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ABSTRACT

Methods for forecasting turning points and future values of economic time series are
developed which take account of a forecaster’s loss structure. For example, it is found
that the decision to forecast a downturn in an economic series is very sensitive to the form
of the forecaster’s loss structure as well as to the predictive probability of a downturn.
Using an autoregressive-leading indicator model and data on real output growth rates for
eighteen countries, turning point forecasts were made for each year, 1974-84. Overall, 66%
of the 68 downturn and no-downturn forecasts were correct and 75% of the 82 upturn and
no-upturn forecasts were correct.




Turning Points in Economic Time Series, Loss
Structures and Bayesian Forecasting

by

Arnold Zellner, Chansik Hong and Gaurang Mitu Gulati’
University of Chicago

1. Introduction

In this paper we consider the problem of forecasting future values
of economic time series and turning points given explicit loss structures.
Kling (1987, pp.201-204) has provided a good summary of past work on fore-
casting turning points by Moore (1961, 1983), Zarnowitz (1967), Moore and

Zarnowitz (1982), Wecker (1979), Neftei (1982), and others. 1In this work

there is an emphasis on the importance and difficulty of forecasting turn-

ing points. Alsb, in our opinion, not enough attention has been given to
the role of loss structures in forecasting Jjust turning points and in
forecasting turning pqints and the future values of economic variables.

The plan of our paper is as follows. In Section 2, we introduce
loss structures and explain how optimal forecasts of the occurrence of
turning points and future values of economic time series can be computed.
Applications of our procedures are presented in Section 3 based on annual
output growth rate data for eighteen countries and an autoregressive model
with leading indicator variables employed in our previous work--see Garcia-
Ferrer et al. (1987) and Zellner and Hong (1987). In Section 4, a summary

of results and some concluding remarks are presented.

*Research financed in part by the National Science Foundation and
by income from the H.G.B. Alexander Endowment Fund, Graduate School of
Business, University of Chicago.




2. Turning Points, Loss Structures and Forecasting

-As Wecker (1979) and Kling (1987) recognize, given a modél for
past observations and a definition of a turning point, probabilities re-
lating to the occurrence of future turning points can be evaluated. In
our work, we, along with Kling (1987) evaluate these probabilities using
predictive probability density functions for as yet unobserved, future
values of variables which take account of uncertainty regarding the values
of model parameters as well as the values of future error terms. We also
indicate how to take account of model uncertainty in evaluating probabili-
ties relating to future events such as the occurrence or non-occurrence of
a turning point at a future time.

Let the given past measurements of a variable, say the growth rate
of real GNP, be .denoted by y' = [y1,y2,...,yn_1,yn) and z = yn+1 be the
first future value of the series. Then, definitions of a downturn (DT)
and of an upturn (UT) and their negations, based on Yoo11 ¥y and z are

given by,
Downturn (DT1)

y < Y, and (2.1a)
n-1 No Downturn (NDT1)

Y1 > ¥, and (2.1b)

[
l
I Upturn (UT,)
&

No Upturn (NUT,)

where the subscript 1 on DT, UT, etc., denotes that one past observation,
Yn-1 and one future observation, z = Yns+1 have been employed in defining
downturns and upturns.

Given a model assumed to generate the observations, let p(y|e) be

the likelihood function for the past data, where 8 is a vector of param-




eters, 7(8|I) a prior distribution for @ and p(g|D) = n(e]I)p(y|e) the
posterior distribution for @, where D = (y,I) represents the past sample
and prior information. Then with p(zlg] represénting the probability den-
sity function (pdf). for z = Yne1? given 8, the predictive pdf for 2z is

given by

p(z|D) = g p(z|e)p(gD)de =<z <= (2.2)
where 8 < 6, the parameter space. As is well known, p(le) can be viewed
as an average of the conditional pdf, p(z|e), with the posterior pdf, p(e|D)
serving as the weighting function.

