement cost along the cost-efficient frontier.

The FLS approach envisions the generation of the entire cost-efficient frontier, together

with the corresponding FLS state sequence estimates. Numerical experiments (e.g., [3])

have shown that the cost-efficient frontier can be adequately sketched out by solving the

minimization problem (5) over a rough grid of A-points increasing by powers of ten.

How is this minimization to be done? The solution of (5) appears to be a formidable

problem. Since each state vector x, is n-dimensional, the first-order necessary conditions

for the solution of (5) constitute a linear two-point boundary value problem in nT scalar

unknowns. Fortunately, as will now be shown, problem (5) can be reduced to its proper

dimensionality, n, through the use of a dynamic programming technique.

Ma The Basic FLS Filter

Let > 0 be given. A recursive procedure will now be developed for the exact

sequential solution of the incompatibility cost minimization problem (5) as the duration

T of the process increases and additional observation vectors are obtained.

Suppose that the time is T > 2. Observation vectors have previously been obtained

for times 1,. . . ,T — 1, and a new observation vector yT has just become available. Any

choice of an estimate 3;T for the current time-T state vector incurs two costs. First, a

measurement cost is incurred if there is a discrepancy between the actual observation

vector yT and the estimated observation vector [H(t)XT b(T)}. Second, consideration

must also be given to the minimum achievable incompatibility cost over the earlier part of

the process, conditional on the state estimate for time T being xT. The time-separability

of the cost functions (3) and (4) implies that this latter cost depends only on XT and the

observation vectors through time T — 1.

Let a function be introduced to represent the minimum incompatibility cost which

can be achieved through time T — 1, conditional on any given time-T state vector XT:
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C:c7. ; ji, T — 1) = the minimum incompatibility cost attainable through choice

of x1 , x2, , xT _ 1, conditional on the state vector at time T (6)

being XT.

The FLS estimate for the time-T state vector, conditional on ji and the observation vectors

obtained through time T, is then found by solving the minimization problem

min I [YT — (H(T)xT b(T))1 M(T) [YT — (H(T)xT b(T))] + (xT ; — 1)1 • (7)
Xy

Let this FLS estimate be denoted by

xTF L S
- arg min { ... }•

Zr

(8)

At time T it is necessary to prepare for the appearance of an observation vector at

time T 1. To do this, one needs to know the cost function 0(xT + 1 ; 7). This cost

function is given by

0(xT+1; = min {A[x7 • +1 — (11 (T)xT a(T))] D(T) [xT+1 — (F(7)xT a(T))]
.7

▪ [YT — (H(T)xT + b(T))] M(T)[YT — (H(T)xT b(T))1

▪ 0(xT ;12,T — 1)}.

(9)

The recursive relationship (9) can be given a dynamic programming interpretation.

Conditional on any possible state vector 2;2.+1 for time T +1, the choice of a state estimate

2;T for time T incurs three types of cost. First, there is a dynamic cost associated with

the estimated state transition from time T to time T 1. Second, there is a measure-

ment cost associated with the discrepancy between the estimated and the actual time-T

observation vector. And third, there is a minimum achievable incompatibility cost based

on everything that is known about the process through time T — 1, conditional on the

time-T state vector being XT. Selecting XT to minimize the sum of these three costs yields
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the minimum achievable incompatibility cost based on everything that is known about the

process through time T, conditional on the time-(T + 1) state vector being X7.+ 1.

Using (9), the cost functions 0(x2; ;2,1) , 4 (x3; 12, 2), ... can be determined one after

the other. At time T, assume that the function 0(xT ; 12,T —1) is known. An observation

vector YT then becomes available, and the function (xT ; 12,T) can be determined. To

start matters off, it is assumed that an initial cost function 0(x1 ;12,0) is given. For the

particular cost specifications (3) and (4), this initial cost is identically zero. More generally,

however, the initial cost could summarize whatever beliefs one has concerning the cost of

estimating that the system is in state x1 at time T = 1 before an observation vector at

time T = 1 has been received.

The connection between the minimization problems (5) and (7) is straightforward. Us-

ing relationship (9) with 0(x1; 0) 0, the cost function 0(xT ; /2,T —1) can be expanded

in the form

T-1

(xT —1) min {/2 [xt+1 -F(t)x, - a(t)] D(t) [xt+1 — F(t)xt — a(t)1
t=1

[yt — H(t)x2 — 401 M(t) — 1/(t)xt — b(t)1 }.
T-1

t=1

(10)

Recalling definitions (3) and (4) for CD and CM, it is then immediately seen that the min-

imization problem (7) is an alternative representation for the incompatibility cost mini-

mization problem (5).

The recurrence relation (9) is a special case of a multicriteria filter shown elsewhere

[6] to generalize various well-known filters such as those of Kalman [7], Viterbi [8], Larson-

Peschon [9], and Swerling [10]. It illustrates how one might formulate and update a cost-

of-estimation function for a dynamic process when discrepancy terms are not given a

probabilistic interpretation. The recurrence relation (9) thus replaces the use of Bayes'

rule, which would be employed if discrepancy terms were interpreted as random quantities

having known probability distributions and satisfying various independence restrictions.
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This point will be elaborated in Section IV, below.

111.2 A More Concrete Representation for the FLS Filter

It will now be shown how the basic recurrence relation (9) can be more concretely

represented in terms of recurrence relations for an n x n matrix QT (A), an n x 1 vector

PT (p), and a scalar rT (p).

From general considerations in linear-quadratic control theory, it is known that if the

cost function appearing in the righthand side expression in Eq. (9) is given by

(xT ; 1-1,T — 1) =--- XIT QT -1 (Pa) XT 2PT — 1 (A)' XT rr - (1-1)

where Q (IL) is a real n x n symmetric matrix, then the cost function appearing on the

lefthand side has the form

(xT 4. 1; Ii, T) = X 4. QT (A) X T — 2pT GLY X T 1 + rT (A) • (12)

We shall show this below in detail.

First, suppose the initial cost function takes the quadratic form

(xi ; 0) = xlQ0 (1.1)xi - 21)0(4 xi + ro (A), (13)

where the n x n matrix Qo (µ) is symmetric and positive semidefinite. As earlier noted,

this function summarizes our knowledge of the cost of estimating that the system is in

state x1 at time T = 1 before an observation vector at time T = 1 has been received. For

the particular cost specifications (3) and (4), the coefficient terms Qo (A), Po (A), and ro (A)

are all zero.

Let us now determine the recurrence relations connecting QT (11) pT (n), and rT (A)

with QT —1 (j), PT - 1 (IL) , and rT _ 1 (A) for an arbitrary time T > 1, where the n x n matrix

QT 1 (1.1) is symmetric and positive semidefinite. Consider Eq. (9) for any given XT +1.

