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ABSTRACT

Bayesian methods for specification analysis or diagnostic checking of the simultaneous
equation model are formulated and applied in analysis of two models. In this work, a direct
Monte Carlo simulation approach is employed to compute exact posterior distributions of
parameters measuring discrepancies from specifying assumptions, e.g., identifying restric-
tions exogeneity, etc. Also, a new approach for calculating the posterior distributions of
a structural equation’s parameters is developed and applied using Monte Carlo numerical
methods. It is concluded that the methods developed will permit convenient computation
of exact finite sample specification error and estimation results for simultaneous equation
models.




Bayesian Specification Analyéis and Estimation of
Simultaneous Equation Models Using Monte Carlo Methods

by
Arnold Zellner, Luc Bauwens and Herman K. van Dijk’

I. Introduction

There have been many studies relating to limited information esti-
mation of the parameters of the simultaneous equation model (SEM) from both
the Bayesian and non-Bayesian points of view--see, e.g. Zellner (1971, Ch.
9), Dréze (1976), Dréze and Richard (1983), Hausman (1983), Tsurumi (1985,
1987), and the references cited in thése works. In non-Bayesian approach-

es, there is usually reliance on asymptotic approximations in making infer-

ences.! Some previous Bayesian approaches also involve asymptotic approxi-

mations. A problem in previous exact Bayesian analyses is that posterior
distributions of structural parameters are in most cases not analytically
tractable2 and thus musf be integrated numerically to obtain their moments,
marginal distributions, ete. As regards Monte Carlo numerical integration,
usual posterior distributions of structural parameters do not have simple

forms from which draws can be made easily. As a consequence, the success

*The first and third authors received support from the National
Science Foundation and from income from the H.G.B. Alexander Endowment
Fund, Graduate School of Business, University of Chicago. The second
author acknowledges support from Erasmus Universiteit. Comments by J.
Dréze and J.F. Richard on an earlier draft were very helpful.

A brief discussion of small sample results in non-Bayesian limited
information estimation of the SEM is given by Anderson (1984, pp. 518 and
519). Tsurumi (1987) reports Monte Carlo experimental results.

2pn exception is Dréze (1976) where the posterior density is in the
poly-t family. Then one can, in some cases, compute moments of structural
coefficients analytically. See also Tsurumi (1985, 1987).




of Monte Carlo integration procedures depends importantly on an investiga-
tor's ability to find distribution functions that are good approximations
to posterior distributions and from which pseudo-random drawings can be
made easily. Also, past Bayesian analyses of the SEM have not devoted much
attention to diagnostic checking of models' assumptions, that is to speci-
fication error analysis.

In the present paper, we start from the reduced form of the SEM and
make a distinction between "unrestricted reduced form analysis" (URFA) and
"restricted reduced form analysis" (RRFA). In our URFA, we define indirect
least squares, generalized indirect least squares, two-stage least squares
and limited information maximum likelihood mappings or functions of unre-
stricted reduced form coefficients which do not require that overidentify-
ing restrictions hold exactly and obtain complete posterior distributibns
of these mappings or functions by a direct Monte Carlo simulation approach.

Also discrepancy vectors and discrepancy functions are introduced which

measure the extent to which overidentifying restrictions are in error and
we indicate how to obtain their posterior distributions by a direct simula-
tion approach. One may also use Bayesian realized error analysis, Zellner
(1975), to provide further diagnostic checks of the SEM.

In the case that ekact identifying restrictions are imposed, we
present a RRFA and discuss a method for computing posterior distributions
of structural parameters which makes use of Monte Carlo integration in a

relatively simple way, namely a direct simuiation approach.

The plan of our paper is as follows. In Section 2 we ccnsider sim-

ple, canonical models to illustrate our approach and go on to specify a




general system. Then various mappings of the URF coefficients are introduc-
ed and we indicate how to compute their posterior distributions, moments,
ete. This is followed by an analysis of the RRF system to obtain posterior
distributions of structural coefficients. Section 3 is devoted to further
diagnostic checking procedures. In Section 4, our methods are applied in
illustrative analyses of several well known .models using actual data. Sec-
tion 5 provides some concluding remarks. An efficient algorithm for gener-
ating pseudo-random drawings from a matrix-Student-t distribution is pre-

sented in the Appendix.

2. Model Specification, Interpretation and Analysis

In this section we first consider canonical models to illustrate
features of our approach. Then we specify unrestricted reduced form (URF)
systems and indicate how to compute posterior distributions for interesting
functions or mappings of URF coefficients. These functions or mappings are

related to discrepancy vectors which measure departures of the URF coeffi-

cients from satisfying usual overidentifying restrictions. Next, we impose
identifying and normalizing restrictions, derive the posterior distribution
of the parameters of a single structural equation using diffuse and infor-

mative prior distributions and discuss a Monte Carlo integration procedure

for the computation of posterior moments and densities. Also, various con-

ditional posterior distributions centered at OLS, 2SLS, LIML, and MELO
point estimates and diagnostic checks of the validity of over-identifying

restrictions are provided.




2.1 Canonical Models

The first canonical model is a "means model" for two endogenous

variables, namely,

Vg = Ny + V (2.1a)
- 1=1,2,...,n

Yoi = Ey + Voy (2.1b)

wheretw.and zi are means of’y11 and yZi’ respectively, and the zero-mean
disturbance terms, Vii and vy are assumed independently drawn from a bi-
variate normal distribution with 2x2 positive definite symmetrie (pds) co-
variance matrix. For example, ny and 51 can be interpreted as the i'th
individual's "permanent" or "anticipated" consumption and income, respec-
tively, whereas y1i and Y,; are their measured counterparts. Interest may
center on various functions of the ny 's and 51 s, for example ni/s , 1 =
1 2, ..,n, the "permanent consumption-income" ratios, n 2 n /n, E =

n n i=1

- 2
2 Ei/n’ 0 - z (Ei_g) /n, Unn = 121(n1-n) /n, 0 Z (Ei ("i ]/nr
hlgher order moments, skewness and kurtosis measures, etc Further weight-

ed averages of the ratios ni/g y €.8., 71 = n/E = Z n. /51)51/1215i or yz =

i=1
12 (ni/s )E / Z 51 z nie / Z Ei E'n/E'E, where n' = (n1,n2,...,nn] and

£ = [51,52,...,5n) might be of interest. If we write

~

= EY + é«] (2-2)

where y is a scalar parameter and 91 is an nx1 discrepancy vector, which

measures the extent to which the ni./gi depart from a common value y, then

Y, = £'n/g'g is the value of y that minimizes Al4, = (n-£v)'(n-gv), a dis-

Y, = E'n/% -EY
Y

crepancy function. Also, the functions 31 = (3-571] (n-g 1]/n and Ef =1 -

n??/n'n are of interest and have obvious regression interpretations.




