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I. Introduction

One of the most frequently used devices to describe and compare
distributional inequality in economics is the Lorenz curve. It has intu-
itive appeal and can be easily estimated. It is generally defined and
not dependent on any prior specification of an underlying distribution
function. It is the basis of a necessary and sufficient condition for
ranking two distributions independent of utility functions (Atkinson (1970)).]
It is also the basis for several summary measures of income (or wealth) in- -
equality such as Gini concentration coefficient, perhaps the most frequently
used single measure of inequality. Finally, the Lorenz curve also provides
a disaggregated overview of the share structure of inequality in a distri-

bution, so that one can see over which regions of a distribution inequality

is relatively marked.

So far, however, Lorenz curves and income shares have been used
essentially as descriptive devices and not as tools for rigorous statistical
inference. This is at least in part due to the complexities of the sampling
distributions associated with these devices, but is also partly due to a sur-
prising lack of inquiry into the problem of formalizing statistical inference
with Lorenz curves. Such a state of affairs is particularly troublesome in
light of the massive outflow of recent empirical work using micro data to
compare income and wealth inequality in different distributions, and of the

current general interest in distributional considerations. This paper offers

1. Other than that the utility functions be increasing and concave.



a solution to this problem by forwarding a new approach to distributional
inference based on quantile analysis and the asymptotic distribution of
sample income quantiles. Indeed, it will be shown that statistical infer-
ences with Lorenz curves, income shares, and Gini coefficients are

(asymptotically) distribution-free or model-free in the sense of not requir-

ing knowiedge of the underlying distribution model or parent distribution of

the sample.

So far, statistical inference and confidence intervals have been
worked out only for a few summary inequality measures (Gastwirth (1974) and
Kakwani (1974)). But such measures frequently hide much interesting dis-
tributional detail, and contain implicit value norms that may not be adequately
recognized or generally acceptable. The present paper is written in the spirit

of these studies, but extends the analysis to disaggregated inequality levels

so as to permit a much richer and more detailed understanding of the structure
of inequality in a distribution. As a useful corallary, the analysis also pro-

vides for inferences and standard errors of the Gini coefficient as well.

This paper focuses on the problem of disaggregated statistical
inference, and for convenience and clarity we will assume to be working with
samples of micro data. The approach thus contrasts with that of Gastwirth
(1972) and Gastwirth and Glauberman (1976) who focus on interpolation methods
for estimation of Lorenz curves and thus on "interpolation error" as opposed
to "sampling error". In contrast to Gastwirth (1974) and Kakwani (1974), the
present approach is disaggregative in orientation and leads to model-free
inferences -- unlike maximum 1ikelihood procedures, for example. And, in

contrast to Kakwani and Podder (1973, 1976) and Thurow (1970), the current



approach does not require any curve-fitting or iterative nonlinear estim-

ation techniques in order to carry out inferences on Lorenz curves and income
shares. The approach also avoids the need to fit specific distribution models
or density function to empirical distributions in order to extract the rele-
vant inequality information from the data -- again in contrast to analyses,
for example, by Aigner and Goldberger (1970) and Kloek and van Dijk (1977,
1978). The present work, however, can be seen as an extension of the model-
free approach of Beach (1977) of basing distributional analysis on a set of
income quantiles, so that the overall structure of inequality in a distribution

can be studied without the need of fitting specific functional forms.

The objectives of the paper are thus (i) to draw economists' attention
to a body of statistical theory on sample quantiles that can be usefully ex-
ploited in distributional analysis; and (ii) to provide model-free inference

techniques to Lorenz curves, income shares, and Gini coefficients.

The paper proceeds as follows. The next section introduces income
quantiles and reviews some of the basic sampling theory to be used. Sections
IIT and IV apply the theory to derive asymptotic distributions of Lorenz curve
ordinates, income shares, and Gini coefficients. Sections V and VI then
illustrate various inference procedures, and a few general comments are pro-

vided in the brief concluding section.

II. Review of Sampling Distributions of Income Quantiles

II.1) Lorenz Curves and Quantiles

In order to define a Lorenz curve conveniently, let f(y) be the



(continuous) parent density function of income recipients. Then the pro-
portion of recipients with incomes up to y 1is the (cumulative) distribution

function (or c.d.f.)
Fly) = /7 f(u) du (2.1)

and the proportion of total income receipts in the distribution by recipients

with incomes up to y 1is the incomplete (first) moment function

o(y) =+ ¥ u f(u)du (2.2)

=

where the mean income level, p, is assumed to exist. Then just as the Lorenz
curve abscissa F(y) varies from 0 to 1, the Lorenz curve ordinate ¢(y) also
varies from 0 to 1 monotonically where we assume for convenience that all
incomes are positive. The so-called curve of concentration or Lorenz curve
is the function ¢(F) defined parametrically in terms of income levels y by

(2.1) and (2.2).2

An income quantile gp corresponding to Zn abscissa value p(O.i p< 1)
on a Lorenz curve is defined implicitly by p = fop f(u)du or F(gp) = p where
F(y) is assumed to be strictly monotonic. For example, the first decile level
is g 4 such that .1 = fg'] f(u)du, and the median income level is 5_5 such that
b= f0‘5 f(u)du, so that half the recipients have incomes less than or equal

to & 5 and half have more.3 Thus, corresponding to a set of K abscissas

2. For an explicit definition of ® in terms of F, see Gastwirth (1971) and
Dorfman (1979).

3. It may be of interest to remark that concern with income quantiles has
also recently developed in the theoretical Tliterature on measuring economic
inequality as well (Sen (1973), p. 31; Donaldson and Weymark (1979)).



P] < Py < ... < Py, we have a set of K population income quantiles
Note that the gp.

£ .
P Pk i
of a distribution, but simply distribution characteristics which we seek to

are not in general parameters

< gpz < ... <& ‘g

estimate by sample statistics. Consequently, while quantile procedures are
"nonparametric", they are not necessarily "distribution-free" (Bradley (1968)

p. 15). Note also that the quantile abscissas, Pis need not necessarily be

equally spaced. We shall assume for convenience in this paper that they are

(e.g., that the gp 1. are all deciles, centiles, or quartiles, say). But if
i

one were particularly interested in upper and lower shares, for example, one

S

might choose closer quantiles over those regions than elsewhere in the dis-

tribution.

II.2) Exact Distributions of Order Statistics

Consider a random sample of N observations drawn from the probability
density model f(y) with corresponding c.d.f. F(y), and order the observations
from the smallest to the largest. Then Yz in the ordered sample represents the
2'th smallest observation where 1 < & < N. The probability that (2-1) of the
sample observations fell below a value Yg» One falls in the range g t!:dyl,and
the remaining (N-2) fall above Yy is then given by (Kendall and Stuart (1969),
pp. 236,252; Wilks (1962), p. 236) the probability element

d6ly,) = T PP ORIV ) @, (2.9)

The corresponding mean and variance of the &'th order-statistic, Yz’ are thus

given by (Sarhan and Greenberg (1962), p. 13)

N!

