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Abstract 
We propose a flexible conceptual and methodological framework to model the dynamics of 
agricultural intensification in the complex rural-urban interfaces of large cities. In doing so, we focus 
particularly on effects of polycentric urbanization patterns and tradeoffs between agricultural 
intensification and off-farm employment. In our conceptual framework—modeling household 
decision-making based on utility maximization—we show that agricultural intensification in the 
rural-urban interface is likely to exhibit non-linear and complex spatial patterns due to relative 
changes in location-dependent effective output prices and wage rates. This is confirmed by our 
empirical analysis based on a primary data set of 638 smallholder farms in the rural-urban interface 
of Bangalore. Applying Structured Additive Regression (STAR) techniques, we model two-
dimensional urbanization effects using household and village coordinates. Results imply that 
proximity to secondary towns and road infrastructure are the primary channel of urbanization effects 
on the uptake of modern agricultural inputs. Furthermore, proximity to the large urban center of 
Bangalore seems to be connected to increasing opportunity costs of agricultural intensification due to 
better access to off-farm labor opportunities. Finally, we show that agricultural intensification around 
urban centers does not necessarily occur in concentric and uniform patterns.  
 
Keywords: Agricultural intensification, household model, India, Structured Additive Regression, 
urbanization 
 
 
 
1. Introduction 
 
Today more than half of the world population lives in cities and this share is expected to increase to 
two-thirds by 2050 (United Nations Population Division 2015). Cities in Asia and Africa are growing 
especially rapidly, and the implications of urbanization are attracting increasing attention in the fields 
of development and agricultural economics. Heinrich von Thünen’s (1826) pioneering model of 
agricultural activity surrounding a city predicts the formation of concentric rings of land use as a 
function of yields, prices, production costs, and transport costs to the city for different agricultural 
products. While the model’s assumption of an isolated city located on a uniform plain is unrealistic, 
von Thünen’s approach to analyze the effects of proximity to urban centers on land use remains 
relevant today. Many recent studies include proxies for urbanization to analyze the effects of cities 
on the livelihoods or productivity of smallholders (Asfaw et al. 2016, Vandercasteelen et al. 2017, 
Vandercasteelen et al. 2018). Proximity to an urban center is expected to improve access to markets, 
information, and technology, and thus increase the likelihood that smallholders modernize their 
production systems and improve their standards of living (Chamberlin & Jayne 2013). Common 



urbanization proxies used in empirical analyses include distance to the next city center or market, 
transportation costs, or travel times (Damania et al. 2017, Ebata et al. 2017, Minten et al. 2013). The 
list is long and often variables are chosen based on the characteristics of a region such as topography 
or traffic conditions, or simply availability (Chamberlin & Jayne 2013). Regardless of which proxies 
are used, most studies show that proximity to urban centers and market access can significantly 
improve smallholders’ productivity, as farmers who are closer to urban centers tend to receive higher 
output prices and are more likely to adopt modern inputs (Vandercasteelen et al. 2017) . 
While these insights are important, to date the literature on the effects of proximity to urban centers 
on smallholders has not considered two important characteristics of urban expansion into surrounding 
agricultural areas. The first of these is the complex, polycentric nature of most urban expansion. Cities 
do not expand into the empty, uniform rural plains posited in von Thünen’s seminal work. Indeed, in 
von Thünen’s model the city does not expand at all, it is simply there. In reality cities emerge from 
networks of settlements in heterogeneous space. Which settlements eventually come to dominate and 
grow most rapidly in a region is determined by a complex, path-dependent interaction of geography, 
chance, and agglomeration effects (Fujita & Thisse 2014, Krugman 1996). As it expands, a city will 
encounter and affect the growth of the other, surrounding settlements. The resulting expansion and 
coalescence processes generate polycentric urban hierarchies (Schneider & Woodcock 2008). 
Smallholders in the rural-urban interface therefore often find themselves in between an expanding 
urban center and surrounding secondary towns, and subject to a web of interacting economic forces 
that pull in different directions. Hence, their production systems, choices, and welfare are influenced 
not only by yields, prices and proximity to a single urban center. In a polycentric rural-urban interface, 
for example, a smallholder might face a choice between delivering to the urban center or delivering 
to a closer, perhaps specialized alternative market that is located farther away from the center. In such 
settings it is unrealistic to assume linear or monotonic gradients of agricultural intensification and 
productivity radiating out from the urban center, and standard urbanization proxies based on 
proximity to the center will not perform well. 
The other salient characteristic of urban expansion is that it provides alternative employment 
opportunities to the members of smallholder households in the rural-urban interface. Economists have 
generated a rich literature on the push and pull factors that drive rural-urban migration and urban 
population growth (Harris & Todaro 1970, Jedwab et al. 2017). However, smallholder households in 
the rural-urban interface do not necessarily have to migrate to switch from rural to urban. Indeed, 
such households will often be rural-urban composites, with some members engaged in farm and 
others in off-farm pursuits and this mixture shifting over time as household demographics evolve and 
urbanization draws closer. Especially where urbanization is driven by strong economic growth that 
generates pull forces, as is the case in the setting that we explore below, households in the rural-urban 
interface will face a choice between allocating labor to increasingly human capital-intensive modern 
agricultural production, or allocating it to off-farm employment opportunities. These effects might 
also lead to complex, non-linear patterns of agricultural intensification surrounding large, growing 
cities. While recent studies (e.g. Christiaensen et al. 2013, Vandercasteelen et al. 2018) do account 
for the varying effects of city size on surrounding smallholders, they maintain the assumption that 
farmers are production maximizers only affected by access to input (including on-farm labor) and 
output markets. In addition, they generally assign one town of reference to each farm household to 
measure its urban proximity. Thus, these studies do not account for complex, polycentric patterns of 
urbanization, and for the potential role of off-farm earning opportunities in the rural-urban interface.  
This is the point of departure for our study. We derive theoretical and empirical models that are 
sufficiently flexible to capture the effects of polycentric urbanization on the agricultural management 
decisions made by smallholder households. We develop a household model following Barnum & 
Squire (1979) in which both output prices and off-farm wage rates vary in space. The result is an 
economic model that can explain and predict non-linear pattern of agricultural intensification that are 
driven by antagonistic dynamics in access to output and off-farm labor markets. 
We illustrate the application of this model by analyzing the adoption of modern agricultural inputs in 
the rural-urban interface of Bangalore, a rapidly growing megacity of roughly 12 million inhabitants 



