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ABSTRACT

This paper examines the procurement problem of a buyer who wishes to procure an
object from a given number of firms under conditions of asymmetric information about
firms' cost. Optimal fixed and variable quantity procurements are analyzed and imple-
mentation issues discussed. It is shown that the optimal mechanism can be implemented
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1. INTRODUCTION

Government procurement is generally modelled by economists as the acquisition of a

fixed quantity of a product with well defined characteristics. Most procurement, however,

involves the design and development of new technology, variable production levels or the

provision of services.1 To address this problem, government acquisition through sealed

bids, or "formal advertising" as it is known, usually involves some modification of the bids

and the method of selecting winners to account for potential design changes and future

production costs. The present paper presents an alternative to the standard fixed quantity

procurement auction which allows the buyer to vary the quantity of the good purchased (or

quality of service) based on bids by competing sellers. This model addresses more complex

procurement techniques in which firms submit estimates of life-cycle costs or production

designs in addition to price estimates.2

Cost estimates and implementation of production plans are an important feature

of "second sourcing", a procurement procedure in which the buyer selects at least two

producers. We extend this variable quantity auction to the case of multiple winners and

show that the equal marginal cost rule no longer holds under asymmetric information.

The standard procurement auction model studies the purchase of a particular indivisi-

ble object.3 Marginal and average production costs are constant as is the buyer's marginal

value of the good. It is reasonable to suppose that sellers' marginal and average costs

may exhibit scale effects and that the buyer may have diminishing marginal utility. In

this general setting, the fixed quantity auction is only a second best procurement strategy

for the buyer. We begin by showing, for general buyer benefits and seller costs, that the

buyer may optimally select the fixed quantity to be Purchased by auction. The optimal

quantity is obtained by setting the buyer's marginal value of the good equal to expected

marginal production costs adjusted on the basis of information rents obtained by firms and

the number of potential bidders. The fixed quantity rule ignores the information conveyed

by the winning bid. Accordingly, even if the buyer optimally adjusts the quantity to be
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purchased before the auction, we show that the buyer's net gain always can be improved

by a variable-quantity schedule which makes future production a function of the winning

firm's costs.

An optimal procurement mechanism is then derived for which the quantity schedule

depends on the announced cost parameter. It is shown that the optimal procurement policy

may be implemented by a procedure in which the buyer announces a total compensation

schedule as a function of total outputs. Firms bid output levels and the winner is the largest

output bidder. While the fixed-quantity procurement auction can be implemented as a

standard sealed bid auction in which the firm bidding the lowest supply price is awarded

the contract, the variable-quantity procurement cannot in general be implemented by

choosing the firm that bids the lowest per unit price. We give sufficient conditions for

implementability on the basis of per unit bid prices.

Our work is closely related to Riordan and Sappington (1986, 1987) who consider

variable-quantity procurement in a two stage mode1.4 Firms observe an informative signal

about prospective production costs. These signals are reported to the buyer and consti-

tute their bids. A single firm is awarded the contract. The actual production costs is

subsequently observed by the firm. Final payments and quantity delivered depend on the

reported signal and the reported observed cost. Their optimal quantity schedule is similar

to ours. Our analysis differs primarily in our analysis of fixed vs. variable output in auc-

tions and the issue of implementation. Rob (1986) considers the choice of an optimal fixed

quantity although his analysis does not examine the connection with variable quantity

procurement.

The paper is organized as follows. Selection of the optimal output in a standard fixed

quantity auction is examined in section 2. The possibility of improving buyer benefits by

a variable-quantity schedule is established in section 3. The optimal schedule is derived

and characterized in section 4 and an implementation procedure is obtained in section 5.

The multiple winners problem is solved in section 6. Conclusions are given in section 7.
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2. DEMAND IN THE FIXED QUANTITY AUCTION

2a. The Auction Framework.

The purpose of this section is to show that in a fixed-quantity procurement, the buyer

can optimally choose the quantity to be procured. The fixed quantity case is important to

analyse not only because of its prevalence in practice, but also because it sheds some light

on the nature of auctions. In particular, it is useful to contrast the procurement auction

model with standard models of monopsony. We follow a two-stage procedure. First, the

optimal auction is examined for a fixed output. Then, the optimal demand from the point

of view of the buyer is considered.

Consider the standard auction model (see for instance Riley and Samuelson, 1981;

Maskin and Riley, 1984). Assume that there is a single buyer facing n potential suppliers

or firms. The buyer has a utility function of the form V(Q), with 171(Q) > 0, V"(Q) 0,

where Q is the quantity of the output procured. The firms have cost functions of the form

.C(Q) 
=j oQ - • -

c(Q,01c1Q K (1)

where Oi represents the firm's private information about production costs and K> 0 is the

firm's fixed costs. We assume increasing marginal costs, cc? > 0 so that average costs are

u-shaped. Marginal costs are increasing and convex in the cost parameter, coi, coiei > 0.

Also, we may parameterize costs such that cwi > 0. These assumptions are satisfied for

example by an affine cost function C(Q, 0) = K 0Q. The cumulative distribution of the

cost parameter is defined on [0,01 and is given by F(.) which is common knowledge. So,

firm cost parameters are independently and identically diAributed. Let F be continuously

differentiable, dF(0)/d0 F(0), F(0) = 0, F(j) = 1. The hazard rate H(0) = (0)I F(0)

is assumed to be decreasing in 0. This is satisfied by common distribution functions such

as the uniform.

We confine our attention to the case in which a single firm is chosen by the buyer to

produce the entire output. It is well known4 that under our assumptions, an optimal buying
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strategy involves use of either of the auctions considered by Vickery (1961). Consider first

the standard procurement auction in which the buyer invites sealed bids on a given output

Q. The buyer announces a maximum reserve price b°, such that there is one firm at least

that is indifferent between selling and not selling at this price, i.e.

7r(b°, 0*) = 0 for some r E [0,-6] (2)

where 7r(b,0) = Qb—C(Q,0) denotes profits of a firm with cost parameter 0, which wins

with bid b. The following theorem due to Maskin and Riley (1984a) will be useful.

THEOREM 1: (Maskin and Riley). There exists an equilibrium in which each firm whose

0 exceeds 0* does not bid, while those with 0 < 0* bid according to the unique symmetric

bid function b(0). Moreover, this b(0) is increasing and differentiable.

To apply the Maskin and Riley result in our framework we must verify that 01490[7(b, 0)/
7ri (b, 0)] <0. This follows from ce > 0. Given the existence of the bid function, one can

use methods similar to Riley and Samuelson (1981) to derive explicit expressions for the

bid function, expected profits of the firms, and the buyer's expected net gain. This is

shown in appendix Al. The bid function is given by

,Q) = 
foOis C0(Q,0)(1— F(0))n 1 clO C(Q,0i)

Q (1 — FM)
,
"

Expected profit of a firm with cost parameter Oi is given by

E(0, Q) = Co(Q,0)(1. — F(0)) 'd0

while the expected net gain of the buyer is given by

g(Q,0*) =V (0[1 — (1 — F(0*))n]

(3)

(4)

(5)
Os

— n C(Q,0) Co(Q,0) FF,V)} (1— F(0))71-1F1(0)d0

4
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Eq. (3) shows that all firms that submit bids except the marginal firm have positive

expected profits. Also, from (3) we have b° = C(Q, 01/Q, which determines b°, given 0*

and Q. Eq. (3) also shows that the per unit bids of firms depend on average, and not

marginal, costs. In particular, it is possible for marginal costs to exceed the per unit bid.