The large curly bracketed term in (9) breaks down into quadratic, linear, and constant
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parts with respect to XT, as follows:

{ ... 
} 
=4, [AF(T)'D(T)F(T) + H(T)'M(T)H(T) + QT -1(11)1XT

4- (2AEXT +1 — a(T)Y D (T)[— F (T)) + 2[yT — b(T)]114(7)1-11(T)] — 2PT -1 (A)' ) xT

+ ii[xT+1 — a(7)Y D(T)[xT +1 — a(T)] + [YT — b(T)]' M (7)[YT — b(T)] + rT -1 (ii).
(14)

To do the minimization called for in Eq. (9), the derivative with respect to XT of the

right-hand side of Eq. (14) is set equal to the null vector, which yields

0 = [AF(T)'D(T)F(T) + H(T)'M(T)H(T) +

— (12ExT +1 — a(T)Y D(T)F (T) + [Y7-. — b(T)11M(T)H(T) + PT -1(11.))1 •

(15)

Assuming the bracketed term in (15) is invertible [e.g., assuming the positive semidefi-

nite matrix Q 7' - I (A) is positive definite, or that either F(T) or H(T) has full rank], the

optimizing vector XT is given by

XT = [AF(T)'D(T)F(T) + 'IVY M(T)H(T) + QT -1 (A)I
x (12F(TyD(T)[xT+1 — a(T)] ± H(T)'M(T)[YT — b(T)1+ PT -1(11)) •

To simplify the notation, let us now introduce the symmetric matrix VT (A) as

-1
VT (A) = [A F (TY D (7') F (T) + II (TY M (T) H (T) + QT -1(A)] •

Then we may write the optimizing vector z2- in the form

where

and

(16)

(17)

XT = ST (11) + GT (A)XT +11 (18)

ST (A) = VT (A) (H (T)' M (n[yT — b(7)1 + PT -1(A) — ILF (T)' D(T)a(T)) (19)

CT (ii) = VT (A)AF (T)' D(T). (20)

_

,

-
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Now we are ready to find cl)(xT +1; it, T). Substituting Eq. (18) into Eq. (9), the

quadratic terms in XT +1 have the matrix QT (A) given by

p. — F(T)CT (Ii)] D(T)[I — F(T)CT (1.1)]

(H (T)GT (A)) M (7)1 I (T)GT (A) + CT (P)' QT - 1(1-1)GT (A)

= CT GLY VT (li) 'CT (A) + 211D (7)[ — F(T)]GT (A) AD(T).

CT (A)' = AD(T)F (T)VT (12), (22)

CT (A)' VT (P)  = AD(T)F(T). (23)

But

so that

It follows that

=AD(T) [I — F(T)CT (A)] •

By standard matrix manipulations (see, e.g., [11, p. 7]), it can be shown that QT (12) in

(24) is positive semidefinite given the positive semidefiniteness of QT _ (A) and the positive

definiteness of the weight matrices D(T) and M(T) as assumed in Section II.

Next we shall determine the vector kr (p). Consider, again, the substitution of Eq.

(18) into Eq. (9). The linear terms in XT + I have the coefficient vector —2pT (A) given by

2GT (ii)' VT (lir 1 ST (it) 2ILD(7)[— F (7)1ST

+ CT (A)' f2liF (T)' D(T)a(T) + 2 [ — H(T)]1M(T) [YT — b(T)] — 2PT -1 (A) (25)

+ 21tD (7)[ — a(T)].

It follows, after some simplification, that

(21)

QT (A) = F MGT (A) — 2 D (T)F (T)GT (A) + AD(T)

(24)

PT (p) =CT (A)' [II (T)' M (7)[YT b(T)1 + PT - 1(11)1 T (A)' a(T). (26)

In a similar manner, we find for rT (A) that

rT (p) =r7, -1(12) [YT — b(T)] ' (T)[yT — b(T)] ita(T)' D(T)a(T)

— sT (Ar[ITT (An- ST (A).

11

(27)



The relations (24), (26), and (27) constitute the desired recurrence relations for QT (A),

PT Gib and rT (A).

Finally, using these recurrence relations, the FLS filter estimate (8) for the state vector

at time T > 1 can also be given a more concrete representation. Let

and let

Then

UT (IL) = H (T)' M (T) I I (T)QT-  1 (ii) (28)

zr (A) = H(T)'M(T)[YT — b(T)} + PT- (A) •

xF2:L S 11) EuT (11)] - 1 zT (A).

(29)

(30)

111.3 FLS Smoothed State Estimates

Consider the problem of obtaining the FLS smoothed estimate for the state vector

XT at time T as the length of the process increases from T to T + 1 and an additional

observation vector YT +1 is obtained.

In preparation for time T +1, the quadratic, linear, and constant terms QT (11,), PT (A),

and TT (A) characterizing the cost function in Eq. (12) have been calculated and stored.

As a byproduct of this calculation, the unique cost-minimizing XT as a function of XT+1

has been determined in accordance with Eq. (18) to be XT = sT (A) ± CT (A)XT +1. Using

Eq. (30) updated to time T + 1, the FLS filter estimate for the state vector at time T + 1

is given by

xc.Lfsi (it ± 1) = [UT + 1 + (A) (31)

The FLS smoothed estimate for the time-T state vector XT, based on the observation

vectors yi , , yT+1 for times 1 through T 1, is then given by

s (11,T + 1) = (p) + GT (11)4ff' Si(/2T 1) . (32)

12



More generally, given any fixed time t, 0 < t < T, the FLS smoothed estimate

xrz,s (A,T+1) for the state vector xt at time t, based on the observation vectors yi , •, yT

for times 1 through T +1, is found by solving the system of equations

t (A)+Gt (A)xt+i

•

XT = ST (A) + CT (1i)XT +1

in reverse order, starting with the initial condition

XT +1 
= xTF+L (A,T +1).

(33a)

(33b)

Relations (30) and (33) for generating the FLS filtered and smoothed state estimates

result naturally from the dynamic programming procedure used to update incompatibility

cost. Alternative formulas for generating these state estimates could be obtained from

(30) and (31) using appropriate matrix manipulations (see [11]). Based on past numerical

experience, however, we elected to adhere closely to the dynamic programming formulation.

A Fortran program CFLS for generating the FLS filtered and smoothed state esti-

mates by means of the relations (30) and (33) is provided in an appendix to this paper.

In simulation experiments conducted to date with GFLS on an IBM Model 3090, the

generated FLS estimates have satisfied the first-order necessary conditions for the cost-

minimization problem (5) up to the maximum degee of accuracy (fourteen to sixteen

digits) permitted by the double-precision word length employed. Our empirically based

belief, then, is that the suggested procedure for determining the FLS filtered and smoothed

state estimates is numerically stable and highly accurate.

IV. RELATIONSHIP WITH KALMAN FILTERING

FLS and Kalman filtering address conceptually distinct problems. FLS treats a multi-

criteria model specification problem which does not require probability assumptions either

for its motivation or for its solution: the characterization of the set of all state sequence
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estimates which achieve vector-minimal incompatibility between imperfectly specified the-

oretical relations and process observations. Kalman filtering is a point estimation technique

which determines the most probable state sequence for a stochastic model assumed to be

correctly and completely specified. Nevertheless, when applied to approximately 'linear sys-

tems, the two approaches satisfy duality relations which generalize the well-known duality

[7, p. 42] between the noise-free regulator problem and maximum a posteriori probability

estimation.