(as of 2018) in southern India. As India’s “Silicon Valley”, Bangalore exerts not only a strong demand 
for food and other agricultural products on the surrounding rural areas; it also provides households in 
these areas with a variety of off-farm employment opportunities. Furthermore, its rural-urban 
interface includes multiple secondary towns of different sizes that provide smallholders with 
opportunities for marketing agricultural produce and for non-farm employment as well. Thus, it 
exhibits the polycentric characteristics that we aim to study. Our analysis is based on primary data 
collected in a survey of 638 farm household covering the production year of 2016.  
Empirically, we test the implications of our theoretical model by estimating the effect of a household’s 
location on its adoption of modern agricultural inputs. Standard models predict that the use of such 
inputs will increase monotonically with increasing proximity to the urban center. The model that we 
propose considers the effects of location in two-dimensional space rather than proximity to a unique 
urban center. The result is a framework that builds on but is more flexible than and subsumes previous 
models such as that of Vandercasteelen et al.(2018). To operationalize the model we employ 
Structured Additive Regression (STAR) techniques that allow us to directly model two-dimensional 
location effects based on household and village coordinates. We compare the results of this model 
with results generated using standard one-dimensional urbanization proxies based on distance to 
Bangalore city center. Thus, we determine whether and under which circumstances a model that 
explicitly considers two-dimensional effects will generate richer insights into the effects of 
urbanization on smallholder decision-making in the rural-urban interface. 
The remainder of this paper is structured as follows. In chapter 2 we introduce our conceptual 
framework and in chapter 3 we present our study design and data set. Afterwards we describe our 
empirical strategy in chapter 4 and discuss the results in chapter 5. Chapter 6 summarizes our findings.  
 
2. Conceptual framework 
 
Access to input and output markets, represented by transportation costs, is the most frequent identified 
mechanism of urbanization effects on agricultural management. Damania et al. (2017) and 
Vandercasteelen et al. (2017, 2018) develop economic models that predict a monotonic relationship 
between decreasing transportation costs and agricultural intensification—measured by the uptake of 
new and modern agricultural technologies—with increasing proximity to a city. However, a number 
of empirical studies on labor allocation demonstrate that smallholder households are likely to 
diversify their income if off-farm employment is available (Deichmann et al. 2009, Fafchamps & 
Shilpi 2003, Imai et al. 2015). Just as access to input and output markets varies in space, so do off-
farm employment opportunities and effective wage rates. There is theoretical (Krugman 1991) as well 
as empirical (Fafchamps & Shilpi 2003) evidence that wage rates and off-farm employment increase 
with proximity to cities. Thus, in this study we focus on the antagonistic effects between improved 
access to agricultural markets and off-farm employment opportunities on household agricultural 
production decisions. We build on the conceptual frameworks introduced by Vandercasteelen et al. 
(2017, 2018) and Damania et al. (2017), which assume that household decision making is based 
primarily on farm profit maximization, and extend these to comprehensive household utility 
maximization considering opportunity costs of agricultural intensification in terms of off-farm 
income. The general setup of the framework is based on the Barnum-Squire “Model of an Agricultural 
Household” (Barnum & Squire 1979). Following this model and the notation proposed by Ellis 
(1994), we assume that a farm household maximizes its utility given in equation (1). 
 
(1) 𝑈𝑈 = 𝑓𝑓(𝐶𝐶,𝑀𝑀,𝑇𝑇𝑍𝑍) 
 
𝐶𝐶 is the amount of the total farm output 𝑄𝑄 consumed by the household, and 𝑀𝑀 are purchased goods 
for consumption. In addition to 𝐶𝐶 and 𝑀𝑀 the household also consumes goods 𝑍𝑍.These are goods that 
do not have market value but are produced and consumed by the household (e.g. tailoring, cleaning). 
Therefore, the utility of a household also depends on the time available for the production of 𝑍𝑍 
denoted by 𝑇𝑇𝑍𝑍. 



This utility function (1) is maximized subject to a production function (equation 2), a time constraint 
(equation 3), and an income constraint (equation 4). 
 
(2) 𝑌𝑌 = 𝑓𝑓(𝐴𝐴, 𝐿𝐿,𝑉𝑉) 
 
(3) 𝑇𝑇 = 𝑇𝑇𝑍𝑍 + 𝑇𝑇𝐹𝐹 + 𝑇𝑇𝑊𝑊 
 
(4) 𝑝𝑝(𝑄𝑄 − 𝐶𝐶) + 𝑤𝑤𝑇𝑇𝑊𝑊 − 𝑣𝑣𝑉𝑉 = 𝑚𝑚𝑀𝑀 
 
The farm output (equation 2) depends on land (𝐴𝐴), labor (𝐿𝐿), and other inputs (𝑉𝑉). The total time 
available to the household, 𝑇𝑇, is split among time to produce goods 𝑍𝑍, (𝑇𝑇𝑍𝑍), time to produce 𝑄𝑄 (𝑇𝑇𝐹𝐹), 
and wage labor (𝑇𝑇𝑊𝑊) (equation 3). A negative sign for wage labor (𝑇𝑇𝑊𝑊 < 0) means that labor is hired 
in for farm production; a positive sign (𝑇𝑇𝑊𝑊 > 0) implies off-farm employment. The income constraint 
(equation 4) states that all household expenditures have to equal the net household earnings, where 𝑝𝑝 
is the market price for the farm output 𝑄𝑄, 𝑤𝑤 is the wage, 𝑣𝑣 is the price of the inputs 𝑉𝑉, and m is the 
price of the purchased goods 𝑀𝑀.  
To solve the maximization problem, two equilibrium conditions have to be met: a production 
equilibrium and a consumption equilibrium. The production equilibrium is established when the 
marginal products of labor and inputs (𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿, 𝑀𝑀𝑀𝑀𝑀𝑀𝑉𝑉) equal the ratio of the wage to the output price 
(𝑤𝑤/𝑝𝑝) and the ratio of the input to the output-prices (𝑣𝑣/𝑝𝑝), respectively (𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿 = 𝑤𝑤/𝑝𝑝 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑉𝑉 =
𝑣𝑣/𝑝𝑝). The consumption equilibrium is met when the marginal rates of substitution (MRS) of all 
possible pairs of arguments in 𝑈𝑈 equal the price ratios between the respective pairs. A partial graphical 
depiction of these equilibrium conditions is given in figures 1 and 2 (𝑀𝑀𝑀𝑀𝑀𝑀𝐿𝐿 = 𝑤𝑤/𝑝𝑝, 𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶,𝑇𝑇𝑍𝑍 = 𝑤𝑤/𝑝𝑝). 
To model the effects of location on agricultural intensification, we propose two extensions of the 
Barnum-Squire Model. First, in equations (5) and (6) we assume that there are two different 
production systems that reflect different stages of agricultural intensification, each represented by a 
distinct production function: 
 