Differentiating (3) with respect to Q, we get

bc?(Q,01) =
C0(Q,01(1 — F(01)71-1 dO* 

+ 
1 
[(CQ(Q,0i) 

C(Q,0i) 

Q(1— F)00)71-1 dQ

(6)

+ 

foe

'

. [Cc20(Q,0) Cie VA] (1 — F(e)) n-11

(1— F(09)71-1

Thus, a change in the level of output has marginal effect on the per unit bid, represented by

the first term in (29, and an inframarginal effect, represented by the second term in (2').

Assuming 0* is chosen optimally given Q, the sign of the marginal effect would depend on

whether the effect of procuring a larger output is to allow more or fewer firms to bid. It

can be shown that there exists -0 such that 0 as Q Q. The inframarginal effect is

also of ambiguous sign, and depends on the relation between average and marginal costs.

Similarly, differentiating (4) with respect to Q, one gets

a
—.Er(Q Oi)—00(Q,0*)(1—F(r)) 

—idc7270*
+ Cqe(Q,0)(1— F(0))71-1acj ei

Once again, there are marginal and inframarginal effects. For Q < (2, increase in output

will always increase expected profits of firms.

2b. Buyer Demand.

The buyer's demand for output is now characterized by extending the fixed quantity

auction model. The standard model assumes that buyer demand is a constant quantity.

However, it is in the buyer's interest to choose this quantity optimally given the buyer's

value of the good and expected seller bids.

Maximize expected buyer gain in eq. (5) with respect to Q and 0* to obtain the
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optimal fixed-quantity procurement. The first order conditions give:

and

Vi(Q) =

V (Q) = C(Q,0*) + 
Ce(Q,0* F(0*) 

) Fi(0*) (7)
,

n fir (1 — F(0))n-1F1(0) {CQ (Q , 0) + C QO (Q , 0) ;,41' (10 .
(8)

1 — (1 — F(0*))n

Noting that 1— (1 — F(0* )) n = n for (1— F(0)) 71-1F1(0)d0, we may rewrite (8) as follows

fr (1— F(0)) n-1 F' (0) I CQ (Q, 0) + CQ0(Q, 0) ;,41 clO
171(Q) =   (9)

f 06* (1— F(0))n-1F1(0)d0

We need to ensure that the optimal levels of Q and 0* are indeed interior, so that the first

order conditions (7) and (9) are meaningful. Appendix A2 gives sufficient conditions for

interior optimum.

Eq. (9) indicates that choosing the fixed quantity optimally entails setting marginal

value of the output to the buyer equal to average "adjusted" marginal cost, where the

latter refers to the term CQ(Q, 0) + Cco(Q,0) FF,(10 . The term CQ0(.) FF,  represents an

adjustment to marginal cost that has to be made on account of asymmetry of information

and the need to prevent low cost firms from overbidding and masquerading as high-cost

firms. Greater insight can be obtained regarding (9) once we discuss variable-quantity

procurement. The connection between fixed and variable quantity procurement and the

second-best nature of the former can then be understood more fully. Let us also note that

since Vi(Q) 0 CQ (Q, Om) is general, where Om denotes that cost of the winning firm, the

outcome is not in general ex post efficient.

Condition (7) shows that the optimal, fixed-quantity auction also involves setting the

cut-off value of 0* at a level where an inefficient outcome is not ruled out. It could be the

case that the lowest-cost firm is between 0* and me, where a satisfies V(Q) — C(Q, j) = 0.

In this case no output is procured, even though the cost of production is lower than the

6
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value of the output to the buyer. The reason why it is optimal for the buyer to allow this

possibility of inefficiency is that it causes firms to bid lower than they otherwise would.

This is evident from (3), which shows that for given level of Q, higher 0* implies higher

b(0i). Thus, in setting 0* optimally, the buyer is trading off the loss from an inefficient

outcome against the gains from lower bids by the firms.

We now state some results that follow in a straightforward manner from the first-

order conditions and the assumptions regarding cost, utility and distribution functions

made earlier.

PROPOSITION 1: The marginal firm is dependent on the number of bidding firms.

This result is different from the standard auction result, where the number of bidders has

no effect on the marginal bidder. Here, the number of bidders affects the optimal level of

Q (see (9)), and hence also 0*. However, dQ/dn cannot be signed in general.

The next result is interesting because it differs from the standard monopsony result.

In the standard monopsony model, a change in the level of fixed costs has no effect on the

short run supply curve faced by the monopsonist, which depends on the marginal costs

of the firms supplying the monopsonist. Thus, there is no effect on the level of output or

payments made by the monopsonist. In the present auction model, a change in the level

of fixed costs affects the bids of the firms; therefore it affects the marginal firm and the

level of output.

PROPOSITION 2: A change in the level of fixed costs (assumed to be the same for all

firms unless otherwise stated) affects the optimal level of output and the marginal firm.

Specifically, for 0* sufficiently close to #, dO* dK <0 and dQ /dK > 0.

The proof is straightforward and given in Appendix A3.

If there is asymmetry of information regarding fixed costs, but not regarding marginal

cost, the buyer behaves like a first degree price discriminator by choosing the socially

optimal output level. The bidding process then serves to allocate the division of the
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surplus between the buyer and the eventual supplier.

PROPOSITION 3: If the only asymmetry of information is regarding fixed costs of the

firms, i.e., the cost functions are of the form

C(Q, = K(0) c(Q)dQ,

then the optimal fixed quantity of output procured by the buyer is ex post socially optimal.

We have discussed fixed quantity procurement in some detail, because this method of

procurement is the standard model in the literautre and is employed in practice. However,

as we argue in the next section, fixed-quantity procurement is not optimal.

3. THE QUANTITY SCHEDULE

We now wish to consider the possibility that the buyer, instead of procuring a fixed

quantity of output, procures according to a variable quantity schedule Q = Q(0) which

relates the quantity procured to the cost 0 of the lowest cost firm. We shall prove that if,

instead of the optimal fixed quantity, the buyer procures according to a schedule Q = Q(0)

which has a small negative slope, then his net gain can be improved.

PROPOSITION 4: There exists a variable quantity schedule Q = Q(0) such that if the

buyer procures Q(0) when the lowest cost firm is 0, then his net gain is strictly greater

than if he procured according to the fixed quantity schedule Q = Q*, where Q* is given

by eq. (9).

