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ABSTRACT

Methods for forecasting turning points and future values of economic time series are
developed which take account of a forecaster's loss structure. For example, it is found
that the decision to forecast a downturn in an economic series is very sensitive to the form
of the forecaster's loss structure as well as to the predictive probability of a downturn.
Using an autoregressive-leading indicator model and data on real output growth rates for
eighteen countries, turning point forecasts were made for each year, 1974-84. Overall, 66%
of the 68 downturn and no-downturn forecasts were correct and 75% of the 82 upturn and
no-upturn forecasts were correct. ,



Turning Points in Economic Time Series, Loss
Structures and Bayesian Forecasting

by

Arnold Zenner, Chansik Hong and Gaurang Mitu Gulate
University of Chicago

1. Introduction

In this paper we consider the problem of forecasting future values

of economic time series and turning points given explicit loss structures.

Kling (1987, pp.201-204) has provided a good summary of past work on fore-

casting .turning points by Moore (1961, 1983), Zarnowitz (1967), Moore and

Zarnowitz (1982), Wecker (1979), Neftci (1982), and others. In this work

there is an emphasis on the importance and difficulty of forecasting turn-

ing points. Also, in our opinion, not enough attention has been given to

the role of loss structures in forecasting just turning points and in

forecasting turning points and the future values of economic variables.

The plan of our paper is as follows. In Section 2, we introduce

loss structures and explain how optimal forecasts of the occurrence of

turning points and future values of economic time series can be computed.

Applications of our procedures are presented in Section 3 based on annual

output growth rate data for eighteen countries and an autoregressive model

with leading indicator variables employed in our previous work--see Garcia-

Ferrer et al. (1987) and Zellner and Hong (1987). In Section 4, a summary

of results and some concluding remarks are presented.

*
Research financed in part by the National Science Foundation and

by income from the H.G.B. Alexander Endowment Fund, Graduate School of
Business, University of Chicago.
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2. Turning Points, Loss Structures and Forecasting

. As Wecker (1979) and Kling (1987) recognize, given a model for

past observations and a definition of a turning point, probabilities re-

lating to the occurrence of future turning points can be evaluated. In

our work, we, along with Kling (1987) evaluate these probabilities using

predictive probability density functions for as yet unobserved, future

values of variables which take account of uncertainty regarding the values

of model parameters as well as the values of future error terms. We also

indicate how to take account of model uncertainty in evaluating probabili-

ties relating to future events such as the occurrence or non-occurrence of

a turning point at a future time.

Let the given past measurements of a variable, say the growth rate

of real GNP, be denoted by y' and z a n+
= (YVY2""'Yn-l'Yn) 

y 1 be the

first future value of the series. Then, definitions of a downturn (DT)

and of an upturn (UT) and their negations, based on yn-1, yn and z are

given by,

jz < yn s Downturn (DTI)
y
n-1 

< y and (2.1a)
n z yn s No Downturn (NDT1)

and
> yn s Upturn (UTI)

yn-1 > y and (2.1b)
n 1 z yn E No Upturn (NUTO

where the subscript 1 on DT, UT, etc., denotes that one past observation,

and one future observation, z E ynmiel have been employed in defining

downturns and upturns.

Given a model assumed to generate the observations, let p(y10) be

the likelihood function for the past data, where 9 is a vector of param-
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eters, w(2II) a prior distribution for e and p(2ID) 71(810p(y12) the

posterior distribution for 0, where D = (y,I) represents the past sample

and prior information. Then with p(z19) representing the probability den-

sity function (pda for z s y11+1, given 2, the predictive pdf for z is

given by

p(zID) = f p(z(2)1:4(21D)d2 C° < Z < C° (2.2)

where e c 0, the parameter space. As is well known, p(z(D) can be viewed

as an average of the conditional pdf, p(z10), with the posterior pdf, p(21D)

serving as the weighting function.