E(Yy) = et Lo w1 -1V e u)au




and

V(Y,) = E(Y2) - E(Y))°

R iiem i A GOV g O

- U w1 DR )R w)au.

From these expressions it can be readily seen that exact sampling
distributions for order-statistics have two important characteristics. First,
the observations in an ordered sample will no longer be 1'ndependenﬁ4 or ident-
ically distributed even when the original sample observations were. Second,
the exact sampling distributiomsof order statistics are relatively complicated
to handle analytically and depend very directly upon the underlying parent

density model f(y), so that exact inferences about the parent quantiles gp
i

based on such order-statistics are not distribution-free or "model-free".D

4. Corresponding joint distributions and covariances for any two order
statistics Yl and Y, can also be found in Sarhan and Greenberg (1962), p. 13;

Wilks (1962), p. 236; and Kendall and Stuart (1969), pp. 270,325.
5. It is worth noting, however, that pairs of order-statistics can be used

to set distribution-free confidence intervals for population quantiles. In
particular, it can be easily shown that, if F(yz) <p f_F(yk),

_ k=T /Ny ] N-J

Prob(Y, < £y < Y,) Zi=p (J.) p° (1-p)
for order-statistics Y,, Y, (Wilks (1962), pp. 330-331; Kendall and Stuart
(1969), pp. 517-'8). ﬁowe er, as we shall want to work with functions or
transforms of sample quantiles and obtain smooth confidence bands for the
set of transformed quantiles, we shall deal directly with their sampling
distribution functions and not just with confidence intervals for conveniently
selected order-statistics.



IT.3 Asymptotic Distributions of Sample Quantiles

An asymptotic approximation to the distribution of sample quantiles,
however, does provide the basis for distribution-free inference for sample
shares and Lorenz curve ordinates. Given a random sample of N observations,6

define an estimate of the population quantile Ep to be

gp = YNP if Np is an integer

(2.4)
= Y[Np]+] if Np is not an integer

where [Np] denotes the greatest integer not exceeding Np. These corres-
ponding sample quantiles are known to have several useful statistical pro-

perties.

In particular, it can be shown that, if F(y) is strictly monotonic,
Ep defined in (2.4) has the property of strong or almost sure consistency

(Rao (1965), p. 355); that is, 1im Ep = gp with probability one, so that a
N-rco
fortiori it is weakly consistent as well. In addition, the ép..s are also
i

asymptotically normal with a relatively simple covariance structure. More
formally, we state this result (without proof) as the basic corner stone of

this paper.

6. Since this paper is concerned essentially with statistical
inference and not estimation, it is assumed throughout that the analyst has
access to actual micro data. If, however, he does not and the distribution
data are available only in interval or histogram form, then standard inter-
polation procedures must be employed to obtain estimates of quantile income
levels and income shares (e.g., Gastwirth (1972)). In this case, inter-
polation errors occur in addition to sampling errors in estimating the £
and in computing asymptotic standard errors. Py



Theorem 1:

Suppose that, for the set of proportions {pi} such that
0 < Pp <Py < ... <pp<l, E = (Ep], Epz, cees ng)l is a vector of K
sample quantiles from a random sample of size N drawn from a continuous
population density f(y) such that the gpi.s are uniquely defined and
f. = f(gpi) >0 for all i =1, ..., K. Then the vector /W (£-£) converges
in distribution to a K-variate normal distribution with mean zero and co-

variance matrix A. That is, £ is asymptotically normal with mean vector

£=(£, 5 & » ..., £ ) and asymptotic covariance matrix (1/N) A where
P17 7P Px
[ py(1-p;) p1(1-p) 7
3 17k
A= : . : (2.5a)
f.f, -2
IR fi
If P denotes the matrix
B
T
P = ;

p' = (p], cees pK), and F = Diag [f], cees fK], A can be expressed in matrix

form as

e - ppryF? (2.5b)

=
|

= F

Proofs of Theorem 1 can be found, for example, in Wilks (1962), pp. 273-'4,
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and Kendall and Stuart (1969), pp. 237-'9.7 Since Ep is a consistent estimate
i
of gp , one can of course calculate a consistent asymptotic standard error of
i
£ as [p.(1-p,)/NF(E
gy, o [Py(1-p)/NFLE,

121"

It is important to note, however, that asymptotic inference on
quantile income levels still requires knowledge of the underlying distribution
model f(:) in computing the standard errors. It is thus desirable to work with
transforms of these quantile variables which will allow model-free inferences.
We now make use of Theorem 1 in deriving asymptotic distributions of sample

share statistics and Lorenz curve ordinates.

III. Income Shares and Lorenz Curves

II1.1) Asymptotic Distribution of Lorenz Curve Ordinates

To estimate Lorenz curve ordinates, recall first of all from (2.2)

1 5p; o FlEp) Epy uf(u)du
q>(gp.) . fo uf(u)du = " o ﬁé;)‘r

1 i

that

1

) E(Y[Y < gp,) 1y
" P TTE) T

Consequently, the sample estimate of @(gi) may be computed as

Ve
=z . VAN v s (Y—Ei),i=1, s K (3.1)
5<%, 7 g

23

~

where Y2 =1
oy V5%

feasible or sample estimator of @(gp ).
i

Yj/"i and n; = [Npi]. This will be referred to as the

7. Stronger and broader results than Theorem 1 can also be found
in Chernoff, Gastwirth, and Johns (1967), pp. 56,58; and Bahadur (1966).
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It will also be convenient to define the population income share

function evaluated at the sample quantile estimate as

3

oP1 uf(u)du. (3.2)

)y =1
o(g, ) =5

j

While a random variable since it depends upon Ep » it is also clearly dependent
i
on the (unknown) population distribution function. This will be referred to

as the infeasible estimator of @(gp ). A Lorenz curve in this paper is repre-
i

sented by a set of K ordinates {¢#(£_ )} which are to be estimated from the

Py

sample. The line of argument of this section involves, first, establishing

the asymptotic distribution of the infeasible estimators Q(gp ) for i=1,...,K
i ~ N
as transforms of the sample quantiles (Lemma 1); then arguing that ¢, and @(gp )
i
have the same 1imiting distribution (Lemma 2); and thence concluding that the

asymptotic distribution of the feasible estimators Qi’ i=1,...,K, is exactly

A

that derived for the @(gp )'s.