Given a posterior distribution for the 2n parameters, n and g, draws
can be made from it and complete posterior distributions for ni/zi, ;, €,

o r O 1 3?, ;%, etc., can be obtained by a direct Monte Carlo ap-

g’ nn
proach, that is by repeated evaluations of these quantities using indepen-
dent draws from the joint distribution. If it is the case that the distri-
bution of Ei is centered far from zero, there is little support for the as-
sumption é1 =0orn = yg. On the other hand, if E?'s distribution is cen-
tered close to zero, this provides some support for the assumption 91 =0

and with this assumption, the model becomes a form of the usual "errors-in-
the-variables" model. While we do not pursue the matter now, it is also
possible to compute posterior odds relating to the hypotheses é1 = 0 and

A

p* 2

If in addition to (2.1), we have proxies for ny and £y namely,

ﬁi (2.3a)
5 (2.3b)

where §i is a 1xk vector of predetermined variables, a typical row of an
nxk matrix X, assumed of full column rank, and T and T, are kx1 coeffi-
cient vectors, the number of location parameters is reduced from 2n Ei's
and ni's to 2k w's. Using (2.3), we can express (2.1) in matrix form as

follows: .
¥ Xg1 + (2.4a)

Yo = X, + - (2.4b)

where Y10 Y20 ¥4 and v, are nx1 vectors with typical elements Yqi0 Yo10 Vqy

and Voio respectively.




In (2.4), we have two URF equations. Just as with (2.1), we may be
interested in various functions or mappings of the URF coefficients, the
1] ]
analogues of those for ny and Ei with XiT, and gigz replacing ny and Ei' re-

spectively in their definitions. Also, we can introduce

Xu

T4 = XEZY + 92 (2.5)

where A, is an nx1 discrepancy vector. Then ;é = géX'Xg1/32'X'X32 is the

~2

_2 — -
value of y that minimizes 43,. Further, o, = (Xm =Xa,v,) ' (X1,-Xn,v,)/n
Eg =1- n3§/31X'X51 are regression-like mappings of the ='s which are
of interest. Also, if we consider

and

1"1 = HQY + 93) . (206)

where 53 is a kx1 discrepancy vector, then the value of y, say 53 minimiz-
- _2 — -— ._2
' - ! 1 = - ' - = -
ing Aths is just Y3 = i1 /141, and o3 = (31 3273) (31 3273]/k and P 1

kE§/3;31 are measures of the extent to which é3 = Q holds.

Given a joint posterior pdf for T and L from which draws can be

made, a direct Monte Carlo simulation approach can be employed to obtain

the posterior distributions of ;é, ?é, Eg, Eg, Eg, ;g, etc., since these

quantities are given functions or mappings of the unrestricted ='s.

¢, , -,
if 92 = 0 in (2;6) or 93 = 0 in (2.7), we have the case of exact

restrictions. Then (2.4) can be written as

Y1 = Xy + ¥y

Yo = X1y + V5

= Yor + Uy

= A+




where U, = V,-VoY and u, = Vs (2.7a-b) is the restricted reduced form

(RRF) equation system which can also be expressed in structural form as

shown in (2.7c-d). On introducing a prior distribution for v, LP and the

reduced form disturbance covariance matrix, we can obtain a posterior dis-

tribution for these parameters. Note that in working with (2.7a-b), it is

assumed that the overidentifying restrictions hold exactly, that is 52 = Q

in (2.5) or A, = 0 in (2.6). The number of coefficients in (2.7) is k+1,

3
usually a large reduction from the 2k coefficients in (2.4) for k>1. When
k=1, the case of "just identification," the number of coefficients in the
URF and RRF is the same. Also, relative to the 2n location parameters in
(2.1), the reduction is much larger. This reduction, however, is dependent
not only on the identifying restrictions holding exactly but also on the
appropriateness of the proxy expressions in (2.3). Diagnostic checking
procedures relating to these assumptions will be described in a subsequent
section.

We now turn to provide results for general cases including mappings
of reduced form coefficients in the unrestricted case and posterior distri-
butions for structural parameters in the restricted reduced form case after
introducing some needed notation. Let Ya = (¥1 E Y1 E Y ) denote an nxm'

0
matrix of observations on m' endogenous variables with URF,

K

(gq 1 ¥y 1Y) = X(mg 2omy 2mg) + (g 2V, 1 V) (2.8)

where X is an nxk matrix of observations on k predetermined variables of
rank k and the rows of the disturbance matrix have been independently drawn
from a zero-mean multivariate normal distribution with a pds covariance ma-

trix. A structural equation, say the first, with normalization imposed can




be written as

(2.9a)

(2.9b)

where Yo and XO are observations on endogenous and predetermined variables
excluded from the first equation and X = (X1 . XO]. The m1x1 vector X4 and
the k1x1 vector 8, are the structural coefficients and u, is an nx1 vector

of structural disturbance terms.

To obtain the well known restrictions on the reduced form coeffi-

cients, we write (2.8) as

Ty Bqq o O
I oI

= (X, : X.)
170 Ti0 * Tq0 -

o)
and on multiplying both sides of (2.10) on the right by (1 : -x; 0
the result is:

T~ 9y

+ Vv Y
LT T O I

Y1 - Yyxq = (X 0 %)

For compatibility with (2.9b), u, = 31-V111 and

311 - H11I1 = §1 (2.128)

Ti0 - =0 (2.12b)

which are restrictions on the reduced form coefficients with Y and §1 ap-

pearing in them, a generalization of (2.6) with By = 0. In (2.12b) I,y 1S

assumed to be of full column rank.




On substituting for (m}, : m}y )' in (2.10) from (2.12), the RRF

equations for Y1 and Y1 are:

Y1 = Xojyq + X8, + ¥, | (2.13a)

~ ~

Y1 XII1 + V1 (2.13b)

where I} = (ni1 : nio). It is seen that (2.13) is in the form of a multi-
variate nonlinear regression model, a generalization of (2.7). The system
in (2.13) will serve as the starting point for an analysis of the RRF
system, whereas

pm) o+ (v, 2 V). (2.142)
will serve as the starting point for the URF analysis of the data (11 . Y1).

2.2 Mappings of Unrestricted Reduced Form (URF) Coefficients

We shall obtain a posterior distribution for the parameters .of
{2.14a) and use it to obtain posterior distributions of interesting func-
tions or mappings of the URF coefficients, [51 : H1). For convenience, we

write ¥ = (y, © ¥,), I = (zy : my) and Vv = (v, : V,) and thus (2.14a) becomes

Y = X o + V. (2.14b)
nxm nxk kxm nxm

The n rows of V are assumed to be independently drawn from a multivariate
normal distribution with zero mean vector and mxm pds covariance matrix Q,
i.e. MVN(Q,Q]. If X includes lagged endogenous variables, we assume that
initial or starting values are given. Then the likelihood function for
(2.14b) is
-n/2 -1

exp{-3tr(Y-xm)' (y-xo)a~ '} (2.15)

exp{-3tr(s + (n-ﬁ)'X'X(n-ﬁ)]ﬂ-1}

2(m,2|Y.X) = |af

« IQI—H/Z




where « denotes "is proportional to",

f= (xx) Txry  (2.162)

s = (Y-xi)'(y-xi). (2.16b)

It is seen that the likelihood function in (2.15) is in the same form as
that for a multivariate regressicn model--see, e.g., Zellner (1971, Ch. 8)
with &t and S sufficient statistiecs.