Conceptual differences between FLS and Kalman filtering are examined in Section

W.1. In Section IV.2 the Kalman filter recurrence equations are derived by means of

simple cost-function arguments which mimic the steps outlined in Section 111.2 for the

derivation of the FLS recurrence relations. Probabilistic arguments (e.g., Bayes' Rule or

iterated expectations) are not required. Conversely, in Section IV.3 it is seen that the

FLS recurrence relations for generating any particular state sequence estimate along the

cost-efficient frontier reduce to information filter equations, the "inverse" of Kalman filter

equations, if the model discrepancy terms are assumed to satisfy various independence and

normality restrictions. Implications of these duality relations are discussed in Section IV.4.

rva Conceptual Differences Between FLS and Kalman Filtering

Previous sections of this paper investigate how filtering and smoothing might be under-

taken for the approximately linear system (1) and (2) when the dynamic and measurement

discrepancy terms Wt [xt+ F(t)x — a(t)1 and vt [yt — H(t)x — b(t)] are incom-

mensurable model specification errors. A multicriteria FLS solution is proposed for this

problem. As seen in Section III, this multicriteria solution can be implemented by means

of a family of Riccati-type recurrence relations. The Riccati-equation form of these recur-

rence relations is not surprising; it has been known for decades [12] that linear-quadratic

minimization leads to recurrence relations of this type. What is new is the probability-free

motivation provided for why one should be interested in this entire family of recurrence

relations.
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Suppose, instead, that the following probability relations, commonly assumed in

Kalman filtering studies, are introduced for the discrepancy terms wt and th and for the

initial state vector x1:

• [PDF for wt] = N(0, S(t));

• [PDF for vtl = N (0, R(t));

• (we) and (Vi) are mutually and serially independent processes; (34)

• [PDF for xi] = N(x; , Ei);

• x1 is distributed independently of vt and Wt for each t.

Under assumptions (34), the discrepancy terms Wt and vt are interpreted as white noise

random vectors with known Gaussian probability density functions (PDF's) governing

both their individual and joint behavior. In particular, Wt and vt are now supposed

to be perfectly commensurable quantities which can be scaled and weighed relative to

one another. The FLS interpretation for wt and vt, as conceptually distinct apple-and-

orange model specification errors incorporating everything unknown about the dynamic

and measurement aspects of the process is thus dramatically altered.

Combining the measurement relations (2) with the probability relations (34) permits

the derivation of a probability density function P(YT I XT) for the observation sequence

YT , YT) conditional on the state sequence XT = (x1 . . . xi). Combining the

dynamic relations (1) with the probability relations (34) permits the derivation of a "prior"

probability density function P(XT ) for XT. The multiplication of these two derived prob-

ability density functions yields the joint probability density function for XT and YT

p (yT xT ) • P (xT ) = P (xT YT ) • (35)

The joint probability density function (35) elegantly combines the two distinct sources of

theory and data incompatibility—measurement and dynamic—into a single scalar measure

of incompatibility for any considered state sequence XT •

Given the probability relations (34), the usual Kalman filter objective is to determine

the maximum a posteriori (MAP) state sequence, i.e., the state sequence which maximizes
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the posterior probability density function P(XT I YT). Since the observation sequence YT

is assumed to be given, this objective is equivalent to determining the state sequence which

maximizes the product of P(XT I YT) and P(YT ). By the agreed upon rules of probability

theory,

P(XT I YT ) • P(17T ) = P(YT I XT ) • P(XT ), (36)

where, as earlier explained, the right-hand expression in (36) can be evaluated using (1),

(2), and the probability relations (34). Determining the MAP state sequence is thus

equivalent to determining the state sequence which minimizes the scalar "incompatibility

cost function"

c(XT , = —log [P(YT I XT) • P(XT)]. (37)

What has been achieved by the introduction of the probability relations (34)? With-

out relations such as (34), the dynamic and measurement discrepancy terms cannot be

scaled and weighed relative to one another. The filtering and smoothing problem is thus

intrinsically a multicriteria optimization problem: Conditional on the given observations,

determine the state sequence estimates which are in some sense minimally incompati-

ble with each of the imperfectly specified theoretical relations (1) and (2). Given the

probability relations (34), however, the discrepancy terms are transformed into perfectly

commensurable "disturbance terms" impinging on correctly specified theoretical relations

in accordance with known probability distributions. In this case, MAP estimation seems

an emminently reasonable way to proceed. The multicriteria optimization problem is thus

transformed into the scalar optimization problem of determining the most probable state

sequence for a stochastic model 'assumed to be correctly and completely specified.

Making use of Bayes' rule, Larson and Peschon [9] develop a recurrence relation for the

sequential updating of the posterior density function P(XT I YT) as the duration T of the

process increases and additional observation vectors are obtained. This recurrence relation

is used to determine recursively the MAP state sequence for each time T. The Larson-

Peschon filter is derived under assumptions (34) without the requirement that the PDF's
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be Gaussian; nonlinearity of the dynamic and measurement relations is also permitted.

Larson and Peschon show that their filter reduces to the Kalman filter when Gaussian

distributions and linear dynamic and measurement relations are assumed.

For example, suppose for simplicity that the forcing terms a(t) and b(t) in the dynamic

and measurement relations (1) and (2) are identically zero. For this case, Larson and

Peschon obtain the relations

--1
E-1(T + 1 I T 1) =H(T 1)' R(T 1.)- 1 H(T + 1) [F(T)E(T I 7)F (T)' 

x(T + 1 I T 1) = F (T) x(T I T)

+E(T ± 1 IT +1)H(T + R(T +1)-1[Yr+1 — -11(T +1)F(T)x(71 IT)].

(38)

In equations (38), x(T+ 1 I T 1) is the MAP estimate for the state vector at time T + 1,

conditional on the observation vectors obtained through time T 1; and E(T +1 I T 1)

is the error covariance matrix for. x(T +1 I T 1) . By use of appropriate matrix inversion

formulas, the relations (38) can be transformed into a pair of recurrence relations either

for the error covariance matrix E(T I T) and the state estimate x(T I T) —the standard

Kalman filter equations (see [7] and [13, pp. 105-120])—or for the inverse "information

matrix" E-1 (T I T) and the modified state estimate E-1 (T I T)x(T I 7), yielding the

"information filter equations" (see [13, pp. 139-142]).

rv.2 cost Derivation of the Kalman Filter Recurrence Relations

It will now be shown that the recursive relations (38) can alternatively be derived by

means of simple intuitive cost considerations, without reliance on probabilistic arguments.

As in Section rv.i, suppose for simplicity that the forcing terms a(t) and b(t) in

(1) and (2) are identically zero. For any time T _ > 1, let XT denote the T-length state
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trajectory (x1, ... , xi); and let the time-T incompatibility cost function be specified by

c(Xi ,T) = E [xt+i -F(t)xt]
t=1

T t+E [yt — H(t)x] R(t)- 1 [yt — H(t)x,]

,
S(t)- 1 [xt+ i — F(t)x1

!=1

+ xi — xi* 'ET 1 xl — x;[ }
Also, let the time-1 incompatibility cost function be specified by

c(X1,1) =
,
E1-1 [xl — x*I] •

(39)

(40)

Given the probability relations (34), the time-T incompatibility cost function (39) coincides

with the previously defined incompatibility cost function (37) apart from a nonessential

constant term. Finally, for any time T > 1, let CF (xi ,T) denote the minimum cost (39)

attainable at time T, conditional on the time-T state vector being XT •

By definition, the state-conditioned cost function CF (x1,1) for time 1 coincides with

the time-1 cost function c(Xi, 1); hence it has the quadratic form

where

CF (x1,1) = [X1 — X(1 li)] E-1(1 1 1) [x1 — x(1 I 1)], (41a)

E-10. Ii) L77: Ei-1; (41b)

x(1 I 1) --_-a- fi. (41c)

Note that x(1 I 1) is the state vector x1 which minimizes the state-conditioned cost function

CF (x1,1).

