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The Trouble with Multicollinearity Measures

Gary Smith
Fletcher Jones Professor of Economics

Pomona College

In the standard regression model

X +E 9

txl txp pxl txl

t sample observations are used to calculate the least squares estimates

= (X'X)-1 X'y. The "multicollinearity problem" is a standard section in

econometrics textbooks and a commonplace lament in applied work. The familiar

refrain is that highly intercorrelated data cause imprecise estimates and may

justify special estimation procedures. For example, John Mandel 111, p. 151

observed that "Undoubtedly, the greatest source of difficulties in using

least squares is the existence of 'collinearity' in many sets of data, and

most of the modifications of the ordinary least squares approach are attempts

to deal with the problem of collinearity."

In the multicollinearity literature, the precision of the parameter

estimates is measured by their variances or, in the case of biased estimators,

by their mean squared errors. A plethora of multicollinearity measures has

accumulated to explain the imprecision of the estimates ([11 and [31), to

identify the kinds of additional data most needed to improve the precision

of the estimates [16], and to motivate the use of biased estimation proce-

dures ([3], [8], [13], and [18]).

In this paper I argue that the usual multicollinearity measures may
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have some descriptive value, but should not be the basis for any sub-

stantive decisions, such as the adoption of special estimation procedures.

The three fundamental difficulties are the interchangeability of high

multicollinearity and low variation, the ambiguous choice of parameters

to scrutinize, and the arbitrary scaling of multicollinearity barometers.

The placement of the regression model in a forecasting context clarifies

these difficulties and suggests a potential solution.

Reparameterizations

The model (1) can be reparameterized with any nonsingular matrix A:

(2) y = (XA)(A-1f3) + c = zy + E.

A new parameterization does not change a model; it is just a different

way of writing the same model. No matter what the values of X and 6,

exactly the same values of y are implied by representations (1) and (2).

Nor does the parameterization affect the estimates obtained by ordinary

least squares: the implicit estimates 13. = Ay do not depend on the choice

of A. The parameterization, then, is arbitrary and should not influence

substantive decisions about the adequacy of the data and the need for

alternatives to ordinary least squares. Yet, virtually all multicolli-

nearity measures are sensitive to the model's parameterization.

One common reparameterization is to center the data by. subtracting

the sample mean from each explanatory variable. If the first explanatory

variable is a vector of ones, then the model is rearranged from

(3) Y = + x + x +...+ x1 2 2 23 pp

to

(4) y = f
443
2
R
2
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It clearly should not make any difference whether we estimate equation (3)

or (4). Similarly, there is considerable arbitrariness in arranging poly-

nominal expressions {15}. The equation

could be rearranged as

or as

y +
1 
+ a

2
x + 13

3
x
2

y = -1-c +2c c 12. -c
2
13-) + 

(f32'
+2c
23

)(x-c
1
) +

3
(x-c

2
)
2

1 
12
 1 2 3 2 3

y =
1
-1-c
12

+c
2
a
3
) +

1
(x-c

1
) + 

2 
(x
2
-c
2 
)

for any arbitrary constants cl and c2. These are three equivalent represent-

ations of the same model.

There. are also a variety of units in which most explanatory variables

can be measured. Lengths can be measured in inches, feet, yards, miles,

centimeters, rods, or furlongs. Weights can be measured in ounces, pounds,

tons, grams, or pennyweights. Income can be measured in cents, dollars, or

billions of dollars. Interest rates can be measured in hundredths, percents,

or basis points. Some researchers divide each variable by its standard de-

viation in the particular sample at hand.

With a rescaling, the model (3) is rewritten as

(5) Y = (al/a1) al °2/a2) a2x2 
(I3
3/a3) a3x3 ( p/ap p) axp.

Again, it shouldn't make any difference whether the model is estimated as (3)

or (5).

There are also often several plausible ways of including the explana-

tory variables in a model. As an economist, I'll use several economic examples.

Consider, first, the consumption function, which is a key component of macro-

econometric models. We might assume, as in Holmes f7), that consumption c
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depends on current income y and on permanent income yp:

(6) C = 13 1y + 2y C 
p

where the difference between current and permanent income is transitory

income, yT = y - yp. We could equally well write this model as

(7)

or as

(8)

C = 12.1YT (13f+P'2) Yp El

c = °1+P'2) Y P'2YT C.

Or, we could use other, less obvious, rearrangements of the explanatory

variables, such as

(9) C =. ( 1-132)(.6y-.4yp) (21314-3P,2)(.2y+.2yp) 4- E.