(5) 𝑌𝑌𝑀𝑀 = 𝑓𝑓(�̅�𝐴, 𝐿𝐿,𝑉𝑉𝑀𝑀����) 
 
(6) 𝑌𝑌𝑇𝑇 = 𝑓𝑓(�̅�𝐴, 𝐿𝐿,𝑉𝑉𝑇𝑇���) 
 
For simplicity we limit the number of production systems to two: 𝑌𝑌𝑀𝑀 representing a modern 
production system, and 𝑌𝑌𝑇𝑇 a traditional one. The household maximizes its utility subject to either of 
the two production systems (equations (5) and (6)), and chooses the system, that yields the highest 
utility in equilibrium. Household land use is assumed to be constant ( 𝐴𝐴� ) and therefore neglected in 
the following. The package of inputs used (𝑉𝑉𝑀𝑀���� or 𝑉𝑉𝑇𝑇���) is assumed to be fixed given the choice of a 
specific production system (modern or traditional, respectively). The interesting factor is labor (𝐿𝐿). 
Labor productivity in a modern production system can be assumed to be substantially higher than in 
a traditional one (Haggblade et al. 2010). Hence, all other things equal, the shape of the total physical 
product (TTP) of labor and consequently the location of the production equilibrium differs between 
the two systems. Contrasting Figures 1 and 2, we see that in the modern production system more 
labor (own and hired-in) is allocated to farm production, while in the traditional system, due to its 
lower marginal farm labor productivity, more labor is allocated to the off-farm employment and 
producing 𝑍𝑍. 
In the second extension we define the effective prices and wage to be functions of household location 
(equation (7) and (8)).  
 
(7) 𝑝𝑝(𝑙𝑙) = 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑔𝑔(𝑙𝑙) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑔𝑔(𝑙𝑙) > 0 
 
(8) 𝑤𝑤(𝑙𝑙) = 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − ℎ(𝑙𝑙) 𝑤𝑤𝑤𝑤𝑤𝑤ℎ ℎ(𝑙𝑙) > 0 
 



Where 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑤𝑤𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the price of agricultural outputs and the wage rate at the urban center; the 
per unit transport or access cost to the city are denoted by 𝑔𝑔(𝑙𝑙) and and ℎ(𝑙𝑙) with 𝜕𝜕𝜕𝜕(𝑙𝑙)

𝜕𝜕𝑙𝑙
> 0 and 𝜕𝜕ℎ(𝑙𝑙)

𝜕𝜕𝑙𝑙
>

0 respectively. More generally, the prices of purchased goods and inputs, 𝑚𝑚 and 𝑣𝑣, could also be 
considered location-dependent. However, allowing only 𝑝𝑝 and 𝑤𝑤 to vary with location is sufficient to 
produce complex non-linear spatial patterns of agricultural intensification, and further generalization 
would increase the complexity of the model without generating fundamental additional effects. 
Based on these extensions, we turn to Figures 1 and 2 to analyze the effect of location on a 
households’ choice between the traditional and modern production. In both figures we assume that at 
an initial location 𝑙𝑙∗ the indifference curves (I) and the slopes of the price ratio 𝑤𝑤(𝑙𝑙)/𝑝𝑝(𝑙𝑙) are 
identical. Hence, at location 𝑙𝑙∗ traditional and modern production lead to the same utility and the 
household will be indifferent to which production system it chooses. 
 
 

 
 

 
Figure 1: Equilibrium in a traditional management system at location 𝒍𝒍∗ 

 



 
Figure 2: Equilibrium in a modern management system at location 𝒍𝒍∗ 

 
 

However, when we consider an otherwise identical household at another location 𝑙𝑙∗∗ the price ratio 
𝑤𝑤(𝑙𝑙)/𝑝𝑝(𝑙𝑙) will change depending on the relative slopes of 𝑔𝑔(𝑙𝑙) and ℎ(𝑙𝑙). Hence, new equilibrium 
solutions will be obtained for the traditional and modern production systems, and the household will 
choose the production system that generates the highest utility. For example, if the wage rate increases 
more than the farm output price with increasing proximity to the urban center, then the ratio 
𝑤𝑤(𝑙𝑙)/𝑝𝑝(𝑙𝑙) will become steeper in both figures, increasing the utility level that is attained in the 
traditional management system (by reducing agricultural production and allocating more labor to off-
farm employment), but reducing the utility that is attained in the modern management system (as 
hired-in labor becomes more expensive). Hence, moving towards the urban center from location 𝑙𝑙∗ 
we would expect to see more traditional and less modern agricultural production, which is the 
opposite of the outcome that is generally predicted in the literature. Several authors mention that the 
size of a city, i.e. the magnitude of demand by its population, determines the degree of agricultural 
intensification in its hinterlands (Vandercasteleen et al. 2017, 2018, Fafchamps and Shilpi 2003). This 
is true to the extent that increasing city size will affect the spatial pattern of output prices. Yet, the 
introduction of space-dependent wages implies that not only the size of a city but its structure will 
determine the spatial pattern of agricultural intensification in its surroundings. A city with a large 
industrial sector with a high demand for unskilled labor will have a different effect on farm 
households’ management decisions than a city with a large service sector that demands more skilled 
labor. In addition, not every household is defined by the specific indifference curves and production 
functions presented in Figure 1 and 2. With different preferences and different endowments (labor 
skills, land, availability of irrigation, etc.), different initial equilibria will obtained for different 
households, and the ratio 𝑤𝑤(𝑙𝑙)/𝑝𝑝(𝑙𝑙) will vary differently over space. As a result, agricultural 
intensification might increase or decrease moving inwards towards the urban center depending on the 
distribution of household types in space. This is especially the case if we extend the model to 
distinguish between labor with higher and lower levels of human capital and different degrees of 
complementarity between human capital and other inputs in modern compared with traditional 
production systems. For example, the ratio 𝑤𝑤(𝑙𝑙)/𝑝𝑝(𝑙𝑙) might increase with proximity to the urban 
center for labor with high levels of human capital, but increase at a lower rate or even decrease for 
other labor. This will have implications for spatial patterns of agricultural intensification if the 