Suppose the state-conditioned cost function CF (xi ,T) for some time T > 1 has the

quadratic form

CF (xi ,T) = [xi — x(T I TT E-1 (T I T) [XT — x(T In] + kT , (42)
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where kT is independent of X. . As shown in [6, Section 4.3], the state-conditioned cost

function for time T 1 satisfies the recurrence relation

where

CF (xT +1,T + = min fAc(xT,x7.+1, + 1) CF (xT '7)1, (43a)
Zr

AC(XT XT ,71 4- 1) E.
[xT+ — F(T)XT] S (T)- 1 [XT +1 — F(T)xT]

+ [y7. — H(7)x7.]1 R(T)-1 [YT — H(T)x7.]
(43b)

denotes the total change in cost associated with the transition from T to T-1-1. Substituting

(42) into (43), it follows by straightforward calculations (analogous to those in Section 111.2)

that the state-conditioned cost function for time T 1 has the quadratic form

CF (XT + 1,T+1) = [XT 1 —x(T+1 I T-1-1)] E-1 (T4-1 I T-I-1)[XT + X(T +1 I Ti-1)] -1-1cT+1,

(44)

where E(T + 1 I T 1) and x(7' + 1 I T +1) satisfy the recursive relations (38). As is clear

from (44), x(T 1 I T +1) is the state vector XT +1 which minimizes the state-conditioned

cost function CF (XT +1, T +1).

The terms E(7' + 1 I T 1) and x(T + 1 I T 1) appearing in the cost expression

(44) thus coincide with the error covariance matrix and state estimate generated by the

Kalman filter recurrence relations derived from (38). Note, also, that the quadratic and

linear coefficient terms E-1 (T -I- 1 I T 1) and E- 1 (T i1 I T 1)x(T + 11 T 1) for

the cost expression (44), considered as a function of xT +1, coincide with the information

matrix and modified state estimate generated by the information filter equations. It is not

surprising, then, that the cost arguments used to derive the recursive relations (38) for

these terms are entirely analogous to the cost arguments used in Section 111.2 to determine

recursive relations for the quadratic and linear coefficient terms QT (A) and PT (A) for the

cost expression .0(xT+1; T) .
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In summary, the Kalman and information filter recurrence relations can be derived

for approximately linear systems using simple cost arguments, without recourse to proba-

bilistic arguments such as Bayes' rule or iterated expectations. All that is needed is that

the basic cost function used to measure theory and data incompatibility be a quadratic

function exhibiting time-separability.

TV.3 The FLS Recurrence Relations as Information Filter Equations

Conversely, the FLS recurrence relations associated with any given point A on the cost-

efficient frontier reduce to a variant of the information filter equations if the theoretical

relations (1) and (2) are augmented by probability relations of the form (34).

Specifically, suppose the dynamic weight matrix ;IMO is taken to be the inverse of

the covariance matrix S(t) for wt, and the measurement weight matrix M(t) is taken to

be the inverse of the covariance matrix R(t) for vt, for each time t; and suppose also

that the initial cost matrix Q0 ('u) is taken to be the inverse of the covariance matrix E1

for the initial state vector x1. In this case the matrix UT (IL) in (28) corresponds to the

inverse of the "measurement-update" error covariance matrix E(T I T) and the vector

zr (it) in (29) corresponds to the modifed state estimate E' (T I 7)x(7' I T). Moreover,

the matrix QT (11) corresponds to the inverse of the "time-update" error covariance matrix

E(T + 1 I T), defined [13, Chapter 3] to be the error covariance matrix for the MAP

estimate of XT+1 based on observations through time T.

IV.4 Duality Implications

If the probability relations (34) are justified for a given filtering and smoothing ap-

plication, they should of course be incorporated in the estimation procedure. However,

for many important applications—particularly in the social sciences—obtaining agreement

among researchers regarding probability relations such as (34) can be difficult.

For example, the process observations may be the outcome of a nonreplicable experi-

ment, so that no objective test of these relations can be carried out. Also, the theoretical
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relations may represent tentatively held conjectures concerning a poorly understood pro-

cess; or they may be a linearized set of relations obtained for an analytically intractable

nonlinear process, as in many aerospace filtering and smoothing problems. In these cases

it is doubtful whether the discrepancy terms are governed by any meaningful probability

relations. Independence restrictions, in particular, are questionable and troublesome.

For these reasons, the FLS procedure, with its minimal assumptions concerning dis-

crepancy terms, appears to offer a useful complement to existing filtering and smoothing

techniques. Moreover, the FLS duality relations discussed in previous sections may shed

some light on the robustness properties of the Kalman filter.

It is now conventional to interpret any quadratic criterion function representing sums

of squared dynamic and measurement errors—e.g., the Kalman filter criterion function

(39)—as a log-likelihood expression arising from some underlying stochastic model in which

model discrepancy terms are interpreted as independent and normally distributed random

variables. Yet it is also known that Kalman filtering works remarkably well in some contexts

in which these strong stochastic assumptions are not even remotely satisfied. A partial

explanation for this robustness is that the Kalman filter criterion function can be given an

alternative interpretation: *namely, as a cost function embodying the criterion that model

discrepancy terms be small.

"Smallness" should not be confused with "randomness." Postulating that xt+1 is

close to [F(t)x + a(t)1 does not mean that the discrepancy term [xt+i — F(t)x — a(t)1 is

necessarily a random vector. As numerous experiments with FLS have shown (see, e.g.,

[3]), the postulate of small dynamic and measurement discrepancy terms is a powerful

assumption which allows state trajectories to be tracked and recovered with surprising

qualitative accuracy at each point along the cost-efficient frontier.

V. CONCLUDING REMARKS

The main purpose of this paper is to present a probability-free multicriteria approach

to the problem of filtering and smoothing when prior beliefs concerning dynamics and

21



measurements take an approximately linear form. In particular, model discrepancy terms

are treated as model specification errors which may not have any meaningful probabilistic

description. Applications are envisioned in various fields, particularly in the social and

biological sciences, where obtaining agreement among researchers regarding probability

relations for discrepancy terms is difficult.

The essence of the proposed FLS procedure is the cost-efficient frontier. This fron-

tier, a curve in a two-dimensional cost plane, provides an explicit and systematic way

to determine the efficient trade-offs between the separate costs incurred for dynamic and

measurement specification errors.

The estimated state sequences whose associated cost vectors attain the cost-efficient

frontier, referred to as FLS estimates, show how the state vector could have evolved over

time in a manner minimally incompatible with the prior dynamic and measurement spec-

ifications. Each FLS estimate has the property that it is not possible simultaneously

to reduce both the dynamic and the measurement cost by choice of an alternative state

sequence estimate. The similarities displayed by the FLS estimates suggest working hy-

potheses regarding the evolution of the actual state vector. The divergencies displayed

by these estimates reflect the residual uncertainty inherent in the problem specifications

regarding the exact nature of this evolution. Without additional prior information, re-

stricting attention to any proper subset of the FLS estimates is an arbitrary decision.

A Fortran program GFLS for implementing the FLS filtering and smoothing procedure

for approximately linear systems is provided in the appendix. This program has been used

in both simulation and empirical studies of time-varying linear regression ([3-5]).

Nonlinear systems are studied from the multicriteria FLS point of view in [6].
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APPENDIX A-1

This appendix provides a Fortran program GFLS which implements the sequential

FLS solution of the bicriteria filtering and smoothing problem posed in Section II. The

program has received extensive testing. In addition, the program incorporates a check of

the sequential FLS solution based upon using the standard first-order conditions for the

solution of the incompatibility cost minimization problem (5).

The variable names used in the GFLS program adhere strictly to those used in the

body of the paper. Moreover, numerous comment statements are interspersed throughout

the program which are geared to the equation numbers used in the paper.