We shall employ the following standard diffuse prior distribution

for 0 and the distinct elements of 0,3

-(m+1+v0)/2,

p(II,Q] « |Q| (2.17)

where Vo > 0, that is the elements of I and @ are independent, with the
former being uniformly distributed and the latter in the form of a degener-
ate, inverted Wishart distribution.

On multiplying (2.15) and (2.17) and using Vo= 0, we obtain by

Bayes's Theorem the joint posterior density of I and @, namely

p(1,2]D) = |a|~ (™1 2exnl ser(s + (p-2)'x'x(n-1)]0"}  (2.18)

where D denotes the given sample information (Y,X) and prior information in

(2.17). On integrating (2.18) with respect to @, we obtain the well known

marginal posterior density for I,

p(x[p) = |S + (m-f)'x'x(n-4)| /2 (2.19)

which is in the form of a matrix Student-t deansity--see, e.g. Dickey (1967),

3The value v.= k in the exponent of (2.17) has been suggested by
Dreze (1976) while Zé&lner (1971) employs vo© 0.




Box and Tiao (1973), Dréze and Richard (1983), Geisser (1965), and Zellner
(1971) for properties of this distribution. As explained below, it is
possible to make independent draws from (2.19) and to use them to determine
the posterior distributions of interesting functions or mappings of the
elements of I. Some of these mappings are given below.

We first consider the case of "just-identification" in which the

matrix I, in (2.12b) is square and non-singular and the matrix (310 . =L,

0
is not of full column rank. Then (2.12b) has a unique solution for y,--see

Graybill (1969, p. 140), and this solution can be substituted in (2.12a) to
express §1 in terms of the RF coefficients. Expliecitly, we have,

-1

= 041840710

= 211 (2.203)

-1

= I70T10 (2.20b)

which we call the Indirect Least Squares (ILS) mapping since if least

squares estimates of ‘the I's are inserted in (2.20), the result is the
"indirect least squares" estimate of non-Bayesian econometrics. In the

Bayesian approach, with the posterior distribution for I in (2.19), the

least squares quantity @ = (X'X]-1X'Y is the modal value and mean of (2.19)

and the ILS estimate is the modal value of the posterior distribution of 84
and y, in this case of "exact identification" since (2.20) is a one-to-one
transformation from the I's to 8, and Xq- qurther, as explained below, we
can make independent draws from the matrix Student-t posterior distribution
for I in (2.19) and evaluate 8, and Y4 for each draw by use of (2.20) and

thus obtain the complete posterior distributions for the elements of 84 and

Y,- Also, various measures associated with these distributions can be cal-




culated, for example medians, inter-quartile ranges, means (if they exist),

etc., as will be illustrated in computed examples below.u

In the case of overidentification, the matrix LIPS in (2.12b) has

dimension k XM, where k. is the number of columns of Xo or the number of

0 0
predetermined variables left out of the first structural equation in (2.9b)

and m1 is the number of columns of Y1 or the number of endogenous variables

included in (2.9b) less one. The rank condition for identification of the
structural coefficients Y and 91 is that the rank of no is m1 which re-

quires k0>m1, the order condition in the overidentified case. In the over-

identified case, we cannot go from the URF coefficients, the elements of I

in (2.14b) and (2.19) to the elements of Y and By- For example in (2.6)

are a.s. linearly indepen-

with 4, = 0, n, = TSY and given that P and ©

3 ~ ~2
dent in the URF, we cannot solve for y in terms of the elements of the

vectors of URF coefficients, T and Tse In fact, we can only find an ap-
proximate solution (Graybill (1969), p. 103ff.) as follows. Just as in

(2.6), we shall append a discrepancy vector, 4,, to (2.12). This yields

- I (2.21a)

I11 11¥1 ©

(2.21b)

w

Io - T

1031
We can now define discrepancy functions and obtain values of Y4 and 8 which

minimize them. One example of a discrepancy function is Qéég and the value

of X4 which minimizes this function, denoted by I? and the associated value

of B1s g? are

4preze (1976, p. 1055) discusses conditions for existence of
moments of structural coefficients.




-1
v} = (Biole)” Tiozio- (2.22b)

We shall call the mapping in (2.22) the Generalized Indirect Least Squares

(GILS) mapping since when least squares estimates of the n's are inserted
in (2.22), the result is the GILS estimate--see.Khazoom (1976). In our
Bayesian approach, the posterior distribution of the elements of g? and I?
can be computed by direct Monte Carlo simulation based on draws from the

matrix Student-t posterior distribution for @ in (2.19). Also posterior

distributions for discrepancy functions can be computed, for example
A'A /K. = - #) - *
85857k = (140 - Tyox})" (240 = Tyoxi)/k (2.232)

~2
P2 2222’%10%10°

=1 - B3 /x! - (2.23b)

Also, the posterior distributions of the elements of §2 = To” H1oi§ can be

computed by direct Monte Carlo simulation. The posterior distributions of §2,

- ~2
1]
ezgz/ko and Ps

restrictions in (2.12) in the frequently encountered overidentified case.

will provide information regarding the validity of the exact

We next turn to a mapping that involves the matrix of predetermined

variables by multiplying both sides of (2.12) on the left by X = (x, X ) to

1 %)

obtain

where 7! = (n!, x30), 1y = (u}, m3g), Z, = (¥m, X,) and &} = (y} 8}). To

allow for possible errors in the exact restrictions in (2.2U4), we introduce

a discrepancy vector, 53 as follows,

XE1 = Z1§1 A

=3




Then, just as in the cases considered above, we can minimize the discrepan-

cy function Q§Q3 with respect to §1 to obtain,

(2.26)

as the minimizing value which defines a mapping of the ='s which resembles

that arising in 2SLS estimation.? Thus we call (2.26) the 2SLS Mapping.

Also from (2.25) and (2.26), we can define
(2.27a)

838

ya/m = (¥n, - Z,6%) (Xn, - 2 (2.27b)

3 1~1

=1 = AA /7' X' X7 (2.27¢e)

s3 ~3~3"~1" 71
Posterior distributions of §%, §3, §é§3, 53 and other interesting functions
of the URF coefficients can be calculated using a direct Monte Carlo simu-
lation approach based on draws from the matrix Student-t distribution in

(2.19).
Last, we define a LIML Mapping as follows. Write the URF system

for ¥ = (y, ¥,) in (2.14) as
Y = X1n1 + XOHO-

where ' = (na. Hé-) and multiply both sides of (2.28) on the right by y, =

+ V _ (2.28)

(1 x ')' to obtain
Yza = 1 1 Y, * Xouo Y, * Vza (2.29)

ana + an.

Note that 1 = Q if the restrictions in (2.12) hold and thus we intro-

0-Ya
duce a "variance ratio" discrepancy function,

5An alternative procedure to compute §§ is presented in Section 3.




- iyt 1y (
= aVrVrya/yaV VY (2.30)

where V. = Y - XI and V, = Y - X,0,. With % being the smallest root of ]VéVr
- 2V'V| = 0, the value of Y, minimizing ¢ in (2.30) is obtained by solving

the following set of equations, given O, X and Y,

(viv, - W'V)y, = 0.