PROOF: To prove the theorem, we first derive the expected net buyer gain making use of

the necessary conditions for incentive compatibility. It is shown in Appendix A4 that the

expected buyer gain is given by:

0
g((-),0*) =n 1 (1— F(0))n-1110)1V (Q(0))

— C (Q (0) , 0) — C (Q (0) , FF,0((0)) 

8
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It may be noted that this reduces back to the expression obtained in the fixed quantity

case, eq. (5) when Q is fixed, by virtue of the relation 1 — (1 — F(0)) = n for (1 —

F(0))71-1P(0)d0. Now, referring back to eq. (9), we have observed that 171(Q*) is a

weighted average of CQ(Q*,0)-1- CQ0(Q*,0)F(0)1P(0) in the interval [0,01. This rules

out the following:

(a) W(Q*) > CQ(Q*,0) CQ0(Q*,0)F(0)1P(0) for all 0 E [OM],

(b) 171(Q*) < CQ(Q*, 0) + CQ0(Q*, 0)F(0)IF1(0) for all 0 E [0,01.

Hence, 3 o E [0,01 such that

171(Q*) = CQ(Q*,e) CQ0(Q*,e)F(0)/Ple).

Now, given our assumptions about the cost function e.g., Co > 0. Coo -->- 0, and also that

F(0)/F'(0) is increasing in 0, it follows that

171(Q*)— CQ(Q*,0)—CQ0(Q*,0)F(0)1P(0) 0 as 0 U. (11)

Now, let us define

Q(0) = Q* +/3(0—U)

where ig is either zero or negative and small. This implies that
8.

g , Oa') J(P) =n 
f 

(1 — F(0))n-1 (0)[V (Q* fl(0 — a))

(12)

— C (Q* + /3(0 — U),0) — C 0 (Q* (0 — o),O) 

If )3 changes, then 0* would have to change in order to maximise buyer gain. Keeping

0* unchanged when 13 changes would therefore underestimate the increase in buyer gain.

Then, we obtain

jP (C) I 0* fixed = nfe° (1 — F(0))n-1 (0)[VI(Q*) — CLQ (Q* , 0) — CQ0(Q* , 0) FF ,((00))1[0 — old°

= n 1.06 (1— F(0)) n— 1 Fi(0)[171(Q*) — CQ (Q* , 0) — CQ0(Q*,0) FF,((00))1[0 — e]c10

8 
* , F(0)1n (1 — F(0))n F1(0) [171(Q*) — CQ (Q * 0) — Cc20(Q , 0) pm [0— uld0 ,

9



which is negative by eq. (11). Hence, a small negative value of resulting in the negatively

sloped schedule eq. (12) will increase buyer gain even when 0* is not adjusted. Q.E.D.

4. THE OPTIMAL SCHEDULE

In this section, we consider the question of the optimal quantity schedule Q = Q(0)

in the variable-quantity procurement, again confining our attention to the case in which it

is optimal to have only one firm produce the output. Formally, the problem is to choose

Q = Q(0) and 0** such that the expected buyer gains

0..
n (1— F(0))' F'(0) (Q) — C (Q , 0) — C 8(Q 

F(0) 
, 0) F, (0)} dO

0

is maximized.

This is a free horizon calculus of variation problem. First of all, we may note that

the integrand is concave in Q, since V"(Q) — CQQ(Q,0) — CQQ0(Q,O)F(0)1F1(0) < 0.

Since concavity is satisfied, the following conditions are sufficient for a maximum, where

J denotes the integrand.

(1) = 0 at 0 = 0 and 0 = 0"

(ii) J = 0 at 0 = 0**

(iii) .1Q = djdr 

(1) is trivially satisfied in the present case. From (ii), we have

V (Q(0")) = C(Q(0**),0**) Co(Q(0**),0**)F(0**)/P(0**) (13)

and from (iii),

110 = Ce(Q,O) CQ0(Q,0)F(0)1Fi(0), 0 =-_0 0** (14)

Eq. (13) gives the optimal 0". Its similarity with (7) may be noted. The optimal

quantity schedule Q = Q(0) is given by (14). Given our assumptions, it can be checked

that V(0) <0.

10
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Eqs. (13) and (14) show that the optimum variable-quantity auction is not in general

ex post efficient. It is again possible, as in the fixed quantity case, that the lowest 0 satisfies

0** < 0 < e, where V (Q(e)) = C(Q(e), 0. This implies that the procurement auction

fails even though one of the firms could produce a level of output at a cost less than the

buyers valuation of the output. Eq. (14) shows that the optimal quantity schedule results

in a level of output that is not ex post optimal, unless the winning firm happens to be

the lowest-cost firm (i.e., 0 = 0). This happens with probability one if an infinite number

of firms are bidding. The distortion from ex post optimality, represented by the term

C (IQ (0) , 0) F (0) I F (0) , is on account of the information asymmetry. In order to prevent

lower-cost firms from overstating their costs (or bidding too high), higher-cost firms have

to be penalized by a reduction in output below the ex post optimal level. Since CQ0(Q,0)

is nondecreasing in 0 and F(0)/F1(0) is increasing in 0, the quantity distortions become

more severe the higher is the lowest reported cost.

Eq. (14) also makes clear the relation between the fixed-quantity and the variable-

quantity auction. In section (2), an attempt was made to interpret the optimality rule

(9) which gives the optimal level of output under fixed-quantity procurement. A better

interpretation can now be given. Noting that n(1 — F(0))71-1 P(0) is the density of the

lowest-order statistic, we see that the right hand side of (9) replaces the right hand side

of (14) by its expected value over the lowest 0, conditional on there being a winning firm.

This brings out very clearly the second-best nature of the fixed-quantity rule. It is as

though the buyer were following the optimal variable-quantity rule but for some reason

choose to ignore the information conveyed by the winning bid. However, the advantage of

the variable-quantity auction over the fixed-quantity auction disappears as the number of

bidding firms becomes very large. This is stated formally in proposition 5.

PROPOSITION 5: Let the number of potential suppliers, n, approach infinity. Then the

following are true: (a) Both the fixed and variable quantity auctions result in ex post

socially optimal outcomes. (b) The expected profit of all firms is zero. (c) Under both

11



auctions the expected net gain to the buyer is given by V (Qs ()) — c (Qs (e) ,

The proof follows readily from the fact that as n oo, the density of the lowest or-

der statistic converges with probability one to the discrete density which places all the

probability at 0 = 0.

A greater number of firms may participate in the variable-quantity auction than in

the fixed quantity case.

PROPOSITION 6: The variable-quantity auction promotes more bidding competition than

the fixed-quantity auction, i.e., the marginal firm has higher cost under the variable-

quantity auction (0** > 0*).

The proof is sketched in the appendix.

Unlike the fixed-quantity auction, the level of fixed costs does not affect the optimal

variable quantity schedule, except that it affects the domain of the schedule in:that 0** is

affected. One can show the following:

PROPOSITION 7: Under optimal variable quantity procurement, an increase in the level

of fixed costs leads to a lower cost marginal firm, i.e., de** dK < 0.