User inputs are required in a subroutine INPUT. This subroutine initializes the penalty

weight A, the total number of observation vectors TCAP, the state vector dimension n,

the observation vector dimension m, and the initial cost function coefficient terms Qo (A),

Po (A), and ro (A). The program is currently dimensioned for TCAP < 110, n < 15, and

m < 15.

Subroutine INPUT also requires the user to set two flags. The first flag, IFLAGR, is

set equal to 1 if the user wishes to generate evaluations for the constant terms rT (A) in

the cost functions (12), and is set equal to 0 otherwise. The second flag, IFLAGS, is set

equal to 1 if the user wishes to generate smoothed state estimates in addition to filtered

state estimates, and is otherwise set equal to 0. If the user sets IFLAGS = 1, the program

automatically carries out a test of the first-order conditions for the incompatibility cost

minimization problem (5).

User inputs are also required in a subroutine MODEL. For each current time T,

subroutine MODEL generates the n X n state transition matrix F(T), the n X 1 dynamic

forcing term a(T), the m x n measurement matrix H(T), the in X 1 measurement forcing

term b(T), the n x n dynamic weight matrix D(T), the in x in measurement weight matrix

M(T), and the in X 1 observation vector yl, . For simulation studies, the observation vector

YT is generated in accordance with the relation YT = H(T)XT + b(T) + VT, where XT is an
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A-2

n x 1 user-specified state vector and VT is an m x 1 user-specified discrepancy term. The

user-specified state vector xT is stored in an array TRUEX for later comparison with the

numerically generated FLS smoothed estimate for XT.

The GFLS program contains subroutines for all needed matrix operations. Currently,

these subroutines are dimensioned for 15 x 15 matrices. To keep the number of subroutines

to a minimum, vector and scalar operations are carried out with these matrix subroutines

by considering some vectors to lie in the first column of a 15 X 15 matrix, and some scalars

to be the upper-left component of a 15 x 15 matrix.



A-3

// DEC FORT1CLG,REGION.512K 00000010
//* 00000020
/*JOBPARM COPIES-4 00000030

00000040
00000050

C GELS: FLEXIBLE LEAST SQUARES FOR APPROXIMATELY LINEAR SYSTEMS 00000060
R. KALABA AND L. TESFATSION 00000070

00000080
C FILENAME: GFLS.CNTL 00000090
C LAST UPDATED: 23 OCTOBER 1989 00000100

00000110
IMPLICIT REAL*8(A-H 2O-Z) 00000120
INTEGER T,TCAP,TCAP1 00000130
REAL*8 M 00000140

00000150
C THIS PROGRAM IS CURRENTLY DIMENSIONED FOR A MAXIMUM OF TCAP-110 00000160
C OBSERVATION VECTORS Y OF MAXIMUM DIMENSION MOBS - 15 WITH STATE 00000170
C VECTORS X OF MAXIMUM DIMENSION N = 15. 00000180

00000190
00000200
00000210
00000220
00000230
00000240
00000250
00000260
00000270
00000280
00000290
00000300

C ADDITIONAL ARRAYS IF SMOOTHED ESTIMATES ARE TO BE CALCULATED 00000310
C FOR INTERMEDIATE X VALUES (I.E., IF IFLAGS IS SET AT 1) 00000320

00000330
DIMENSION GG(15,15,110),SS(15,110) 00000340

90000350
C THE FOLLOWING SUBROUTINE INITIALIZES THE PENALTY WEIGHT AMU, 00000360
C THE NUMBER OF OBSERVATIONS TCAP, THE STATE VECTOR DIMENSION 00000370
C N, THE OBSERVATION VECTOR DIMENSION MOBS, AND THE INITIAL COST 00000380
C FUNCTION CHARACTERISTICS QZERO, PZERO, AND RZERO. IT ALSO SETS 00000390
C THE VALUE FOR A FLAG "IFLAGR" TO DETERMINE IF RNEW IS TO BE 00000400
C CALCULATED (1) OR NOT (0) AND A FLAG "IFLAGS" TO DETERMINE IF 00000410
C SMOOTHED ESTIMATES FOR INTERMEDIATE X VALUES ARE TO BE CALCULATED 00000420
C (1) OR NOT (0). 00000430

00000440
CALL INPUT(AMU,TCAP,N,MOBS,QZERO,PZERO,RZERO,IFLAGR,IFLAGS) 00000450
CALL SHIFT(N,N,QZERO,Q0) 00000460
CALL SHIFT(N,1,PZERO,P0) 00000470
CALL SHIFT(1,1,RZERO,R0) 00000480

00000490
C ENTERING THE MAIN DO LOOP FOR GENERATING Q,P,AND R FOR 00000500
C SUCCESSIVE TIMES T = 1,TCAP USING EQS.(24),(26), AND (27). 00000510

00000520

DIMENSION Q0(15,15),P0(15,15),R0(15,15),QZER0(15,15)
DIMENSION PZER0(15,15),RZER0(15,15)
DIMENSION F(15,15),A(15,15),H(15,15),B(15,15),D(15,15)
DIMENSION M(15,15),Y(15,15),TRUEX(15,110),YY(15,110)
DIMENSION HT(15,15),U(15,15),C(15,15),W(15,15),V(15,15)
DIMENSION E(15,15),Z(15,15),G(15,15),QNEW(15,15),PNEW(15,15)
DIMENSION S(15,15),RNEW(15,15),XTCAP(15,15),X(15,110)
DIMENSION AA(15,15),BB(15,15),CC(15,15),00(15,15),EE(15,15)
DIMENSION FF(15,15),HH(15,15),00(15,15),PP(15,15),QQ(15,15)
DIMENSION RR(15,15),TT(15,15)
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DO 50 T-1,TCAP 00000530
CALL MODEL(T,F,A,H,B,DAY,TRUEX) 00000540
DO 5 I-1,MOBS 00000550
YY(I,T) Y(I,1) 00000560

5 CONTINUE 00000570
00000580

C GETTING U-HT*M*H + QO IN EQ.(28) 00000590
00000600

CALL MUL(MOBS,MOBS,N,M,H,AA) 00000610
CALL TRANS(MOBS,N,H,HT) 00000620
CALL MUL(N,MOBS,N,HT,AA,BB) 00000630
CALL ADD(N,N,BB,Q0,U) 00000640

00000650
C GETTING C=FT*0 00000660

00000670
CALL TRANS(N,N,F,AA) 00000680
CALL MUL(N,N,N,AA,D,C) 00000690

00000700
C GETTING W=AMU*C*F+U 00000710

00000720
CALL MUL(N,N,N,C,F,AA) 00000730
CALL MULCON(N,N,AMU,AA,BB) 00000740
CALL ADD(N,N,BB,U,W) 00000750

00000760
C GETTING V.WINV IN EQ.(17) 00000770

00000780
CALL INV(N,W,V) 00000790

00000800
C GETTING E (Y-6) 00000810

00000820
CALL SUB(MOBS,1,Y,B,E) 00000830

00000840
C GETTING Z HT*M*E + PO IN EQ.(29) 00000850

00000860
CALL MUL(MOBS,MOBS,1,M,E,AA) 00000870
CALL MUL(N,MOBS,1,HT,AA,BB) 00000880
CALL ADD(N,1,1313,P0,Z) 00000890

00000900
C GETTING G AMU*V*C IN EQ.(20) 00000910

00000920
CALL MUL(N,N,N,V,C,AA) 00000930
CALL MULCON(N,N,AMU,AA,G) 00000940
IF(IFLAGS.EQ.0) GO TO 110 00000950

00000960
C STORE G FOR CALCULATION OF SMOOTHED ESTIMATES 00000970

00000980
DO 10 I=1,N 00000990
DO 20 J=1,N 00001000
GG(I,J,T)4(1,J) 00001010

20 CONTINUE 00001020
10 CONTINUE 00001030

110 CONTINUE 00001040
00001050



A - 5

C GETTING ON AMU*D*(I-F*G) IN EQ.(24) 00001060
00001070

CALL MUL(N,N,N,F,G,AA) 00001080
CALL IDEN(N,B13) '00001090
CALL SUNNABB,AA,CC) 00001100
CALL MUL(N,N,N,D,CC,D0) 00001110
CALL MULCON(N,N,AMU,DD,QNEW) 00001120