Another specific example from economics is a model {4} in which the

demand for a financial asset depends on its own rate of return and on the

rate of return on at least one alternative asset. The economist can use the

two rates as explanatory variables, or either rate and the yield differential

between the two rates. Similarly, an interest rate and the rate of inflation

are commonplace explanatory variables. The economist can, equivalently, use

the rate of inflation and the real interest rate(which is the difference be-

tween the nominal interest rate and the inflation rate) or use the nominal

and real interest rates.

Asset demand equations also often {4} include either the current and

lagged values of wealth, lagged wealth and the change in wealth, or current

wealth and the change in wealth. This arbitrary arrangement of the explana-

tory variables confronts every researcher who uses current and lagged data.

Labor demand and supply equations might include the logarithms of either

nominal wages and prices, real wages and prices, or nominal wages and real

wages. Production functions could include the logarithms of either capital
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and labor, labor and the capital-labor ratio, or capital and the labor-

capital ratio. Consumption functions could include income and taxes, income

and income minus taxes, or taxes and income minus taxes. Carl Christ {2}

has argued persuasively that macroeconomic models should recognize the

government budget corstraint: expenditures minus taxes minus money issuance.

minus bond sales must equal zero. A reduced-form equation for national in-

come should include any three of these policy variables. It doesn't matter

which three, except for multicollinearity measures.

Multicollinearity measures often motivate modified estimation pro-

cedures including variable deletion, principal components, and ridge regres-

sion. But most multicollinearity measures depend on the centering, scaling,

and arrangement of the explanatory variables. For some parameterizations, least

squares will be retained; for other parameterizations, least squares will be

abandoned. If the parameterization is chosen arbitrarily, then the estimation

procedure will be, too.

High_Multicollinearity or Low Variation?

In practice, simple pairwise correlations often catch researchers'

attention. But statisticians scorn simple correlations, since a variable

may be highly correlated with a group of variables even if it is not highly

correlated with any one member of the group. Instead, there is commonly said

to be a multicollinearity problem if there is a large multiple correlation

2 .coefficientll.betweenthei 
th 

variablex.and the remaining explanatory

variables. This commonsense idea is formally advocated by Farrar and Glauber

{3} and also by Marquardt 13} via his "variance inflation factor," 1/(1-R).

The link between R
2 
and estimator precision is provided by the decomp-

osition of the least squares variance

(10) a2 1 var(..) - 2 2
1 t s. 1-R.

1 1
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2 .where s. is the sample variance of the 
th

explanatory variable. The "multi-

collinearity problem" is said to be that
1)

creases as R. increases,

'2
holding , t, and s

2 
constant.

terms s and 1-R interchangeable, in that offsetting

changes are induced by reparameterizations. Consider the parameter Psi with

the partitioning

X = {x
1 

X
2

txp txl txp-1

and the simple transformation

y = x
1 

+ 
X2Ps2 

+ E

= (x -X + 0)13 =13 + c1 2 1 2 1 2

= z
1
P.
1 
+ X

2
y
2 
+ E.

Different values of b reparameterize the model, with b = 0 corresponding to

the initial parameterization (1). The parameter 131 in (11) describes the

effect on y of an increase in xl - X2b holding X2 constant; i.e., as in (1),

an increase in x
1 
holding X

2 
constant. The interpretation, value and variance

of the least squares estimate f3.1 are unchanged. However, the variance of z
1

and correlation with X
2 
may differ considerably. As a consequence, the ex-

planation of the variance of 13.
1 
in equations such as (10) may be altered

substantially. For some parameterizations, the data are orthogonal so that

zi has a small variance but is uncorrelated with X
2
. For other parameteri-

zations, the data are almost singular so that z
1 
has a large variance but is

very highly correlated with X2.*

*For example, if xl is highly correlated with X2, then z1 will be uncorrelated

with X2 for b = (y2)
-1 
X?i. If xl is orthogonal to X2, then z, will be

highly correlated with X2 for large Ibl.



Few researchers intentionally choose parameterizations to minimize or

2
maximize R. The point is that, if the parameterization is arbitrary, then

2no significance should be attached to the value of R. Some researchers

may find R
2
1 
helpful in describing why a parameter estimate has a high vari-

ance. But it would be entirely arbitrary to base a substantive decision

2
on the magnitude of R .