The predictive pdf in (2.2) can be employed to obtain probabili-

ties associated with the events in (2.1). For example,

probability of a downturn, Pis given by
1

P
DT1

Yn

= f gzIOdz

if Yn-1 ( yn,
the

(2.3)

while the probability of no downturn is Pm__
DT 

__ 
= 1 - PDT' 

Note that with1 1 

< yn, the probability of an upturn, given the definitions in (2.1),

is zero.

Given < yn and the probability of a downturn, DT 
as given

P

by (2.3), we now wish to make a decision as to whether to forecast a down-

turn or no downturn. To solve this problem, consider the loss structure

shown in Table 1. The two possible outcomes are DT1 and Mi. If the act

forecast a DT1 
is chosen, loss is scaled to be 0 if the forecast is cor-

rect and to be c
1 

> 0 if it is incorrect. If the act forecast a NDT1 
is

chosen loss is 0 if the outcome is NDT1 and
 c
2 

> 0 if it is DT1' 
In many
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Table 1

Forecasting Loss Structure Given yn...1 < yn
a/

Acts

Possible Outcomes

DT1 NDT1

Forecast DT1

Forecast NDT1

0 1

C2 0

and c2 are given positive quantities.

circumstances, cl * 02. From (2.3), probabilities associated with the out-

comes DT
1 
and NDT1 are available and can be used to compute expected losses

associated with the two acts shown in Table 1 as follows:

and

ELIForecast DT
1 
= 0 • P 

DT
 
+ c1(1

-PDT 
) = c

1
(1-P

DT1
)

1

ELIForecast NDT
1 
= c

2
P
DT 

+ 0(1-P
DT 
) = c

2
P
DT 
.

1 1 1

If (2.4a) is less than (2.4b), that is c1(1-PDT 
) < c2

P
DT

1 1

c
1 < —=

c
1

(2.4a)

(2.413)

or, equivalently

(2.5)

then choosing the act forecast a DTI will lead to lower loss than choosing

the act forecast NDT1' 
Note that if c2 

= e
l' this 

rule leads to a forecast

of a DT
1 
if P > 1/2. On the other hand, if c2/c1 

is much larger than 1,
DT

1
say c2/c1 = 2, then the condition in (2.5) would be satisfied for PDT1/(1-Puri)
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> 1/2 or P
DT 

> 1/3. This example indicates that the decision to forecast

1
a downturn is very sensitive to the value of the ratio c2/c1 as well as to

the value of P
DT
. Thus, considering just the value of PDT 

in forecast-
1 1

ing turning points is not usually satisfactory except in the special case
1/

of symmetric loss, el = c2.

We now turn to consider forecasting the value of z s yn4.1 given yn_ i

< yn and the probability of a DTI from (2.3) employing squared error loss

functions. Let

k
1 

> 0 (2.6a)LDT
1 
= k1
( -z)2

be the loss incurred if a downturn occurs and Z is used as a point forecast

of z and

L T = k2( -z)2 
k2 

> 0
1

(2.6b)

be the loss incurred if no downturn occurs and Z is used as a point fore-

cast of z. Expected loss is

(A 1
EL = PDT 

k
1
E(-z)2IDT

1 
+ (1-P„ )k,Eiz-z)

2 INDT1.
1 "1

(2.7)

On minimizing (2.7) with respect to the choice of Z, the minimizing value
A A 2/

for z, denoted by z*, is-

P 
k1DT1 

+ (1-PDT)e Ik-i..-
A 

DT NuT
1 1

z* -
PDT k1 11-PDT )k2

1 1

(2.8)

1/- Since analysis of forecasting an 
upturn' 

UT
l' 

given that y
n-1 

> v
-n

is similar to that for forecasting a downturn, it will not be presented.

f 1

g/To derive Z* in (2.8) express (2.7) as EL = P
DT1ki[Eiz-zDT1 

)2 
'DTI

- -+ (Z-NDT1
Z 

)2 1 + (1-PDT )k2[E(z -zNDT )
2 1mnp 

(-zNDT
1

'1 + 
- 

)
21 and minimize with

1 1
respect to Z.
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a weightedaverageoftheconditionalmeanazgiver v z
ul
„,and the

l
conditional mean of z given z yn,INDT 

with weights PDT 
k
1 
and (1-P )k

1 '1 DT1 
2.