The predictive pdf in (2.2) can be employed to obtain probabili-
ties associated with the events in (2.1). For example, if Yn-1 < Ynr the

probability of a downturn, P is given by

DT1

Yn
PDT1 = {mp(le)dz (2.3)

while the probability of no downturn is PNDT1 =1- PDT1'
Yn-1 < Ypo the probability of an upturn, given the definitions in (2.1),

Note that with

is zero.
Given y <Y, and the probability of a downturn, PDT as given
1
by (2.3), we now wish to make a decision as to whether to forecast a down-

turn or no downturn. To solve this problem, consider the loss structure

n-1

shown in Table 1. The two possible outcomes are DT1 and NDT1. If the act

forecast a DTI is chosen, loss is scaled to be 0 if the forecast is cor-

rect and to be c1 > 0 if it is incorrect. If the act forecast a NDT1 is

chosen, loss is 0 if the outcome is NDT1 and ey > 0 if it is DT1. In many




Table 1

Forecasting Loss Structure Given‘yn_1 < yné/

Possible Qutcomes

Forecast DT1

Forecast NDT1 | cy

§/01 and c, are given positive quantities.

circumstances, c, * c,. From (2.3), probabilities associated with the out-

comes DT1 and NDT, are available and can be used to compute expected losses

1
associated with the two acts shown in Table 1 as follows:

EL |Forecast DT, = 0 - PDT1 + 01(1-PDT1] = 01(1-PDT1) (2.4a)
and

EL|Forecast NDT, = C2PDT1 + 0(1-PDT1] = cZPDT1° (2.4b)

If (2.4a) is less than (2.U4b), that is c,(1-P. ) < c,P or, equivalently
1 DT1 2 DT1

P
DT1

DT

(2.5)
1

then choosing the act forecast a DT1 will lead to lower loss than choosing

the act forecast NDT1. Note that if 02 = c1, this rule leads to a forecast

of a DT1 if PDT > 1/2. On the other hand, if 02/01 is much larger than 1,
1

say c,/c, = 2, then the condition in (2.5) would be satisfied for Ppr /(1-PDT )

1

1




>1/2o0r P > 1/3. This example indicates that the decision to forecast

DT
1
a downturn is very sensitive to the value of the ratio c2/c1 as well as to

the value of PDT . Thus, considering just the value of PDT ~in forecast-
1 1

ing turning points is not usually satisfactory except in the special case

1/
of symmetric loss, e, = C,e

We riow turn to consider forecasting the value of z = Yn41 given Yn-1

<y, and the probability of a DT1 from (2.3) employing squared error loss

functions. Let

Lom = k1[£-z]2 k, >0 (2.6a)

DT1 1

be the loss incurred if a downturn occurs and z is used as a point forecast

of z and

2
LNDT1 = ky(2-2) . K

5> 0 (2.6b)

be the loss incurred if no downturn occurs and z is used as a point fore-

cast of z. Expected loss is

2 2
EL = Ppp kE(2-2)7|DT, + (1-PDT1]kaE(£-z) | DT, . (2.7)

DT1

On minimizing (2.7) with respect to the choice of é, the minimizing value

for z, denoted by 2*, is2/
ot *4%pT, * (1'PDT1)k22NDT

PDT1k1 + (1-P

P
1

’

DT1)k2

Y/since analysis of forecasting an upturn, UT1, given that Yn-1 > Yn

is similar to that for forecasting a downturn, it will not be presented.

2/76 derive 2* in (2.8) express (2.7) as EL = P_. k,[E(z-2 2|pT
DT1 1 DT1 1

- 2 - 2 - 2 . .
+ (é-zNDT1] ] + (1-PDT1)k2[E(z-zNDT1) |npT, + [é-zNDT1) ] and minimize with

respect to z.




a ‘Wweighted average of the conditional mean of z given z < Yo' Zpr.? and the
1
conditional mean of z given 2z 2 Yn' 2NDT with weights PDT k1 and (1-PDT )kg.