Two Examples

To illustrate this point, consider first the consumption function's

three parameterizations (6), (7), and (8). Holmes {7} used parameterization

(7) and the correlation between his two explanatory variables was 0.452. If

he had instead used parameterization (6) or (8), his correlation would have

been 0.942 or 0.724. Milton Friedman's original hypothesis was that the

correlation between yT and ypis zero. If this were so and, as in Holmes'

data, the standard deviation of y is twice as large as the standard devi-

ation of yT, then the correlation coefficients would vary with parameteriza-

tions (6), (7), and (&) from 0.90 to 0.00 to 0.45. The parameterization

clearly affects our multicollinearity measure.

A comparison of parameterizations (7) and (8) shows how imprecise

estimates can be equivalently attributed to either high multicollinearity

or low variation. Let's assume that we are interested in the parameter P.
l'

describing the effect on consumption of an increase in transitory income

holding permanent income constant. There has been considerable debate in

the economics literature about whether, as Friedman argues, this parameter

is zero. Many economists have tried mightily to obtain accurate estimates,

but the standard error often turns out to be disappointingly large. If we

regress equation (6), we will probably complain that y and yp are highly

correlated. If we regress equation (7), we will complain that the variance

of yT is very low. These are, of course, different ways of saying the same
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thing. The danger is that the person who uses equation (6) may be tempted

by the multicollinearity reading to use a different estimation procedure.

If there is no logical basis for choosing between parameterizations (6) and

(7), then there is no logical reason to base such a decision on the multi-

collinearity reading.

For a second example, consider the acetylene data used by Marquardt

and Snee {14}. Their quadratic model has the form

(12)
3 3

y = b
o 
+ E a.x. + E + E.

i=1
1 1 

1i
< ‹ 1313
--j 

The data are highly intercorrelated. For example, the squared correlation

2
between x

1 
and the remaining explanatory variables is .9999996. Following

the format (10), the variance of the associated parameter estimate is

(13) var(
11) =

.81258 
(2.5x10

6
) = .36 x 10

-5
.

15(3.77x10
10
)

Marquardt and Snee say that a variance inflation factor of 2 million

unthinkable and unnecessary." They proceed to center and scale the data,

so as to reparameterize (10) as

(14) y=

3 3 -
a + E 13.X. + <E ..x.x.
o 11 1J 1J

i=1 1-i
<
-j

3 -I 3
+ E 13..57c. z. + E 13..s.s.z.z.

i=1 1" 
1 < < 

1ij 
13 1 j 1 j

--

3
E s.

1
i=1

13. +
1 111

where z. = (x -x.)/s . This linear transformation has no effect on the model
1 i 1 i

or the implicit estimates of any of its parameters. However, the variable

sl
2
z
2 
associated with the parameter 1311 is now less highly correlated with the1

remaining explanatory variables. Its correlation coefficient is reduced to

.99943 and its variance inflation factor is down to 2,000. The estimate of

ail, however, is no more accurate,
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(15)
.81258 

var(11) (1, 762• 58) = .36 x 10-5.
15(2.656x107)

Comparing (15) with (13), the variance inflation factor has been reduced by

a factor of 1000, but so has the variance of the associated variable. High

correlation has been transformed into low variation. With parameterization

(12), the estimation of f3is apparently hindered by a severe multicolli-

nearity problem. With parameterization (14), the estimation of (3is ap-

parently hampered by the small variance of the associated variable. The

multicollinearity problem didn't go away. It just went into hiding, and

escaped detection by a myopic multicollinearity measure.

Some General Multicollinearitv Measures

The preceding section focused on interpretations of the imprecision of

particular parameter estiamtes. There are also multicollinearity measures

intended to give an overall assessment of the data's multicollinearity. The

insightful paper by Farrar and Glauber includes the recommendation that the

severity of the multicollinearity problem be measured by the determinant

of the simple correlation matrix for the explanatory variables:

_1 _1 •

(16) IRI = IS2 Z'Z S2I

th
where S is a diagonal matrix with the i diagonal element equal to the

2
sample sum of squares t s

i 
of the i

th 
explanatory variable. Since this

determinant will lie between zero (singularity) and one (orthogonality),

they argue that its closeness to either of these extremes can be interpreted

as a suggestive measure of how collinear the explanatory variables are.