The proof is given in Appendix A3.

The following result has been observed in the related framework of Riordan- and Sap-

pington (1987).

PROPOSITION 8: In the variable-quantity auction, both the optima/ quantity schedule

and the marginal firm are independent of the number of firms.

Note that this result also contrasts with the fixed quantity one.

The fact that the optimum quantity schedule is independent of the number of bidders is

one of the most interesting features of the procurement problem. It explains the similarity

between the schedule we have derived, and those derived by Baron and Myerkm. (1982)

in the context of regulating a monopolist with unknown costs. Riordan and Sappington

12
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(1987) also discuss a similar schedule in the context of the procurement problem of a

buyer who is unable to precommit himself. It is because the quantity schedule we derive

has the property that the number of bidders does not matter that the Baron-Myerson

and Riordan-Sappington schedules are much the same as ours. Thus, so long as costs are

independent and only one winner is chosen, the optimal procurement schedule is the same

as the Baron-Myerson schedule. With multiple winners, the problem changes as will be

seen below.

It is worth pointing out that while the quantity schedule derived by Riordan and

Sappington (1986, 1987) in their two stage problem with commitment has similarities to

ours, its implications are quite different. This is perhaps best brought out by the example

provided in Riordan and Sappington. They consider cost functions of the form C(Q, 0) =

OQ + K. The variable 0 is only observed after costs K have been sunk. Prior to that, each

firm observes a signal t about 0. It is assumed that the (conditional) density functions

for 0 are spanned by two linear functions of the form fj (0) = 1+ ai [1-(0 -6) — 0] , j =

L, H, aid > aH, 0 E [1,2]. If a signal t E [0,11 is observed, the conditional distribution

of 0 is given by F(Olt) = tFL(0) + (1 — OP' (0), where Fi (0) = f5 ()d, j = L, H.

Riordan and Sappington show that for the buyer's utility function V(Q) = rQ — YQ2,
and for the particular parameter values al' = 0.75 and an. = 0.25, '7 = 4, 8 = 0.02,
their optimal quantity schedule implies deviations from the ex post optimal output levels

of at most 3 percent. Thus they conclude that the optimal mechanism may be closely

approximated by the simpler mechanisms proposed by Loeb and Magat (1979).

We show below that these same parameter values lead to distortions that are much

more significant in the context of the procurement modei that we have discussed. We can

dispense with the conditional distribution function F(01t) since private costs are known

with certainty. The density 1(0) is given by 1(0) = 1 + a TO + — 0] , and we choose a

= 0.5 (i.e., the average of al' and aH in the Riordan Sappington example).

Let Q* (0) denote the ex post optimal level of output, and e(0) the optimal procure-
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ment schedule. Then it can be shown that

where

(0) 1 g(0) 

Q* (0) —

F(0) — +02 —
=

(0) — 10
4 2

The maximum distortion corresponding to 0 = = 2 is given by

 = 1 — = 1 — =
4

Q*() 3 • 2 3 3

Thus, the distortion is as high as 66%.

For 0 = 1.5, we get Q. la Thus, the distortion is 27.5%. We therefore find40

that the deviations from optimality are far more serious for the procurement schedule

we discuss in contrast to the Riordan-Sappington schedule. Simple schemes like the one

suggested by Loeb and Magat will not work well in this situation.

5. IMPLEMENTATION

We have shown in Appendix 4 that if the buyer announces the following expected

payment function and allocation rule, then truth-telling is optimal for each firm:

Eo_i BOO = C (Q, (0)) — F(0)) n-1 + f fr. (1 — F(0)) n-1 Co (Q, OW;
Oi

also, Q = Q(0) if 0, = min(0i, , On) and Q = 0 otherwise.

- It can be readily verified that the expected payment to firm Oi, Ee_iB(es:), is nonin-

E9_iB(9i)creasing in 0. However, the payment conditional on winning, 13(01) —

either increase or decrease with O.
(i—Foor1 may

_ The issue of implementation is now addressed. In the previous section, we had derived

the optimal quantity schedule Q(0) in the one-winner case. We now describe a simple

implementation game that will result in the allocation Q(0) as a Bayes-Nash equilibrium

outcome. This implementation game consists of the buyer announcing a payment-quantity

14



^

" .

-

..

..

schedule B = B(Q). Given this schedule, firms choose the output levels that they want

to produce. The firm choosing the highest output level is then given the contract. It is

readily seen that the schedule B(Q) = ii • Q---1 (Q), where n and Q are as defined above,

implements Q = Q(0) as a Bayes-Nash equilibrium of the implementation game. Given

the schedule B(Q), firm i chooses .0i to maximize expected profits, which is given by

B(Qi) (1 — F • Q-1 (Q)) 71-1 under the assumption that other firms are playing Q = Q(0).

Then by virtue of the result reported at the beginning of the sections, a Nash-equilibrium

response for firm i is to choose Q(01). Note that the implementation game described above

n-1
is well-defined since B(Q) (1 — F • 

Q1 (0 is 
increasing in Q. We therefore have the

following result on implementation.

PROPOSITION 9: Let Q = Q(0) be the optimal quantity schedule in the one winner

case. Then the following implementation game results in the allocation Q = Q(0) as a

Bayes-Nash equilibrium outcome:

(a) The buyer, as first mover, preannounces a payment schedule, B(Q) = .13- • Q-1 (Q)

(where 53 is as defined previously), conditional on winning with a "bid" of Q. It

is also announced that the firm that bids the highest Q wins the auction.

(b) Given this mechanism, firms choose the output levels they want to produce.

(c) The firm that bids the highest output is chosen.

The implementation discussed above can be contrasted with the "menu auction" im-

plementation of Riordan and Sappington. To implement their two stage game, Riordan-

Sappington suggest the following procedure. Initially, the buyer announces a menu of

rank-ordered payment schedules. Each firm is then asked to choose a point on one of these

schedules. The firm choosing the highest rank-ordered schedule wins. In contrast, the

winner in our implementation game is the firm bidding the highest output on the unique

payment schedule preannounced by the buyer.

It is important to point out in this context that unless restrictive assumptions are

imposed on the cost functions, the usual auction method of choosing the firm that bids

15



the lowest per unit supply price fails to implement the optimal schedule Q(0). A per unit

bid-quantity schedule Q = Q(b) cannot be designed in general that would implement the

optimal schedule Q = Q(0) when the lowest per unit bid is chosen. The problem arises

13- 0  because the per unit bid b(0) = is no longer monotonic in general. This is so becauseQ 0

while Q(0) is monotonic, as pointed out above, B- (0) is not.

This is where the distinction between fixed quantity and the variable quantity pro-

curement is particularly interesting. The fixed quantity procurement can be implemented

as a regular auction in which firms bid prices and the lowest bidder is chosen. The variable

quantity auction cannot in general be so implemented. To implement the variable quantity

auction, the buyer has to offer the firms a payment-output schedule, on which the firms

choose the output levels they want to produce. The firm choosing the highest output level

wins.