_ 1 1 1
Note that if k, = k,, z* = z, the mean of the predictive pdf p(z|D) in (2.2).
However, if k1 3 k2, %* in (2.8) will not be equal to z. For example, if

A - -
* -
PDT 1/2, (2.8) reduces to z* = (k1zDT + kzzNDT1)/(k1+k2) which differs

1 1
from z. Thus while z is optimal relative to an overall squared error loss

function (k1= k2), it is not op;imal in the case that different loss func-
tions (k1: k2) are appropriate for downturn and no-downturn situations.

In (2.6a-b), we have allowed for the possibility that loss func-
tions may be different for downturn and no-downturn cases. However, the
use of symmetric, squared error loss functions may not be appropriate in
all circumstances. If LDT1(2,£) and LNDT1(2,£) are general convex loss'

functions for DT1 ahd NDT1, respectively, then expected loss is given by

EL = PDT1ELDT1(2,£]|DT1 + (1-PDT1)ELNDT1(2,£)|NDT1 (2.9)

where the expectations on the right-side of (2.9) are computed using the
conditional predictive pdfs p(zlz(yn,D) and p(z]zZyn,D). Then EL in (2.9)
can be minimized, analytically or by computer methods to obtain the ﬁini-
mizing value of 2.

To illustrate the approach described in the previous paragraph, it
may be that given a DT, over-forecasting is much more serious than under-
forecasting by an equal amount. A loss function, the LINEX loss function,
employed in Varian (1975) and Zellnér (1986), is a convenient loss func-

tion which captures such asymmetric effects. It is given by:

a,(z-z)
= b1 e 1 - a1(£-z) - 1]




When ﬁ:z, loss is zero and when 2-z > 0, a case of over-forecasting, loss
rises almost exponentially with a1> 0. When z-z < 0, loss rises almost
linearly. Choice of the value of a, governs the degree of asymmetry. For
example, when a4 has a small value, the loss function in (2.10) is close
to aAsymmetric squared error loss function as can be seen by noting that
a1[z-z) \ 2 2
e t 1+ a1(z-z] + a1[z-z) /2.

With NDT1, it may be that under-forecasting is a more serious

error than over-forecasting by an equal amount. The following LINEX loss

function provides such asymmetric properties,

a,(z-z) b
e -ay(t-z) - 1] (2.11)

The loss functions in (2.10) and (2.11) can be inserted in (2.9)
and an optimal point forecast can be computed. Note that the necessary
condition for a minimum of (2.9) is-
dELDT1|DT1 dELNDT1|NDT1

+ [1-P

DT, dz DT, dz

P

= 0. (2.12)

If the derivatives in this last expression are approximated by expanding

them around £1 and éz, values which set them equal to zero, respectively,

the approximate value of z, z*, which satisfies (2.12) is given by

(2.13)

2
11 272

[PDT /(1—?DT ]](b1a%/b2a§] is large, z* is close to £1 and when it is
1 1

-a,2 -azz |

Thus it is seen that when

i 2 2
where W = Py, b1a1/[PDT b,as + (1-PDT1]b a

small, &* is close to £,, with £, = -tn(Ee ' |DT,)/a, and £, = -2n(Ee

1 2
NDT1]/a2. Again, the optimal point forecast in (2.12) is sensitive not




only to the values of PDT and 1-PDT , but also to the values of the loss
1 1

functions' parameters, ayy ay, b1, and b2.

In summary, it has been shown how the loss structure in Table 1
can be used to obtain forecasts of turning points and how the probability
of a DT and various loss functions can be employed to obtain optimal
point forecasts. The main conclusion which emerges is that forecasts of
turning points and of a future value are quite sensitive to assumptions

regarding loss structures.