With the assumption that Z is multivariate normal, they offer as a more

precise measure Bartlett's chi-square test of the null hypotheses of ortho-

gonality in the underlying population.
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-IT- 1- 26" (2p + 5)1LogIR I - 
2
x
1p(p-1)
2

Haitovsky f5} notes that this is a questionable null hypothesis given

Farrar and Glauber's emphasis on the unimportance of the parent data. Hai-

tovsky also argues that their test is conserweive in that satisfactory esti-

mates do not require strict orthogonality. He consequently proposes the

alternative extreme of singularity as a null hypothesis, despite the acknow-

ledged fact that this cannot be tested seriously, since an m-dimensional

population will not generate data of more than m dimensions. Nevertheless,

Haitovsky proposes the heuristic test statistic

1 2-{T - 1 - (2p + 5)}Logl1 IRII x
l
P (P - 1)

which does give more comforting signals than Farrar and Glauber's test. For

example, at the 1% level with 50 observations on two explanatory variables,

Farrar and Glauber's gauge indicates a collinearity problem when the squared

correlation between the two variables is greater than .13, while Haitovsky

requires a squared cdrrelation coefficient greater than .87.

Part of the problem here is the usual classicaldilemma of which state

should recieve the presumptive weight of being classified as the null hypo-

thesis. It is also awkward to treat the explanatory variables as stochastic,

seldom realistic to assume that they are independent draws from normal dis-

tributions, and misleading to define multicollinearity in terms of the pro-

perties of the presumed parent population. The consequences of multicolli-

nearity are clearly due to the nature of the available sample data, rather

than the source of the data. Indeed, I will argue below that the most im-

portant qualification is contrary; in a forecasting context, sample multi-

collinearity is more worrisome when it is not a characteristic of future data.

An even more fundamental difficulty is that reparameterizations will
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cause the determinant of the correlation matrix for the explicitly displayed

explanatory variables to vary arbitrarily over the interval {OM. With the

scaler measure (16), multicollinearity seemingly can be created or dissipated

at will. The explanation is, in part, the interchangeability of s 
2 2

d R.

and, in part, the choice of which parameters to estimate explicitly. The p

parameters in (3 are a basis for an infinite number of linear combinations of

these parameters. Any p linearly independent combinations would serve equally

well as a basis. But measures of the overall multicollinearity depend on

which parameters are explicitly specified, since some parameters are more ac-

curately estimated than others and some estimated covariances are larger than

others. Multicollinearity measures like (16) vary with the normalization A

because the normalization determines the set of explicitly estimated parameters

X = A
-1

EL The choice of a paramterization is really then a choice of which

parameters to estimate explicitly and which to leave as implicit estimates.

The Volume of a Confidence Region 

Willan and Watts {19} discuss a generalization of variance inflation

factors. The variance inflation factor compares the variance of a parameter

estimate to what that variance would be if the associated variable had the

same variance, but was uncorrelated with the other explanatory variables. A

natural generalization is to imagine that all Of the explanatory variables

have the .same variances as in the actual data, but are all uncorrelated with

each other. Willan andWatts propose a comparison of the volume of a confidence

region for this fictitious data with the volume for the actual data.

This comparison is obviously dependent on the initial parameterization

of the model, since this determines which variance will be held constant and

which correlations will be assumed away. In the earlier consumption example,

should the fictitious reference data be constructed by assuming that there is

no correlation between y and y' 
between y and Y.p, or between y and y

T
? TableP 
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1 shows that this arbitrary choice does make a difference.

The Willan-Watts volume ratio turns out to be simply the square root

1.5
of the determinant of the correlation matrix, IR' . Thus, they recommend

the same calculation as Farrar and Glauber, but provide a new interpretation:

IR1.5 "tells us how much smaller the joint confidence region could have been
if an efficient orthogonal design had been run instead of the actual design."

(p. 409) Just as with Farrar and Glauber, the Willan-Watts multicollinearity

measure is sensitive to the parameterization of the model. But this sensi-

tivity has a new interpretation. With different parameterizations, they as-

sume different fictitious reference data.

Characteristic Roots

Many statisticians have proposed an examination of a data set's char-

acteristic roots (or eigenvalues) to gauge its "effective dimensionality."

If the columns of A in (2) are the p orthonormal eigenvectors of X'X, then

AI(X T X)A = D =

xi
•

•X
0

where the i
th 

diagonal element of D is the eigenvalue of XTX corresponding

to the i
th 

column of A. Kendall {8}, Silvey {16}, Mansfield and Helms {12},

and Webster, et. al. {19} suggest checking whether any of the roots are close

to zero, while Thisted 08} and Belsley, et. al. {1} favor an examination of

the relative magnitudes. The relevance to estimate precision can be seen

from

E var( i) = a
2
Tr(X1 X)

-1 
= a

2 1
i.i=1 i=1

Forgiveria,ifsmerootsareverysmall,thensomevar(
3_.) 

may be very large.
4 

However, the individual characteristic roots are not directly related to

the rather to those on y =



13

var =
2/X 'Yi

I have emphasized the sensitivity of multicollinearity measures to the par-

ticular parameters that are scrutinized. Characteristic roots gauge the

variances on a set of parameters, the coefficients of the eigenvectors, that

are particularly difficult to interpret. These y
i 

are not automatically any

more or less interesting than other parameters. But they will often be un-

usual.