00001130
C GETTING PNEW GT*Z+QUEWT*A IN EQ.(26) 00001140

00001150
CALL TRANS(N,N,G,AA) 00001160
CALL MUL(N,N,1,AA,Z,BB) 00001170
CALL TRANS(N,N,QNEW,CC) 00001180
CALL MUL(N,N,1,CC,A,00) 00001190
CALL ADD(N,1,613,DD,PNEW) 00001200

00001210
C GETTING S V*(Z - AMU*C*A) IN EQ.(19) 00001220

00001230
CALL MUL(N,N,1,C,A,B6) 00001240
CALL MULCON(N,1,AMU,BB,CC) 00001250
CALL SUB(N,1,Z,CC,DD) 00001260
CALL MUL(N,N,1,V,DD,S) 00001270
1F(IFLAGS.EQ.0) GO TO 210 00001280

00001290
C STORE S FOR CALCULATION OF SMOOTHED ESTIMATES 00001300

00001310
DO 30 I-1,N 00001320
SS(I,T)-S(I,1) 00001330

30 CONTINUE 00001340
210 CONTINUE 00001350

IF(IFLAGR.EQ.0) GO TO 310 00001360
00001370

C GETTING RNEW RO + ET*M*E + AMU*AT*D*A - ST*W*S IN EQ.(27) 00001380
00001390

CALL MUL(MOBS,MOBS,1,M,E,AA) 00001400
CALL TRANS(MOBS,1,E,BB) 00001410
CALL MUL(1,MOBS,1,BB,AA,cC) 00001420
CALL ADD(1,1,RO,CC,DD) 00001430
CALL MUL(N,N 1,D,A,EE) 00001440
CALL TRANS(N 1,A,FF) 00001450
CALL MUL(1,N 1,FF,EE,HH) 00001460
CALL MULCON( ,1,AMU,HH,00) 00001470
CALL ADD(1,1 DD,00,PP) 00001480
CALL MUL(N,N 1,W,S,QQ) 00001490
CALL TRANS(N 1,S,RR) 00001500
CALL MUL(1,N 1,RR,QQ,TT) 00001510
CALL SUB(1,1,PP,TT,RNEW) 00001520

310 CONTINUE 00001530
IF(T.EQ.TCAP) GO TO 50 00001540

00001550
C UPDATING Q0,P0, AND RO 00001560

00001570
CALL SHIFT(N,N,QNEW,Q0) 00001580
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CALL SHIFT(N,1,PNEW,P0) 00001590
1F(IFLAGR.EQ.0) GO TO 50 00001600
CALL SHIFT(1,1,RNEW,R0) 00001610

50 CONTINUE 00001620
00001630

C GETTING THE FLS FILTER ESTIMATE FOR XTCAP UINV*Z IN EQ.(30) 00001640
00001650

CALL INV(N,U,AA) 00001660
CALL MUL(N,N,1,AA,Z,XTCAP) 00001670
DO 65 1=1,N 00001680
X(I,TCAP)=XTCAP(I,1) 00001690

65 CONTINUE 00001700
IF (IFLAGS.EQ.1) GOTO 410 00001710

00001720
C PRINTING OUT THE FLS FILTER ESTIMATE FOR XTCAP 00001730

00001740
CALL OUTPUT(TCAP,N,X,TRUEX) 00001750
IF(IFLAGS.EQ.0) GOTO 510 00001760

410 CONTINUE 00001770
00001780

C GETTING SMOOTHED ESTIMATES FOR X1,..., XTCAP-1 IN EQS.(33A) 00001790
00001800

TCAP1=TCAP-1 00001810
DO 70 T-1,TCAP1 00001820
L-TCAP-T 00001830
DO 80 I-1,N 00001840
X(1,0-SS(I,L) 00001850
DO 90 J=1,N • 00001860
X(1,0=X(1,0+GG(1,J,L)*X(J,L+1) 00001870

90 CONTINUE 00001880
80 CONTINUE 00001890
70 CONTINUE 00001900

00001910
C PRINTING OUT THE FLS ESTIMATES FOR X1,.. .,XTCAP 00001920

0Q001930
DO 150 T.-1,TCAP 00001940
CALL OUTPUT(T,N,X,TRUEX) 00001950

150 CONTINUE 00001960
C VALIDATION TEST: HOW WELL DO THE FLS ESTIMATES SATISFY THE 00001970
C FIRST-ORDER CONDITIONS FOR THE COST MINIMIZATION PROBLEM (5) 00001980

CALL FOCTST(X,YY) 00001990
510 CONTINUE 00002000

STOP 00002010
END 00002020

00002030
C MATRIX SUBROUTINES FOR ADDITION, MULTIPLICATION, TRANSPOSITION, 00002040
C SUBTRACTION, INVERSION, MULTIPLICATION BY A SCALAR, SHIFT, AND 00002050
C FORMATION OF AN IDENTITY MATRIX 00002060

00002070
C OBTAINING THE SUM C=A+6 OF TWO NROW X MCOL MATRICES A AND B 00002080

00002090
SUBROUTINE ADD(NROW,MCOL,A,B,C) 00002100
IMPLICIT REAL*8(A-H 2O-Z) 00002110
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DIMENSION A(15,15),605,15),C(15,15) 00002120
DO 10 I-1,NROW 00002130
DO 20 J-1,MCOL 00002140
C(I,J)-A(I,J)+B(I,J) 00002150

20 CONTINUE 00002160
10 CONTINUE 00002170

RETURN 00002180
END 00002190

00002200
C OBTAINING THE PRODUCT C-A*E3 OF AN NROW X L MATRIX A AND AN 00002210
C L X MCOL MATRIX 13 00002220

00002230
SUBROUTINE MUL(NROW,L,MCOL,A,B,C) 00002240
IMPLICIT REAL*8(A-H 2O-Z) 00002250
DIMENSION A(15,15),B(15,15),C(15,15) 00002260
DO 10 I=1,NROW 00002270
DO 20 J-1,MCOL 00002280
SUM=0.0D+00 00002290
DO 30 K-1,L 00002300
SUM=SUM+A(I,K)*B(K,J) 00002310

30 CONTINUE 00002320
C(1,J)=SUM 00002330

20 CONTINUE 00002340
10 CONTINUE 00002350

RETURN 00002360
END 00002370

00002380
C OBTAINING THE TRANSPOSE B OF AN NROW X MCOL MATRIX A 00002390

00002400
SUBROUTINE TRANS(NROW,MCOL,A,B) 00002410
IMPLICIT REAL*8(A-11,0-Z) 00002420
DIMENSION A(15,15),B(15,15) 00002430
DO 10 I=1,NROW 00002440
DO 20 J-1,MCOL 00002450
B(J,I)4(I,J) 00002460