Note that if k
1 
= k

2' 
Z* = it the mean of the predictive pdf p(z ID) in (2.2).
A

However, if ki * k21 z* in (2.8) will not be equal to z. For example, if

P
DTI 

= 1/2, (2.8) reduces to Z* = (k1
i
11)T1 

+ k
2
z
moT1

)/(ki+k2) which differs

from z. Thus while i is optimal relative to an overall squared error loss

function (k1= k2), it is not optimal in the case that different loss func-

tions (k
1
* k

2
) are appropriate for downturn and no-downturn situations.

In (2.6a-b), we have allowed for the possibility that loss func-

tions may be different for downturn and no-downturn cases. However, the

use of symmetric, squared error loss functions may not be appropriate in

f AN AN

all circumstances. If LDT1(zz) and 4NDT1(zz) are general convex loss

functions for DT1 and NDT1, respectively, then expected loss is given by

EL = PDT ELDT (z,Z)IDT1 + (1-PDT )ELNDT 
(z,)INDTI

1 I 1 1

where the expectations on the right-side of (2.9) are computed using the

conditional predictive pdfs p(zlz<yn,D) and p(zInyn1D). Then EL in (2.9)

can be minimized, analytically or by computer methods to obtain the mini-

mizing value of A.

To illustrate the approach described in the previous paragraph, it

may be that given a DT, over-forecasting is much more serious than under-

forecasting by an equal amount. A loss function, the LINEX loss function,

employed in Varian (1975) and Zellner (1986), is a convenient loss func-

tion which captures such asymmetric effects. It is given by:

r 
a1(Z-z) A N 1

LDT 
= bLe - a1

 
(z-.z) - lj

1

b1 
> 0

a
1 

> 0

(2.9)

(2.10)
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When A=z, loss is zero and when A-z > 0, a case of over-forecasting, loss

A

rises almost exponentially with al> 0. When z-z < 0, loss rises almost

linearly. Choice of the value of al governs the degree of asymmetry. For

example, when al has a small value, the loss function in (2.10) is close

to asymmetric squared error loss function as can be seen by noting that
a (A-z)
e 1 + a1

 
( -z) + a

1
2(A-z)2/2.

With NDT1/ it may be that under-forecasting is a more serious

error than over-forecasting by an equal amount. The following LINEX loss

function provides such asymmetric properties,

a (A-z) b
2 

> 0
- a2(A-z) - 1] (2.11)L

NDT
1 
= b

2
[e 

2

a
2 

< 0.

The loss functions in (2.10) and (2.11) can be inserted in (2.9)

and an optimal point forecast can be computed. Note that the necessary

condition for a minimum of (2.9) is -

dEL
DT1 

IDT
1 

dEL
inoT 

INDT1  
PDT + (1-PDT ) 

1  - 0. (2.12)
1 dA 1 dA

If the derivatives in this last expression are approximated by expanding

them around A
1 
and A

2' 
values which set them equal to zero, respectively,

the approximate value of A, Z11, which satisfies (2.12) is given by

A A t A
Z* = WZ

1 
(1-w)z

2
(2.13)

where w = P
DT b1 a21/[13DT 

b
1 
a2
1 
+ (1-P

DT 
)b
2 
a2]. Thus it is seen that when
2

1
2 

[ 

1
21 

1
)1(bial/b2a2j is large, 41 is close to A i and when it is 

PDT /(1-PDT
11 ' -alz -a2z

small, A* is close to A2, with Ai = -In(Ee IDTO/al and Z2 = -in(Ee 1

NDT1)/a2. Again, the optimal point forecast in (2.12) is sensitive not
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only to the values of 
DT
 and 1-Pnm , but also to the values of the loss
1

functions' parameters, al, a2, bl, and b2.