With two explanatory variables, for example, which happen to have equal

lengths s
2
, the eigenvectors normalize the model as

y = W75 (x
1
-X
2
)1{-1/3 U.1-(3.2)) + 

{-175- (x1+x2)1{-1(75 0 + E.
1 2

The characteristic roots are (1+R)s
2 
and (1-R)s

2
. If the original explana-

tory variables are highly positively or negatively correlated, then one of

the roots will be close to zero and there will be a large variance for the

estimate of either - f32 or + 132. But, before making a substantive

decision based on the characteristic roots, there should be some rationale

for focusing on the particular parameters (31 - 132 and P.,1 +

There is also a scaling problem, in that the division of X by some

scaling parameter a will multiply the parameter variances by a
2 

and reduce

the average value of the characteristic roots by a factor a
2
. Thus, the

size of the characteristic roots depends on whether we record our data in

cents or dollars, inches or centimeters, millions or billions, and so on.

This scaling problem can be attacked by looking at relative magnitudes,

such as the ratio of the maximum eigenvalue to the smallest. But ratios, too,

have problems. Even if the ratio is large, the smallest root may still be

large, too, so that all of the associated parameter variances are small. On

the other hand, even if the ratio is one, all of the roots may be the same

small number, with all of the parameter variances large. A root close to zero
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means the researcher has identified a particular parameter estimate with a

high variance. Unequal roots mean that the researcher has found two para-

meters with unequal variances. Neither finding is very significant.

In addition, the relative magnitudes of roots are altered -by repara-

meterizations that involve other than an equal rescaling of all of the ex-

planatory variables. One variable might be measured in feet and another in

pounds. If we change the units of the first variable from feet to inches,

the characteristic roots will be affected. The roots will also change if

we rearrange the variables as in equations (6) - (9) for the consumption

example.

People who use characteristic roots often standardize their variables

to have zero means and unit variances. Belsley, Kuh, and Welch 01, for

example, note that the conversion from cents to dollars and other scale

changes

result in very different singular-value decompositions
and condition indexes . . . Clearly the condition
indexes can provide no stable information to the user
of linear regression on the degree of collinearity
among the X variates in such a case. It is necessary,
therefore, to standardize the data matrices correspond-
ing to equivalent model structures in a way that makes
comparisons of condition indexes meaningful. A natural
standardization process is to scale each column to have
equal length. (p. 120)

These standardizations are intended to avoid arbitrary, yet critical, scale

choices. But an equal-length scale is no less arbitrary than the alterna-

tives. This habit merely averts one's eyes from the parameterization problem.

Consider, for example, two uncorrelated explanatory variables

Y = x01 x2132 + E 
,

x'1x2 
= O.

The eigenvectors are A = I and the characteristic roots are X
1 
= xix

1 
and

1 
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X
2 
= x'x

2 
. These correspond to

2 

var(13.
1
) = G

2
/x1x

1 
and var(13

2
) =

2
/x'x

1 2 2

Notice, that with unstandardized data, the roots can be very unequal even if

the data are uncorrelated. A small value of X
1 
or X

2 
implies that (depending

on a
2
), the variance of 13

1 
or 13

2 
maybe large. A large ratio 

A2/A1 
implies

that 13 
1 
and 

132 
are not estimated with equal accuracy.

If we standardize these data,

= (x
1
/xix1)(xix01) (x2/x2x2)(x2x2132) c'

then (if x'x
2 
= 0) both roots are equal to one, indicating that the estimates1 

of the rescaled parameters xix 1
13
1 
and xix

2 
13
2 

are equally accurate. Unless we1 2 

explicitly calculate x'x
1 
and 

x'x2' 
we won't realize that 13

1 
and

2 
are not1 2 

equally well estimated. Standardization changes the parameters whose variances

we scrutinize via characteristic roots. But there is no logical reason for

focusing attention on specific parameters that are determined by the means and

variances of a particular data set. And there is still the problem of linear

rearrangements of the explanatory variables.