The solution is y* = (1 : -y}')' and we can then define 8} = m,, - I;;x}

from the restrictions in (2.12). Thus §%' = (y¥' 8%) is the LIML Mapping

which can be substituted in (2.30) to yield ¢* = Y;v;‘vry;/ygv'vy* The
posterior distributions of 61, oX, no.!;’ etc. can be calculated by direct
Monte Carlo simulation based on independent draws of I from its posterior
distribution in (2.19).

We have discussed various mappings that are useful in connection
with URF analysis which do not involve assuming that identifying restriec-
tions hold exactly. One may extend the GILS mapping and the 2SLS mapping to
the case of a full system of equations [see van Dijk (1985)]. We shall not
pursue this extension herein. We turn now to the derivation of posterior

distributions for structural parameters in a RRF framework.

2.3 Restricted Reduced Form Analysis (RRFA)

We now assume that the restrictions in (2.12) and in the line above
(2.12), hold exactly and impose them to obtain the RRF system of the equa-
tions for Y1 and Y1 as follows. Substitute the expression V= Uy o+ V1I1
in (2.13a); use (2.13b) and (2.10), and reexpress (2.13) as

8 I
(yy ¥4) = (X %) . . (2.13")




Assuming that the rows of (91 V1) are independently drawn from a zero-mean

normal distribution with PDS covariance matrix a* where

(2.13'")

one can write the likelihood function
-n/2 -1
2(81,0,,0%[D) = |a%| exp{-itr[(g1 V)t (uy vyda* 1} (2.31)

where 8§} = (Ii g;], D = (Y X) and (91 V1) is restricted by the equations

(2.13'). A well-known diffuse prior for the parameters of (2.31) is

p(8,,1,,0%) (2.32)

where vy (20) can be chosen in accordance with invariance considerations.
More informative priors are discussed below. Multiplying (2.31) and (2.32)

gives the posterior pdf as
-(ny+m,+2)/2

p(8,,0,,8%[D) = |a*|
x exp{-itr[(g1 V1]'(g1 V1]Q*-1]} (2.33)

1

where ny = n + vy On integrating the posterior with respect to the ele-

ments of q*, one obtains the marginal pdf for §1 and H1, given as
-n,/2
p(§1,ﬂ1|D) = |(B1 V1)'(E1 V1)l . (2.34)

We now make use of

|(91 V1)'(91 V1)| = (95“191)|V%V1l

where
-1
M= 1=V (v V)T

and rewrite (2.34) as
-n,/2
p(§1,H1ID) = |(¥1-W1§1]'M1(¥1—W1§1)|
-n,/2

< | (¢ -XH1)'(Y1-XH1)|

1




Where w1 = [Y1 X1). By making use of the definitions of the multivariate
and matrix-variate Student-t density functions (see Zellner (1971), Appen-

dix B) one can reexpress (2.35) as

p(§1,H1ID) = p1(§1lﬁ1,D]p2(H1|D) (2.36)

where

-3(v +21)

- 2
p,(8174,D) = e4|— {vy*r (84-8;) Wi Wq(84-3 1757} (2.36a)

and | -n,/2
p,(L,[D) = czf(n1){03|81 + (n1-ﬁ1)'x'x(n1-ﬁ1)| } (2.36b)
with f(n1) given as

' -3, 2 -v1/2
£(m,) = [WiMW, | (31) . | (2.36¢)

The normalizing constants ¢4 and c3 are well known in terms of elementary
functions [see the Appendix and Zellner (1971), Appendix B]. The parameters
of (2.36a) are given as v, = Ny-%,, %4 = M+ k,, and

8

= (w'n w1) Tur M1x1, v, s = (11-w ) M (21 W38 ) (2.37a)

2 > 0. The parameters of (2.36b) are

with |WiM.W.| > 0, v,s]

v"11 - '
ko= (X'X)7 X0y, S, = (Y1-xﬁ1) (v,-xtt, ). (2.37b)

Note that p(§1|n1,D) in (2.36a), the conditional posterior density for §,

given II1 and D, is in the form of a 21-variate Student-t pdf with vy degrees
of freedom with mean §, and covariance matrix (W§M1w1)-1v1si/(v1-2), both
of which depend on I,. On integration o;er the elements of §, in (2.36a),
the marginal posterior density for I, is given in (2.36b) which is written
as ¢,f(,) times a normalized matrix-Student-t factor with ¢, the normaliz-

ing constant that, to the best of our knowledge, is not known in terms of

elementary functions.




To obtain the unconditional moments of the elements of 8,0 WE make

N draws ngi) i=1,...,N from the matrix-Student-t factor in (2.36b) (see

’

the algorithm described in the Appendix) and use well-known formulas to

compute marginal moments from conditional moments. For example, to compute

the unconditional mean of §1, we have
£(s,10) = Jp,(x, ID)ar,
= f§1f(n1]p3(n1|D)dn1/ff(n1)p3[n1|D)dn1 (2.38)

-n*/2
where p3(n1|D) = cg|S; + (n1-ﬁ1)'X'X(n1-ﬁ1]| . To approximate the ratio

of integrals in (2.38), we make N draws from p3(n1|D), evaluate §,f(n,) and

f(n1) for each draw and then compute

N N
ii1§gi)f(n§i))/121f(n§i)) (2.39)

where §§i) is §1 evaluated at H1 = ngi). The marginal covariance matrix of

§1 is defined as the sum of the expectation of the conditional variance and

the variance of the conditional expectation, i.e.

-1
(w;M1w1) p,(z,|D)dm,

+ [(8,-E(8,))(3,-E(8,)) 'p,(m, |D)dm,. (2.40)
Each integral in the formula above can also be approximated by ratios of

sums.

To compute the posterior density of an element of §1, say 611, we
integrate (2.36a) analytically to obtain the conditional posterior pdf for
8157 p(61i|n1,D) which is in the form of a univariate Student-t pdf with v,

degrees of freedom. Then we consider
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p(s,,1D) = [p(s,;m;,D)p,(m,|D)dm, (2.41)
with p2(n1|D] given in (2.36b). A Monte Carlo numerical integration pro-

cedure can be employed to evaluate the integral in (2.41). To approximate

p(611|D) at a given value of &,,, say &%, compute simply

N N
(1) (1) (1)
RRIC AL ,D)e(my )7 4 £(m).

In this way, complete marginal posterior pdfs for the elements of §, can be
calculated. Also joint posterior pdfs for 611 and 513 can be calculated in
a similar manner since, from (2.36b), p(61i,61J|n1,D) has a bivariate Stu-
dent-t form and fp(61i,61j|n1,D)p2(n1|D)dn1 can be evaluated using Monte
Carlo integration procedures. Finally, we note that (2.33) can be inte-
grated analytically with respect to the elements of §1, W, and a, to obtain
p(o?lna,D]pz(n1[D] and numerical~integration procedures can be utilized to
obtain the marginal posterior pdf for o?, p(cle).

Above, we have employed the diffuse prior assumptions in (2.32).

As an alternative, we can use the following informative prior density
p(§1,n1,n*) = p1(§1,n1'9*)p2(ﬂ*) (2.42)

where p1(§1JH|n*) is a multivariate normal density with mean (§1,E1) and

covariance matrix q* @ C-1

and p,(a*) is an inverted Wishart form. With
this prior, operations similar to those presented above in the case of a
diffuse prior are easily performed giveﬁ values of 51, 31, C, and other
prior parameters. It is also possible to use an informative prior for §1
given a* and diffuse priors for the other parameters.