successful implementation of modern production systems requires higher levels of human capital. 
The spatial pattern of agricultural intensification will be further complicated by polycentric 
urbanization that can lead to non-linear variations in the ratio 𝑤𝑤(𝑙𝑙)/𝑝𝑝(𝑙𝑙) over space depending on the 
location of satellite towns or the quality of transportation infrastructure.  
It follows that the assumption of a monotonic relationship between the distance to a city or 
comparable household location proxies and agricultural intensification can be problematic. It is, thus, 
necessary to find alternative strategies and proxies to capture urbanization effects on agricultural 
intensification in the empirical analysis.  
 
3. The study area, survey design and dataset 
 
Bangalore, one of the largest and fastest growing cities in India, is located in the South Indian state 
of Karnataka. The last official census published in 2011 counted 9.6 million people living in the 
Bengaluru urban district (Directorate of Census Operations Karnataka 2011), an increase of more 
than 30 percent compared with the previous census in 2001. Estimates of the population in 2018 range 
around 12 million (Sharma 2018). Bangalore thus represents the type of mega-city urbanization that 
is predicted for many cities in developing countries in future decades (United Nations Population 
Division 2015), especially in Asia.  
There are several secondary towns within a 70 kilometer radius around Bangalore that have also 
experienced substantial growth during the last decades, developing their own industries, services, and 
market infrastructure in the process (Figure 3). In addition, the infrastructure linking these smaller 
towns to Bangalore has be continuously upgraded, although congestion and daily traffic jams have, 
if anything, become more severe. Hence, our study area is best characterized as a polycentric urban 
hierarchy with Bangalore in the center.  
 

 
 

Figure 3: Rural-urban interface of Bangalore, research transects, village location, and 
secondary towns 



Rapid urbanization notwithstanding, agricultural production still dominates the rural-urban interface 
surrounding Bangalore and the secondary towns (Directorate of Census Operations Karnataka 2011). 
Individual household land holdings are small—about two acres—but the variety of crops produced is 
large and ranges from traditional staples to fruits and vegetables, tree crops, mulberry for silk 
production and even turf production for urban lawns. In addition, dairy cattle and other livestock are 
common. State regulated wholesale markets (referred to as APMC) and other retail formats (e.g. 
contracts, supermarkets, cooperatives, farmers’ markets) in Bangalore and the secondary towns offer 
farmers a variety of marketing channels for their produce driven by increasing demand for agricultural 
products caused by economic and population growth in Bangalore, and by national and international 
trade. 
Our empirical analysis is based on socioeconomic survey data that was collected from 1,275 
households between December 2016 and May 2017. All households were selected in two pre-defined 
research transects that cut across the rural-urban interface of Bangalore (see Figure 3). One transect 
is located to the north of Bangalore (hereafter referred to as the northern transect) and the other 
transect to the southwest (the southern transect). To ensure an even distribution of households in the 
transects and, thus, a valid representation of the spatial heterogeneity in the rural-urban interface, 
household selection followed a two-step sampling procedure based on the Survey Stratification Index 
(SSI) introduced by Hoffmann et al. (2017). Accordingly, each transect was separated into three 
strata, namely urban, peri-urban, and rural. In each of the resulting six strata (three per transect) 10 
villages were randomly selected. The 60 villages thus selected cover about 30 percent of the total 
number of villages in the transects. In a second step, an average of just over 21 households per village 
was randomly drawn from household lists provided by the preschool teachers in each village. The 
exact number of household selected per village was proportional to total village population. 
The survey was designed to produce a representative sample of households in the rural-urban 
interface, both agricultural and non-agricultural. As we are interested in agricultural intensification 
in the following, we only consider households that managed at least one agricultural plot in 2016. 
Therefore, our final sample contains 638 farm households; 354 households in the northern and 284 
households in the southern transect. Figure 3 shows the villages in which these agricultural 
households are located. All data are geo-referenced as we collected village and household 
coordinates. This allows us to calculate the distance to the Bangalore city center for every household, 
but also to model location effects using the exact coordinates of each village and household in two-
dimensions. 
Each household was asked to provide detailed information on its socio-economic characteristics and 
the agricultural management and marketing practices that it applied in 2016. The result is a complex 
data set with information on different scales. The smallest scale of observation is the crop level with 
1,926 crop observations. At this scale, 72 different crop and 90 different inputs were recorded. 
Additional scales of observation are the plot, household, village and transect level. At the crop level, 
for example, we recorded information on the growing season, the use of inputs including irrigation, 
yields and the use (own consumption, marketing) of the output. At the plot level we recorded 
information on which crop was produced in which growing season, soil quality and slope. Household 
level information includes information on the number of plots cultivated, as well as socio-economic 
characteristics such as caste, education, income, wealth indicators such as durable assets, and off-
farm employment. An overview of the collected data is provided in Table 1. In the next section we 
describe how we handle potential problems resulting from the scaling of the data set. 
  



Table 1: Descriptive statistics of all control variables  
 Variable N All Northern transect Southern transect 
Modern inputs (count) 1926 1.7747 (1.3592) 1.8808 (1.5565) 1.6837 (1.1568) 
     
Crop scale     
Irrigation (dummy) 1926 0.4766 0.3476 0.5873 
Purpose production 1926    

0: none of the others  0.3624 0.4151 0.3173 
1: Marketing  0.3240 0.2857 0.3568 

2: exclusively fodder  0.1267 0.1159 0.1360 
3: fodder and home consumption  0.1869 0.1834 0.1900 

Sowing season 1926    
0: continously   0.2347 0.2385 0.2314 
1: Kharif 2015  0.0223 0.0112 0.0318 