It is well known that a data set's characteristic roots are altered by

nonorthonormal transformations of the explanatory variables. Consider, for

example, Holmes' consumption data. Table 2 shows the roots for representations

(6), (7), and (8), both with the original data and with the data scaled to have

unit lengths. Notice the considerable variation in the enforced choice of pa-

rameters to estimate explicitly. None of the parameters is clearly more in-

teresting than the others. With the variation in explicitly estimated para-

meters, we get considerable variation in both the absolute and relative sizes

of the characteristic roots. The smallest root varies from 0.06 to 2.99.

The ratio of the roots varies from 35 to 2.6.
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The Parameters of Interest?

Belsley, Kuh, and Welch recognize the effects of linear rearrangements

on the calculated characteristic roots. In an appendix, they admit that

"there is no known relation, in general, between the condition indexes of

X and those of XA" (p. 180). Their recommendation is to choose the trans-

formation A so that y are the "parameters of interest" (p. 179). As an

example, they offer the Cobb-Douglas model Q = AK
a 
O. If the researcher is

interested in a and 13, then the model should be parameterized as

(17) knQ = knA + aknK + 32,111.

If the researcher is instead interested in a + (3, then the parameterization

(18) knQ = knA + (ali3)knL + a(knK-knk)

can be used. In general, they advise that

Once a parameterization has been decided on, the data
should be -transformed ( if need be) to conform, so that
the model becomes y = X13 A- E. Application of the diag-
nostics to X then assesses the suitability of X for
estimating the specific parameters 13. (p. 180).

The first flaw in their recommendation is that it is undermined by

their rescaling of their data to have equal lengths. If the scaling para-

meters are SK and sL' 
then equation (17) is actually analyzed as

(19) knQ = knA + (asK)(inK/sK) + 13s1(knL/sL),

so that the researcher is really working with the weighted parameters as
K

and
L' 

rather than the desired parameters a and 13.

The second flaw is that the characteriistic roots relate to the vari7._

ances of the eigenvector coefficients, which are V.-5-(as
KL

) and .-Nr(as
KL

).
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There is no one-to-one correspondence between the precision of these parameter_

estimates and the precision of the "parameters of interest", a and 13.

The third flaw is that there are a variety of alternatives to equation

(18) for estimating a + a. One is

(20) knQ = knA + (a+f3) knK + fi.(knL-2,nK).

It is not enough to specify a random number of parameters of interest. To para-

meterize a model of rank p one must specify exactly p parameters of interest,

no more and no less. To determine A, we need to completely specify Y. But

where is that specification to come from?

In fact many of the models that Belsley, Kuh, and Welch analyze are

susceptible to the transformations that I discussed at the beginning of this

paper. One model (p. 163) has personal income and the change in personal

income as explanatory variables. Why not instead use lagged personal income

and the change in personal income? Or, lagged and current personal income?

Another model (pp. 2127214) has the current and lagged values of the house-

hold net acquisition of financial assets. Why not instead use the change

and either the current or lagged value? Why do it one way with one model

and another way with the next? This second model also includes two interest

rates. Why not either of these rates and the difference between the two rates?

It is not at all easy to choose the "parameters of interest".

The Loss Function Finesse

Theoretical statisticians often begin their analyses by assuming a

mean squared error loss function, such as

(21) L = E( -13)'(13-43.)

or, perhaps, with weights B:

(22) Lw = E(-13)' B( -f3)
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If they are careful, then their loss function provides the parameterization

that must precede a meaningful multicollinearity measure. If the data are

reparameterized, as in (2), then the loss function must be correspondingly

transformed. If we begin with the loss function (21) and then center, scale,

or rearrange our data via the transformation A, then our loss function becomes

L = E(y-y)'(A'A)(y-y),

where the new parameters are y = A3.
 

Alternatively, if the researcher

centers, scales, and arranges the data so as to work with the parameters y,

then it is tempting to assume that the implicit loss function is E(y-y)'(y-y)

= E(13-13)'(AA')
-1

0-13), so that B = (AA')
-1
.

The problem is that we seldom, if ever, are told the rationale for a

particular loss function. Instead, the centering, scaling, and rearranging

seem to be done out of force of habit and little more. Thisted {17} does

advise researchers that "one chould exercise caution before one adopts the

loss structure," but he offers little guidance on actually choosing a loss

function.

The argument that a meaningful multicollinearity measure requires a

thoughtfully chosen loss function is really just another way of arguing that

a thoughtful parameterization is needed. The fundamental question is still

whether or not a logical rationale can be provided for a particular para-

meterization (or loss function).