Above we have concentrated attention on the first future observa-

tion, 2z = Ve given Yno1 < ¥, or given Yn-1 > y,--see (2.1). Given a

predictive pdf for the next g future observations, 2' = [21,22,...,zq] =

(yn+1’yn+2""’yn+q)’ namely p(z|D), -= < z, <= 1 = 1,2,...,q, it is

possible to calculate the probability that 24 1 < 24 >z that is z4 is

a peak value, i = 2,3,...,9-1, using the predictive pdf, p(z|D) and the

i+1?

definition in (2.1a). Also, the probability that zi 4 >z <2y 4 that
is Z4 is a trough value can be evaluated.

The definitions in (2.1) can be broadened to include more past and
future observations, as Wecker (1979) and Kling (1987) indicate. As an

example consider, with 2, ? Yne1 and 25 = Y00

jz1 <Y and z, <z, = DT2
Yn-2 ¢ Yn-1 ¢ In and l

(2.14)

.otherwise = NDT2

where DT downturn based on two previous observations and two future ob-

25

servations relative to the given value Yn and NDT2 = no such downturn.

Then given Yn-2 < Yn-1 < Ypo the probability of a DTZ’ PDTZ, is given by




Yn %1
PDT2 = [ [ p(z1,22|D]dzzdz1 (2.15)

where it has been assumed that -« < Z5 (o, 1 = 1,2.5/ This probability
can be employed along with the loss structure in Table 1 to choose between
the acts forecast DT2 and forecast NDT2
Also, this analysis can be combined with the problem of obtaining optimal

so as to minimize expected loss.

point predictions of 2z, and 5. Further, the probability that the future
values of the series satisfy 25 5 < 241 < Z5 > 24 1 > 24,00 that is that

z, is a peak value, can be computed. Finally, using m past values and m

i
future values, a DTm can be defined and its probability calculated and
used in forecasting.
Above, we have considered just one model for the observations, y'

z (y1,y2,...,yn_1,yn]. Often forecasters 'utilize several alternative
models, M1,M2,...,Mr, for example autoregressive models of differing
orders, autoregressive models with various leading indicator variables,
ete. Let pi(lei,Di] be the marginal pdf for y, based on model Mi and

sample and prior information Di.i/ Then the posterior probability asso-

ciated with the i'th model Mg, denoted by Py is given by

E/Note that Yp_21Y < Yy > 21,22 is an alternative definition of

n-1

a DT, and its probability of occurring is [ [ p(z1,22|D)dz1,dzz, some-

2 @ =D

what different from (2.15). .

2/ps is well known, py(yIM,D;) = [ py(yIM;,8,)n(8;|1,)de; where
0.

pi(lei,gi] is the 1likelihood function giéén model i, 8; is a vector of

parameters with prior pdf =(e.|I,), where I, denotes the prior parameters,

D, = (Z’Ii) and 8, < o,, the parameter spacd.




10

r
P, = nipi(z|Mi,ni)/i§1nipi(z|ui,ni) (2.16)

where I,, 1 = 1,2,...,r is the prior probability associated with M;. Also,

i’
for each model the predictive pdf for z = Ypeq 2D be derived and is de-
noted by pi(lei’Di)' It can be used, for example, to compute the proba-
bility of a DT, P

The P...'s and the P,'s in (2.16) allow us to form

iDT® iDT i
a probability mass function as shown in Fig. 1 for the case of r=li, Fig. 1

Fig. 1
Probability Mass Function for Probabilities of a DT

Model Probability, Pj

Py

, T | Probability of DT,Pipr

reveals the effects of model uncertainty on the probability of a DT. That
is, instead of having a single probability of a DT, when there is model
uncertainty, we have several probabilities of a DT, P1DT’P2DT""’PrDT and
their respective probabilities, P1,P2,...,Pr. The usual practice of se-
lecting one model and viewing it as "absolutely true" in deriﬁing a single
probability of a DT obviously abstracts from model uncertainty and is in-

appropriate when model uncertainty is present.