2: Rabi 2015  0.1054 0.0765 0.1302 
3: Summer 2016  0.0737 0.0720 0.0752 

4: Kharif 2016  0.4927 0.5422 0.4503 
5: Rabi 2016  0.0711 0.0596 0.0810 

     
Plot scale     
Plot property 1108    

1:Owned  0.9179 0.9425 0.8839 
2:Rented  0.0659 0.042 0.0989 

3:Common area  0.0009 0.0016 0 
4:Government (permission)  0.0072 0.0062 0.0086 

5:Government (no permission)  0.0081 0.00778 0.0086 
Size (acres) 1105 1.8229 (3.9854) 1.6991 (3.6441) 1.9926 (4.4092) 
Slope 1104    

1:None  0.4092 0.4593 0.3412 
2:Moderate  0.4420 0.4158 0.4378 

3:Steep  0.1486 0.0956 0.221 
Soil quality 1104    

1:Poor  0.0362 0.0392 0.0322 
2:Middle  0.471 0.4765 0.4635 

3:Very good  0.4928 0.4843 0.5043 
Time to plot (minutes) 972 14.1472 (13.4997) 13.7256 (12.459) 14.7789 (14.9188) 
     
Household scale     
Age household head (years) 629 45.0254 (13.5583) 44.8357 (13.6167) 45.2589 (13.5066) 
Car (dummy) 638 0.0345 0.0452 0.0211 
Dairy (dummy) 638 0.7743 0.7684 0.7817 
Durable assets (count) 638 2.8151 (1.2779) 2.8107 (1.2778) 2.8204 (1.2802) 
Education household head (years) 600 6.275 (5.1595) 6.7868 (5.2273) 5.6367 (5.0104) 
Experience household head (years) 632 28.5997 (14.299) 28.1543 (14.0771) 29.1525 (14.5759) 
Extension (dummy) 619 0.0969 0.0977 0.0959 
Gender household head (dummy) 629 0.1653 0.1672 0.1631 
Household size (count) 629 4.6391 (2.0785) 4.732 (2.1745) 4.5248 (1.9517) 
Caste     

1:General  0.5192  0.4646 
2:SC  0.1314  0.1159 
3:ST  0.0483  0.0697 

4:OBC  0.2648  0.3116 
5:Other  0.0363  0.0382 

Off-farm employment (dummy)  0.6191 0.6271 0.6092 
Off-farm employments (count)  1.0204 (1.0443) 1.0312 (1.0302) 1.007 (1.0633) 

Note: Std. Deviation in brackets. For dummy and factor variables percentages are given. The number of observations N 
depends on the scale the variable was collected on. 
 



Following Sharma et al. (2011), Lohr & Park (2002), Wollni et al. (2010), and Teklewold et al. (2013), 
we use a count of modern inputs applied per crop as a measure of agricultural intensification. We 
classified all inputs observed in our data set into six categories: (a) organic fertilizer, (b) traditional 
seed varieties, (c) new seed varieties, (d) pesticides, (e) inorganic fertilizer, and (f) hormones. We use 
a count of all inputs in categories (c) to (f) per crop observation—hereafter referred to as modern 
inputs—to locate each household on a scale from traditional to modern production. In the conceptual 
framework presented in section 2 we assumed a strict dichotomy between traditional and modern 
production, but the rural-urban interface is characterized by transition between systems. Any attempt 
to classify each household into one of two categories would be arbitrary and would not take advantage 
of the richness of our survey data. 
 
4. Methods 
 
For our empirical analysis, we chose a Structured Additive Regression (STAR) framework. STAR 
models allow for different types of covariates in addition to classical linear effects (Fahrmeir et al. 
2013). This flexibility allows us to account the multiple scales of our data and to incorporate non-
linear one- and two-dimensional spatial effects. Following Sharma et al. (2011), we assume that the 
dependent variable (number of adopted modern inputs) is Poisson distributed. We log-transform the 
rate 𝝀𝝀 of the Poisson distribution to ease interpretation and defined the additive and semiparametric 
predictor 𝜼𝜼𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 as follows:  
 
(9) 𝒚𝒚~𝑀𝑀𝑃𝑃(𝝀𝝀),   𝑤𝑤𝑤𝑤𝑤𝑤ℎ log(𝝀𝝀) = 𝜼𝜼𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 +  𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 + 𝒇𝒇𝒍𝒍 
 
The predictor consists of four elements, namely linear effects of standard control variables 𝑿𝑿𝑿𝑿, 
random intercepts for the different scales of the data set 𝒁𝒁𝒁𝒁, where 𝒁𝒁 is an 𝑛𝑛 × 𝑛𝑛 identity matrix, a 
non-linear effect (one-dimensional spline) distance to the Bangalore city center 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫, and a vector of 
two-dimensional splines 𝒇𝒇𝒍𝒍 to capture the effects of explicit household location. 
A list and descriptive statistics of all variables in 𝑿𝑿 can be found in Table 1. As control variables we 
include information on crop, plot, and household characteristics.  
The main purpose of the random intercepts was to handle effects at different scales. Because the 
northern and the southern transects differ considerably in agricultural and economic structure, we 
estimate separate models for each transect and do not include random effects at the transect level. 
However, we do include random effects at the crop, plot, household, and village levels: 𝒁𝒁 =
(𝛾𝛾𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐,𝛾𝛾𝑐𝑐𝑙𝑙𝑐𝑐𝑐𝑐,𝛾𝛾ℎ𝑐𝑐𝑠𝑠𝑠𝑠𝑒𝑒ℎ𝑐𝑐𝑙𝑙𝑜𝑜, 𝛾𝛾𝑣𝑣𝑐𝑐𝑙𝑙𝑙𝑙𝑣𝑣𝜕𝜕𝑒𝑒)′. The crop level is especially important due to the high crop 
diversity observed in our sample. By introducing random effects for different crops, we allowed each 
crop to have an individual random intercept that captures its individual input requirements as 
difference to the overall sample intercept. The interpretation for the other random effects is 
equivalent. 
Many models in the literature include distance to the next city or market as a standard linear effect. 
Our conceptual framework shows that urbanization effects can be non-linear. We therefore estimate 
the effect of distance to Bangalore city center as a one-dimensional P-spline with a second order 
random walk penalty and 20 knots, 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫. The explicit spatial effects 𝒇𝒇𝑙𝑙 are estimated as a two-
dimensional P-spline surface smoother. This smoother estimates the direct effect of household or 
village coordinates (bivariate variable), 𝒇𝒇𝒍𝒍 = (𝒇𝒇(𝑫𝑫𝒉𝒉𝒉𝒉𝒉𝒉𝑫𝑫𝒉𝒉𝒉𝒉𝒉𝒉𝒍𝒍𝒉𝒉),𝒇𝒇�𝑫𝑫𝒗𝒗𝑫𝑫𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗𝒉𝒉�)′, on the number of adopted 
modern inputs. It can be interpreted as a bivariate non-linear effect that results purely from a position 
in the plane and thus captures complex location effects in a polycentric setting. 
Inference of model (9) is based on a mixed model representation and estimation follows an empirical 
Bayesian approach; from a frequentist perspective this is comparable to penalized likelihood 
estimation. The main difference between the Bayesian and frequentist perspectives is the definition 



of the penalty in the non-linear smoothers of 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 and 𝒇𝒇𝒍𝒍, either as a smoothing parameter or as a 
variance component, respectively (Kneib & Fahrmeir 2006).1 
 