j
In order to derive the asymptotic distribution of a set of Lorenz
curve ordinates {@(Epi)}, it is useful first of all to recall the following
result (Rao(1965), p. 321)) on 1imiting distributions of continuous functions
of random variables. Suppose that TN is a K-dimensional statistic (t]N’ t2N’
e tKN)|and g = (e], e eK). a corresponding vector of constants such that
the Timiting distribution of the scaled vector /N(TN - 8) is a K-variate normal
with mean zero and covariance matrix I. Suppose also that a scalar function
of the statistic vector Tn’ g(TN), is totally differentiable. Then it follows
that the limiting distribution of /N(g(TN) - g(8)) is also normal with mean

zero and variance v = j' I jwhere
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2g(T,) 29(T,)

i=( o, )
LY atyn 6

is the gradient vector of g(-) evaluated at 6. More generally, if

g = (g](TN), cens gM(TN))' is an M-dimensional vector-valued function
with each g; @ function of the statistic vector TN and each 9, is again
totally differentiable, the M-dimensional vector /N(g(TN) - g(8)) has an
M-variate normal 1imiting distribution with zero mean and (M x M) covar-

ijance matrix V = J £ J' where

is now an (M x K) matrix in which the i'th row contains the gradient of

95 again evaluated at o.

In order to apply these results to the present situation, let
9s» i=1, ..., K, be the incomplete (first) moment function ¢(y) defined
in (2.2). The gradient of the function (2.2) evaluated at the population

value £ can be seen to be simply ¢ f(g_ )/u = (1/u)g_ f.. Consequently,
p Ps Pj Pi 1

; A R LY
o(¢_))', and T = A, we note that J, = Diag [(1/u)g_ f., ..., (1/u)
Px L P 1

i ~ ~
setting Ty = (gpi, .. )'s g(Ty) = (@(Ep]), cees
f.ls
£, ]
so that the variance of the limiting distribution corresponding to V in the

case of Lorenz curve ordinates is

°p; 2 Ce Py P
(*ﬁ—?. p1(1-py) (——;g—— P1(1-py)
v = O IR (3(3a)
(_Jil_fji) (1-p,) » =+ (_EHS )2 (1-p.,)
2 Ppii=Py " Pt =Py

R[P - pp'] R (3.3b)
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where R = Diag [gp Jus e Ep /ul. We thus have the result
1 K
Lemma 1: Under the conditions of Theorem 1, the (scaled) vector of infeas-

ible Lorenz curve ordinate estimates with elements /N(@(Ep ) - @i) calcul-
i

ated from (3.2) is asymptotically K-variate normal with mean zero and co-
variance matrix VL given in (3.3). Consequently, the (infeasible) Lorenz

curve ordinates ¢(gp ) are asymptotically joint normal with mean o, = @(Ep )
i i
and asymptotic covariance matrix (1/N)VL.

So far, however, we have etablished the asymptotic distribution

only of an infeasible set of estimators {#(£_ )} of the Lorenz curve ordinates.

p
i ~
What are calculated from the sample are the feasible or sample estimates {@i}

defined in (3.1). However, analogous to the results for Aitken generalized -
least - squares estimators in econometrics, the feasible and infeasible

estimators can be shown to be asymptotically equivalently distributed.

Lemma 2: Under the conditions of Theorem 1, if the population density has

finite mean and variance, /N(Qi - Qi) and /W(&(g_ ) - @i) have the same limit-

P

ing distributions. Proof of this result is based on a modification of Theorem

1 in Gastwirth (1974) and is provided in the Appendix. Basically, the argu-

A

Epi

ment involves showing that the conditional and unconditional means, Y and
Y, in (3.1) are both asymptotically normal with appropriate means and

variances inspite of the fact that ?g is stochastically conditioned.
Py

Combining Lemmas 1 and 2, one now has the principal result of this

paper.
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Theorem 2: Under the conditions of Lemma 2, the vector of sample estimators
¢ = (Qi, e ¢K) of Lorenz curve ordinates is asymptotically normal in that
V/N(¢ - @) has a limiting K-variate normal distribution with mean zero and

covariance matrix VL specified in (3.3).

Consequently, asymptotic standard errors for the sample estimates

; are given by

L £
Vi p: p.(1-p.)
/E‘ﬂ:)/’ D e,k (3.0)
u

N

The important thing to note about VL’ of course, is that, in
contrast to A, it does not require knowledge of the underlying model density
function f(-). It depends solely upon the chosen proportions Pss the
population mean u, and the population quantile income levels gp. which can be

j
estimated consistently from the sample. Thus statistical inferences about the

Lorenz curve ordinates can be carried out without having to know or estimate
the under]ying model or parent density function. It is in this sense that we
say that Lorenz curve inferences are model-free. It is perhaps interesting to
remark that this distribution-free aspect of Lorenz curve inference in the
statistical field usefully complements Atkinson's (1970) Lorenz curve criterion
in the field of welfare economics for making distributional inferences inde-
pendent of the exact form of underlying utility functions as well. Consequent-
ly, one has further reason to be interested in using Lorenz curve analysis in

applied distribution work.

It is worth noting that the present result implies that it is
unnecessary for Lorenz curve inference to fit functional forms to empirical
Lorenz curves as suggested,for example, by Kakwani and Podder (1973, 1976) and
Thurow (1970). It also implies that, to make Lorenz curve inferences, it is
unnecessary as well to fit various density functions to empirical distributions

such as done in Aigner and Goldberger (1970) and in Kloek andDijk (1977,1978).
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In addition, it suggests that, along with (cumulative) income shares and
means, it is useful in applied work and published data also to provide
estimates of income quantiles. Indeed, the only new information that will

be required to compute standard errors and various test statistics for Lorenz

curves is a set of income quantiles, {Ep }.
i

Furthermore, note from (2.1) and (2.2) that the derivative of

the population Lorenz curve,

de _ de(y)/dy _ (y/u)f(y)
dF ~ “dF/dy f(y

= y/u, (3.4)

is the so-called relative-mean-income curve (Kendall and Stuart (1969), p. 49;
Levine and Singer (1970)) which has a number of useful inequality properties
in its own right. Corresponding to the abscissa points Pys Pps «-vs Py the

relative-mean-income curve ordinates are thus Ep /u, Ep Ius «..y Ep /u.8 It
1 2 K

8. As an illustration of a relative-mean-income curve, consider
the Pareto distribution with F(y) =1 - y™ and o > 1. Then u = o/(a-1), and

gp = (1-pi)']/a, so that the relative-mean-income-curve ordinates are Ep /u =
i i
(a-]/a)(]-pi)-]/u. Thus for selected upper-tail values of p; and alternative

values of a, the corresponding relative-mean-income ordinates are easily computed.