Formally, we have the marginal predictive pdf, p(z|D), given by

r
p(z|D) = i§1Pipi(z|Mi’Di] (2.17)




where Pi is given in (2.15) and D is the union of the Di‘ Then, for exam-

ple, the probability of a DT1, PDT is given by
1

yn
{QP(ZID)dz

E
= P.P.
= i 1DT1

y
n
where PiDT1 = {mpi(z|Mi,Di)dz is the probability of DT, based on model M;.

It is seen from the second line of (2.18) that PDT is an average of the
1
PiDT with the posterior model probabilities, the P;'s serving as weights.
1

Further, various measures can be computed to characterize the dispersion

and other features of the PiDT 's. For example their variance is given by
1

r
Var(P,pn ) =} Py(Bype
i=1

2
{DT -PDTg . (2.19)

1 1
Given a loss structure such as that in Table 1, Ppo in (2.18) can

be employed to make an optimal choice between forecast.DT1 ;r forecast NDT1.
Similar analysis yiélds results for forecasting an upturn or no upturn.
For broader definitions of turning points, predictive pdfs for several
future observations would replace pi(lei’Di] in (2.17) and the integral
in (2.18) would have to be modified along the lines shown in (2.15).
Finally, the problem of forecasting turning points in two or more
time series is of interest. Given a definition of a turning point, and a
model for two or more time series, probabilities of downturns or upturns
can be computed from the joint predictive pdf of future values of the
several time series. Then, given a loss structure, optimal turning point

forecasts can be derived. In the case of two time series, for example the

rateg of growth of output and of inflation, the set of possible forecasts
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will involve forecasting downturns for both variables, a downturn for one

variable and no downturn for the other, or no downturn for both variables.
Given m such possible forecasts and m possible outcomes; an mxm loss
structure can be defined, an expanded version of the 2x2 case shown in
Table 1. Using probabilities associated with possible outcomes, the fore-
cast that minimizes expected loss can be determined along the lines shown
in (2.4) for the 2x2 case. Also, the multiple models, multiple time series
case can be addressed using a generalization of the multiple models, one

time series case analyzed above.

3. Data and Applications

In this Section some of-the techniques described above will be
applied in the analysis of data relating to annual output growth rates for
18 countries used in our previous work, Garcia-Ferrer et al. (1987) and
Zellner and Hong (1987).

Shown in Fig. 2 is a boxplot of the annual rates of output growth
for 18 countries over the period, 1954-84. It is seen that the annual
median growth rates, given by the horizontal line in each box, appear to
follow a cyclical path with peaks in 1955, 1960, 1964, 1969, 1973, 1976,
and 1979 and troughs in 1958, 1963, 1966, 1971, 1975, and 1981. The aver-
age time between peaks is 4.2 years and between troughs is 4.4 years. To
provide more detail, Fig. 3 provides the number of countries experiencing
peaks and troughs in each year. It is seen that many countries experi-
enced peaks in years close to or at 1955, 1960, 1964, 1969, 1973, 1976,
1979, and 1984. As regards troughs, they were encountered for many coun-

tries in years close to or at 1954, 1958, 1962, 1966-67, 1971, 1975, 1977,




Fig. 2
Annual Growth Rates of Real Output for Eighteen Countries, 1954-198431
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Year

-E/Annual rates of growth of real GNP or GDP for the following countries have been utilized:
Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany, Ireland, Italy,

Jaﬁan, Netherlands, Norway, Spain, Sweden, Switzerland, United Kingdom and United States.
Data from the U. of Chicago, Graduate School of Business IMF data base.
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1953-84 for 18 Countries®
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Year

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

E/A peak is defined to be an annual growth rate which is larger than the two previous growth rates and
The data on real

the following growth rate. That is y_ 1s a peak growth rate if y,_ -,y <V, ¥4q-

GNP or GDP were obtained from the U. of Chicago, Graduate School of Business IMF data base and relate
to the following countries: Australia, Austria, Belgium, Canada, Demmark, Finland, France, Germany,