4.1 Model specifications 
 
We start our estimations with a first or ‘base model’ specification that does not include any 
urbanization proxies and the predictor is therefore: 
(10) log(𝝀𝝀) =  𝜼𝜼𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 
With 20 control variables and four sets of random effects this model is already quite large and possibly 
subject to convergence and computational challenges, especially when we attempt to include the two-
dimensional splines, 𝒇𝒇𝒍𝒍, in subsequent models specifications. To avoid these problems and over-
parameterization, we apply an adaptive algorithm based on the improved Akaike information criterion 
(iAIC) to eliminate covariates in 𝑿𝑿 and random effects 𝒁𝒁 that do not contribute to the fit of the base 
model (for details see Belitz et al. 2012, Brezger & Lang 2006). 
Afterwards we extend the base model by adding two-dimensional location effects 𝒇𝒇𝒍𝒍. We compared 
estimates of 𝒇𝒇𝒍𝒍 based on household and village coordinates and find that two-dimensional splines 
based on village coordinates yield a lower AIC. Therefore, we only considered village coordinates, 
𝒇𝒇�𝑫𝑫𝒗𝒗𝑫𝑫𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗𝒉𝒉�, for the rest of the analysis: 
 
(11) log(𝝀𝝀) =  𝜼𝜼𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒇𝒇�𝑫𝑫𝒗𝒗𝑫𝑫𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗𝒉𝒉� 
 
The third model extends the base model by adding the one-dimensional urbanization proxy distance 
to the Bangalore city center, 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫:  
 
(12) log(𝝀𝝀) =  𝜼𝜼𝑠𝑠𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐 = 𝑿𝑿𝑿𝑿 + 𝒁𝒁𝒁𝒁 + 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 
 
Estimating models (11) and (12) allows us to determine how well the one-dimensional and two-
dimensional non-linear effects capture spatial heterogeneity, and whether there are substantial 
differences between the two effects.  
 
4.2 Linking theoretical and empirical concepts of location 
 
Before we present results, we briefly consider the relationship between the location effects discussed 
in the conceptual framework above and the location effects estimated using 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 and 𝒇𝒇�𝑫𝑫𝒗𝒗𝑫𝑫𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗𝒉𝒉� in 
our empirical models. In the conceptual framework location effects are exclusively due to 
urbanization and the effects of proximity to urban areas on the demand for agricultural outputs and 
off-farm earning opportunities. The distance to the Bangalore city center represents rural-urban 
dynamics by definition and, thus, 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫 can easily be aligned with the location effect of the conceptual 
framework. In contrast, 𝒇𝒇�𝑫𝑫𝒗𝒗𝑫𝑫𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗𝒉𝒉� is not automatically an urbanization effect. It might also represent 
geological or biophysical effects that the physical location of a village on agriculture. 
To control for this and ensure that the location effects that we estimate using 𝒇𝒇�𝑫𝑫𝒗𝒗𝑫𝑫𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗𝒉𝒉� primarily 
capture urbanization effects we employ two strategies. First, we include plot characteristics such as 
soil quality and slope in 𝑿𝑿, to control for small-scale biophysical factors. Second, we include village-
level random intercepts to control for unobserved variation at a larger scale, for example distinct 
biophysical or hydrological features that affect agricultural decision making in a particular village. 
Examples of such features are hills, lakes, or waste water drainages, which could be used as 
alternative irrigation sources. We are confident that as a result of these controls the location effects 

                                                 
1 The estimation of the model was conducted in R using the package “R2BayesX” (Umlauf et al. (2013), which provides 
an interface to the free Software “BayesX” for Bayesian inference. For more information on the estimation techniques 
and inference see Kneib & Fahrmeir (2006), Umlauf et al. (2015), and Fahrmeir et al. (2013). 



that we estimate using 𝒇𝒇�𝑫𝑫𝒗𝒗𝑫𝑫𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗𝒉𝒉� will primarily capture the urbanization effects discussed in our 
conceptual framework.  
 
5. Results and discussion 
 
Figure 4 shows the estimates of the two-dimensional splines for the model specification (11). The 
splines somewhat contradict the implications and findings by Thünen (1826) and later studies 
(Vandercasteelen et al. 2017, Vandercasteelen et al. 2018). According to them, we should detect 
highest adoption rates close to Bangalore and—but not as high—close to secondary towns (see Figure 
3 for the location of the secondary towns). For the northern transect we only observe an increasing 
adoption of modern inputs towards the northern areas, i.e. closer the secondary towns, whereas 
proximity to Bangalore does not exhibit an increasing effect on modern input adoption. Especially, 
the secondary town of Doddaballapura in the northwest of the transect appears to have an increasing 
effect on input adoption. In the southern transect the overall tendency of the effects goes more in the 
direction of what one would expect; proximity to Bangalore slightly increases modern input adoption. 
However, the magnitude of effects is much lower (a tenth) than in the northern transect. In addition, 
a closer look at the two-dimensional spline in the right panel of Figure 4 gives the impression that the 
orientation of the effects are less north-south (rural-urban) but east-west. If we further look at the map 
provided in Figure 3, we can see that the red areas in the southern transect are located around a road, 
which connects Bangalore to the secondary town of Kanakapura. Thus, the effect might be rather 
driven by proximity to infrastructure than Bangalore as such. 
 