However, restrictive assumptions on the cost function can give implementability via

per unit price auctions. It can be shown that if the cost functions exhibit increasing returns

to scale over the relevant range of output, then a per unit bid-quantity schedule can be

designed such that the optimal allocation Q = Q(0) results when firms choose points on

this schedule and the lowest unit price is selected. This is stated formally in proposition

10.

PROPOSITION 10: Let an output schedule Q = Q(0) be given for 0 E [,O**] with Q' (0) <

0. Then, given increasing returns to scale in the relevant output range, there exists an

equilibrium per unit bid function b(0) increasing in 0 and an associated bid-output schedule

Q = Q- (0 such that in a low-bid procurement auction, the allocation Q = Q(0) results.

, C (C? (0),0) f 8** Ce (Q OM) (1- - F (5))n- 1 Ca
PROOF: Let b(0 ) =   +  6 f . It can be readily verifiedQ(0) k) n-1 Q(8)

that under the assumption of IRS, b'(0) > 0. Hence b(0) is monotonic in 0. Let #e2(b) =

Q • b-1 (0 be the bid-output schedule. The expected payment to firm i if it bids b(x) is

16
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given by

0..
(1— F(x))n-1 [Q • b-1 (b(x))1 • b(x) = fCo (Q (a), e) (1 — F (e)) n-1 do

+ C (Q(X), x) (1 —

by lemma 2 in Appendix 4, it follows that expected profits are maximized at x = O. Hence

b(01) is an equilibrium bid function. Q.E.D.

The crucial issue in proposition 10 is the monotonicity of the per unit bid function. If

the bid function is not monotonic, then Q(b) = Q • b-1(b) cannot be defined. If IRS does

not prevail, then lower cost firms may end up with higher per unit bids, since C21(0) <0.

IRS will prevail over the relevant range of output if fixed costs are sufficiently high.

However, it should be reiterated that this is quite a restrictive assumption, so that the

usual auction method of implementation would fail in general to implement the optimal

variable quantity procurement.5

6. MULTIPLE WINNERS

Up to now, we have restricted our analysis to the case in which it is optimal to choose

only one firm to produce the entire final output. Implicitly, this presupposes that either

fixed costs are high in relation to the interval [0, #], or that the cost functions satisfy

CQQ (Q, 0) = 0 (e.g., C = OQ + K). In general, however, it might be optimal to have more

than one firm produce the final output. Rob (1986) has considered this problem but his

thrust is different. We argue that "dual or multiple sourcing" may be advantageous (if

fixed costs are not too high) because it allows the possibility of equalizing the marginal

cost of production across firms. Rob, on the other hand, advocates dual sourcing on the

ground that after a fraction of a project is awarded to an initial contractor, costs become

known, so that the remaining fraction can be competitively awarded. This is known as an

"educational buy". We do not pursue sequential procurement here. In our framework, the

buyer simultaneously procures from two or more firms.

17



6a. The Buyer's Problem.

The general problem from the point of view of the buyer can be regarded as one of

designing output allocation schemes q: = qi (0 1, . . . , O,.) and payment schemes P (01, . . . , O,)

such that the incentive compatibility and individual rationality constraints are satisfied and

his expected net gain is maximized.

The expected profit of firm i with cost parameter Oi is given by

ri (x, 0i) = 0E [P (x) - C (qi(x , 0 _ i) , 0 ill
i

Proceeding exactly as in lemma 1 in Appendix 4, we have for any (Pi( ), qi( ))riLi the

following necessary conditions for incentive compatibility:

e-
E P(01) = E C (qi(0i3 O -i), 0i) + f E Ce(qi(0i3 O — 0,00d0 (6.1)

ei 0-i

For any 0i, ofi E [0,01,

0:
E [C0(.7(0i, 0 _i),O) - Co(q(CO_ibe)]cle 0I

Oi 0-i

(6.2)

A sufficient condition for (6.2) is that,

q(0,L) is nonincreasing in O. (6.3)

It can once again be proved as in lemma 2 of Appendix 4 that (6.1) and (6.3) are sufficient

for incentive compatability. From (6.1), it can be shown after integration by parts that

expected payment by the buyer is given by

N-- 1

F 
(°i) Ce (qi (e), °i)

n

• •R= 
lei

• 

fon L'i=1 LFVO '

where 0 = (Or,... ,On).

Let us consider the integrand

+ C (qi(0),00]dF(0i) ... dF(On)

n

E r  F(0i)  C 0 (qi (0) , 0 i) ± C (q i (0) , 0 i)]LPNi=1

18
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n
Let Q = E qi. For each Q, the buyer's problem is

n

min E[  Foi)1(0i) Ce(qi3 Oi) + C(qi)°i)]Fqi,•••)qn 
1=1

n

S.t. E qi = Q.
i.i

(6.4)

It is worth reminding ourselves that in the presence of fixed costs, limq,0 C (q, O) =

K> C(0, 0i) = 0. Since we are minimizing a discontinuous function, first-order conditions

are neither necessary nor sufficient. However, since the discontinuity is only at qi = 0, the

qi's that are positive in the optimal solution must satisfy

F(0i) 

F' (0 i)
C 0,7 (qi , 0i) + Cq(qi, 0i)

Hence we have the following result:

C
F(05) 

Ceqk .7 
i q 
.,°) .) 

4_ q(qj , 0 j),
F'(03)

for i 0 j, qi, qj > 0.

PROPOSITION 1 1 : If it is optimal to procure from more than one firm, then the optimal

procurement involves the equalization of the "adjusted" marginal costs of these firms, but

not necessarily their marginal costs.

Returning to the buyer's problem (6.4), the solution yields

qi = qi(0,Q), i = 1, . . . , n

Substituting this into the integrand gives the function

n
F(0i)  iL(0, Q) = E [C (qi (0 , Q) , o) + C e (qi (O., Q) , O) poi) 

i=1

Optimal procurement then implies solving the problem

., subject to (6.2)

_

(6.5)

max V (Q) — L(0 , Q) (6.6)
Q

19



If we solve (6.6) without regard to (6.2), the solution yields Q = Q (0) . Substituting

in (6.5) gives:

q: = q:(0), 1= 1, . . . , n.

F 0 It is shown in Appendix A5 that under the regulatory assumption that ,F, 6, is nonde-

creasing in 0, q(0) is nonincreasing in Oi, so that (6.2) is satisfied, and q: (0) represents

the solution to the buyer's problem.

6b. Implementability.

We now turn to the question of implementation. Given the optimal allocation

q:(0), i = 1,... ,n, we know that if the expected payment of firms is given by

0—
E P(01) = E C (q: (0), 0i) +J E Co(q: (e,0_0, 'Oda
e_i e_i oi

then it is optimal for the firms to truthfully report their cost parameters. Because all agents

are assumed to be risk neutral, the buyer can announce the payment Ee_i P(0i) =T(0i)

whenever a firm reports 0i (in other words, the payment is not conditional on the firm

being asked to produce any output). We can then state the following result.