Ireland, Italy, Japan, Netherlands, Norway, Sweden, Spain, Switzerland, United Kingdom and United States.
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Fig. 3b
Number of Countries Experiencing a Trough Output Growth Rate by Years, 1953-84 for 18 Countriesﬁl
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wth rate which is smaller than the two previous growth rates and
See Fig. 3a for

0

-E/A trough is defined to be an annual gro
the following growth rate. That is ylé is a trough growth rate if yn—l’yn—Z:,yn<:yn+1°
source of data and a listing of the 18 countries. .




and 1982. These descriptive measures reflect the well known fact that
economies' output growth rates, while not perfectly synchronized, tend to
move up and down together, as noted by Burns and Mitchell (1946), Zarno-
witz (1985) and others.

We now -turn to the problem of forecasting turning points for the
18 countries' growth rates of output. Here a downturn is defined to be a

sequence of observations satisfying Ypo1Yn-0 < A >y and an upturn a

n+1

sequence of observations satisfying YooY > Yn < Ynet® Our forecasting

n-1
model, an autoregression of order three with leading indicator variables,

denoted by AR(3)LI model, used in our previous work, Garcia-Ferrer et al.

(1987) and Zellner and Hong (1987) is

SR i=1,2,...,18 (3.1)

it = %10% *11¥1e-1* %2191e-2% %31Y1e-3% B11%Rieq

.GM

it-2% B3Nyt By 1,2,...,T

SR .WR
i

+ By £-17 Eit

where the subscripts i and t denote the i'th country and t'th year, re-

spectively and

Yit = growth rate of real output
SRit = growth rate of real stock prices
GM;j = growth rate of real money

WRy = "world return,”" the median of the SRit's.

rro m.
eit e r ter

The €,,'s are assumed independently drawn from a normal distribution with

it

zero mean .and variance o? for all i and t. Using annual data, 1951-1973,

a diffuse prior pdf for the parameters, the predictive pdfs for 1974 and
subsequent years were computed and probabilities of downturns and upturns

were computed. Then using the loss structure in Table 2 with cq=c, fore-




casts of downturns (DTs) and upturns (UTs) were made. In this case, a DT

is forecasted when PDT > 1/2 and NDT is forecasted when PDT < 1/2. Also,

an UT 1is forecasted when PUT > 1/2 and NUT when PUT ¢ 1/2. For all 18

countries over the period 1974-85, under the definition two preceding
observations below (or above) a current observation and the following
observation below (or above) the current observation, our forecasting

procedure yielded the results shown in Table 2.
Table 2

Forecasts of Turning Points for 18 Countries' Output Growth Rates, 1974-85

A. Downturn (DT) and No Downturn (NDT)

Forecast

Correct

Incorrect

DT
NDT

. 35
10

5
18

40
28

Total
Percent

B.

45
(66%)

Upturn (UT) and No Upturn (NUT)

23
(34%)

68
(100%)

Forecast

Correct

Incorrect

uT
NUT

43
17

20

§

2

63
19

Total

Percent

60

22

82
(100%)




We see from panel A of Table 2 that 45 out of 68 or 66% of the DT/NDT
forecasts are correct. Of the 40 DT forecasts 35 of 40 or 88% are cor-
rect. However, only 10 of 28 or 36% of the NDT forecasts are correct. As
regards forecasts of UT's or NUT's, 60 of 82 forecasts, 75% are correct.
Of the 63 UT forecasts, 43 or 68% are correct while for the NUT forecasts,
17 of 19, or 90% are correct. Thus except for the NDT forecasts, the

turning point forecasts are quite good.