Pj = 7 .8 .9 .95
a=1.5 - .7438 .9746 1.5474 2.4562
2.0 - .9129 1.1181 1.5813 2.2364
2.5 - .9712 1.1422 1.5072 1.9887
3.0 - .9958 1.1400 1.4362 1.8097
4.0 - 1.0134 1.1216 1.3338 1.5860
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can be seen, then, that the elements of covariance matrix (3.3} are simply the
products of selected proportions and their corresponding Lorenz curve deriv-
atives.9 Consequently, an alternative way of saying that it is useful for

an applied distribution analyst to provide a set of income quantiles to go

with an estimated Lorenz curve is that he should provide an estimated relative-
mean-income curve as well, as done, for example, in some work of Beach et. al.
(1980). A relative-mean-income curve thus has an important inferencial role

in applied work as well as a useful descriptive role in distribution analysis.

Remark may also be made of the relatively simple structure of the

asymptotic covariance matrix in (33). For positive incomes, V, has all positive

L
elements; that is, between cumulative income shares, covariances are quite reason-
ally positive. As one moves down the principal diagonal of terms (Ep /u)2

i
pi(l-pi), the component pi(1-pi) increases to a maximum at the median value p; =

.5 and then decreases, while the square of the relative-mean-income value

increases steadily from (gp /u)2 to (gp /u)z. Thus the variances increase over
i K

the range P; to beyond the median and then may either increase or decrease

10

depending on which effect dominates. Typically, for skewed distributions of

9. AThis should not be at all surprising since we know that (i) the
proportions F(Ep_) and F(Ep ) for i < j are asymptotically normal with asymptotic

1 J
covariance Ps (1- .)/N (Wilks (1962), p.271), and that (ii) the derivative of the
function @(F(E )) is d@(g de = E /u. Consequently, the income share functions

(F(gp )) and @(F( p )) are a]so asymptot1ca]1y normal with asymptotic covariance
(Ep /u) (E /u) p; (] PJ)/N
i P

10. In the case of the Pareto distribution with F(y) = 1 - y™% for
o > 1, the asymptotic variance is
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income or wealth, the estimated variances have been found to reach a maximum
in the interval between p = .70 and P = .85 and thereafter decline. Also
note that the asymptotic squared correlation coefficient between cumulative
shares corresponding to p; and P; (pi < pj) is pi(1-pj)/Pj(1-pi). That is,
the correlations are independent even of the quantile levels and depend
solely on the (known) abscissa proportions Pis pj. As one moves along the
minor diagonal of VL where P; + pj = 1, the correlation is maximized at the
median when i = j and minimized at the two ends of the diagonal where asy.

2,7 _ 2,2
cor (@i, ®j) = p]/pK.

II1.2 Asymptotic Distribution of Income Shares

The line of argument to derive the asymptotic distribution of Lorenz
curve ordinates holds also for a set of income shares. If the Lorenz curve
ordinates represent cumulative income shares, the differences between successive
ordinates corresponding to adjacent quantiles represent income shares between
different quantiles. If there are K quantiles (e.g., K = 9 in the case of
deciles), then there are K + 1 (population) quantile shares

by = @(gpi) - ¢(gp1_]) i=1,2, ...,K+ (3.5)

where we set o(£_ ) = 0 and &(¢ ) = 1. Since y, = &, - o, ] is just a
Py P+ j i i-

V.. 2 a-2

1 - a-c
e @ ED b ) e
For given N and o, this is maximized at

= o
p* = Z(a-l)'
Consequently, when a = 2, 2,5, and 3, p* = 1.0, .8333, and .75 respectively.
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difference in sample Lorenz curve ordinates which are asymptotically normal
with asymptotic covariance matrix (1/N)VL, it is clear that the sample income

share statistics are also asymptotically (K+1) - variate normal with asymptotic

mean y = (w], Yoo +nes wK+])' and asymptotic covariance matrix (1/N)VS where
V = V ! . . .
. JS L JS and the (K+1) x K grad1entlmatr1x
Y ] - ]
= ._—i- = - \'\
3, = lsp 1o O (3.6)
J -1 )

Thus combining (3.3) and (3.6), one can check that the ij'th element of the
symmetric matrix Vs where 1 < i < j < K+1 is equal to
Vo= e, & (-p ) -6 & . (1-p. )
ij j-1 i Jj-1

i Pi_1Pj-1 Pi Pj-1

- £ E P

Py ooy Pi1 (-p,) + &, & p;(1-p)]  (3.7)

P; P;

where Pg = 0, Pes1 = 1, gpo = 0, and ng+] is assumed finite.

Again, it is evident that VS does not depend upon the underlying
population density function f(-), so that model-free inferences concerning
income shares are again feasible. Note also that, in contrast to VL’ Vs is
of dimension (K+1) x (K+1) and singular since the sum of the K+1 income

shares is identically one.

In order to compute (asymptotic) standard errors for income shares,

one simplifies (3.7) by setting i = j to

piq(1ops_p) - 2 & Py q(1-p.) + &2 p.(1-p,)] (3.

s 2 2
vi. = (10%) L&
Pi"Pi~1 ! Pi

' Pi
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It is then immediately evident from (3.8) that, to compute standard errors
for income shares, one need compute only 2K-1 elements -- the K diagonal
elements and K-1 first-superdiagonal elements -- of the VL matrix and not

the full set of K(K-1)/2 different elements in V The (asymptotic) standard

L
error for the i'th income share wi can thus be computed as

~

[(]/Nﬁz) [gpi_]pi-l(l_pi-1) -2¢ g P

1-p,
oy pyg i1 1P

A2 ;,
+ gpi pi(]-pi)] (3-9)
The asymptotic variances of bottom and top income shares are

particularly easy to compute. The share statistic for the Towest 100 pi%

of the sample is simply &. = 5. which has the (asymptotic) standard error
2 i j

3 .
;. /p;(1-p.) ~ ~
(—) . The share statistic for the top 100(1-pi)% is by = 1 -0

v N ji?
s that the corresponding (asymptotic) standard error is also
€ -

;. /P;(1-ps)

v N

IV. Standard Errors for Gini Coefficients

A corollary of deriving the asymptotic distribution of sample Lorenz
curve ordinates is that one can also do so for an interpolated approximation
to the Gini coefficient, perhaps the single most frequently used summary
measure of income inequality in a distribution. While Gastwirth (1974) and
Kakwani (1974) have derived asymptotic distributions for estimates of various
other summary inequality measures, this appears to be the first such derivation
for the Gini coefficient. The approach again is model-free, and does not

require a prior specification of the underlying parent distribution such as
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involved in maximum 1ikelihood methods used by Kakwani (1974). The
geometric approach used here also avoids the rather substantial difficulties
of the perhaps more natural approach (Kendall and Stuart (1969), p. 241) of

first examining the distribution of the mean absolute difference
which appears in the numerator of the Gini coefficient.
The (population)Gini coefficient of concentration,I’, lying in the
interval (0,1) for positive incomes, is geometrically equal to twice the
area between the Lorenz curve and the absolute equality diagonal (Kendall and