LEMMA 12: Let q = q(01) be any monotonic functions of O. Let (qn)-1 : Rn __4 Rn E_

(q-1(qi),..., q-1(qn)). Then, given the allocation rule q: = q: • (e)-1{q1,..., n1q 1 and

the payment function T • q-1(qi), a Nash equilibrium response of every firm is to choose

qi = q(0i), so that .7': = q` (0 1 , • • • , On)•

The lemma therefore suggest that instead of having the firms report their true cost

parameters, they can be made to choose points on a schedule T- (q) = T • q-1 (q), given a

preannounced allocation rule q: = 4 i (q1, . . . , qn) FE q: • (qn)-1 {ql, . . . , q}, which makes

the eventual allocation to firm i a function of the output levels chosen by all firms.

Clearly, allocation rules 4i(qi , . . . , qn) will in general be quite complicated. However,

for the case in which fixed costs are so high that it is never optimal to have more than

two firms produce the final output (or the case of ri = 2), fairly simple allocation rules

20
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may be obtained. For example, suppose V(Q) = bQ — -} aQ2 , for b > 0, a > 0, and

C (qi, 0i) = K + 01q for qi > 0. Let q = CO be the optimal schedule in the one winner

case. Then the following is true.

PROPOSITION 12: An optimal procurement strategy of the buyer when cost and utility

functions are quadratic is to announce the payment schedule

= T • (gi) l (q)

where q'( ) is the optimal schedule in the one winner case.

Each firm chooses a point on this schedule. If only the firm bidding the highest output

qi is chosen, then it is asked to produce qi. If the firms bidding the two highest outputs

qi and q2 are chosen, then they are asked to produce output levels given by

41 = qi
qi q2 (ab — a20)

b2 — a2q02

qi q2 (ab — a2q3)
42 = Q2— b2 __ a2q1q2

_

„

PROOF: The proof merely consists of solving for the optimal allocations when two winners

are chosen i.e., solving for .7'1 (01, 02) and q; (01, 02) and defining

41(q1, q2) = q: (q -1 (qi),q -1 (q2)) •

In conclusion, dual or multiple sourcing provides a possible way of cost reduction by

allocating output among firms on the basis of "adjusted marginal costs". However, the

gains that are thus achievable may be outweighed by the additional fixed cost of having

one more firm produce the output — in which case selecting one winner is optimal. While

implementation is quite complex in general, fairly simple implementation rules can be

designed for the two winners case.
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CONCLUSION

We have considered the procurement problem of a buyer who faces a given number of

potential suppliers, but does not have information about the firms' costs. We have shown

that the common practice of preannouncing a fixed quantity to be procured, inviting sealed

bids for the supply price and selecting the lowest bidder is suboptimal unless the number

of bidders is infinite. The fixed quantity procurement can be improved upon by making

the quantity to be procured a function of the cost of the lowest-cost firm. Under standard

regularity assumptions, we derive the optimal procurement schedule. We show, however,

that the optimal schedule cannot in general be implemented by the usual auction method of

inviting per unit-bids from potential suppliers, selecting the lowest bidder, and allocating

output on the basis of the bids. Implementation in the variable quantity case takes the

form of the buyer announcing a payment-quantity schedule, firms choosing output levels

on this schedule, and the buyer selecting the firm bidding the highest output as the winner.

In this context, it is interesting to note that the analysis would remain unchanged if

we assumed that the buyer is procuring a fixed quantity of an object, but is also concerned

about some feature like the speed of completion, blueprints, or other performance features.

Let us call this characteristic "quality" (a la Mussa and Rosen, 1978). So long as total and

marginal production costs are increasing in quality, optimal procurement consists of the

buyer announcing a payment-quality schedule. Firms decide what quality they want to

produce, and the firm choosing the highest quality is selected. Thus, optimal procurement

does not involve any preannqunced quality specification by the buyer.

Finally, we discussed dual or multiple sourcing, in which two or more firms are simul-

taneously awarded the contract. We noted that optimal procurement involved allocating

output across firms on the basis of equal "adjusted" marginal cost — unless additional fixed

costs wiped out the cost-reducing advantages of allocating output to additional firms. Im-

plementation is quite complex in general, but at least for the two winners case, simple

implementation mechanisms exist.

_

-
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F OOTNOTES

1. For example Sherman (1981, p. 175) states that "Most government procurement
seeks performance of work rather than acquisition of a preexisting item. Procurement may
solicit the production of a material end item or the rendering of services." See Agapos
(????) on defense procurement.

2. Life-cycle costs refer to the costs which will be incurred by the buyer during the
life of the product. Production designs reflect anticipated production costs for the seller.
These estimates allow the buyer to determine the costs of future variations in quantity of
output.

3. See for example Holt (1980), and McAfee and McMillan (198513). The sale of
indivisible objects is considered in Myerson (1981), Riley and Samuelson (1981) and Maskin
and Riley (1984a). See McAfee and McMillan (19850 for a review and reference to the
vast auction literature.

4. See for instance Harris and Raviv (1979), Myerson (1981), Riley and Samuelson
(1981).

5. Other "variable quantity" auction models exist. Wilson (1979) considers a seller
offering shares of a good. Harris and Raviv (1981) examine the case where each buyer
wishes to buy at most one unit of the commodity, and the seller produces under conditions
of unlimited capacity and constant returns to scale. Riordan and Sappington (1985) models
the problem of the award of a monopoly franchise. Of these, the Riordan and Sappington
paper comes closest to our work. The optimal quantity schedule we discuss in section 5 is
similar to the output schedule in their two stage bidding-production problem.

6. The assumption of .IRS is made throughout in Riordan and Sappington (1986,
1987).
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APPENDIX A 1

Here, using methods similar to Riley and Samuelson (1981), we derive expressions for the

bid function, expected profits of firms and the buyer's expected net gain in the fixed-

quantity auction.

If firm i, whose cost parameter is O', bids b(x), where b() is the Nash-equilibrium bid

function with b'() > 0, then expected profits of firm i is given by

Fqx, 0i) = R(b(x)) — C (Q , 0i) x Prob[b(x) <b(0') V j ij

Here, R( ) denotes the expected payment function. In case of firm i, the expectation is

over 01, ... 0+1, on.