Various conditional posterior densities associated with (2.35) are

now considered. If we condition on XH1 = Y1-K01, where K > 0 is a given




= (1-k)Y, + Kxh, or V, = K0,, where

constant and 01 = Y1-Xﬁ1, we have XI :

1 1

Y. - -1 - g )T o= (303
V, = Y,-X0,. Then on defining ﬂ1 = 1 01[0101) 01 and §! = (Y],,8,,), the

conditional posterior mean vector, given by §1c = (w;ﬁ1w1)"w',ﬁ1¥1 is by

direct evaluation,

S ' - ' '
s | he || HN K, X
o = 1 '
e | B % 4

-1 .
Y Yy - K01
1
1 X
L

Y1 (2.43)

With these conditioning assumptions, §1c, the conditional posterior
mean of §1 is in the form of a K-class estimate. As is well known, for K=1,
5§, is the 2SLS estimate, tor K=A, the smallest root of a determinantal

~le
equation encountered in maximum likelihood estimation, §1c is the LIML es-
timate and for k = 1 - k/(v-2), with v = n-k-m, > 2, §,  is the MELO esti-
mate; see Zellner (1986). Note that if K=0, §, is the OLS estimate.
While the above conditional results are interesting, it is often the case
that conditional means, etc. are not very good approximations to uncondi-
tional means, etec. in small or even moderate sized samples. This is illus-
trated in computed examples presented in Section 4.

We end this section with two remarks. First, the model (2.13) or
(2.13') does not include a reduced form equation for YO, the endogenous
variables excluded from the structural equation. This means that, in fact,
our analysis in this section is conditional on the hypothesis that Y, is
independent of y,, and Y;. This hypothesis can be suppressed easily and
the Bayesian analysis of the RRF can be adapted to the more general case.
We note that one may interpret the model (2.13') as an incomplete simul-

taneous equation model [see Richard (1984)]. Second, we did not discuss

conditions for the existence of the marginal posterior moments of §1. Given




that our approach of computing posterior moments may be considgred as an
alternative to Dréze's (1976) approach, one may argue that Dréze's dis-
cussion of existence conditions [see also Dréze and Richard (1983)] is also
applicable to our case. A more explicit'discussion of conditions for exis-

tence of moments will be given in future work.

3. Some Bayesian Diagnostics for the Model Specification

In this section we extend the computational procedures of the pre-
vious section in order to compute posterior moments and densities of param-
eters (or functions of parameters) that give diagnpstic checks of the spe-
cification of the model (2.13) or, equivalently, (2.13').

First, we discuss how to check the hypothesis of weak exogeneity
(as defined by Engle et. al. (1983)) of the included endogenous variables
¥y in equation (2.13').6 In non-Bayesian econometries this can be done by
testing whether N F 0 in the expanded first equation of (2.13'), which is
written as

Yq = Yqxq * %48y ¢ 0151 + g4 ‘ (3.1)
where 01 = Y1-Xﬁ1 is the nxm, matrix of ordinary least squares residuals of
the set of reduced form equations for Y1. [For details, see, e.g., Hausman
(1983), Holly (1982) and Engle (1984, Ch. 9.3)]. In our unrestricted re-

duced form (URF) approach one may proceed as follows:

(i) Use independent random drawings n§1),...,ngi),...,H§N), that are gen-

erated from a matrix Student-t distribution with a density function

6For earlier Bayesian results on testing for exogeneity, see
Reynolds (1980, 1982).




proportional to (2.19) and compute the sequence V$1),...,V§1),...

V(N) where vgi) = Y,- Xn(i) 12 1,...,N;
Run N ordinary least squares regressions on (3.1) with

of 0 This yields the sequence n( ),. :gi), egN gN where n

Vgi) instead

A(1) 4o
the well-known OLS expression;
Compute the moments and densities of the elements of the vector ﬁ1
by standard sampling theory formulas. If the posterior density of
ﬁ1 is located around zero, one has an indication that the variables
Y, in equation (2.13') are weakly exogenous in the sense that the
stochastic component V1 of the variables Y1 does not contribute much
to the equation (2.13'). The smaller the dispersion of ﬁ1 around
zero the greater one's confidence in this indication.
The sequence (Q'(i),é'(i)), i = 1,...,N that is obtained in the
OLS-regression described in step (ii) above is equal to the sequence {5*(1)}

i=1,...,N that is obtained by usng the 2SLS-mapping (2.26). This follows

by direct verification. As a consequence, one expects that the sample mean

ﬁ1 from the sequence {ﬁgi)}, i=1,...,N contains an approximation error

with respect to up when the system (2.13') is strongly overidentified since

01 # V1 in general.'

In order to deal with the overidentified case in an exact way, we
consider again the RRF-system (2.13) and (2.13') and reformulate this model
as follows. First, denote -the i'th row of (91 V1) by (u1 g;i) and decom-
pose the (1+m )-multivariate normal density of (u1 g;i) as a conditional
normal density of u; given a value of v 1 and a marginal multivariate nor-

2 -1

mal density of v,.. This yields (u1ly1i) N(v11 1107 - 0e] 91) with n. =

11i°
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0;191 and V., - N(Q,n1). Next, perform the transformation of random vari-
ables from (g1|v1) to (z1|Y1] and from V, to Y,. This yields

2 -1
(y,1¥,) ~ N(¥qyy + X484 + (¥,-x1,)nq, (03~ wia] v )I) (3.2)

Y, - N(Xm

1% @ I). (3.3)
‘Frdm (3.2) and (3.3) one can write the model

Y = Y1z1 + X1§1 + V1D1 + €

Y, = Xmy + V, (3.1)

where (51’251]’ i=1,...,n, are independent random drawings from a multi-

variate normal distribution with mean zero and covariance matrix

a

(3.4")

Note that cov(e;,v;;) = O which follows from direct verification. There-

fore, testing whether w, = 0 in the model given in (2.13') and (2.13'') is
equivalent to testing whether 7, = 0 in the model given in (3.4) and (3.4').
Further, note that if Ny = =Xq» one can substitute XII1 = Y1-V1 in the first
equation of (3.4). As a consequence, there are only predetermined vari-
ables on the right hand side of egquation (3.4).