Stuart (1969), p. 49). If one interpolates linearly along the Lorenz curve

between adjacent quantile ordinates and uses a trapezoidal integration formula,

the Gini coefficient]] may be estimated as
~ _ _ K+-l _ ~ _ ~
I =G = (1/K+1) i1 (pi o5t Psg @i_]) (4.1)

11. Note that this is the only point at which interpolation has
been used in this paper. The expression for the estimated variance of G is
thus approximate in that it reflects both sampling errors as well as inter-
polation errors. One could if one wished also use an alternative inter-
polation formula such as Gastwirth's (1972) "upper-bound" interpolation rule
or some rule-of-thumb combination of the two.
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if the pi's are equally spaced. Therefore the (Kx1) gradient vector for
the linear transformation (4.1) is j = (-2/(K+1), ..., -2/(K+1))', and one
obtains from the results of Section III.1 that /N(G-T) also has a limiting

normal distribution with mean zero and variance

Gy g s 2K KL
I3 = (AT I By vy

where the summation is over all elements of the VL covariance matrix. The

corresponding (asymptotic) standard error of G is thus

“L
L.Z.v;. %
S.E.(G) = (Kf-ﬂ[ i ﬂ 1J] (4.2)
Lo 2 . ) .
where Vi = (gpi/Y)(gpj/Y) P (1 pj) for i < j.

Since the Gini coefficient is expressed as a function of the
Lorenz curve ordinates for given pi's, it too has the property of allowing
model-free statistical inference. The relative mean deviation inequality
statistic, in contrast, does not (Beach (1979)). However, the estimated
coefficient and its standard error do depend on the coarseness of the
interpolation intervals [pi,pi_]], so that it is advisable when reporting
inference results based on (4.1) and (4.2) to indicate also the interval

size (e.g., deciles or quintiles) used in the interpolation.

V. Hypothesis Testing with Quantile Results

V.1) Hypothesis Tests on Income Shares

Given the asymptotic distribution results on estimated income

shares derived in the last section, one is now able to consider directly
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the problem of hypothesis testing with income shares.

i) Tests on Single Share Statistics

First of all, consider the case where there is some hypothesized
value w? to which the sample share statistic, wi is being compared (for
example, that the bottom 10% of recipients get only 5% of total income).

From the results of Section III.2, it is clear that the appropriate test

s . _ .0 . _ 0y,/Cs L oo
statistic under Hot ¥y = Wy 1s z; = (wi - wi)/(vii/N) which is to be

compared to the critical values on a standard normal table for a specified

level of significance o.

More typically, however, the distribution analyst is more interested
in comparing income shares between two alternative distributions (for example,
between two time periods or two regions). Specifically, suppose one has two
corresponding income share statistics @11 and @21 based respectively on two
independent samples of sizes N] and N2. According to a null hypothesis,

Ho: Y1i = Voj against, say, H]: 2% # Yoy for a given particular quantile

share. Under the independence assumption, the appropriate standard normal
3 S s

s _ -~ ~>1 ~>2 L ~71

t:st statistic becomes z, = (w]i - WZi)szii/N]) + (Vii/Nz)] where and

Vi§ are the estimated variances based on (3.8) for samples 1 and 2 respectively.

Vii

Tests on single share statistics such as just considered are most

likely to be appropriate when looking at either top or bottom shares in a

distribution.12

12. It may be remarked that standard "t-ratios" typically reported
for individual regression coefficients are not so interesting for estimated
share statistics. Perhaps the more appropriate "standard" on which to base
individual test statistics is the null hypothesis of absolute equality. Con-
sequently, instead of reporting individual "t-ratios",

t = wi/ v?i/N, it may be more appropriate to report individual "z-ratios",

zZ = (ai - pi)/ C?i/N'
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ii) Joint Test on a Set of Income Shares

When evaluating an overall distribution of income, one may be more
concerned with a set of income shares. For purposes of exposition, suppose
one is interested in the full set of K quantile share statistics (one share
statistic, say the last, is omitted as being linearly dependent on the others).
For example, one may have a model of income generating behaviour as in Fair
(1971) and wish to compare an actual distribution of income shares, say
$ = (@1, @2, cees aK)', to an hypothesized set of income shares wo = (w?,
wg, v wg)' specified by the theoretical model. In this case, one wishes to
test Ho: Y = wo against the uninformative alternative H]: Y7 wo. From the
results of Section III.2, under the null hypothesis, /N(@ - wo) is asymptotically
distributed as a K-variate normal with mean zero and covariance matrix QS,
where the bar notation on Vg indicates that the last row and column of the VS

matrix have been deleted. Consequently, the test statistic

c] = N(II} - lbo)'

<Z 1)

- 0 (5.1)

is asymptotical distributed under Ho as a (central) chi-squared variate with

K degrees of freedom.

It should be remarked, however, that the actual computations
involved in the income share test (5.1) (and in subsequent tests as well)
are much simpler than may first appear as there is no need to invert the

matrix VS numerically. If the (KxK) nonsingular matrix JS is defined as
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it can be seen that the share covariance matrix
]

V =3 V g
S Js L Js’

so that

v = @) v

where it can also be checked that

T -1
(37" =

o o

1
1 1

Thus any arbitrary quadratic form in the matrix (VS)-] can be written as

-1 1

a‘(VS) a = b'VL b (5.2)
where
o
- '] a]+a2
b = (JS) a = | ajtaytag ' s (5.3)
. ’
i a]+a2+ e e . +aK

so that it becomes now a quadratic form in the matrix V[], the inverse of

the Lorenz curve (asymptotic) covariance matrix.

VL’ however, can be shown to have a simple analytic inverse.

Specifically, it will be recalled that V, = RAR where R is a diagonal matrix

L
and A = P - pp' from (3.3). Now the matrix A-1 can be seen to have a very

simple structure, with elements
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S 2 Piv T P
(pi+]'pi)(pi'pi-;7

|
-—
-

for i = .5 K, (5.4a)

i,i+] i+1,1 -1 .
? = > = f s eoos K-T, 5.4b
a a zB;:;:B;Y or 1 1 ( )
and zeros elsewhere (Mosteller (1946), p. 385). Again, for convenience,
set Po = 0 and Pee1 = 1. Consequently, any quadratic form in the matrix v[]

can be written as

-1, K (p1+]-pi-]) 2 K bibi 1
b= 2K AR ] by - 2 £, (R (5.5)

i-

b'v

Thus one needs to compute only 2K-1 terms in (5.5) instead of inverting a
(KxK) matrix numerically. When one is working with deciles or vigintiles,
for examples, this is a substantial computational reduction. The test

statistic in (5.1) can thus be re-expressed_as

(P q-Ps 1) %p.
-oK i+l Mi-1 iv-2 .2
= . = .
C] N i=1 (p1+]-pi)(pi-pi-]) ( I ) b1
€, _1 & -
Dok Dl Piy i1y (5.6a)
i=2 (pi'pi_]74V a ;
_ i ~ 0
where bi = Zj=] (wj wj) . (5.6b)