20 CONTINUE 00002470
10 CONTINUE 00002480

RETURN 00002490
END 00002500

00002510
C OBTAINING THE DIFFERENCE C=A-B BETWEEN NROW X MCOL MATRICES 00002520
C A AND B 00002530

00002540
SUBROUTINE SUB(NROW,MCOL,A,B,C) 00002550
IMPLICIT REAL*8(A-H 2O-Z) 00002560
DIMENSION A(15,15),B(15,15),C(15,15) 00002570
DO 10 I=1,NROW 00002580
DO 20 J=1,MCOL 00002590
C(I,J)=A(I,J)-B(I,J) 00002600

20 CONTINUE 00002610
10 CONTINUE 00002620

RETURN 00002630
END 00002640
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C 00002650
C OBTAINING THE INVERSECOFAKXKMATRIX A 00002660
C 00002670

SUBROUTINE INV(K,A,C) 00002680
IMPLICIT REAL*8(A-H 2O-Z) 00002690
DIMENSION A(15,15),B(15,30),C(15,15) 00002700
DO 5 J-1,K 00002710
DO 6 I-1,K 00002720
13(10.))4(1,J) 00002730

6 CONTINUE 00002740
5 CONTINUE 00002750

K2=K*2 00002760
DO 7 J-1,K 00002770
DO 8 I-1,K 00002780
B( I,K+J)-0.0D+00 00002790
IF(I.EQ.J) B(I,K+J)-1.0D+00 00002800

8 CONTINUE 00002810
7 CONTINUE 00002820

C 00002830
C THE PIVOT OPERATION STARTS HERE 00002840
C 00002850

DO 9 1.-1,1( 00002860
PIVOT - B(L,L) 00002870
DO 13 J-L,K2 00002880
13(_,J)-B(L,J)/PIVOT 00002890

13 CONTINUE 00002900
C 00002910
C TO IMPROVE THE ROWS 00002920
C 00002930

DO 14 I-1,K 00002940
IF(I.EQ.L) GO TO 14 00002950
AIL-NI,L) 00002960
DO 15 J-L,K2 00002970
B(I,J)=13(1,J)-AIL*13(L,J) 00002980

15 CONTINUE 00002990
14 CONTINUE 00003000
9 CONTINUE 00003010

DO 45 I-1,K 00003020
DO 46 J-1,K 00003030
C(I,J)=B(I,K+J) 00003040

46 CONTINUE 00003050
45 CONTINUE 00003060

RETURN 00003070
END 00003080

C 00003090
C OBTAINING THE PRODUCT C*A OF A SCALAR C AND AN NROW X MCOL 00003100
C MATRIX A 00003110
C 00003120

SUBROUTINE MULCON(NROW,MCOL,C,A,CA) 00003130
IMPLICIT REAL*8(A-H 2O-Z) 00003140
DIMENSION A(15,15),CA(15,15) 00003150
DO 10 I=1,NROW 00003160
DO 20 J=1,MCOL 00003170
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CA(I,J)-C*A(I,J) 00003180
20 CONTINUE 00003190
10 CONTINUE 00003200

RETURN 00003210
END 00003220

C 00003230
C PUTTING AN NROW X MCOL MATRIX A INTO AN NROW X MCOL MATRIX B 00003240
C 00003250

SUBROUTINE SHIFT(NROW,MCOL,A,B) 00003260
IMPLICIT REAL*8(A-H,0-Z) 00003270
DIMENSION A(15,15),B(15,15) 00003280
DO 10 I-1,NROW 00003290
DO 20 J-1,MCOL 00003300
B(I,J)-A(I,J) 00003310

20 CONTINUE 00003320
10 CONTINUE 00003330

RETURN 00003340
END 00003350

C 00003360
C FORMING THE N X N IDENTITY MATRIX E 00003370
C 00003380

SUBROUTINE IDEN(N,E) 00003390
IMPLICIT REAL*8(A-H 2O-Z) 00003400
DIMENSION E(15,15) 00003410
ZER0-0.0D+00 00003420
ONE-1.0D+00 00003430
DO 10 I-1,N 00003440
DO 20 J-1,N 00003450
E(I,J)=ZERO 00003460

20 CONTINUE 00003470
10 CONTINUE 00003480

DO 30 1.-1,N 00003490
E(L,L)-ONE 00003500

30 CONTINUE 00003510
RETURN 00003520
END 00003530

C 00003540
SUBROUTINE INPUT(AMU,TCAP,N,MOBS,QZERO,PZERO,RZERO,IFLAGR,IFLAGS) 00003550
IMPLICIT REAL*8(A-H 2 O-Z) 00003560
INTEGER TCAP 00003570
DIMENSION QZER0(15,15),PZER0(15,15),RZER0(15,15) 00003580
AMU - 1.0D+00 00003590
TCAP - 30 00003600
N - 2 00003610
MOBS - 1 00003620
DO 10 J - 1,N 00003630
DO 20 I - 1,N 00003640
QZERO(I,J) . 0.00+00 00003650
PZERO(I,J) . 0.00+00 00003660
RZERNI,J) = 0.0D+00 00003670

20 CONTINUE 00003680
10 CONTINUE 00003690

IFLAGR=1 00003700

I_

_

'
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C

C
C TIME-VARYING LINEAR REGRESSION STUDY WITH A SHIFT IN THE COEFF.
C VECTOR AT MIDPOINT OBSERVATION TIME T-15 (SEE SECTION 2).

CALL INPUT(AMU,TCAP,N,MOBS,QZERO,PZERO,RZERO,IFLAGR,IFLAGS)
SIGMA = 0.00D+00
DO 10 1-1,15
DO 20 J=1,15
ZER0(1,J) = 0.00+00

20 CONTINUE
10 CONTINUE

CALL IDEN(N,F)
CALL SHIFT(N,1,ZERO,A)
H(1,1)=1.0D+00
H(1,2)-1.0D+00
AT-DFLOAT(T)
IF(T.EQ.1) GO TO 200
H(1,1)-DSIN(10.0D+00+(AT))+0.
H(1,2)-DCOS(10.0D+00+(AT))

200 CONTINUE
CALL SHIFT(MOBS,1,ZER0,13)
CALL IDEN(N,D)
CALL IDEN(MOBS,M)
IF (T.GT.15) GOTO 150
TRUEX(1,T) - 2.0D+00
TRUEX(2,T) - 3.0D+00
GOTO 175

150 TRUEX(1,T) - 4.0+00
TRUEX(2,T) - 5.0D+00

175 CONTINUE
UU - DBLE(GNORM(0))
Y(1,1)=H(1,1)*TRUEX(1,T) + H(1
RETURN
END

C

_

IFLAGS=1 00003710
RETURN 00003720
END 00003730

00003740
SUBROUTINE MODEL(T,F,A,H,B,D,M,Y,TRUEX) 00003750
IMPLICIT REAL*8(A-H 2O-Z) 00003760
REAL*8 M 00003770
REAL*4 GNORM 00003780
INTEGER T,TCAP 00003790
DIMENSION F(15,15),A(15,15),H(15,15),B(15,15),D(15,15),M(15,15) 00003800
DIMENSION Y(15,15),TRUEX(15,110),ZER0(15,15) 00003810
DIMENSION QZER0(15,15),PZER0(15,15),RZER0(15,15) 00003820