Fig. U4 provides additional information regarding the forecasts.of

DTs and NDTs. It is seen that when the probability of a DT is between
0.40 and 0.60, approximately half of the forecasts are correct. When the
probability of a downturn exceeds 0.60, most of the forecasts are correct.
However, when the probability'of a downturn is less than 0.40, a substan-
tial number of errors are made, that is the NDT forecasts were not par-
ticularly good.

Fig. 5 provides information regarding the forecasts-of UTs and-
NUTs. When the probability of an upturn is between 0.40 and 0.60, approx-
imately half of the forecasts are correct. When the probability of an
upturn is greater than 0.60, most of the forecasts are correct and when it
is less than 0.40, all foqecasts are correct.

Overall the forecasts, except the no-downturn forecasts, are quite
good. With reference to Table 1, these forecasts were computed under the
assumption that cy=c,, that is that the cost of incorrectly forecasting a
downturn is the same as that of iﬁcorrectly forecasting no downturn. This
jeads to forecasting a downturn if the probability of a downturn is greater

than 1/2--see (2.5). If the cost, ¢, of incorrectly forecasting no down-




Fig. 4
Frequency of Correct and Incorrect Forecasts of Output Growth Rate Downturns
And No-Downturns by Calculated Probabilities of Downturns
For 18 Countries, 1974-852:

(Shaded areas represent correct forecasts)
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The probability Tf a downturn (DT) at time t=n is given by

P =Pr( < , < D), where D = past data, whi
ichalcu{gtéd zgoinfgey3§édizgivl’pdf for y i , based’onhtﬁg
AR(3)LI model in (3.1) and a diffuse prior Bﬁ%. PD was cal-
culated for each country and year for which Yn-23¥p-1 < Yn-
.When P__>1/2, a DT is the forecast and when PDT'<T/5, NDT
is the forecast.




Fig. 5
Frequency of Correct and Incorrect Forecasts of Output Growth Rate
Upturns (UTs) and No-Upturns (NUTs) by Calculatedi1 robabilities
Of Upturns for 18 Countries, 1974-85—

(Shaded areas represent correct forecasts)
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-E/The probability of an upturn (UT) at time t=n is given by

P =Pr(yn >yn|yn_ ,yn_l>y ,D), where D = past data, which
is" calculated from the predicgive pdf for Yo based on the
AR(3)LI model in (3.1) and a diffuse prior pﬁ%. PUT was cal-
culated for each country and year for which yn_z,yn_1>>yn.
When Pyp > 1/2, UT is the forecast and when Pyr < 1/2, NUT

is the forecast.




turn is greater than c4, the cost of incorrectly forecasting a downturn,

(2.5) leads to forecast of a downturn for P, > c1/(c1+02] = 1/(1+c2/c1].

If, for example cy/cq = 1.5, a downturn would be forecasted when PDT > .4

and no downturn when P__ < .4. With this rule DTs would be more frequently

DT
forecasted and NDTs less frequently forecasted relative to the situation
in which cq=Cs. In future work, we shall evaluate turning point forecasts

for various values of the ratio 02/c1.

4, Summary and Concluding Remarks

The problems of forecasting turning points and future values of
economic time series were considered with the major result being that such
forecasts are very sensitive to properties of loss structures. An opera-
tional procedure for forecasting turning points was formulated and applied
to forecast turning points in output growth rates for 18 countries, 1974-
85 utilizing an AR(3)LI model fitted with pre-1974 data and updated year-
by-year in the forecast period. In general, with the exception of no-
downturn forecasts, the results were encouraging, namely 66% of the DT and
NDT forecasts correct and 75% of the UT and NUT forecasts correct. These
results indicate that our AR(3)LI model and our forecasting techniques may
be of practical value to applied economic forecasters not only in provid-
ing forecasts regarding turning points but afso in computing probabilities

associated with future, as yet unobserved values of economic variables.é/

5/see Garcia-Ferrer et al. (1987) and Zellner and Hong (1987) for
an evaluation of the quality of point forecasts derived from the AR(3)LI
model in (3.1).
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