In summary, it has been shown how the loss structure in Table 1

can be used to obtain forecasts of turning points and how the probability

of a DT and various loss functions can be employed to obtain optimal

point forecasts. The main conclusion which emerges is that forecasts of

turning points and of a future value are quite sensitive to assumptions

regarding loss structures.

Above we have concentrated attention on the first future observa-

tion, z n+1 given yn...1 < yn or given yn_ i > yn--see (2.1).= y Given a

predictive pdf for the next q future observations, z' = (zz2'...'zq) s

( n+l'Yn+2"'"Yn+q) 
namely p(z1D), < zi < = 1,2,...,q, it is 

Y'

possible to calculate the probability that z < zi > zi+1, that is zi is

a peak value, i = 2,3,...,q-1, using the predictive pdf, p(zID) and the

definition in (2.1a). Also, the probability that z > zi < zi+1, that

is z is a trough value can be evaluated.

The definitions in (2.1) can be broadened to include more past and

future observations, as Wecker (1979) and Kling (1987) indicate. As an

example consider, with z E yn+1 and z_ v1
e E -n+2'

z1 < yn and z2 < zi s DT2

yn..2 < y11-1 < yn and
.otherwise E NDT2

(2.14)

where DT2 a downturn based on two previous observations and two future ob-

servations relative to the given value yn and NDT2 E no such downturn.

Then given yn...2 < y < yn, the probability of a DT2, PDT ' is given by
2
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Yn zl
= f f p(z1,z2ID)dz2dz1 (2.15)

where it has been assumed that -.0 < zi 
<
' 

i = 1,2. This probability

can be employed along with the loss structure in Table 1 to choose between

the acts forecast DT2 
and forecast NDT2 

so as to minimize expected loss.

Also, this analysis can be combined with the problem of obtaining optimal

point predictions of z1 and z2. Further, the probability that the future

values of the series satisfy zi-2 < zi_i < zi > zi+1 > z1+2, that is that

z
i 
is a peak value, can be computed. Finally, using m past values and m

future values, a DTm can be defined and its probability calculated and

used in forecasting.

Above, we have considered just one model for the observations, y'

(YVY

models,

orders,

milm2/ —"Mrt

Often forecasters utilize

for example autoregressive models of differing

several alternative

autoregressive models with various leading indicator variables,

etc. Let pi(xlMi,Di) be the marginal pdf for y, based on model Mi and

sample and prior information D1.2/ Then the posterior probability asso-

ciated with the i'th model Mi, denoted by Pi is given by

12/Note thaty n2 
,
n1
y 

<y>zl'z2 
is an alternative definition of

-- n  yn yn

a DT
2 
and its probability of occurring is f f p(zz2ID)dz1,dz2' some-...3 -.

what different from (2.15).

2/As is well known, pi(yIMi,Di) = f pi(yiMitei)7(eilIi)dei where
e.

pi(ylmi,ei) is the likelihood function giVen model i, 2i is a vector of

parameters with prior pdf )1 where I. denotes the prior parameters,
Di = (y,Ii) and ei c 0i, the ISar eter spaci.
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Pi = nipi(yIN,D0/ nipi(yIMi,Di)
i=1

(2.16)

where n = 1,2,...,r is the prior probability associated with Mi. Also,

for each model the predictive pdf for z = y can be derived and' is de-

noted by pi(zIN,Di). It can be used, for example, to compute the proba-

bility of a DT, 
iDI" 

The Pill's Pi.and the 's in (2.16) allow us to form
P 

a probability mass function as shown in Fig. 1 for the case of r=4. Fig. 1

Fig. 1

Probability Mass Function for Probabilities of a DT

Model Probability, Pi

13.3 
P4

P2ITT Probability of DT,PiDT

0 P3DT POT P1DT P2DT 1.0 Based on Model Mi

reveals the effects of model uncertainty on the probability of a DT. That

is, instead of having a single probability of a DT, when there is model

uncertainty, we have several probabilities of a DT, P1DT'P2DT"'"PrDT and

their respective probabilities, P1,P2,...,Pr. The usual practice of se-

lecting one model and viewing it as "absolutely true" in deriving a single

probability of a DT obviously abstracts from model uncertainty and is in-

appropriate when model uncertainty is present.