00003830
00003840
00003850
00003860
00003870
00003880
00003890
00003900
00003910
00003920
00003930
00003940
00003950
00003960
00003970
00003980

01D+00 00003990
00004000
00004010
00004020
00004030
00004040
00004050
00004060
00004070
00004080
00004090
00004100
00004110
00004120

,2)*TRUEX(2,T) + SIGMA*UU 00004130
00004140
00004150
00004160

SUBROUTINE OUTPUT(T,N,X,TRUEX) 00004170
IMPLICIT REAL*8(A-H 2O-Z) 00004180
INTEGER T 00004190
DIMENSION X(15,110),TRUEX(15,110) 00004200
L = T 00004210
WRITE(6,100) L,(X(I,L),I=1,N) 00004220

100 FORMAT(IHO,'TIME EQUALS',I3/1X,'FLS ESTIMATES',7X,2D25.10) 00004230
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WRITE(6,200) (TRUEX(1,l),I-1,N) 00004240
200 FORMAT(IX,'TRUE X VALUES',7X,2D25.10) 00004250

RETURN 00004260
END 00004270

00004280
C VALIDATION TEST: HOW WELL DO THE FLS ESTIMATES SATISFY THE 00004290
C FIRST-ORDER CONDITIONS FOR THE COST MINIMIZATION PROBLEM (5) 00004300

00004310
SUBROUTINE FOCTST(X,YY) 00004320
IMPLICIT REAL*8(A-H,0-Z) 00004330
INTEGER T,TP1,TCAP,TCAP1 00004340
REAL*8 M,MH 00004350
DIMENSION QZER0(15,15),PZER0(15,15),RZER0(15,15) 00004360
DIMENSION XT(15,15),X(15,110),XTT(15,15),E(15,15) 00004370
DIMENSION PZEROT(15,15),EE(15,15),C0(15,15),YT(15,15),YY(15,110) 00004380
DIMENSION F(15,15),A(15,15),H(15,15),B(15,15),D(15,15),M(15,15) 00004390
DIMENSION Y(15,15),TRUEX(15,110) 00004400
DIMENSION MH(15,15),EM(15,15),EMT(15,15),W(15,15),XTP1(15,15) 00004410
DIMENSION ED(15,15),EDT(15,15),U(15,15),V(15,15),FOCD(15,15) 00004420
C -1.0D+00 00004430

C FORM THE STATE VECTOR FOR TIME T - 1 00004440
CALL INPUT(AMUJCAP,N,MOBS,QZERO,PZERO,RZERO,IFLAGR,IFLAGS) 00004450
DO 100 I-1,N 00004460
XT(I,1) X(I,1) 00004470

100 CONTINUE 00004480
C FORM THE INITIAL INCREMENTAL COST CO - -(Xl'QO - PO') 00004490

CALL TRANS(N,1,XT,XTT) 00004500
CALL MUL(1,N,N,XTT,QZERO,E) 00004510
CALL TRANS(N,1,PZERO,PZEROT) 00004520
CALL SUB(1,N,E,PZEROT,EE) 00004530
CALL MULCON(1,N,C,EE,C0) 00004540

C DO LOOP FOR THE SEQUENTIAL CHECK OF THE FOC FOR T-1,TCAP 00004550
DO 200 T-1,TCAP 00004560

C FORM THE TIME-T STATE VECTOR XT 00004570
DO 300 I-1,N 00004580
XT(I,1) X(I,T) 00004590

300 CONTINUE 00004600
C FORM THE TIME-T OBSERVATION VECTOR YT 00004610

DO 400 J=1,MOBS 00004620
YT(J,1) YY(J,T) 00004630

400 CONTINUE 00004640
CALL MODEL(T,F,A,H,B,D,M,Y,TRUEX) 00004650

C FORM W (YT - H(T)XT - B(T))!M(T)H(T) 00004660
CALL MUL(MOBS,MOBS,N,M,H,MH) 00004670
CALL RME(N,MOBS,YT,XT,H,B,EM) 00004680
CALL TRANS(MOBS,1,EM,EMT) 00004690
CALL MUL(1,MOBS,N,EMT,MH,W) 00004700
IF(T.EQ.TCAP) GOTO 600 00004710

C FORM THE TIME-T+1 STATE VECTOR XTP1 00004720
TP1 = T + 1 00004730
DO 500 I=1,N 00004740
XTP1(1,1) = X(I,TP1) 00004750

500 CONTINUE 00004760
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C FORM U - AMU*(XTP1 - F(T)XT - A(T)r*D(T) 00004770
CALL RDE(N,XTP1,XT,F,A,ED) 00004780
CALL TRANS(N,1,ED,EDT) 00004790
CALL MUL(1,N,N,EDT,D,E) 00004800
CALL MULCON(1,N,AMU,E,U) 00004810

C FORM V . U*F 00004820
CALL MUL(1,N,N,U,F,V) 00004830
GOTO 800 00004840

600 CONTINUE 00004850
DO 700 1-1,N 00004860
V(1,I) - 0.0D+00 00004870

700 CONTINUE 00004880
800 CONTINUE 00004890
C DETERMINE THE FOC DISCREPANCIES FOR TIME T 00004900
C GIVEN BY FOCD - CO + V + W 00004910

CALL ADD(1,N,CO,V,E) 00004920
CALL ADD(1,N,E,W,FOCD) 00004930

C PRINT OUT THE FOC DISCREPANCIES FOCD FOR TIME T 00004940
WRITE (6,36) T 00004950

36 FORMAT(1HO,'FOC DISCREPANCIES FOR TIME',I3) 00004960
WRITE (6,37) (FOCD(1,I),I-1,N) 00004970

37 FORMAT(IX,13010.2) 00004980
C UPDATE THE INITIAL INCREMENTAL COST CO 00004990

CALL MULCON(1,N,C,U,C0) 00005000
200 CONTINUE 00005010

RETURN 00005020
END 00005030

C 00005040
C SUBROUTINE FOR EVALUATING THE MEASUREMENT SPECIFICATION ERROR 00005050
C EM - (YT - H(T)XT - B(T)) FOR TIME T 00005060
C 00005070

SUBROUTINE RME(N,MOBS,YT,XT,H,B,EM) 00005080
IMPLICIT REAL*8(A-H2O-Z) 00005090
DIMENSION YT(15,15),XT(15,15),H(1505),B(15,15),EM(15,15) 00005100
DIMENSION HX(15,15),HXPB(15,15) 00005110
CALL MUL(MOBS,N,1,H,XT,HX) 

.
00005120

CALL ADD(M0BS,1,HX,B,HXPB) 00005130
CALL SUB(MOBS,1,YT,HXPB,EM) 00005140
RETURN 00005150
END 00005160

C 00005170
C SUBROUTINE FOR EVALUATING THE DYNAMIC SPECIFICATION ERROR 00005180
C ED . (XTP1 - F(T)XT - A(T)) FOR TIME T ' 00005190
C 00005200

SUBROUTINE RDE(N,XTP1,XT,F,A,ED) 00005210
IMPLICIT REAL*8(A-H 2O-Z) 00005220
DIMENSION XTP1(15,15),XT(15,15),F(15,15),A(15,15),ED(15,15) 00005230
DIMENSION FXT(15,15),FXTPA(15,15) 00005240
CALL MUL(N,N,1,F,XT,FXT) 00005250
CALL ADD(N,1,FXT,A,FXTPA) 00005260
CALL SUB(N,1,XTP1,FXTPA,ED) 00005270
RETURN 00005280
END 00005290
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