The likelihood function of the parameters é% = [xa,ga), 0y °§ and a,

is obtained from (3.4) and (3.4') as

2 2,"%/2 21 -n/2 =1 =1
1(§1721908791|D] = (ae) exP{’E 5/205}I91| x exp{-}tr[(V1V1] 91 ]}

(3.5)
where ¢ and V1 are given by equations in (3.4). As a next step we have to

transform the prior density on [§1,n1,o§,91,n1) [see (2.32)] to a prior




density on the parameter set (91,n1,o§,31,n1). The relevant part is the
transformation from (o?,91,n1) to (03,31,91) which gives as Jacobian |2, ]
As a consequence the prior information specified in (2.32) is given

2
in terms of (§1,H1,ae,g1,91) as : )
5 5.~ m1+v0+2 /2
p(§1,ﬂ1,ae,g1,ﬂ1) « (ae) IQ (3.6)
The posterior density of the p-vector 8' = (g%,g%), with p = 2.+ m,, and I,

ai, 01 is given by

-(ny+m+2)/2

2 2 2
p(g,n1,ae,n1|D) « (oe] exp{-g'g/Zae}

-(n*+m1]/2 -1
x |a,] exp{-itr[(vavﬂn1 11. (3.7)
Integrating (3.7) with respect to az and a, yields the marginal posterior

p(e,1,|D)
e ~(ny+my)/2 -(ng-1)72

p(8,14]D) = (e'¢) Vv, (3.8)

where ¢ and V, are given in (3.4). The density (3.8) may be compared with
the pdf given in (2.34) and (2.35). In a similar way as done below (2.35)

in Subsection 2.3, we can rewrite (3.8) as

P(§1n1ID) = P1(Q|n1vD)P2(K1ID)

-(vy+p)72

w |3 _ _
p,(a]m,,D) = c,| ¥ |fv, + (8-8)'W'H(g-8)/s7) (3.9a)
S

1

-(n,-1)/2
p,(1,[D) = eph(m ){egls, + (m -t,) ¥ x(,-,)] (3.9b)

-v,/2
h(n,) = [W|7H(s5)




From the definition of W = (w1 V1) it follows that |W'W| = |W§M1W1||V%V1|,

where M; is given below (2.34). Therefore

h(m,) = f(n1)|v§v1|‘i’ (3.10)

with f(n1] given in (2.36c). It follows that the posterior demsity of I,

given in (2.36b) is equivalent to the posterior density given in (3.9b).
The parameters of the conditional multivariate Student-t density of the p-

vector @ are given as v, = n,-%,, and

1 1’

5 = (W) Ny, v,85 = (g,-W8)" (y,-¥d). (3.11)

The conditional density p1(g|n1,D) in (3.9a) is in the form of a p-variate

conditional Student-t pdf of 8 given II1 and D with v, degrees of freedom,

with mean & and covariance matrix (W’W)'1v1s§/(v1-2), both of which depend

on I,. Similar remarks that were made with respect to (2.36a) apply to

1
(3.9a) and are not repeated. We mention here only that if the marginal pdf

of up is centered'around zero, then one has anAindication that Y, is weakly
exogenous in the sense discussed before.

We note that one may use diffuse or informative priors other than
(3.6). For instance an alternative type of diffuse prior is given by

-(m +v0+2)/2 -[m1+\> )/2

1 0

2
p(g,n1,o€,n1) « (oi) lw'w|%|n1| (3.12)

This prior is equal to (3.6) times IW'WI}, which is the root of the deter-

minant of the information matrix of 6 given I As a result the factor

10
IW'WI-J‘r will not appear in (3.9c). Further, we note that conditional
moments associated with (3.9) can be formulated in a similar way as was

done in Subsection 2.3. In particular, if we condition p1(g|H1,D) on I,= ﬁ1




and integrate out §,, the posterior density p1(51|ﬁ1,D] is an my-variate
Student pdf with mean ﬁ1, the OLS estimate of n in (3.1). The non-Bayes-
ian test procedure for the weak exogeneity of Y; using (3.1) is to reject
the null nypothesis if a (1-a)% confidence region centered at = 0 does
not contain the point ﬁ1. The Bayesian decision is to reject the null if a

(1-a)% posterior probability region centered at ﬁ1 does not contain the

point 19 0. An exact Bayesian decision procedure relies on the marginal

posterior density p1[31|D) rather than on the conditional density p1(g1|ﬁ1,D].

Some illustrative results on exogeneity testing are presented in Section
4.1.

Next, we discuss how we can check whether the overidentifying
restrictions in (2.12a) and (2.12b) seem acceptable. It follows from the
discussion, given in Subsection 2.2 (between equations (2.20) and (2.21)),
that the degree of overidentification is equal to the number k, of omitted
predetermined variables in equation (2.9b) minus the number my of included
endogenous variables on the right hand side of (2.9b). Thus, we may in-
clude some predetermined variables in (2.9b) that were, at first, excluded
from this equation. If we add ky-mq predetermined variables to the right
hand side of (2.9b), then we have an exactly identified equation instead of
an overidentified equation. As a consequence, one can make use of the URF
approach and compute highest posterior density (HPD) regions around zero
for the parameters of the kny-my included variables. This yields a check on
the value of the overidentifying restrictions. If we add fewer than ko-ﬁ11
predetermined variables to (2.9b), then this equation is still overiden-
tified and the RRF approach can be used to analyze the HPD regions around

zero of the paramters of the included variables.




Several other diagnostic checks may be constructed, i.e. restricted
reduced form moments may be compared with unrestricted reduced form moments.
Diagnostic checks on autocorrelation and outliers may be constructed from
posterior distributions of realized error terms. Further, one may compute
posterior odds relating to exogeneity hypotheses. There are thus ample op-

portunities for much applied work using the methods discussed above.

4. Applications of Methods

In this section we illustrate the methods of Sections 2 and 3 for
the case of an exactly identified simultaneous equation model and for the
case of an overidentified model. As an example of an exactly identified
model we consider the Belgian beef market model (see Dréze and Richard

(1983, Section 2.4)) which is given as
Q = a; + 8P+ v, ¥, +u,, (4.1)

Q

a, + B,P_ + 725 + U (4.2)

t 2 2°t t 2t

where Qi is the quantity of beef consumed per capita in period t; Py is the
price-index; Y 1s real national income per capita and Si is the cattle
stock per capita (measured as the number of heads at the beginning of each
period). The §ariab1es Q¢ and P, are endogenous and the variables Y., S;
and the constant term are assumed exogenous. The data are annual observa-
tions for the period, 1950-1965. Given our uniform prior with Vo= 0 and

given that the model is exactly identified, posterior first and higher or-

der moments do not exist. In Figure 1 we present the marginal posterior

density of 81 and give the computed quartiles of the posterior distribu-

tion. The density is concentrated around the mode but has a long tail to




the left. We note that the mode and the median are almost equal; however
the first and fourth quartiles indicate that the density is skéwed to the
left. Further, we find evidence that the exogeneity of the price variable
is rejected. The results reported are based on N = 100,000 drawings in
order to obtain an accurate figure. We emphasize, however, that the figure

is already rather accurate with"™N7=710,000-orN-—=-20;000:"~~ » — —=smmvr—ms o o

UNIVARIATE POSTERIOR OF BETA1 (BBM)

Ll i ' L]

-1.6 -1.4 -1.2 . . -0.6 0.4 -0.2
BETA1

Fig. 1 Marginal postérior density of By in the Belgian
Beef Market (BBM) model.