 
Figure 4: Estimates of two-dimensional splines, 𝒇𝒇�𝑫𝑫𝒗𝒗𝑫𝑫𝒍𝒍𝒍𝒍𝒗𝒗𝒗𝒗𝒉𝒉�, model specification (11) 

(Nnorth= 829, Nsouth= 983) 
 
 

Figure 5 presents the one-dimensional effect of distance to Bangalore on the adoption of modern 
inputs (equation (12)). For the northern transect results imply a significant increase of modern input 
uptake with increasing distance to Bangalore. This coincides with the two-dimensional effect in 
Figure 4 but insights are less nuanced. Effects could be driven by the secondary town of 
Doddaballapura or overall rural-urban processes induced by Bangalore. Only the two-dimensional 
effect reveals the positive adoption effects around Doddaballapura (left panel Figure 4). Same holds 
for the southern transect. The one-dimensional effect implies a slightly positive effect of proximity 
to Bangalore on the agricultural intensification. However, the confidence intervals are rather wide 
and the effect is hardly significant. Since the two-dimensional effect shows a spatial pattern of 



agricultural intensification around the road in the southern transect, the simple distance to Bangalore 
does not capture this effect.  
 

 
Figure 5: Estimates of one-dimensional splines, 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫, model specification (12) 

(Nnorth= 829, Nsouth= 983) 
 
 

In conclusion, the two-dimensional effects appear to be better suited to describe and understand the 
complex urbanization processes induced by Bangalore and secondary towns. These results also 
confirm conclusions derived in our conceptual framework that proximity to urban centers affects 
agriculture not only via its effects on output prices, but additional factors such as off-farm 
employment. This can lead to more complex patterns of agricultural intensification than anticipated 
by the literature to date (Damania et al. 2017, Vandercasteelen et al. 2017). For example, in the 
northern transect households located closer to the secondary town of Doddaballapura probably have 
rather low opportunity cost of agricultural intensification. The town with roughly 300,000 inhabitants 
has good agricultural marketing infrastructure including a state-regulated APMC wholesale market 
and many local vendors; nevertheless, the off-farm labor market is not as developed. In contrast, 
markets for skilled as well as unskilled off-farm labor in Bangalore thrive. Furthermore, the rapid 
expansion of Bangalore is likely to increase land prices. Consequently, opportunity costs of 
intensified agricultural production become higher with proximity to Bangalore. This would explain 
the negative location effect as farm households decide to assign more household labor to the off-farm 
sector. This is supported by results presented in in Table 2. We find that a higher number of household 
members in off-farm employment decrease the adoption of modern inputs. Even though the 
coefficients are only significant at 17 and 22 percent level respectively, it still implies a tendency that 
households weigh between different income opportunities.2 Table 1 suggests that about 62 percent of 
all households have at least one member working in the off-farm sector. In the southern transect the 
above mentioned road appears to play an important role in defining urbanization effects. The road 
facilitates access to agricultural markets in Bangalore and Kanakapura as well as access to vibrant 
off-farm labor markets in Bangalore. As a consequence, the relative utility of a traditional and modern 
agricultural management system is close to one in large part of the southern transect and households 
can achieve comparable utility with either income composition. This would explain the low 
magnitude of coefficients in the two-dimensional spline in Figure 4 and the marginal significance in 
the one-dimensional spline in Figure 5.  
 
                                                 
2 This effect actually becomes significant (p=0.01) when estimating model specification (11) based on a pooled data set 
(Appendix 1).  



Table 2: Estimation results for model with two-dimensional splines, northern and southern 
transect separate 

Variables Exp(Coefficient)  
Northern transect Southern transect 

Intercept 0.817 (0.259) 0.903 (0.532) 
   
Crop characteristics 

  

Irrigation   
Yes 1.359*** (<0.001) 1.54*** (<0.001) 

Purpose production (ref.: none)   
Exclusively fodder 0.943 (0.636) 0.782* (0.0497) 

Fodder and home consumption 1.104 (0.212) 1.133 (0.128) 
Marketing 1.363*** (<0.001) 1.076 (0.418) 

Sowing season (ref.: continuously)   
Kharif 2015 1.426 (0.178) 1.050 (0.792) 

Rabi 2015 1.406* (0.034) 1.215 (0.134) 
Summer 2016 1.406* (0.039) 1.242 (0.134) 

Kharif 2016 1.437* (0.015) 1.219 (0.122) 
Rabi 2016 1.726** (0.002) 1.212 (0.178) 

   
Plot characteristics  

  

Slope (ref.: None)   
Moderate 0.97 (0.605)  

Steep 1.123 (0.247)  
   
Household characteristics  

  

Car   
Yes 1.453*** (<0.001)  

Caste (ref.: General) 
  

SC 
 

1.016 (0.856) 
ST 

 
1.357* (0.04) 

OBC 
 

1.227** (0.007) 
Other 

 
0.961 (0.82) 

Experience household head (years) 0.997 (0.13) 0.998 (0.382) 
Extension   

Yes  1.232* (0.018) 
Household size (count) 1.03** (0.006) 

 

Off-farm employments (count) 0.959 (0.17) 0.966 (0.224) 
   
Random effects   
Crop + + 
Plot   
Household  + 
Village +  
    

(N=829) (N=983) 
Note: Aterisks *, **, and *** denote significance levels below 5%, 1%, and 0.1% respectively. Exact p-value are given 
in parentheses. The original number of observations for the northern transect was 850 and 1037 for the southern. 
Differences result from dropped observations because of missing values. A +-sign indicates included random effects. 
Because the models were estimated in a log-linear form, the exponentials of coefficients are reported. Example 
interpretation for irrigation dummy: If a crop is irrigated the average number of adopted modern inputs for this particular 
crop increases c.p. by 35.9 percent. 
 