A Forecasting Perspective

Multicollinearity measures are sensitive to a model's parameterization.

Yet the multicollinearity literature says very little about this important

choice. Instead, the theoreticians simply assume a parameterization or a
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loss function. In practice, researchers generally use a convenient para-

meterization, selected in a very offhand manner.

A reasonable alternative is to specify explicitly the situations in which

the model will be used. Models are typically intended for forecasting, either

actual predictions using future values of the explanatory variables or hypo-

thetical calculations of the consequences of selected changes in one or more

of the variables. This latter category includes historical review, identifi-

cation and assessment of the importance of certain explanatory variables, and

policy analysis of the effects of changes in some of the variables. If the

model's purpose can be interpreted in terms of forecasting accuracy, then we

* *can obtain a natural scalar measure of estimation precision.

It is important to recognize that "forecasting" is interpreted very

broadly here. If the researcher is interested in the effects of ceteris

paribus changes in one of the explanatory variables, say x/, then the ac-

curacy of the parameter estimate 'RI is paramount. The relevant forecasting

situation would be described by assigning a variety of values to x1 with

fixed values for the other variables. In general, we want to specify values

X which pose the questions that are to be asked of the model. We then want

*
It's the old joke about the physicist, chemist, and mathmatician locked in

a room. The physicist builds a lever, the chemist concocts an explosive, and

the mathematician assumes a key.

**
Willan and Watts {19} also discuss the use of forecasting objectives to

gauge multicollinearity. But they compare the actual prediction variances

to what the prediction variances would be if the data had the same variances

but were uncorrelated. As noted earlier, such comparisons depend on the

initial parameterization of the model.



20

to forecast n out-of-sample values generated by

(23)

where

(24)

X 13. +C

nxl nxp pxl txl

E (;)(;)' =

2
I
t

-2
o 01

n

The mean squared forecasting error is

(25) MSFE = E(j - ̂Y)1(3-7- - Sjr)

= na
2 
+ E(13. )'X'XU, -

The explicit forecasting objectives justify the loss function (22), with B =

X T X. For least squares estimates,

(26) - -MSFE = 
2 
+ a2 

Trace(X'X(XtX)
1 
).

P 1The multicollinearity measure, trace (X TX)
-1 

= E ( /A), is relevant to
i=1

the special case XtX = I. More complicated assumptions are required to sal-

vage the relevance of JRJ. In general, the mean squared forecasting error

is a specific weighted average of parameter mean squared errors, covariances

as well as variances, with weights determined by the characteristics of the

out-of-sample data.

-(27)

.10

If a reparameterization A is selected so that Z TZ = A'(X?X)A = nI, then

-
MSFE = no

2 
+ na

2
Trace(Z T Z)

1

-2 
^

= na + na
2

E var(yi)
1=1

-2 2 P 1=no' + na E /11
1=1 i

where the p
i 

are eigenvalues of Z T Z when AA' = n(X TX)
-1
. The sum of the
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A
variances of the yi (and of the inverse roots for this parameterization)

directly measures forecasting accuracy. While the specific elements of A

are not unique, it can easily be shown that the requirements that A be non-

singular and that AA' = n(XIX) Imply that the roots of Z'Z are unique.

Although imperfectly related to MSFE, the alternative measures of the smal-

lest root of Z'Z, the ratio of the largest root to the smallest, and the

determinant IZ'Z I = pi are all at least fixed by the suggested parame-
i=l

terization. This is not true of the correlations among the z
i 

and of the

determinant of the correlation matrix for Z, in that there is some continu-

ing interchangeability of s and 1 aR for Z which precludes a substantive

2
d RI.I 

Scaling a Multicollinearity Barometer

A persistent issue for proposed multicollinearitymeasares is the scale

calibration. For what values of the characteristic roots or correlation

coefficients are the data to be considered "ill-conditioned" and estimates

"degraded"? Correlation coefficients have a finite range but the inter-

2 2changeabsility of 1 R. and s
i 

prevents a meaningful interpretation of

2specific values of R. Clearly, variances as well as correlation coeffi-

cients must be taken into account. In addition, equation (10) shows that

2even bolding s? constant, it cannot be inferred from the value of R. whether

the variance of any estimate is "high" or "low". If there are lots of data

Consider two nonsingular transformations A and A with AA' = AA', and define

p = A-1A. Then P-1-i''ZP = A-1A;T AXA-1A = A'X'XA = Z'Z so that Di and Z'Z

are similar.
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and/or a low disturbance variance, very accurate estimates are consistent

with highly multicollinear data. Conversely, the estimates may have high

variances even if the data are orthogonal. Nor does it seem reasonable to

label a variance "high" or "low" without reference to the parameter being

estimated. The scale of a variance depends, of course, on the scale of the

parameter.Thefactthatthevariancem(1013.)is one hundred times that
^

01113.doesnotmeanthatestimating10.rather than 13.1_ diminishes accuracy.