Since b(x) is increasing, we can write

0i) = R (b(x)) — C (Q , 0)(1 —

Incentive compatibility requires

Fr(0, 0) — — — Fr(0',0') V 0,0' E [0, r)]

Or

C (Q , 01)(1 — F(0))' — C (Q , 0)(1 —

710, — Fr(0' , 0')

C(Q,0')(1— F(01))n 1 — C(C2,61)(1— FPO) n-1

Dividing by 0 — 0' and taking limits as 0 ---+ 0', we get

= —C 0(Q , 0) (1 —

Thus, ii.(0i) = foe: C0(Q,0)(1— F(0)) 1d0. Setting ii-(01 = 0, we get

= 
fei 

C 0 (C2 , 0)(1 — F (0))n— 1 .
• r
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Now,

R(1)(0i)) = 4*(0) + C(Q,01)(1— F (0))71-1
0*

= f Ce(Q,0)(1 — F(0)) 1 d0 + C(Q,01)(1 — F(01))71-1
ei

However, we also have

R(1)(01)) = b(0i) x Q x Prob[b(0i) is the lowest bid]

= b(0i) x Q x (1— F(0i))n-1

Hence

b(01) x Q x (1— F(0'))'

= f
0.
C e(Q , 0)(1 — F(0))' a + C(Q,01)(1—

Oi

Thus

b(01) = 
fofc Ce(Q,0)(1— F (0))n 1 4:10 

+ 
C(Q,01) 

(A1.1)
Q(1 — F(0))n-1 Q

We now derive expressions for expected buyer payment and expected buyer gain. Expected

buyer payment to firm i is given by

e-
le [C(Q, e) (1 — F(1))) n-1 +

- After integration by parts, this reduces to

.,

Ce(Q,0)(1— F(0))n— 1 dO] F1 (o) dj

e.
for C(Q,Ii)(1 — F(ä))' F1(0)do + f F AC 0 (Q ,e)(1 — F (e))n— 1 do

0

Given equal treatment of all n firms, expected buyer payment is given by

n for {C(Q, 0) + Ce(Q,O) FF,((00))} (1— F(0))11-1P(0)d0(0)d02.

 net buyer gain is then

g(Q,0*)=V(Q)(1— (1— F(0*))n)

F(0)
— n for {co) + Co(Q0) F,(0)} (1— F(0))71-1P(0)d0

27
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APPENDIX A2

CLAIM 1: The optimal level of Q in the maximization of (5) lies in some open interval

(0, Q1), where Qi <oo, and the optimal level of 0* lies in the interval (0,-61 if the following

additional assumption is made:

ASSUMPTION (A2.1): 3 E [0,0] and Q > 0 such that

V (Q) -?- C (Q , 0) C 0 (Cji I))  F (a) 
PO)

PROOF: Given our regularity assumptions, it follows immediatley from (A2.1) that the

expected buyer gain g(Q,e) is higher than g(0, 01 or g(Q,). Thus Qopt is bounded away

from zero, and 0* is bounded away from 0.

Moreover,

g (Q, 0 *)= [11Q)
for (1 - F(0)) n 1 {CQ (Q, 0) + Cc20(Q,O) ;F:,(Al P(0)c101

X [1- (1 - F(0*))71

fr (1—F(0)n-1F/(0)a

Let Qi be defined by

Vi(Qi) = cQ(ch,e).

Such a Qi exists given (A2.1). Since Qopt is bounded away from zero, we must have

gQ(Qop,r) 0 == V1(Q0 ) > CQ(Qopt,g).

Given that V" < 0, CQQ > 0, it follows that

CLAIM 2: Let

B(Q)

Qopt < Q1

f {CQ (Q, 0) + CQe(Q, 0) Ml (1 — FP)) n 1F1(0)d0

fo° (1 — F(0))71-1F1(0)d0
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Moreover, let ‘.•' be defined by

-...
and Q be defined by

If

IP(ejs) = B'( -)

V(c) = c(a) + Co()

then

PROOF: (2 is the optimum level of output for 0 = -0'. However, since

go- (Q, 0*)= n(1 — F(0*))n-1 Ff (0*)[V (Q) — C(Q,01— 
Co(Q,0* F(01  ] 

) F,(0*) 

it follows from the above conditions that for E sufficiently small, go. (Q,0- — c) <0 where

Q is optimally chosen, given 0* = — c. This shows that 0o*pt must be bounded away from

-0-. Q.E.D.
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APPENDIX A3

Proof of Proposition 2.

Let us write the cost function as

C(Q,0) = K ã(Q,0)

where a(Q, 0) = foc? E(Q,0)deis. From the first-order condition (8) we get

dcj (1— F(0*))'' F1(0*) 
IcQ(Q,0*)

V" (Q) dK (i_F(0)) —ip(o)do

cw(Q,0*) F(01 v,
(Q)

1 dO*
clif

Again, from (7), we get

* 1
ddifQ [vi(Q) cQ(Q'°*) cw(Q'° ) 

F(01
F,(0*).1

d F(o)) 
+Coo(Q,=1+ 

(1°* 
[
c
e(Q'

O*)+Ce(Q,r) 1.,1(0))1,3=0.
F(011

Fi(O*).]

Substituting for Vc-, we get

1 (1 — F(01)n-1) f

[( v "(Q))
F(0))n—iF,(0)d0ivi(o—cQ(Q,0*) — cQo(Q,r) y

F' (0*)

. d F(0) I F(01 I dr =— {Ce(Q,r) co(Q,°* )(Tej 10.0- + coo(' Flo*) dK

Thus,462- cannot be signed in general because both terms within the bracket are positive.dK

However, for 0* sufficiently close to the first term is very small, and <0.

Proof of Proposition 6.

We have

n , F(0**)V(Q(0")) C(Q(0**),0**) COO"), 
u** 

)Fl(0**)

30

(13)

_

sp.



From (14) we get

11Q(0*)) = CQ(Q(0*),01 Cqe(Q(01,01 
F(0*)

F'

However, from (9), it follows that the optimal fixed-quantity output satisfies

17'(Qopt) < CQ (Q0 , 0* +CQ (Qopti 01F(0111''(0*). Hence, given our assumptions, Q opt

Q(0*). However, Qopt also satisfies (7). Hence

V (Q(0*)) > C(Q(0*),0*) +Ce(C2(0*),0*) 
F(0*) 

(A3.1)

Since V'(Q) Cc, (Q, + CQ0(Q, 11,,601  for Q(01 Q Q. Comparing (13) and

(A3.1), and making use of the fact that cd- [V (Q(0)) — C (Q (0) , 0) —

C Q(Q   <0 it follows that 0** > 0*. Q.E.D.

Proof of Proposition 11.

We can write (10) as

V (Q(0**)) = K a(CM**),°**) ae(Q0
* 
* 

n**) 
F(0**)F1(0**)

as in the proof of proposition 3. After differentiating with respect to K and simplication,

we get

Hence Sr— <0.

dO** [46,
00

**),0**) + a 
(Q _(0— 0—)

d (F(0) 
'  

c10 P(0))1e.e—dK

+ coo (Q(°**)' 
°**) F(0**)

 P(0")
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APPENDIX A4

We shall first derive the expression for the expected buyer gain in the variable quantity

case in the context of a direct revelation game in which each firm is assumed to submit to

the buyer a report of its cost parameter 0. In the single winner case, the lowest reported 0

is assigned an output Q(0), where Q( ) is preannounced by the buyer. Firms whose reports

are higher produce nothing.