Formally, we have the marginal predictive pdf, p(zID), given by

p(zID) = Pipi(zIMi,Di) (2.17)
1=1

•1
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where P is given in (2.15) and D is the union of the D. Then, for exam-

ple, the probability of a DTI, P DT
1 
is given by 

Yn
PDT = f p(zID)dz

1

= / PiPiDT
1=1 1

(2.18)

Yn
where PiDT 

= f pi(z1Mil)i)dz is the probability of DI) based on model Mi.
1

It is seen from the second line of (2.18) that PDT 
is an average of the

1
P
iDT 

with the posterior model probabilities, the Pi's serving as weights.

1
Further, various measures can be computed to characterize the dispersion

and other features of the PiDT 
's. For example their variance is given by
1

Var(PiDT ) = Pi(PiDT -PDT)2* 
(2.19)

1 i=1 1 1

Given a loss structure such as that in Table 1, PDT 
in (2.18) can

1
be employed to make an optimal choice between forecast DT1 or forecast NDT1.

Similar analysis yields results for forecasting an upturn or no upturn.

For broader definitions of turning points, predictive pdfs for several

future observations would replace pi(z1Mi,Di) in (2.17) and the integral

in (2.18) would have to be modified along the lines shown in (2.15).

Finally, the problem of forecasting turning points in two or more

time series is of interest. Given a definition of a turning point, and a

model for two or more time series, probabilities of downturns or upturns

can be computed from the joint predictive pdf of future values of the

several time series. Then, given a loss structure, optimal turning point

forecasts can be derived. In the case of two time series, for example the

rates of growth of output and of inflation, the set of possible forecasts
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will involve forecasting downturns for both variables, a downturn for one

variable and no downturn for the other, or no downturn for both variables.

Given m such possible forecasts and m possible outcomes, an mxm loss

structure can be defined, an expanded version of the 2x2 case shown in

Table 1. Using probabilities associated with possible outcomes, the fore-

cast that minimizes expected loss can be determined along the lines shown

in (2.4) for the 2x2 case. Also, the multiple models, multiple time series

case can be addressed using a generalization of the multiple models, one

time series case analyzed above.

3. Data and Applications

In this Section some of the techniques described above will be

applied in the analysis of data relating to annual output growth rates for

18 countries used in our previous work, Garcia-Ferrer et al. (1987) and

Zellner and Hong (1987).

Shown in Fig. 2 is a boxplot of the annual rates of output growth

for 18 countries over the period, 1954-84. It is seen that the annual

median growth rates, given by the horizontal line in each box, appear to

follow a cyclical path with peaks in 1955, 1960, 1964, 1969, 1973, 1976,

and 1979 and troughs in 1958, 1963, 1966, 1971, 1975, and 1981. The aver-

age time between peaks is 4.2 years and between troughs is 4.4 years. To

provide more detail, Fig. 3 provides the number of countries experiencing

peaks and troughs in each year. It is seen that many countries experi-

enced peaks in years close to or at 1955, 1960, 1964, 1969, 1973, 1976,

1979, and 1984. As regards troughs, they were encountered for many coun-

tries in years close to or at 1954, 1958, 1962, 1966-67, 1971, 1975, 1977,
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Fig. 2
Annual Growth Rates of Real Output for Eighteen Countries, 1954-1984
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1/Annua1 rates of growth of real GNP or GDP for the following countries have been utilized:

Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy,

Japan, Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom and United States.

Data from the U. of Chicago, Graduate School of Business IMF data base.