. A reliable accuracy assessment must take into account the researcher's

objectives. For example, a high variance can be tolerated on a parameter

that is uninteresting, perhaps because the model is intended for use in

situations in which the associated variable will change little. The place-

ment of the model in a forecasting context provides a parameterization,

-1 -1 P 1AA' = n(X'X) such that the scale of trace (ZIZ)or E AI, can be
i=1

meaningfully interpreted. The assessment of whether MSFE is large or small

is still necessarily subjective.

Some Two-Variable Analytics

Consider the simple p = 2 case with

Z1Z = t

2
s
l 

rs
1s2

rs
1s2

2

The mean squared forecasting error is

Z'Z = n

-2S1 rsis2

-2
rs s

21s2

- 2 2
MSFE = nu

2 
+ (nu

2
/t)(h

1 
+ h

2 
- 2rrh

1 
h2)/(1 - r

2
)

where h. ,= s./s.. Even given n, t, G, and a the MSFE cannot be inferred froma.

r. It is necessary to specify the variances as well as covariances, and to

also specify the out-of-sample characteristics of the data. Even if r = 0,

theforecastsmaYbeunreliableilaleh.are large. On the other hand, a
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value of r
2 
close to one need not be serious if the correlation persists out-

of-sample (r close to r), if there is very little out-of-sample variation of

the explanatory variables relative to the in-sample variation, if the in-sample

variance of the disturbance term is small, or if there are many sample data.

Indeed, an increase in r
2 
may even be beneficial. For example, when

h
1 
= h

2 
= h
'

and

- no'
2

MSFE = na
2
 + 2h

2 1 - rr

1- r
2

W - MSFE na
2h
2 2(r - r) + (1 r

2 
)r

(1 r
2
)
2

For a given positive (negative) out-of-sample correlation, the MSFE will

decline at the point r = 0 as r rises (falls). The MSFE will turn back up

at the point

r = 
1 - 1 - r 

2

which is between 0 and r. For example, with r = .95, an increase in r up

to .72 will reduce MSFE. .•

If the data are parameterized so that ZTZ = nI, then

-
MSFE = na

2
 + (na

2
/t)(1/s

2 
+ 1/s

2
)/(I - r

2
)

1 2

so that these estimate variances 1/s (1-r
2
) do provide a guide to MSFE.

Notice though, that there is still some interchangeability of r and s
2
. The

interpretation of correlation coefficients is ambiguous even with a fore-

casting parameterization.

Summary

In regression models there is seldom a compelling specific parameteri-
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zation. Variables might be measured as deviations from zero, from their

sample means, or from some other number. Each variable's units can be freely

chosen. Variables are often added to or subtracted from one another. These

are all examples of arbitrary nonsingular linear transformations which do not

affect the substance of a model.

multicollinearity measures that are sensitive to arbitrary parameteri-

zations are themselves arbitrary. The variance on any single parameter can

be equivalently analyzed in terms of either the correlations among certain

variables or the variation of certain variables. Multicollinearity measures

for the model as a whole depend also upon the specific parameters analyzed.

I have argued here that an explicit forecasting context provides a natural

scalar measure of estimation accuracy and a meaningful parameterization for

multicollinearity measures based on eigenvalues.



Table 2. Some Normalizations of Friedman's Consumption Data

Ratio of

Correlation Characteristic Roots Characteristic

Equation between Variables Parameters Explicitly Estimated (divided by 02) Roots

(6) .942 .80131 + .61 2 .6113 .f3
21 

-80 43.93 1.24 35

(6)scaled .942 3.8131 + 2.9132 3.813
1 

- 2.9132 
1.94 .06 33

(7) .452 -. - .971371(31 
.2 

.7113
1 

- .2643 17.86 2.99 6.0

(7)scaled .452 4.3P1 + 2.9132. -1.5131 - 2.913 1.45 .55 2.6

(8) .724 -.9643 - .68132 
-.2813

1 
- 1.213 30.28 1.75 17.3

(8)scaled .724 3.813
1 
+ 2.313

2 3.8131 
+ 5.213.

2 
1.72 .28 6.2
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