As an example of an overidentified simultaneous equations model we

take Klein's Model I [see Klein (1950)] which is given as
C=aP +af_,+ a3W + ay + U, (4.3)
= 81}? + BZP-‘I + 83K_1 + By + U, (4.4)
= Y.lX + Y1X_1 + Y3t + Yo + U.3 (4.5)

C+1+G (4.6)

X-W | (4.7)

(4.8)

W (4.9)

Consumption expenditure (C) is structurally dependent on profits (P), pro-
fits lagged one year (P_1) and on total wages (W). Net investment expendi-
ture (I) depends on profits, lagged profits and on the capital stock at the
beginning of the year (K_;). Finally, private wage income (w1) depends on
net private product.at market prices (X), the same variable lagged (X_j)
and on a trend term (t). The model is closed by four identities, which
provide links with three exogenous variables: the government wage bill
(WZ)’ government nonwage expenditure, including the net foreign balance,
(G) and business taxes (T). The model has seven jointly dependent vari-
ables (C, I, Wq, X, P, W) and eight predetermined variables (1, P_1y X_q»
K4y G, T, Wy, t). All variables (except 1 and t) are measured in constant
dollars. Posterior moments for Klein's Model I are reported in Tables 1-3
and univariate and bivariate marginal posterior densities of a structural
parameter and an exogeneity parameter in the investment equation are given

in Figures 2-3.




TABLE 1: INVESTMENT EQUATION OF KLEIN'S MODEL I: POSTERIOR EXPECTATIONS AND STANDARD DEVIATIONS2

Prior with Vo= 0:

URFA with prior

GILS ‘ . ‘ . (22.76)
TSLS : : : (8.40)
RRFA with prior (2.32) or (3.6)

conditional ﬁ1b . . . (4.86)

marginal . . . (8.56)

Prior with Vo= k:

URFA with prior
GILS . (0.42) (0.39)
TSLS . (0.16) (0.15)
RRFA with prior (2.32) or (3.6)
conditional on ,P : (0.09) (0.09)

marginal . (0.15) (0.15)

QQuantities in parentheses are posterior standard derivations.

brhe conditional posterior means are equal 60 the non-Bayesian two-stage least-squares estimates as explained
in Section 2.3. | ' A '




TABLE 2: WAGE EQUATION OF KLEIN'S MODEL I: POSTERIOR EXPECTATIONS AND STANDARD DEVIATIONS,2 PRIOR WITH vop= 0

URFA with prior (2.17)

GILS
TSLS

RRFA with prior (2.32) or (3.6)

conditional on ﬁ1

marginal

(0.15)
(0.04)

(0.04)
(0.07)

(0.13)
(0.05)

(0.05)
(0.07)

3Quantities in parentheses are posterior standard deviations.

3

Yo

nx

0.00 (0.05)

0.00 (0.07)
0.00 (0.11)




TABLE 3: CONSUMPTION EQUATION OF KLEIN'S MODEL I: POSTERIOR EXPECTATIONS AND STANDARD DEVIATIONS?2

*3

‘ior with Vo= 0:

URFA with prior
GILS
TSLS

RRFA with prior (2.32) or (3.6)
conditional on ﬁ1

marginal

‘ior with Vo= k:

URFA with prior

. GILS (0.32) . (0.21)
TSLS (0.11) . (0.10)

RRFA with prior (2.32) or (3.6)

A

conditional on I . . (0.08) . (0.07)

marginal (0.13) . (0.13)

8Quantities in parentheses are posterior standard deviations.
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2SLS mapping
conditional pdf
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* 2SLS mapping
@ conditional pdf
+ marginal pdf

Fig. 2 Univariate marginal posterior densities of B1 and n,
investment equation of Klein's Model 1. P
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URF APPROACH: 2SLS MAPPING POSTERIOR

QaNSS

=4

Fig. 3 Bivariate marginal posterior density functions for (31, Np)
in the investment equation of Klein's Model I.




It is seen from the results on the investment equation in Table 1 that the
URF approach, in particular the GILS mapping, yields gross approximation
errors for several parameters. The posterior means and standard deviations
of the parameter of the included endogenous variable, of the constant term,
and of the exogeneity parameter differ substantially from the results of
the restricted reduced form approach. The results of the latter approach
are based on N = 20,000 drawings. We note that the marginal results differ
also from the conditional results in the RRF approach but less than from
the results given by the URF approach. The sensitivity with respect to the
particular choices of 5 0 and vo© k is as expected. A larger value of Vo
implies smaller variances due to lighter tails. It is of interest that the
exogeneity of profits appears to be rejected while some preliminary results
on overidentifying restrictions (ﬁot reported) suggest that these restric-
tions are not to be rejected. More details will be reported in future
work.. It is also of interest that conditional standard deviations are al-
ways smaller than the asymptotic TSLS standard deviations. The reason is
that in the conditional approach the values of 52

1
non-Bayesian approach. The results for the wage income equation given in

is smaller than in the

Table 2 produced by different methods are similar. The hypothesis that net

private product is exogenous is not rejected while from preliminary re-

sults, it appears that the overidentifying restrictions are rejected. The
consumption function was the most complex case to analyze. The posterior
means differ substantially for the different approaches. The posterior
standard deviations for the exogeneity parameters for profits and wage

income show a surprising result. The marginal standard deviations are




smaller than the conditional ones. It appears that the effect of the

weight function f(n1) [see Subsection 2.3] is very nonlinear. This is a

topic of current research. Exogeneity and preliminary results on over-
identification, not reported here, suggest that both hypotheses are re-
Jected. Figures 2 and 3 show the skewness of the marginal pdf's and
differences between the results of the URF, the conditiomal—RRF-—and-the

marginal RRF approaches.

5. Concluding Remarks

In this paper, we have shown how Monte Carlo numerical methods can
be employed to compute exact posterior densities of the parameters of a
.structural equation using diffuse or informative prior distributions. In
addition, operational procedures for Bayesian diagnostic checking or speci-
fication analysis were described. For example, discrepancy parameter vec-
tors were introduced to represent departures from exact identifying re-
strictions and it was shown how to compute posterior densities for them anad
interesting functions of their elements which we refer to as discrepancy
functions. In addition, a Bayesian procedure for evaluating exogeneity
hypotheses was described. That diagnostic checking or specification anal-
ysis be performed is duite important and the fact that operational Bayesian
procedures for diagnostic checking or specification analysis can be carried
through without much difficulty is fortunate.

Applications of our methods were presented and yielded useful re-
sults. In particular, it was found in several instances that certain
specifying assumptions, exogeneity hypotheses and identifying restrictions,

were of doubtful validity. Also, it was found that exact marginal poste-




rior densities differed considerably from conditional posterior densities
based on conditioning aésumptions which are often employed in non-Bayesian
procedures, for example in the 2SLS approadh or other K-class estimation
approaches. Thus we consider it very impoftant to use appropriate marginal
posterior densities for structural parameters rather than approximate con-
ditional posterior densities. That the former can be computed using Monte
Carlo techniques without much difficulty is indeed fortunate.

In future research, we plan to extend our consideration of diagnos-

tic checking procedures to consider checks for autocorrelation of error

terms, outliers and possible left out variables. Also, the single equation
analysis in this paper will be extended to provide results for sets of

structural equations and complete structural equation systems.
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Appendix: The Generation of Pseudo-Random Drawings from a
Matrix-Student Distribution
Because the matrix-Student (Mt) distribution is related to the ma-
trix-normal (MN) and to the inverted-Wishart (iW) distributions, we define
these three families of distributions through their density functions and
state a few properties that are useful to build an algorithm for generating
a pseudo-random drawing from an Mt distribution.

Definitions

km

Let T E R be a kxm random matrix.