Fig. 3a
Number of Countries Experiencing a Peak Output Growth Rate by Years, 1953-84 for 18 Countries /
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1/A peak is defined to be an annual growth rate which is larger than the two previous growth rates and

the following growth rate. That is yn is a peak growth rate if Yn-2'Yn-1<Yn>Yn+1• 
The data on real

GNP or GDP were obtained from the U. of Chicago, Graduate School of Business IMF data base and relate

to the following countries: Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,

Ireland, Italy, Japan, Netherlands, Norway, Sweden, Spain, Switzerland, United Kingdom and United States.
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Fig. 3b a/

Number of Countries Experiencing a Trough Output Growth Rate by Years, 1953-84 for 18 Countries
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a trough is defined to be an annual growth r
ate which is smaller than the two previous g

rowth rates and

the following growth rate. That is yn is a trough growth rate if yn-1
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> y
n
<y

n+1. 
See Fig. 3a for

source of data and a listing of the 1-18 countr
ies.
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and 1982. These descriptive measures reflect the well known fact that

economies' output growth rates, while not perfectly synchronized, tend to

move up and down together, as noted by Burns and Mitchell (1946), Zarno-

witz (1985) and others.

We now 'turn to the problem of forecasting turning points for the

18 countries' growth rates of output. Here a downturn is defined to be a

sequence of observations satisfying yn_lan..2 < yn > ynso and an upturn a

sequence of observations satisfying v n2an1 y < 
Our forecasting

---n Yn+1*

model, an autoregression of order three with leading indicator variables,

denoted by AR(3)LI model, used in our previous work, Garcia-Ferrer et al.

(1987) and Zellner and Hong (1987) is

= aio+ aliyit_i+ aayit_2+ a3iyit_3+ it-3+8 
i = 1,2,...,18 (3.1)

yit
A

+ a SR + 8 .GM + 8
41 
.WR +

2i it-2 31 it-1 t 1
t =

where the subscripts i and t denote the i'th country and t'th year, re-

spectively and

yit = growth rate of real output

SRit = growth rate of real stock prices

GMit = growth rate of real money

WRt = "world return," the median of the SRit's.

Lit = error term.

The cit's are assumed independently drawn from a normal distribution with •

zeromean.ancivariancecor all i and t. Using annual data, 1951-1973,
1

a diffuse prior pdf for the parameters, the predictive pdfs for 1974 and

subsequent years were computed and probabilities of downturns and upturns

were computed. Then using the loss structure in Table 2 with c1=c2 fore-
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casts of downturns (DTs) and upturns (UTs) were made. In this case, a DT

is forecasted when PDT 
> 1/2 and NDT is forecasted when PDT 

< 1/2. Also,

an UT is forecasted when PuT > 1/2 and NUT when PuT < 1/2. For all 18

countries over the period 1974-85, under the definition two preceding

observations below (or above) a current observation and the following

observation below (or above) the current observation, our forecasting

procedure yielded the results shown in Table 2.

Table 2

Forecasts of Turning Points for 18 Countries' Output Growth Rates, 1974-85

A. Downturn (DT) and No Downturn (NDT)

Forecast Correct Incorrect Total

DT

4

. 35 5 40

NDT 10 18 28

Total 45 23 68

Percent (66%) (34%) (100%)

B. Upturn (UT) and No Upturn (NUT)

Forecast Correct Incorrect Total

UT 43 20, 63

NUT 17 2 19
.

Total 60 22

.

82

Percent (75%) (25%) (100%)
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We see from panel A of Table 2 that 45 out of 68 or 66% of the DT/ND
T

forecasts are correct. Of the 40 DT forecasts 35 of 40 or 88% are cor-

rect. However, only 10 of 28 or 36% of the NDT forecasts are correct. As

regards forecasts of UT's or NUT's, 60 of 82 forecasts, 75% are correct.

Of the 63 UT forecasts, 43 or 68% are correct while for the NUT forecast
s,

17 of 19, or 90% are correct. Thus except for the NDT forecasts, the

turning point forecasts are quite good.