Clearly, one could also work out an intermediate case where a test
is performed on a set of only L quantile shares where 1 < L < K based on an

asymptotic chi-squared statistic with L degrees of freedom.

iii) Joint Test of a Difference of Two Independent Setsof Income

Shares

When one is comparing alternative distributions, however, one may
be more concerned with testing for differences in sets of share statistics

between two sample distributions corresponding, for example, to different
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periods or different regions. Specificially, suppose one distribution is
characterized by a set of K quantile shares &1 = (;11, &12, e G]K)' and
the second by @2 = (@2], @22, cees $2K)' and the samples are drawn inde-
pendently of size N] and N2 respectively. The null hypothesis one may wish

to test then is

HO: w] = wz against H]: ¢1 # 178

Now the two share covariance matrices Voq and Vgo can be seen to be
equal if and only if (E]pi/u]) = (gzpi/uz) for all i; that is, if the relative
mean income curves are the same for the two distributions. But if the relative
mean income curves are the same, so also are the corresponding Lorenz curves,
and the corresponding sets of quantile share statistics. Consequently, under
the null hypothesis that Yy = ¥y, We shall also assume that the two covariance

matrices are equal, VS] = Vgp = Vs

Under the null hypothesis, then, one can see that the vector difference
(\p1 - wz) is asymptotically K-variate normal with mean zero and covariance
matrix (1/N] + ]/N2) VS. Consequently, an appropriate test statistic for H0 is

NgNp o~ a0

€2 = (N;Iﬁg) (g = 9)" V7 (g - 9p) (5.7)

which will also be asymptotically chi-squared with K degrees of 1“r‘eedom.]3

13. Since covariance matrices are assumed the same in the two
samples, estimates of the elements of V_ should be based on a combined sample.
A convenient approximation to the combiRed relative mean income ordinates,
however, may be provideqd simply by the weighted average

My Py My (P
Nyt ™ 0 NytN™ T

H
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Following the same argument presented for ¢, one can alternatively and
more simply compute C, by the formula (5.6a) where now
_ -i ~ _ A

Again one can also formulate joint tests for differences in

subsets of quantile shares as well.

V.2) Hypothesis Tests:and Confidence Bands on Lorenz Curves

In the case of Lorenz curves, tests of individual ordinates are
not typically of much concern, so that we consider only joint tests on the
full set of K Lorenz curve ordinates analogous to those Jjust discussed for

income shares.

i) Joint Tests on Lorenz Curve Ordinates

Since much of the framework for hypothesis testing of Lorenz curve

ordinates has already been laid out, the present discussion can be fairly

0
2’

brief. To compare a hypothetical or theoretical Lorenz curve @O = (@?, ®
5 'in

ces @E)' against an empirically estimated curve & = (81, 52, cees K)
order to test Ho: $ = @0 Vs H]: o # @0, one can again use an asymptotic

chi-squared test statistic

~

cg = N(e - @0)' §[](5 - ¢O) (5.8)

with K degrees of freedom. To compare two separate Lorenz curve estimates
@1 and @2 from independent samples, in order to test HO: ¢1 = @2 Vs
H]: @1 # @2, one can use the statistic

Cp = (N;;NE) (¢1 - ¢2) VL (¢] - ¢2) (5.9)
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which is also asymptotically chi-squared with K degrees of freedom under

the null hypothesis and accompanying assumption of equal variances.

Just as the share test statistics can be computed without having
to invert numerically a (KxK) covariance matrix, so also can C3 and Cy-

Specifically, using the result in (5.5), one can re-express (5.8) as

(P341Ps_7) %p. -2 ..
K i+] Fi-1 i 0,2
c, = N[Z:_ - - (=) (o; - o)
3 =1 (i1 )PPy _¢) * 7 i
- R (5.10)
p. -1 8, . A1
K 1 Piyv7t Picn, ™ o0 0
-25e (=) (—=—) (2, - ¢35)(®, ,-0: ;)]
i=2 (pi-p]_]) . I i i7Y9-1 T
and (5.9) as
NN (Psi1-P: 1) Ep. A A
172 K i+17Pi-1 iy-2 2
c, = (Fa)sie . - (=) " (275 = 0,.) (5.11)
4 N]+N2 i=1 (pi+] pi)(pi pi_]) 9 1i 2i
€ £
K ] Piv-1 , Pi-1-1 2~ 0 -
‘22'= _ ~ ) ( ~ ) (@ --q) -)(@ i "@ : )]-
=2 (p;-p;_4) . 0 1i 721/ V*11-17%214 -1

One particularly interesting problem where one may wish to apply
the above inference procedures is that of statistically testing Atkinson's
(1970) distributional ranking criterion involving Lorenz curves. Specifically,
one may wish to use the criterion of noninteresting Lorenz curves to define
a ranking or comparison of inequality between two distributions (as opposed
to defining a ranking of distributions per se), as applied for example in
Beach (1980). To test empirically the hypothesis of one Lorenz curve lying
statistically significantly inside another, one may start from a situation
of one estimated Lorenz curve 51 indeed lying uniformly above another ;2
(i.e.: 511 > 321 for all i =1, ..., K), and then use statistic c, to test

HO: 9 = 0, against the one-sided alternative H]: ®] > 5.
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ii) Confidence Band for Lorenz Curves

Along with the hypothesis tests so far described, it would be
desirable from a graphical point of view to supplement an illustrated
Lorenz curve with some kind of confidence band about it over its full
length. One could then immediately see graphically how accurately the
illustrated Lorenz curve has been estimated, and particularly over some

regions more tightly than others.

Perhaps an initial approach to this problem might simply be to
construct a band of, say, two standard errors of 51 on both sides of the
estimated Lorenz curve ordinates. While such a band may have some des-
criptive interest in illustrating the relative widths of individual ordinate
confidence intervals, it is not a very useful analytical device because it
treats individual ordinate estimates as separate and unrelated. What is
wanted instead is a joint confidence band or set of simultaneous confidence
intervals that incorporate the market interdependence of the individual
ordinate estimates for Lorenz curves. As is well known in the statistical
Titerature this is the classical problem of determining a set of simultan-
eous confidence intervals or multiple comparisons for a given joint level
of confidence, and there is no unique way of handling the problem. Perhaps
the best known approach for our purposes is Scheffé's (1959 , pp. 68-70)
projection method. See the last reference or Wilks (1962, pp. 291-'3) for
details. If da = wéz—is the square root of the 100(1-a)% critical value
on a chi-square distribution with K degrees of freedom, then the probability

~

is at least 100(1-a)% that the K intervals (¢i - da/ vi% s 81 + da/ v%i)



jointly contain the K population ordinates @i, @2, cees @K, Consequently,
an approximate set of simultaneous confidence intervals is provided by a
band of da standard errors in width on both sides of the estimated Lorenz
curve ordinates. In the case of decile ordinates (K=9) with o = .05, the
corresponding value of da is da = v¥16.919 = 4.11. This compares with the
two-standard-errors rule that corresponds to treating the ordinates as

separate and unrelated.