(i) @ has an MN distribution if its density function is

p(m) = l""‘m(nln neM )

= [(2n]km|n| |M|m]'iexp-}tr[n’1(n-ﬁ);M(n-ﬁ)] (4.1)

where 1 € ka is a kxm constant matrix, Q@ is an mxm PDS constant matrix and

M is a kxk PDS constant matrix.
From here on, let @ be a random PDS matrix.

(ii) 9 has an iW distribution if its density function is

p(a) = £y (alw,v)

- [zi’vm &m(m 1) I r(\)+1 i]]" Iw'%\’l l-%(\)+m+1)exp_itrﬂ-1w

where W is an mxm constant matrix and the constant v>m-1.

3

(iii) 1@ has an Mt distribution if its density function is

p(n) = “*m(nln WM, v)

1-i k+1-iy1-
v+2 1]/r(v+ ; 1)] 1

= (o} flan r(
i=1

o M (2-T) m(nE) RO

where I, W, M and v are defined as in (i) and (ii).




Some properties of these distributions

(1) 1f p(m|e) = fggm(nlﬁ,n e M ') and p(a) = f?w(nlw,v), then p(m) is given

by formula (A.3). This property states that an Mt distribution is a margi-

nal distribution from an MN-iW one.

(2) Let @ have the density (A.1).

(i) If A is an rxk matrix of rank r<k, and B is an mxs matrix of rank s<m,

then 1

p(AmB) = £1>3(AnB|ALB,B'aB @ AM™

" A'). (A.4)

(ii) In particular, if B'@B = I_ and aMlar - I, 2t = A(m-1)B is a matrix

of independent standard normal variables.

(3) Let 2 have the density (A.2).

(i) If C is an mxs matrix of rank s<m, then
p(c'ac) = £f,(C'ac|CIHC, v-mss). (A.5)

(ii) Partition 2 into 911(m1xm1,PDS), ﬂzz(mzxmz,PDS), 921[m2xm1), 2,,= 2,

i -1 -1
and let 9,5 ,= 8- 887185, Then @ and (8,,,07,815,85;,

one correspondence and

-1 i -1
P(2,1,871912:955,1) = P(a4,)0(87785]8,55 1 )p(255, ;) (A.6)

) are in one-to-

m
_ 1
p(ﬂ11) = fiw(a11|w11’v‘m2) (A.7)

oy BT g -1 -1
P(8748:5) = fy (8712421W W 00005, 1 @ WYy (A.8)

m
2
P(2,5,1) = £13(800,11%55,117) (A.9)

are de-

where W W., and W are defined from W as 911, 922 and Q

11 22 22x1
fined from Q.

22x1
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(iii) In particular, if C'WC = I in (A.5), ¥: = C'aC is in one-to-one cor-

respondence with 3}m(m+1) independent random variables: im(m-1) standard
normal variables, plus m variables xi, each of them having an inverted-
gamma density defined as

1

fiw

(li|1,v-i+1], for i = 1,2,...,m.

This follows from the property 3-ii applied to ¥ m times: one starts e.g.
with m2=1 and m1=m—1 and notices that 3-ii can be applied again to p(?11)
which is an iW density with parameters Im1 and v-1.

Other properties of these distributions can be found in Zellner
(1971, Appendix B.4 and B.5), Dréze and Richard (1983, Appendix A) and
Bauwens (1984, Appendix A.I and A.II), who give separate algorithms for the
generation of random numbers from MN and iW distribution. These algorithms
can be combined to draw from an Mt distribution, with density given by
(A.3), by drawing firstly an iW @ matrix with density (A.2), and by drawing

subsequently an MN matrix, with density (A.1) where @ is the iW matrix

obtained at the iW step.

Mt Algorithm

To obtain a drawing I from the Mt distribution defined by (A.3):
1- Compute the lower triangular (LT) matrices Q' and P such that W = Q'Q
and M~1 = PP’ ‘
2- iW-Step:
(i) generate im(m-1) standard normal drawings and m inverted-gamma draw-
ings A, with p(,) = flw(ki|1,u-i+1);
(ii) compute the mxm LT matrix ¢ such that ¢¢' = :2 is a drawing from the

iW distribution of Q defined by (A.2) (but one does not need to compute ¢9').




Let ¢ = (¢ij]: then ¢;, = 0 for 1¢J. The lower triangle of ¢ can be filled
by the following steps:

(1) 1 « 0; 1 « im(m+1) + 1; let ¢ be a vector of &-1 elements that will
finally contain the column expansion of the LT of ¢, i.e., ¢ = (¢11¢21,...,

¢ $

*m1%22%327 % 1m-1"mm-1 )

(2) i « i + 1; if i>m, stop
(3) 1«1 -146(1) = /ki(li obtained at 2-1i)
(4) if i = 1, go to (2); or else go to (5)

(5) pick i-1 standard normal drawings obtained at step 2-(i) and assign
them in a vector u. Compute y = /11.01_1.u where y is a vector of i-1 ele-

ments and ¢ denotes the LT matrix whose column expansion of the lower

i-1
triangle is stored in the last 1/2i(i-1) elements of the vector ¢ (but °,
is the secalar ¢ = /111). Finally, ¢(1+k) « y(k), k = 1,2,...,i-1 and go
to (2).
3- MN step:

(1) generate km standard normal drawings 24 4 (L = 1,2,...,k and J =
1,2,...,m). Let Z = (zij);
(ii) compute I = I + PZ¢'Q' where ¢ is the LT matrix obtained at step 2-ii.

To draw standard normal variables, one can use the polar algorithm

--see e.g. Knuth (1971). To draw inverted gamma variables, one can use the
GRUB algorithm of Kinderman and Monahan (1980) that is efficient since the

computer time required to obtain one inverted gamma drawing is almost per-

fectly independent of the value of v (as is not the case if one generates

gamma drawings as sums of v independent squared normal drawings). To get
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one drawing I, one needs jm(m-1) + mk univariate standard normal drawings,
plus the m inverted gamma drawings; all these drawings must be independent.

The proposed Mt algorithm has the advantage that the marginal cost
of a drawing (steps 2 and 3) is not affected by the value of the degrees of
freedom parameter v.

Provided v is an integer, one could replace the implementation of
the iW step by (i) drawing a Wishart matrix 2”1 as § JZS where the mx1
independent vectors ZJ have a multivariate normai=gensity with zero ex-

! and (iii)

pected value and covariance matrix given by W, (ii) inverting @~
computing the LT matrix @ such that @ = ¢¢'. This implementation requires vm

standard normal drawings at the iW step, instead of im(m-1) of these plus

the m inverted gamma drawings. So for very small values of v and m, this

implementation may be more efficient. Notice however that a Cholesky de-
composition of @, giving ¢, has to be performed, whereas ¢ is obtained
directly in the implementation we use.

Another method to generate from the Mt distribution (A.3) that is

expected to be less efficient, is to use the property that

p(n) = p(m, |1,0,. . .nm)p(n2|n3. oI ). .p(o) (A.10)
where oy (i = 1,2,...m) is the i'th column of I, and each of the densities
on the right of (A.10) is a multivariate Student density [see Zellner (1971,
p. 397), or Dréze and Richard (1983, p. 589)]. Formula (A.10) suggests a

sequential drawing procedure.
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