 
Finally, the simple fact that we observe different urbanization effects between the two transects 
already calls for urbanization proxies that rely on explicit household location. One-dimensional 
proxies such as distance to a city center are based on the assumption that urbanization effects are 
concentric and uniform around the city under observation. Our results prove that this is an 



unreasonable assumption for rapid and polycentric urbanization patterns.3 In particular, if data sets 
are not collected in defined transects, for which separate empirical analysis can be conducted, 
estimation results for one-dimensional proxies will not be able to capture different urbanization 
effects. 
We close by briefly highlighting several effects of control variables on farmers’ decision-making. 
First, irrigation has a highly significant positive effect on the number of adopted inputs in both 
transects. This is quite intuitive as the access to irrigation is often a prerequisite of modern and 
intensified agricultural systems (Elliott et al. 2014). Second, in the northern transect we observe that 
a household uses 36.3 percent more modern inputs on average, if the crop in question is grown 
exclusively for marketing rather than own consumption. In addition, seasonal crops such as corn, 
tomatoes, and other vegetables—independent of the season—receive between 40 and 73 percent more 
modern inputs than continuous crops such as eucalyptus or coconut. In the southern transect we do 
observe that fodder crops receive 22 percent fewer modern inputs, all other things equal. This might 
be mirroring the marketing effect of the northern transect. Table 1 shows that almost ten percent 
(28.57 percent in the northern vs. 35.68 percent in the southern transect) more crops in the southern 
transect are produced for marketing. When marketing is more common, the production of fodder 
crops is more likely to deviate from the mean rate of adopted modern inputs. Therefore, the general 
pattern in both transects is that marketing increases whereas the production of fodder crops decreases 
the adoption rate of modern inputs.  
At the household level, household size has a significantly positive effect on the adoption of modern 
inputs in the northern transect. This may be a reflection of the higher labor requirements of modern 
agricultural production systems. A household with a larger number of members can assign more 
household labor to agricultural production. If households own a car in the northern transect4, the mean 
rate of adopted modern inputs increases by more than 45 percent. This can be interpreted in two ways. 
A car can be a sign of comparably high wealth of the household and, thus, the farmer probably has 
enough capital to adopt more sophisticated modern inputs. Second, a car implies better access to input 
and output markets. In the southern transect, if a household received extension services, its average 
modern input use increases by 23.2 percent.  
 
6. Conclusions 
 
The rapid growth and expansion of Bangalore is a good example of future urbanization trends and, 
thus, it is important to pay more attention on the effect of rapid urbanization process on agricultural 
management systems in the hinterlands of such cities. The goal of this study is to understand the 
effect of urbanization process on agricultural intensification—measured by the amount of adopted 
modern inputs—in the rural-urban interface of Bangalore. We focus on two aspects in particular, 
which so far have been rather neglected in the literature, namely the effects of polycentric 
urbanization patterns and of potential opportunity costs of agricultural intensification due to off-farm 
opportunities. 
In our conceptual framework we develop a household model following Barnum & Squire (1979) and 
model household decision-making as a utility maximization problem. Thus, households maximize 
both their production function (defining the degree of agricultural intensification) as well as their 
consumption preferences subject to location-dependent output prices and wage rates. As a 
consequence, we can show that spatial patterns of agricultural intensification in rural-urban interfaces 
are likely to be non-linear.  
In our empirical analysis based on primary data of 638 farm households in the rural-interface of 
Bangalore, we produce evidence that urbanization effects ceteris paribus indeed show non-linear and 

                                                 
3 In Appendix 2 we present the estimates of a one-dimensional spline based on the analysis of a pooled data set. Same 
empirical strategy was applied as for the separate estimations. It shows that the splines resembles the one of the northern 
transect in Figure 5 but with much wider confidence intervals. It follows that the pooling of the data set blurs due to the 
different and complex urbanization effects in both transects. 
4Only car ownership prior to 2016 is considered to avoid endogeneity.  



complex spatial patterns. Based on household and village coordinates, we estimate two-dimensional 
splines measuring urbanization effects in a STAR framework. The results show significant 
differences between our two research transects. In the northern transect the secondary town of 
Doddaballapura leads to an increased uptake of modern inputs, whereas no such effect is identified 
for areas closer to Bangalore. We argue that the vibrant market for skilled and unskilled labor in 
Bangalore and increasing land prices due to rapid urban expansion increase opportunity costs of 
agricultural intensification. In the southern transect the two-dimensional effects reveal the importance 
of road infrastructure connecting smallholders to Bangalore as well as the secondary town of 
Kanakapura. Furthermore, we compare the two-dimensional splines with estimates of one-
dimensional splines based on the distance to the Bangalore city center. We find that the latter are less 
nuanced and spatial patterns induced by secondary towns or road infrastructure cannot be directly 
identified. Finally, the substantial differences in urbanization effects between the two transects 
implies that the assumption of concentric and uniform agricultural change around a city—in the sense 
of von Thünen (1826) and later studies—is at least debatable.  
Therefore, we emphasize the need for more flexible theoretical as well as empirical models that are 
able to capture determinants of smallholder decision-making towards agricultural intensification 
beyond profit maximization of agricultural production. We believe that our conceptual framework 
based on utility maximization and the use of explicit location in two-dimensional space in empirical 
analysis is a first step in this direction.   
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Appendix 
 
Appendix 1: Estimation results for model with one-dimensional splines for pooled data set 

Variables  Exp(Coefficient) 
Intercept  0.931 (0.592) 
   
Crop characteristics  

 

Irrigation   
Yes  1.429*** (<0.001) 

Purpose production (ref.: none)   
Exclusively fodder  0.891 (0.196) 

Fodder and home consumption  1.137* (0.027) 
Marketing  1.255*** (<0.001) 

Sowing season (ref.: continuously)   
Kharif 2015  1.147 (0.375) 

Rabi 2015  1.201 (0.078) 
Summer 2016  1.4239 (0.054) 

Kharif 2016  1.225* (0.042) 
Rabi 2016  1.299* (0.021) 

   
Household characteristics   

 

Car   
Yes  1.145 (0.137) 

Caste (ref.: General)  
 

SC  0.964 (0.588) 
ST  1.107 (0.29) 

OBC  1.108* (0.042)  
Other  0.95 (0.657) 

Experience household head (years)  0.997 (0.099) 
Extension   

Yes  1.108 (0.066) 
Household size (count)  1.023** (0.008) 
Off-farm employments (count)  0.897* (0.01) 
    

 
 

Random effects   
Crop  + 
Plot   
Household  + 
Village  + 
    

 (N=1752) 
Note: Aterisks *, **, and *** denote significance levels below 5%, 1%, and 0.1% respectively. Exact p-value are given 
in parentheses. A +-sign indicates included random effects. Because the models were estimated in a log-linear form, the 
exponentials of coefficients are reported.  
 
 



 
Appendix 2: Estimates of one-dimensional splines, 𝒇𝒇𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫, pooled data set (Npooled= 1752) 