Alternative approaches to the simultaneous confidence interval
problem are also available (Seber (1977), pp. 126-132). Bonferroni t-
intervals, for example, are based on the critical value of tU o/ 2K for
da from the t-distribution with v degrees of freedom. Asymptotically, one

/2K

may simply use 2% “" from the standard normal distribution for large micro-
data samples. In the above case where o = .05 and K = 9, the Bonferroni
critical value is da = 2.78 which is substantially smaller than that obtained

from the Scheffé procedure, and consequently in this case to be preferred.

VI. Illustrative Empirical Results

Several of the tests of Section V are now illustrated with two
sources of micro data, one for the United States from Danziger and Taussig

14

(1978),"'" and one for Canada from Beach, et. al. (1980).

Table 1 provides the background data on decile income levels, decile
shares, and Lorenz curve ordinates for United States census unit households

(reporting positive income) from the CPS for the two years 1967 and 1976.

14. The author would like to thank Prof. Sheldon Danziger for
providing the data in Table 1.
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These estimates are based on very large data sets (N] = 48, 191 for 1967
and N2 = 58,063), and appear roughly similar except for the inflation of
income values over the period resulting in the sample mean increasing

ifrom $7692 in 1967 to $14,087 in 1976.

Table II provides (asymptotic) standard errors on the decile
income shares as computed by (3.9) (given in percents) for the two years,
and also z-statistics on the difference of individual shares, @11 - $2i'
Judging the shares separately, one can see the differences are individually
significantly different from zero in the first, third, fourth, fifth, and
eighth decile shares on convential significance levels. Note also how the
standard errors are consistently slightly smaller for 1976 because of the

larger sample size.

Table III provides more summary test statistics for differences in
overall inequality between the two years. A joint test of the difference
between the two Lorenz curves is computed from (5.11) to be C4 = 54.46 which
is seen to be highly significant at any conventional levels of significance.
The Gini coefficient standard errors are also computed (based on deciles)
and yield test statistics for significant difference from zero (i.e., absolute
equality) of 163. and 183. for 1967 and 1976 respectively. However, the
difference between the two Ginis has a z-ratio of only -2.091 which lies between
a 95% and 99% confidence-level cut-off on the normal table with a two-tailed
test. Thus it is quite clear that a test on Gini coefficients is not at all
equivalent to a test on significant differences in the overall Lorenz curve.
In the first place, one is a single test, while the other a joint test.
Secondly, one has an assumed aggregation structure and implicit social

welfare function built into it while the other does not. In the case of two
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TABLE 1

Decile Incomes, Shares, and Lorenz Curves: 1967,1976

1) United States CPS Households, 1967

Decile Decile Level Decile Share Lorenz C. Ord.
1 $1,441 1.00% 1.00%
2 2,700 2.66 3.66
3 4,056 4.38 8.04
4 5,457 6.24 14.28
5 6,750 7.95 22.23
6 8,000 9.59 31.82
7 9,504 11.34 43.16
8 11,390 13.55 56.71
9 14,500 16.57 73.28
10 26.72 100.00
6, = .3992 uy = $7,692 N, = 48,191
2) United States CPS Households, 1976
Decile Decile Level Decile Share Lorenz C. Ord.
1 $2,935 1.16% 1.16%
2 4,875 2.73 3.89
3 7,000 4.18 8.07
4 9,285 5.78 13.85
5 11,870 7.50 21.35
6 14,580 9.36 30.71
7 17,540 11.37 42.08
8 21,350 14.10 56.18
9 27,450 17.01 73.19
10 26.80 100.00
G, = .4061 ﬁz = $14,087 N2 = 58,063

Source: See footnote 14, and Danziger and Taussig (1978).
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TABLE II

U.S. 1967 and 1976

1967 1976 z dif.

1) 1.00% 1.16% -4.40*
(0.026) (0.026)

2) 2.66 2.73 -1.04
(0.051) (0.045)

3) 4.38 4.18 2.06*
(0.074) (0.036)

4) 6.24 5.78 3.66%
(0.096) (0.081)

5) 7.95 7.50 2.93*
(0.116) (0.101)

6) 9.59 9.36 V.27
(0.134) (0.121)

7) 11.34 11.32 -0.14
(0.156) (0.143)

8) 13.55 14.10 -2.20*
(0.182) (0.168)

9) 16.57 17.01 -1.49
(0.215) (0.202)

10) 26.72 26.80 -0.23
(0.258) (0.243)

*denotes significantly different from zero on the basis
of atwo-tailed test of a standard normal variate with

o = .05.

Source: See Table I.
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TABLE III
Summary Test Statistics: US 1967 and 1976

1967 1976
Gini Coef. - .3992 .4061
(.00245)z=162.9 (.00222)z=182.9

Lorenz Curve Difference: Cy 54.46 > XS = 23.59 at o.005

Gini Coef. Difference: d = GG? - G76 = -,0069
S.E.(d) = ,00330
zd = -2.091

(z(a=.05) = 1.960, z(0=.01) = 2.326).

Source: See Table I.
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intersecting Lorenz curves, for example, the corresponding Gini coefficients
can be the same while the Lorenz curves are quite different. In general,
the Lorenz curve joint test is to be preferred to that on the Gini coeffic-

ient as a less restrictive test.

It can also be seen that with such large sample sizes, even rather
similar looking distributions can be quite sharply distinguished as to their
relative structure of inequality. At the same time, the size of "sampling
error" is on the low side relative to "interpolation error" as found, for
example, by Gastwirth (1972) who computed interpolation error bounds on the
Gini coefficients for the 1967 CPS data with 10 income groups. The width of
the interval between upper and lower interpolation bounds for three different
interpolation procedures was calculated as .020, .019, and .009. These may be
compared to an approximate 95% confidence interval on G for 1967 of 2 standard

errors or an interval width of .009.