LEMMA 1: Let 0** be the cost parameter of the marginal firm. Firms whose cost param-

eters lie in the interval [0, 0**] will report their parameters truthfully only if the following

hold

Expected payments to all firms with Oi 0** from a truthful report is given by

B(0i) = (1— F (0 i))n 1 C (Cjs (0 i), 0 i) 
oi 

— F (0)) n-1 Co (Q(0), 0) clO

where Q(0) is the announced output schedule that allocates Q(0) to the lowest

report 0.

(ii) For any 0,0' E [0, 0**),

(1— F(0))11-1 f (Q(e), e) (1— F(0'))'(Qpi), 'Ode
6 0

A sufficient condition for 00 is

Q'(0)O for 0 e [e, e**].

PROOF: Expected profits of a firm with cost parameter Oi which reports x is given by

(x,0) = E B (x) — C (Q (x), 0i) (1 — F (x))n-1

Incentive compatibility requires, for 0,0' E [0,0**},

7(0, 0) — 7(0, 0') 7(0, 0) — 7(01, 0') 7(0', 0) — 7(01, 0')

(1 — F(0)) 71-1 [C (Q(0), 01) — C (Q(0), 0)] 7(0,0) — 7r(0',0')

(1 — F(0')) n-1 [C (Q(01), 01) — C (Q(01), 0)]
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,

(1— F(0)) TI-1 f et Co (C2(0), e) do 7 i(0 , 0) — 7ri (0% 0')
e

.,

_. -_->„ (1 — F ( 0 ' ) ) n — 1

-

v

fo
0'

co (Q (01) , e) do (A4.1)

which establishes necessary condition (ii). It is also clear that a sufficient condition for (ii)

to hold is that Q(0) be nonincreasing in 0. This establishes (iii).

Moreover, defining 7(0) = 7(0,0, dividing (A4.1) throughout by 0 — 0' and taking

limits as 0' —* 0, we get

cbr i(0) = —(1 — F (0)) n 1 CO (Q(0), 0).
dO

Hence, using the fact that 7(0") = 0, we get

Thus,

0..
71-(0i) = .1 (i— F(0)) n 1 C 8 (Q (0) , 0) c10

0i

E B (0 i) = 7 (0 i) + C (Q (0 i) , 0 i) (1 —

0 —
=

Oi

-

(1 — F(0)) n 1 C 0 (0) , 0) c10 + C (Q (0 i) , 0 i) (1 —

This establishes necessary condition (i). Q.E.D.

From the point of view of the buyer, Oi is a random variable. Hence, expected buyer

payment to firm i is given by

1
.0., fr

Pi 
=.

L Jo,
(1 — F(0)) n 1 Co (C2 (0), 0) dO + C (Q (0 i) , o) (1 — F (0 1))n 1] F1(01)d01

After integration by parts, this reduces to

6*

Pi = Jo • (1— F(0)) n 1F1(0) [C (Q(0), 0) + Co (C2 (0), 0) FF ,((e0))idO.
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Given equal treatment of n firms, the expected buyer payment is given by

(1 — F(0)) n-1P(0) [C (Q(0), 0) -I- Co (Q(0), 0) FF,0((°))

Hence, the expected buyer gain is given by

G(Q( ),O**) = n fo {V(Q(0)) — C(Q(0),0)

d .

n\ F(0) 
(1— F(0)) n-1110)do— Ce (QM, u) Fl(0)

where we have made use of the fact that the density of the lowest 0 is given by n(1 —

F(0)) 'F'(0).

LEMMA 2: Let Q(0) be an output allocation rule and E0_1B(01) the expected payment

function in the one winner case. For truthful revelation, it is sufficient that

Eo_i Boo = C(Q(01),0)(1 - F (0 i))n —1 + fr (1 — F (0))n 1 C (Q (0) 0)c10

and

V(0) V 0 E [t1,0**1.

PROOF: Expected profits from a report of x by firm Oi is given by

7(x, Oi) = E B (x) — C (Q (x) , 0) (1 — F (x))n 1

= C (Q () (1— F (X))n 1 — C (Q (X) , 0 i) (1 —

.1
 0*

(1— F (0))n 1 C 0 (Q (0)

. ar(x,••
•   = [C (Q (x) , — C (Q (x) , 0 i)] (x) (1 —

aft

— (n —1) (1— F(x)) n-21' (x) [C (Q(x), — C (Q(x), Of)]
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Given (ii), this is
> 0 if
=0 if

1<0 if

.., Hence, a maximum is attained at x = 01. Therefore, truthtelling is optimal. Q.E.D.

„

Air
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APPENDIX A5

We prove below that in the many winner case, q: (0) is nonincreasing in 0i given the

regularity condition that ;(i is increasing in O.

PROOF: Consider the following first order conditions implied by (6.6).

F1(0i) 
q°(q* 0 -) C (q*. , 0 

3
-) V j such that q > 0

) 
(A5.1)

(a) Let us consider first the case in which q: > 0. If Oi is raised, with O remaining

unchanged, then the following possibilities arise:

(i) Suppose E q 3. increases or remains unchanged. Then either the ith firm

produces zero output, or given our assumptions, it follows from (A5.1) that

it produces a lower positive level of output. In either case, q! (0) is lower.

(ii) Suppose E q decreases. Then from (A5.1) it follows that every firm other

than the ith that continues to produce a positive level of output must now

produce a lower level of output. Thus either the output produced by the ith

firm is lower, or there must be fewer firms producing positive levels of output.

However, the latter is not possbile. Consider, for instance, the highest cost

firm among the firms that were producing a positive level of output before

Oi increased. Let this firm be Oh. Let us denote output levels in the "old"

configuration of costs by q5, and those in the "new" configuration by e. . For
3

the buyer to bu' y any output at all from Oh in the old configuration of costs,

it must be the case that

(qh) Eq3 3
jOh jOh

F(Oh Cq(4,0„)]c14 K
Jo 

> h [

c (IN, 0 h)
q

Fi(0„h -
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Hence, in the new configuration, if the optimal qh is zero, we would have

V ( qh) -V (Eq13.)
joh Joh

..t

jOh jOh

• 4%.

qh
FPO  _i_ 

GIq(‘ 
4
' 
Oh)] cid K> lo [Coq(4,0h) Fi(00 -1- (A5.2)

by the concavity of V( ), since E q'. < E q.. But if (A5.2) holds, q'
jOh 3 jOh 3

cannot be zero, since producing qh is better.

Since the output of the highest cost firm that was producing a positive level of output

cannot be reduced to zero, neither can that of any other firm. Consequently, the number

of firms producing positive levels of output cannot decrease.

(b) This is the case in which q! = 0 initially. It is clear from an argument similar to

that in (ii) above that e. would be positive only if E q5 is lower. This implies

that at least one of the firms must drop out. But this is not possible since the

firms that were initially producing positive levels of output (when qi = 0) are all

lower cost firms.
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