Fig. 4 provides additional information regarding the forecasts of

DTs and NDTs. It is seen that when the probability of a DT is between

0.40 and 0.60, approximately half of the forecasts are correct. 
When the

probability of a downturn exceeds 0.60, most of the forecasts are
 correct.

However, when the probability of a downturn is less than 0.40, a 
substan-

tial number of errors are made, that is the NDT forecasts were
 not par-

ticularly good.

Fig. 5 provides information regarding the forecasts of UTs and

NUTs. When the probability of an upturn is between 0.40 and 0.60, approx
-

imately half of the forecasts are correct.. When the probability of an

upturn is greater than 0.60, most of the forecasts are correct and wh
en it

is less than 0.40, all forecasts are correct.

Overall the forecasts, except the no-downturn forecasts, are quite

good. With reference to Table 1, these forecasts were computed under the

assumption that c1=c2, that is that the cost of incorrectly forecasting a

downturn is the same as that of incorrectly forecasting no downturn. This

leads to forecasting a downturn if the probability of a downturn is greate
r

than 1/2--see (2.5). If the cost, c2, of incorrectly forecasting no down-
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Fig. 4
Frequency of Correct and Incorrect Forecasts of Output Growth Rate Downturns

And No-Downturns by Calculated Probabilites of Downturns
For 18 Countries, 1974-85./

(Shaded areas represent correct forecasts)
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The probability of a downturn (DT) at time t=n is given by
P
DT 
= Pr(yn+1 < ynlyn-2 yn-1 < yn,D) , where D E past data, which

is calculated from the predictive pdf for y , based on the
AR(3)LI model in (3.1) and a diffuse prior DAI. PDT was cal-
culated for each country and year for, which yn_2,yn_;1 <yn.

P
DT

When >1/2, a DT is the forecast and when P
DT

< i/ , NDT
is the forecast.



20

Fig. 5
Frequency of Correct and Incorrect Forecasts of Output Growth Rate
Upturns (UTs) and No-Upturns (NUTs) by Calculated probabilities

Of Upturns for 18 Countries, 1974-8511'

(Shaded areas represent correct forecasts)
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The probability of an upturn (UT) at time t=n is given by

PUT 
= Pr (y
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> y

n 
y
n-2 'Yn-1 

> yn 
,D) , where D E past data, which

is calculated from the predictive pdf for yrro based on the -

AR(3)LI model in (3.1) and a diffuse prior pdt. PUT was *cal-
culated for each country and year for which yn_2,yn_i >yn.

When PuT > 1/2, UT is the forecast and when PUT < 1/2, NUT
is the forecast.

•
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turn is greater than cl, the cost of incorrectly forecasting a downturn,

(2.5) leads to forecast of a downturn for PDT > c1/(c1+c2) = 1/(1+c2/c1).

If, for example c2/c/ = 1.5, a downturn would be forecasted when PDT > .4

and.no downturn when P
DT 

< .4. With this rule DTs would be more frequently

forecasted and NDTs less frequently forecasted relative to the situation

in which c1=c2' In future work, we shall evaluate turning point forecasts

for various values of the ratio c2/c1.

4. Summary and Concluding Remarks

The problems of forecasting turning points and future values of

economic time series were considered with the major result being that such

forecasts are very sensitive to properties of loss structures. An opera-

tional procedure for forecasting turning points was formulated and applied

to forecast turning points in output growth rates for 18 countries, 1974.-

85 utilizing an AR(3)LI model fitted with pre-1974 data and updated year-

by-year in the forecast period. In general, with the exception of no-

downturn forecasts, the results were encouraging, namely 66% of the DT and

NDT forecasts correct and 75% of the UT and NUT forecasts correct. These

results indicate that our AR(3)LI model and our forecasting techniques may

be of practical value to applied economic forecasters not only in provid-

ing forecasts regarding turning points but also in computing probabilities

associated with future, as yet unobserved values of economic variables.!

§-/See Garcia-Ferrer et al. (1987) and Zellner and Hong (1987) for
an evaluation of the quality of point forecasts derived from the AR(3)LI
model in (3.1).
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