Finally, Table IV provides Lorenz curve data on family total income
for all (census) family units in the province of Ontario, Canada, for 1973 taken
from a recent empirical study by the author and others (Beach et al (1980)) and
computed based on a vigintile (K+1=20) income disaggregation and a sample size
of 7624 family units. This finer level of disaggregation shows the Lorenz
curve standard errors increasing up until the sixteenth vigintile and then
decreasing in size. The third column provides joint confidence intervals for
the nineteen vigintile ordinates based on "Bonferroni-z" intervals. At a 95%
level of confidence, the asymptotic Bonferroni-z value for da is 3.01 (Seber
(1977), p. 131) compared to the corresponding asymptotic Scheffe value for
da which would be da = /X$9 = 5.49. Consequently, the narrower Bonferroni

intervals have been used in the table.
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TABLE 1V

Lorenz Curve Vigintile Ordinates
Family Total Income for A1l Family Units
Ontario, 1973

Vig. Pt. Est. Est.+3.01 S.E. S.E.
1 0.39% 0.29 - 0.49% 0.034%
2 1.23 1.03 - 1.43 0.067
3 2.37 2.05 - 2.70 0.108
4 3.95 3.45 - 4.45 0.166
5 5.98 5.31 - 6.65 0.223
6 8.47 7.61 - 9.33 0.287
7 11.47 10.39-12.55 0.358
8 14.97 13.71 ~-16.23 0.417
9 18.92 17.49 - 20.35 0.475
10 23.32 21.73 - 24.91 0.529
1 28.14 26.42 - 29.86 0.572
12 33.38 31.53- 35.23 0.614
13 39.07 37.13-41.01 0.644
14 45.21 43.20 - 47.22 0.668
15 51.83 49.78 - 53.88 0.682
16 59.00 56.94 - 61.06 0.684
17 66.83 64.81 - 68.85 0.670
18 75.51 73.59 - 77.43 0.638
19(K) 85.63 83.95 - 87.31 0.558

ﬁ = $11,091 G = 3.74

N = 7624. (.00639) z = 58.5

Source: Beach et al (1980), Tables 9.1, 9.4, and 9.5.
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Finally, one may remark on the substantially larger standard
error for the estimated Gini coefficient in Table IV compared to Table III
due to the smaller sample size on which it is based. It has also been
computed from vigintile values, whereas the earlier figures were based on
decile values. However, if one recomputed the standard error in Table IV
in more aggregated fashion, one would obtain values of .006335 from decile
figures and .006160 from quintile figures compared to .006391 from the
reported vigintile figures. That is, the Gini standard errors appear quite
insensitive to the level of aggregation used and differ less than 4% between

using quintile and vigintile levels of disaggregation.

VII. Review and Conclusions

The general objective of this paper has been to extend the
standard techniques of statistical inference to applied income distribution
work at a disaggregated level of analysis. Sections II-IV of the paper intro-
duced the essential background material on the asymptotic distributions of
income quantiles, and then used them to derive model-free standard errors and
confidence intervals for income share statistics, Lorenz curve estimates, and
estimated Gini coefficients. The only additional information required to
estimate the asymptotic covariance matrices involved is that of a relative mean
jncome curve. Sections V and VI then provided several hypothesis tests on
income shares and Lorenz curves which are typically of most interest to applied

distribution analysts.

Three general conclusions emerge from this paper. First, it

clearly follows that model-free statistical inference on Lorenz curves, income
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shares, and Gini coefficients is both feasible and remarkedly simple to

carry out. Consequently, it is hoped that henceforth applied distribution
analysis will be carried on in the framework of standard statistical infer-
ence. Second, when an analyst is reporting his empirical results in terms

of Lorenz curves, he should also report estimated relative-mean-income
ordinates so as to allow a reader to carry out inferences on the Lorenz

curve figures. Third, statistical agencies providing published distribution
data should also include, along with income share and histogram data, quantile
income level estimates such as decile levels which researchers can then use

for statistical inference purposes.



- 38-

Appendix

Lemma 2: Under the conditions of Theorem 1, if the population density has

finite mean and variance, /N(@i - @i) and /N(@(gp )-g) have the same limit-
i

ing distribution .

Proof: The first part of the proof is a modification of the arguments in

Gastwirth's (1974) Theorem 1.

Recall, first of all, that by the Central Limit Theorem z = N%(Y -u)/o
has an asymptotic standard normal distribution if the Y's are drawn (as assumed)
from a random sample. Also by Theorem 1 of the text,

e = Ng, - £ )f(g, )/Ip;(1-p)]1” (A1)

P; Ps P; 1 1

is asymptotically standard normal as well.

Now in order to transform a conditional mean problem into an

unconditional mean problem, introduce the random variable

—
I

=14f Y, <¢
bRy (A2)

0 otherwise
where Yj denotes the j'th observation in the random sample drawn from the
continuous density f(-) with finite mean and variance. The number of obser-

vations less than £ 1is a binomial random variable with parameters N and Pi»

P
and ' gp.
= 1 = 1 = 03 - -
T E(IJ-Yj) S ¥ dF(y) = p; E(YJIYJgipi)-
Consider then the asymptotic distribution of the conditional mean
estimator ng = (1/ni) ij f-gp Yj where n; = [NpiOJ. Let
i i
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s, = /N p, [Y.Ep_ - E(Y1Yy < g )]
1

= N ~
= N[N ZYj f.Ep, Yj - 154] (A3)
1

Then consider the first term in (A3).

N

z T Y. =L LY.+ 2 2 Y. (A4)
Yj f_gpi J LN Yje(gpisgpi) J
N
) IY. +g R+0
1ty 4 g R 0,00 (h4)

where it is assumed for convenience that g ij Epi, and where R represents
the (signed) number of observations between gpi and ¢ i. Since the number
of observations in a small interval of length A about gpi is approximately
Nf(gpi)A, and since the (signed) length of the interval between Epi
is approximately

and
Spi

N'%[pi(l-pi)]% e/f(g, ) from (A1),
1

R 2 N¥[p;(1-p;)]%. (A5)
Thus, from (A4) and (A5),
- % N . ]
Si =N Z] (Iij - E) + EpiLPi(]'pi)] e + Op(])

where the first term is asymptotically normal with zero mean by the Central
Limit Theorem and the second has also been shown to be asymptotically normal

with mean zero in Theorem 1 of the text. Consequently, S.

i is also asymptotically

normal with mean zero, and pi_“

Y is asymptotically normal with mean p. E(Y.|Y.
€p, i3ty
i

Now, by the argument in Section III.1, the limiting distribution of

a continuous function of asymptotically normal random variables is also
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asymptotically normal. In particular, consider the ratio P; Y~ /Y both of

13
Ps
whose arguments have been shown to be asymptotically normal with' means

T; and u respectively. Then it follows that

is also asymptotically normal with mean zero and a constant variance for
i=1, ..., K. That is, /N(@i - @i) and /N(@(gp.) - ¢i) have the same
i ~

probability 1imit of zero, so that the feasible estimator ¥ and the infeasible

estimator Q(EP ) are asymptotically equivalently distributed for all i =
i
(Rao (1965), p. 101(ix)).

..s K
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